JPH07138048A - Ultraviolet light heat screening glass - Google Patents

Ultraviolet light heat screening glass

Info

Publication number
JPH07138048A
JPH07138048A JP26698893A JP26698893A JPH07138048A JP H07138048 A JPH07138048 A JP H07138048A JP 26698893 A JP26698893 A JP 26698893A JP 26698893 A JP26698893 A JP 26698893A JP H07138048 A JPH07138048 A JP H07138048A
Authority
JP
Japan
Prior art keywords
film
refractive index
layer
transparent dielectric
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26698893A
Other languages
Japanese (ja)
Inventor
Hironobu Iida
裕伸 飯田
Takao Tomioka
孝夫 冨岡
Itaru Shibata
格 柴田
Riichi Nishide
利一 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Nissan Motor Co Ltd
Original Assignee
Central Glass Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Nissan Motor Co Ltd filed Critical Central Glass Co Ltd
Priority to JP26698893A priority Critical patent/JPH07138048A/en
Publication of JPH07138048A publication Critical patent/JPH07138048A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings

Abstract

PURPOSE:To improve performances for simultaneously screening heat rays, infrared rays and ultraviolet rays by a simple layer constitution by laminating a first transparent dielectric material film to a transparent substrate and laminating a dielectric material layer having a different refractive index to the first transparent dielectric material film. CONSTITUTION:A substrate 1 comprising any of various glass plates or a transparent resin substrate is successively provided with a first transparent dielectric material film 2 which is selected from oxides consisting essentially of Zn, Ce or Cd, having ultraviolet light screening performances and compound oxides prepared by mixing these oxides with 1-10 atomic % of a metal element or metal nitride and has 50-1,200nm film thickness and >=1.55 refractive index, with a second transparent dielectric film 3 selected from an oxide of (A) silicon, titanium, etc., having 10-300nm film thickness and >=1.55 refractive index, prepared by mixing an oxide, with a third transparent dielectric material film 4 selected from the component A, having 10-300nm film thickness and <=1.65 refractive index and with a forth transparent dielectric material film 5 selected from the component A, having 10-300nm film thickness and <=1.65 refractive index by a vacuum film-forming method such as sputtering method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車用窓ガラスとして
適する紫外線および熱線を遮断するガラスに関するもの
であり、50%以上の可視光透過率、より好ましくは7
0%以上の部位に好適に使用されるものであり、紫外線
による内装材の劣化、車室内に流入する熱線遮蔽性能を
有し、居住性を高められる窓ガラスとして好適に使用さ
れるものである。また、本発明は自動車用が最も好まし
いが、これに限定されるものではなく、各種の窓、内装
材としても使用できる。さらに、単板ガラス、合わせガ
ラス、複層ガラスに適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass which shields ultraviolet rays and heat rays and is suitable as a window glass for automobiles, and has a visible light transmittance of 50% or more, more preferably 7%.
It is suitable for use in 0% or more of the area, has a deterioration of interior materials due to ultraviolet rays, has a heat ray shielding performance that flows into the vehicle interior, and is suitably used as a window glass that can enhance comfort. . The present invention is most preferably used for automobiles, but is not limited to this, and can be used as various windows and interior materials. Furthermore, it can be applied to single-plate glass, laminated glass, and double-glazing.

【0002】[0002]

【従来技術とその問題点】従来より省エネルギーの観点
から窓ガラスを通じて車室内に照射される太陽光の特定
の波長部分を遮断し、車室内の温度上昇を低減し、冷房
機器の負荷を低減させるため熱線遮蔽性の高い窓ガラス
が要求されている。
2. Description of the Related Art Conventionally, from the viewpoint of energy saving, a specific wavelength portion of sunlight radiated into a vehicle compartment through a window glass is cut off to reduce a temperature rise in the vehicle compartment and a load on a cooling device. Therefore, a window glass having a high heat ray shielding property is required.

【0003】熱線、赤外線を遮断する方法としてドルー
デミラーと呼ばれる、透明基板上に酸化インジウムと酸
化錫の混合膜(ITO膜)や酸化亜鉛にアルミニウムを添
加した膜に代表される透明導電性膜を成膜して熱線、赤
外線を遮断する方法が知られている。このタイプのガラ
スは確かに赤外線を遮断するが遮断する波長が1.5μm
以上であり、熱線、赤外線遮断性能はあまり良くない。
また各種の金属膜、誘電体膜を積層し光干渉効果を利用
して特定の波長の光を反射または透過させることが知ら
れている。光干渉効果を利用した熱線反射ガラスは特公
昭47-6315 号に開示されている銀膜を透明誘電体膜で挟
んだ構成のガラスがある。また特開昭63-206333 号に開
示されている窒化物を透明誘電体膜で挟んだ構成の熱線
反射ガラスもある。
As a method for blocking heat rays and infrared rays, a transparent conductive film typified by a mixed film of indium oxide and tin oxide (ITO film) or a film obtained by adding aluminum to zinc oxide, which is called a drude mirror, is used. A method of forming a film to block heat rays and infrared rays is known. This type of glass certainly blocks infrared rays, but the blocking wavelength is 1.5 μm.
As above, the heat ray and infrared ray shielding performance is not so good.
It is also known that various metal films and dielectric films are laminated to reflect or transmit light of a specific wavelength by utilizing an optical interference effect. As a heat ray reflective glass utilizing the optical interference effect, there is a glass disclosed in Japanese Patent Publication No. Sho 47-6315, in which a silver film is sandwiched between transparent dielectric films. There is also a heat ray reflective glass disclosed in JP-A-63-206333 in which a nitride is sandwiched between transparent dielectric films.

【0004】これらのガラスは熱線反射性のみを目的に
しているため、後述の紫外線遮断性はない。また特定の
波長のみを透過あるいは反射させる光学フィルターとし
て高屈折率層と低屈折率層を特定膜厚だけ交互に多層積
層させる方法が知られており、主に酸化チタンと酸化シ
リコンで形成されているが、この場合は特定波長のフィ
ルターを目的にしており、必ずしも本発明の目的とする
遮蔽性能が得られないと共に非常に多層にする必要があ
った。
Since these glasses have only the purpose of reflecting heat rays, they do not have the UV blocking property described later. As an optical filter that transmits or reflects only a specific wavelength, a method is known in which a high-refractive index layer and a low-refractive index layer are alternately laminated in multiple layers with a specific thickness, and is mainly formed of titanium oxide and silicon oxide. However, in this case, the purpose is to filter a specific wavelength, and it is not always possible to obtain the shielding performance that is the object of the present invention, and it is necessary to make a very large number of layers.

【0005】その他の方法としてガラス板中に特定の金
属元素等を混入させ熱線を吸収させる方法が知られてい
る。このタイプのガラスは特定の金属元素をガラスに添
加することで熱線遮断性が得られるが、その添加量を増
加するとガラス板自体の機械的強度を弱め、また良好な
熱線遮断性を得るには使用する金属元素が限定されるた
め色合いの点で問題がある。
As another method, there is known a method of absorbing a heat ray by mixing a specific metal element or the like into a glass plate. In this type of glass, the heat ray blocking property is obtained by adding a specific metal element to the glass, but increasing the addition amount weakens the mechanical strength of the glass plate itself, and in order to obtain a good heat ray blocking property. Since the metal elements used are limited, there is a problem in terms of hue.

【0006】一方紫外線に関しては、紫外線が人体に吸
収されると日焼けを生じたり、メラニン色素が沈着して
シミ、ソバカスとなり皮膚を老化させるといわれてい
る。また紫外線照射により車内の内装材の色あせ、劣化
も生じるといわれている。この様な観点から紫外線遮蔽
性能のあるガラスも求められている。
On the other hand, with respect to ultraviolet rays, it is said that when the ultraviolet rays are absorbed by the human body, sunburn occurs or melanin pigments are deposited to form spots or freckles, which causes skin aging. In addition, it is said that the interior materials inside the vehicle are faded and deteriorated by the irradiation of ultraviolet rays. From this point of view, there is also a demand for glass having an ultraviolet shielding property.

【0007】以上のようなニーズに対して熱線、赤外線
および紫外線を同時に遮蔽する方法として、熱線、赤外
線遮蔽層と紫外線遮蔽層とをそれぞれ別々にガラス表面
上に層状に形成する方法が知られており、特開昭61-132
902 号には紫外線吸収能のある酸化亜鉛膜を形成し、こ
の膜上に酸化亜鉛にアルミニウムを0.4 から10原子%含
ませ熱線、赤外線遮断性能を付与した紫外線赤外線断蔽
ガラスが開示されている。
As a method for simultaneously blocking heat rays, infrared rays and ultraviolet rays to meet the above needs, there is known a method in which a heat ray, an infrared ray shielding layer and an ultraviolet ray shielding layer are separately formed in layers on a glass surface. , JP-A-61-132
No. 902 discloses an ultraviolet / infrared shielding glass in which a zinc oxide film having an ultraviolet absorbing ability is formed, and zinc oxide contains 0.4 to 10 atomic% of aluminum to impart heat ray and infrared ray shielding properties. .

【0008】しかしながらこの従来の紫外線赤外線遮断
ガラスにあっては、紫外線、赤外線の遮断性能がかなら
ずしも十分でないという問題点があった。そこで本発明
の目的は簡素な層構成で熱線、赤外線と紫外線を同時に
遮断する性能を向上した紫外線熱線遮蔽ガラスを提供す
ることにある。
However, the conventional ultraviolet / infrared ray shielding glass has a problem that the ultraviolet ray / infrared ray shielding performance is not always sufficient. Therefore, an object of the present invention is to provide an ultraviolet heat ray shielding glass having a simple layered structure and having an improved ability to simultaneously shield heat rays, infrared rays and ultraviolet rays.

【0009】[0009]

【問題点を解決するための手段】本発明は上記の問題点
を解決すべくなされたものであり、自動車用、建築用窓
ガラスとして適する紫外線、熱線遮断ガラスであって、
透明な基板上に、基板側より第1層として亜鉛、セリウ
ム、カドミニウムのいずれかを主成分とする紫外線遮断
性能を有する酸化物またはこれらの複合酸化物またはこ
れらの酸化物に微量の金属元素または金属窒化物を添加
した複合酸化物からなる第1の透明誘電体膜を50〜1
200nm設け、さらにその上に第1層よりも低屈折率
である誘電体層を第2n層(n=1、2、3・・・)と
して10〜300nm積層し、さらにその上に第2n層
よりも高屈折率である誘電体層を第2n+1層(n=
1,2,3・・・)として10〜300nm積層したこ
とを特徴とする紫外線熱線遮断ガラスに関するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is an ultraviolet and heat ray blocking glass suitable as a window glass for automobiles and constructions.
On a transparent substrate, as the first layer from the substrate side, an oxide having an ultraviolet ray-shielding property containing zinc, cerium, or cadmium as a main component, or a composite oxide thereof, or a trace amount of a metal element in these oxides or 50 to 1 of the first transparent dielectric film made of a composite oxide to which a metal nitride is added
200 nm is provided, and a dielectric layer having a lower refractive index than the first layer is further laminated thereon as a second n-layer (n = 1, 2, 3 ...) In a thickness of 10-300 nm, and a second n-layer is further formed thereon. A dielectric layer having a higher refractive index than the second n + 1th layer (n =
1, 2, 3 ...) and 10 to 300 nm of the laminated layers are related to the ultraviolet heat ray-shielding glass.

【0010】図1は本発明に係わる紫外線、熱線遮断ガ
ラスの構成を示すもので、図中(1)はソーダライムガ
ラス、アルミノシリケートガラスなどの各種ガラス板、
またはポリメチルメタアクリレート(PMMA)、ポリ
カーボネイト(PC)のような透明樹脂基板より選ばれ
る透明な基板、(2)は亜鉛、セリウム、カドミニウム
のいずれかを主成分とする紫外線遮断性能を有する酸化
物またはこれらの複合酸化物またはこれらの酸化物に微
量の金属元素または金属窒化物を添加した複合酸化物よ
り選ばれた第1の透明誘電体膜、(3)はシリコン、チ
タン、アルミニウム、錫、ジルコニウム、タンタル、ク
ロム、ステンレス、ニクロムの酸化物、またはそれらの
複合酸化物または窒素酸化物より選ばれた低屈折率を有
する第2の透明誘電体膜、(4)はシリコン、チタン、
アルミニウム、錫、ジルコニウム、タンタル、クロム、
ステンレス、ニクロムの酸化物、またはそれらの複合酸
化物または窒素酸化物より選ばれた高屈折率を有する第
3の透明誘電体膜、(5)はシリコン、チタン、アルミ
ニウム、錫、ジルコニウム、タンタル、クロム、ステン
レス、ニクロムの酸化物、またはそれらの複合酸化物ま
たは窒素酸化物より選ばれた低屈折率を有する第4の透
明誘電体膜を示す。
FIG. 1 shows the constitution of the glass for blocking ultraviolet rays and heat rays according to the present invention. In the figure, (1) shows various glass plates such as soda lime glass and aluminosilicate glass.
Alternatively, a transparent substrate selected from transparent resin substrates such as polymethylmethacrylate (PMMA) and polycarbonate (PC), and (2) an oxide mainly containing zinc, cerium, or cadmium and having an ultraviolet blocking property. Alternatively, a first transparent dielectric film selected from these complex oxides or complex oxides obtained by adding a trace amount of a metal element or metal nitride to these oxides, (3) is silicon, titanium, aluminum, tin, A second transparent dielectric film having a low refractive index selected from oxides of zirconium, tantalum, chromium, stainless steel, nichrome, or their composite oxides or nitrogen oxides, (4) is silicon, titanium,
Aluminum, tin, zirconium, tantalum, chromium,
A third transparent dielectric film having a high refractive index selected from the oxides of stainless steel and nichrome, or their composite oxides or nitrogen oxides, (5) is silicon, titanium, aluminum, tin, zirconium, tantalum, 4 shows a fourth transparent dielectric film having a low refractive index selected from oxides of chromium, stainless steel, nichrome, or their composite oxides or nitrogen oxides.

【0011】前記第1の誘電体膜は上記の誘電体から任
意に選択できるが、とくに酸化亜鉛および酸化亜鉛に
鉄、クロム、シリコン、チタンを1〜10原子%添加し
た誘電体膜、酸化亜鉛と酸化セリウム、酸化カドミニウ
ム、酸化シリコンなどの透明誘電体よりなる複合誘電体
膜、および酸化セリウムに酸化チタンを添加した複合誘
電体膜が好ましい。この理由はこれらの膜が優れた紫外
線遮断性能と可視光域での透明性をもつためで、膜厚を
少なくとも50nm以上、より好ましくは100〜12
00nmとすることで、良好な紫外線遮断性能を得るこ
とができる。さらに第1の透明誘電体膜の屈折率は高屈
折率であることが好ましく、少なくとも1.55以上の屈折
率を有することが好ましい。より好ましくは1.55〜2.5
の値である。
The first dielectric film can be arbitrarily selected from the above-mentioned dielectrics. Particularly, zinc oxide and a dielectric film in which iron, chromium, silicon, and titanium are added to zinc oxide at 1 to 10 atomic%, zinc oxide. And a composite dielectric film made of a transparent dielectric material such as cerium oxide, cadmium oxide, and silicon oxide, and a composite dielectric film obtained by adding titanium oxide to cerium oxide. The reason for this is that these films have excellent ultraviolet blocking performance and transparency in the visible light region, and the film thickness is at least 50 nm or more, more preferably 100 to 12 nm.
By setting the thickness to 00 nm, good ultraviolet blocking performance can be obtained. Further, the refractive index of the first transparent dielectric film is preferably a high refractive index, and preferably has a refractive index of at least 1.55 or more. More preferably 1.55 to 2.5
Is the value of.

【0012】第1の透明誘電体層の上に第2層として形
成される低屈折率膜としては、上記の透明誘電体膜から
任意に選択できるが、その屈折率は第1の誘電体膜の屈
折率よりも低く、より好ましくは1.55以下の屈折率を有
する誘電体膜である。
The low refractive index film formed as the second layer on the first transparent dielectric layer can be arbitrarily selected from the above-mentioned transparent dielectric films, but the refractive index thereof is the first dielectric film. It is a dielectric film having a refractive index lower than that of, and more preferably 1.55 or less.

【0013】第2の透明誘電体膜の上に第3層として形
成される高屈折率膜としては、上記の透明誘電体膜から
任意に選択されるが、その屈折率は第2の誘電体膜より
も高く、より好ましくは1.65以上の屈折率を有する誘電
体膜である。
The high refractive index film formed as the third layer on the second transparent dielectric film is arbitrarily selected from the above transparent dielectric films, and the refractive index thereof is the second dielectric film. It is a dielectric film having a refractive index higher than that of the film, and more preferably 1.65 or more.

【0014】第3の高屈折率膜の上に第4層として形成
される低屈折率膜としては、上記の透明誘電体膜から任
意に選択できるが、その屈折率は第3の誘電体膜の屈折
率よりも低く、より好ましくは1.65以下の屈折率を有す
る誘電体膜であり、第2層として形成された低屈折率膜
と同じでもよく、また異なっていてもよい。
The low-refractive index film formed as the fourth layer on the third high-refractive index film can be arbitrarily selected from the above-mentioned transparent dielectric films, but its refractive index is the third dielectric film. The refractive index of the dielectric film is lower than that of the above-mentioned, and more preferably 1.65 or less, and may be the same as or different from the low-refractive-index film formed as the second layer.

【0015】さらにその上に第5層として高屈折率膜を
形成することもできる。この膜は第3層として形成され
た高屈折率膜と同じでもよく、また異なっていてもよ
い。各層の膜厚としては、第1層は紫外線遮蔽性能を発
現させるためにには50nm以上、より好ましくは10
0nm以上で、1200nm以下である。第2n層なら
びに第2n+1層(n=1、2・・・)としては10〜
300nmである。これはその膜厚よりも薄いと光干渉
効果により充分な赤外線遮断性能が得られないためであ
り、これよりも厚い場合は干渉効果は得られるものの成
膜に要する時間が長くなるため、好ましいとは言えな
い。また層の数はできる限り多い方がより高い性能が得
られるものの、成膜が複雑になるため、好ましくは7層
以下、より好ましくは5層以下である。
Further, a high refractive index film can be formed as a fifth layer thereover. This film may be the same as or different from the high refractive index film formed as the third layer. As for the film thickness of each layer, the first layer has a thickness of 50 nm or more, more preferably 10 nm or more, in order to exhibit the ultraviolet shielding performance.
It is 0 nm or more and 1200 nm or less. The second n-th layer and the second n + 1-th layer (n = 1, 2, ...)
It is 300 nm. This is because if the thickness is smaller than that, sufficient infrared ray blocking performance cannot be obtained due to the light interference effect, and if it is thicker than this, the interference effect is obtained but the time required for film formation becomes long, which is preferable. I can't say. Further, the higher the number of layers, the higher the performance can be obtained, but since the film formation becomes complicated, the number of layers is preferably 7 or less, more preferably 5 or less.

【0016】本発明の紫外線熱線遮断ガラスにおいて、
熱線を遮蔽する機能は第1層と少なくともその上に形成
される2層以上の低屈折率膜および高屈折率膜による光
干渉効果によって発現する。ここで第1層は紫外線遮蔽
膜としての機能とともに、光干渉効果を発現させるため
の高屈折率膜として機能している。このため、屈折率は
少なくとも1.55以上であることが好ましい。それ以下の
屈折率では上に積層される低屈折率膜との屈折率差が小
さく光干渉効果が小さくなり熱線、赤外線遮蔽力が劣る
のである。その上に形成される低屈折率膜の屈折率は第
1層の屈折率よりも低く、1.55以下であることが好まし
い。それ以上の屈折率では高屈折率膜との屈折率差が小
さく光干渉効果が小さくなり熱線、赤外線遮蔽力が劣
る。
In the ultraviolet heat ray-shielding glass of the present invention,
The function of shielding heat rays is exhibited by the optical interference effect of the first layer and at least two or more low refractive index films and high refractive index films formed thereon. Here, the first layer functions as a high-refractive index film for exhibiting an optical interference effect, as well as a function as an ultraviolet shielding film. Therefore, the refractive index is preferably at least 1.55 or more. If the refractive index is lower than that, the difference in refractive index from the low refractive index film laminated on top is small and the optical interference effect is small, resulting in poor heat ray and infrared ray shielding power. The refractive index of the low refractive index film formed thereon is lower than that of the first layer, and is preferably 1.55 or less. When the refractive index is higher than that, the difference in refractive index from the high refractive index film is small, the optical interference effect is small, and the heat ray and infrared ray shielding power is poor.

【0017】第3層以上の高屈折率膜の屈折率は1.65以
上であることが好ましく、低屈折率膜の屈折率は1.65以
下であることが好ましい。高屈折率膜の屈折率と低屈折
率膜の屈折率差は大きければ大きい程、熱線、赤外線遮
蔽効果は大きくなる。第1層の紫外線遮蔽層により紫外
線を遮蔽し、かつこの層を高屈折率層として用い、その
上に少なくとも2層以上の低屈折率膜と高屈折率膜を交
互に形成することにより、紫外線および熱線、赤外線の
両者を効率よく遮蔽することは従来は知られておらず、
これらの組み合わせにより効率よく紫外線および熱線、
赤外線を遮蔽できることは驚くべきことである。
The high refractive index film of the third layer or more preferably has a refractive index of 1.65 or more, and the low refractive index film preferably has a refractive index of 1.65 or less. The greater the difference between the refractive index of the high refractive index film and the refractive index of the low refractive index film, the greater the heat ray and infrared ray shielding effect. By shielding the ultraviolet ray by the first ultraviolet ray shielding layer and using this layer as the high refractive index layer, by alternately forming at least two or more layers of the low refractive index film and the high refractive index film thereon, It has not been known so far to efficiently shield both heat rays and infrared rays,
The combination of these makes it possible to efficiently use ultraviolet rays and heat rays,
The ability to block infrared radiation is surprising.

【0018】本発明により、紫外線、熱線を効率良く遮
蔽できるとともに、可視光を充分に透過させることがで
きるため、充分な透明性を発現でき、自動車用、建築用
の紫外線熱線遮蔽ガラスを提供できる。さらに、本発明
の紫外線熱線遮断ガラスは誘電体の多層積層によるもの
であり、その表面抵抗は少なくとも10kΩ/□以上で
あり、ほとんどの場合では1MΩ/□であり、外来の電
波を充分に透過させることができるとともに、この膜に
ガラスアンテナを形成してもアンテナ受信性能を損なう
ことはない。さらに本発明の紫外線熱線遮断ガラスは単
板で使用できるものであるが、合わせガラスあるいは複
層ガラスとして使用できることは言うまでもない。
According to the present invention, since ultraviolet rays and heat rays can be efficiently shielded and visible light can be sufficiently transmitted, sufficient transparency can be exhibited, and an ultraviolet heat ray shielding glass for automobiles and constructions can be provided. . Further, the ultraviolet heat ray-shielding glass of the present invention is made by laminating multiple layers of dielectrics, and its surface resistance is at least 10 kΩ / □ or more, and in most cases it is 1 MΩ / □, which allows sufficient transmission of external radio waves. In addition, even if a glass antenna is formed on this film, the antenna reception performance is not impaired. Further, the ultraviolet heat ray-shielding glass of the present invention can be used as a single plate, but it goes without saying that it can be used as a laminated glass or a double-glazing.

【0019】これらの膜はスパッタ法、蒸着法、イオン
プレーティング法、化学気相法(CVD法)などの真空
成膜法およびゾルゲル法等の湿式成膜法によっても成膜
できる。このうち大面積化、および生産性の点でスパッ
タ法、ゾルゲル法が優れている。
These films can also be formed by a vacuum film forming method such as a sputtering method, a vapor deposition method, an ion plating method, a chemical vapor deposition method (CVD method) or a wet film forming method such as a sol-gel method. Among them, the sputtering method and the sol-gel method are excellent in terms of increasing the area and productivity.

【0020】[0020]

【作用】本発明の、透明な基板上に基板側より第1層と
して紫外線遮蔽性能を有する高屈折率の第1の透明誘電
体膜を設け、その上に低屈折率を有する透明誘電体層を
第2n層として形成し、さらに第2n層よりも高屈折率
を有する透明誘電体層を第2n+1層として形成したこ
とを特徴とする紫外線熱線遮断ガラスにより、紫外線お
よび熱線、赤外線を効率よく遮蔽し、さらに良好な可視
光透過率を有するとともに、充分な電波透過性能を有す
る有用な自動車用、建築用窓ガラスが得られる。
According to the present invention, a first transparent dielectric film having a high refractive index and having a UV-shielding property is provided as a first layer on the transparent substrate from the side of the substrate, and a transparent dielectric layer having a low refractive index is provided thereon. Is formed as a second n layer, and a transparent dielectric layer having a refractive index higher than that of the second n layer is formed as a second n + 1 layer, so that ultraviolet rays, heat rays, and infrared rays are efficiently shielded by the ultraviolet heat ray shielding glass. In addition, a useful window glass for automobiles and buildings having a good visible light transmittance and a sufficient radio wave transmission performance can be obtained.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし本発明は係る実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the embodiment.

【0022】実施例1 透明ガラス基板をイソプロピルアルコールにて脱脂洗
浄、純水リンス後、窒素ブロー乾燥した。この透明ガラ
ス基板をスパッタ装置内に搬送し、5×10-6Torrまで
排気した。真空槽内には第1の透明誘電体膜として用い
る酸化亜鉛膜用の亜鉛ターゲット、第2、第4の透明誘
電体膜として用いる酸化シリコン用の酸化シリコンター
ゲット、第3層の透明誘電体膜として用いる酸化チタン
膜用のチタンターゲットを設置した。
Example 1 A transparent glass substrate was degreased and washed with isopropyl alcohol, rinsed with pure water, and then blown dry with nitrogen. This transparent glass substrate was conveyed into the sputtering apparatus and exhausted to 5 × 10 −6 Torr. In the vacuum chamber, a zinc target for the zinc oxide film used as the first transparent dielectric film, a silicon oxide target for silicon oxide used as the second and fourth transparent dielectric films, and a transparent dielectric film of the third layer. A titanium target for the titanium oxide film used as was installed.

【0023】まずスパッタガスとしてアルゴン、酸素の
混合ガスをAr:O2=1:1 に調整し真空槽内のガス圧が5×
10-3 Torr となるよう排気速度、ガス流量を調整し、
スパッタパワー約300W で、反応性スパッタにて第1
層の透明誘電体膜として酸化亜鉛膜を膜厚約150nm
成膜した。この膜の屈折率は約2. 0であった。
First, a mixed gas of argon and oxygen was adjusted as Ar: O 2 = 1: 1 as a sputtering gas, and the gas pressure in the vacuum chamber was 5 ×.
Adjust the pumping speed and gas flow rate so that it becomes 10 -3 Torr,
Sputtering power of about 300 W, the first in reactive sputtering
Zinc oxide film as the transparent dielectric film of the layer is about 150 nm thick
A film was formed. The refractive index of this film was about 2.0.

【0024】次にスパッタガスとしてアルゴン、酸素の
混合ガスをAr:O2=1:1 に調整し真空槽内のガス圧が4×
10-3 Torr となるよう排気速度、ガス流量を調整し、
スパッタパワー約500W で、反応性スパッタにて第2
層の低屈折率を有する透明誘電体膜として酸化シリコン
膜を膜厚約170nm成膜した。この膜の屈折率は約
1. 46であった。
Next, a mixed gas of argon and oxygen was adjusted as Ar: O 2 = 1: 1 as a sputtering gas, and the gas pressure in the vacuum chamber was 4 ×.
Adjust the pumping speed and gas flow rate so that it becomes 10 -3 Torr,
Sputtering power is about 500W and the second is reactive sputtering.
A silicon oxide film having a thickness of about 170 nm was formed as a transparent dielectric film having a low refractive index of the layer. The refractive index of this film was about 1.46.

【0025】次にスパッタガスとしてアルゴン、酸素の
混合ガスをAr:O2=1:1 に調整し真空槽内のガス圧が5×
10-3 Torr となるよう排気速度、ガス流量を調整し、
スパッタパワー約400W で、反応性スパッタにて第3
層の高屈折率を有する透明誘電体膜として酸化チタン膜
を膜厚約90nm成膜した。この膜の屈折率は約2.3
であった。
Next, a mixed gas of argon and oxygen was adjusted as Ar: O 2 = 1: 1 as a sputtering gas, and the gas pressure in the vacuum chamber was 5 ×.
Adjust the pumping speed and gas flow rate so that it becomes 10 -3 Torr,
Sputtering power is about 400W, and it is the third by reactive sputtering.
A titanium oxide film having a thickness of about 90 nm was formed as a transparent dielectric film having a high refractive index of the layer. The refractive index of this film is about 2.3.
Met.

【0026】次に第4層の低屈折率を有する透明誘電体
膜として酸化シリコン膜を上記と同様にして約20nm
成膜した。この膜の屈折率は約1. 46であった。この
ように成膜された紫外線熱線遮断ガラスの光学的特性
は、可視光透過率が71%程度で自動車用窓ガラスとし
て要求される十分な視認性をもち、日射透過率が60%
程度で太陽光の熱線を十分に遮断している。また紫外線
の遮断性能も、波長380nmの透過率で8%以下であ
り有害な紫外線を十分に遮断しているものであった。
Next, a silicon oxide film as a transparent dielectric film having a low refractive index of the fourth layer is formed in a thickness of about 20 nm in the same manner as above.
A film was formed. The refractive index of this film was about 1.46. The UV heat ray-shielding glass thus formed has an optical characteristic of a visible light transmittance of about 71% and sufficient visibility required for an automobile window glass, and a solar radiation transmittance of 60%.
The heat rays of sunlight are sufficiently cut off in a certain degree. Further, the ultraviolet ray blocking performance was 8% or less in terms of transmittance at a wavelength of 380 nm, which was sufficient to block harmful ultraviolet rays.

【0027】実施例2 実施例1と同等の膜材料、成膜条件で、第1の酸化亜鉛
膜の膜厚を約300nmとし、第2、第4の低屈折率を
有する透明誘電体膜の酸化シリコン膜の膜厚を約100
nm、第3の高屈折率を有する透明誘電体膜の酸化チタ
ン膜の膜厚を約50nmとした。
Example 2 Under the same film material and film forming conditions as in Example 1, the thickness of the first zinc oxide film was set to about 300 nm, and the transparent dielectric film having the second and fourth low refractive indexes was formed. The thickness of the silicon oxide film is about 100
nm, and the thickness of the titanium oxide film of the transparent dielectric film having the third high refractive index was set to about 50 nm.

【0028】この構成での光学的特性は可視光透過率が
71%程度で自動車用窓ガラスとして要求される十分な
視認性をもち、日射透過率が58%程度で太陽光の熱線
を十分に遮断している。また紫外線の遮断性能も、波長
380nmの透過率で5%以下であり有害な紫外線を十
分に遮断していた。
The optical characteristics of this structure are such that the visible light transmittance is about 71%, which is sufficient visibility required for automobile window glass, and the solar radiation transmittance is about 58%, so that the heat rays of sunlight can be sufficiently absorbed. It is shut off. Further, the ultraviolet ray blocking performance was 5% or less in terms of transmittance at a wavelength of 380 nm, which was sufficient to block harmful ultraviolet rays.

【0029】実施例3 実施例1、2と膜材料の異なるものについて記す。透明
ガラス基板をイソプロピルアルコールにて脱脂洗浄、純
水リンス後、窒素ブロー乾燥した。この透明ガラス基板
をスパッタ装置内に搬送し、5×10-6 Torr まで排気
した。真空槽内には第1層の透明誘電体膜として用いる
クロムドープ酸化亜鉛膜用のクロムをドープした酸化亜
鉛ターゲット、第2、第4層の低屈折率透明誘電体膜と
して用いる酸化シリコン用の酸化シリコンターゲット、
第3層の高屈折率透明誘電体膜として用いる酸化チタン
膜用の酸化チタンターゲットを設置した。
Example 3 A film material different from those in Examples 1 and 2 will be described. The transparent glass substrate was degreased and washed with isopropyl alcohol, rinsed with pure water, and then dried with nitrogen blow. This transparent glass substrate was conveyed into the sputtering apparatus and exhausted to 5 × 10 −6 Torr. In the vacuum chamber, a chromium-doped zinc oxide target for the chromium-doped zinc oxide film used as the transparent dielectric film of the first layer, and an oxide for silicon oxide used as the low-refractive-index transparent dielectric films of the second and fourth layers. Silicon target,
A titanium oxide target for the titanium oxide film used as the high refractive index transparent dielectric film of the third layer was set.

【0030】まずスパッタガスとしてアルゴンガスを真
空槽内のガス圧が5×10-3 Torrとなるよう排気速
度、ガス流量を調整し、スパッタパワー約400 Wで、
第1層の透明誘電体膜としてクロムドープ酸化亜鉛膜を
約150nm成膜した。この膜の屈折率は1. 9であっ
た。 次にスパッタガスとしてアルゴンガスを真空槽内
のガス圧が5×10-3 Torr となるよう排気速度、ガス
流量を調整し、スパッタパワー約500 Wで、第2層の
低屈折率透明誘電体膜として酸化シリコン膜を約160
nm成膜した。この膜の屈折率は1. 47であった 次
にスパッタガスとしてアルゴン混合ガスを真空槽内のガ
ス圧が5×10-3Torrとなるよう排気速度、ガス流量を
調整し、スパッタパワー約500 Wで、第3層の高屈折
率膜として酸化チタン膜を約100nm成膜した。この
膜の屈折率は約2. 3であった。
First, argon gas was used as a sputtering gas, the exhaust speed and the gas flow rate were adjusted so that the gas pressure in the vacuum chamber was 5 × 10 −3 Torr, and the sputtering power was about 400 W.
A chromium-doped zinc oxide film having a thickness of about 150 nm was formed as a transparent dielectric film of the first layer. The refractive index of this film was 1.9. Next, argon gas was used as a sputtering gas, the exhaust speed and the gas flow rate were adjusted so that the gas pressure in the vacuum chamber was 5 × 10 −3 Torr, and the sputtering power was about 500 W, and the low refractive index transparent dielectric material of the second layer was used. About 160 silicon oxide film
nm film was formed. The refractive index of this film was 1.47. Next, an argon mixed gas was used as a sputtering gas, the exhaust speed and the gas flow rate were adjusted so that the gas pressure in the vacuum chamber was 5 × 10 −3 Torr, and the sputtering power was about 500. With W, a titanium oxide film having a thickness of about 100 nm was formed as a high refractive index film of the third layer. The refractive index of this film was about 2.3.

【0031】次に第4層として酸化シリコンを第2層と
同様の方法により約60nm成膜した。この膜の屈折率
は約1. 47であった。この構成での光学的特性は可視
光透過率が70%程度で自動車用窓ガラスとして要求さ
れる十分な視認性をもち、日射透過率が55%程度で太
陽光の熱線を十分に遮断している。また紫外線の遮断性
能も、波長380nmの透過率で4%以下であり有害な
紫外線を十分に遮断していた。
Next, as the fourth layer, silicon oxide was deposited to a thickness of about 60 nm by the same method as the second layer. The refractive index of this film was about 1.47. The optical characteristics of this structure are such that the visible light transmittance is about 70% and sufficient visibility is required as a window glass for automobiles, and the solar radiation transmittance is about 55% to sufficiently block the heat rays of sunlight. There is. Further, the ultraviolet ray blocking performance was 4% or less at a transmittance of a wavelength of 380 nm, and the harmful ultraviolet rays were sufficiently blocked.

【0032】実施例4 実施例3における第3層の高屈折率透明誘電体膜として
酸化チタンの代わり酸化ジルコニウムを用いるため酸化
チタンターゲットの代わりに酸化ジルコニウムターゲッ
トを設置し、第3層として酸化ジルコニウム(膜厚;約
100nm、屈折率;約2. 1)を用いた他実施例3と
同様にした。
Example 4 Since zirconium oxide was used instead of titanium oxide as the high refractive index transparent dielectric film of the third layer in Example 3, a zirconium oxide target was placed instead of the titanium oxide target and zirconium oxide was used as the third layer. (Thickness: about 100 nm, refractive index: about 2.1)

【0033】この構成での光学的特性は可視光透過率が
70%程度で自動車用窓ガラスとして要求される十分な
視認性をもち、日射透過率が54%程度で太陽光の熱線
を十分に遮断している。また紫外線の遮断性能も、波長
380nmの透過率で4%以下であり有害な紫外線を十
分に遮断していた。
The optical characteristics of this structure are such that the visible light transmittance is about 70%, which is sufficient visibility required for a window glass for automobiles, and the solar radiation transmittance is about 54%, so that the heat rays of sunlight can be sufficiently absorbed. It is shut off. Further, the ultraviolet ray blocking performance was 4% or less at a transmittance of a wavelength of 380 nm, and the harmful ultraviolet rays were sufficiently blocked.

【0034】実施例5 第1および第2の透明誘電体膜の成膜をゾルゲル法にて
行なった例について記す。 第1の透明誘電体膜として
酸化亜鉛膜を以下のようにゾルゲル法にて成膜した。2
−エチルヘキサン酸亜鉛(18%)100g、脱水ひま
し油脂肪酸(リノール酸含有率86%)80g、レベリ
ング剤としてTSF400(東芝シリコーン(株)製)
5g、希釈溶として混合キシレン320gを攪拌混合し
て、酸化亜鉛膜用塗布液を得た。この塗布液に片面をマ
スキングした透明ガラス基板を浸漬し約20cm/分の
速度で引き上げ片面に塗布膜を得た。この塗布膜を約1
50℃で約15分間遠赤外線炉で乾燥、硬化しさらに約
500℃で約15分間電気炉にて焼成し膜厚約750n
mの透明酸化亜鉛膜を成膜した。この膜の屈折率は約
1. 8であった。
Example 5 An example in which the first and second transparent dielectric films are formed by the sol-gel method will be described. A zinc oxide film was formed as the first transparent dielectric film by the sol-gel method as follows. Two
-Zinc ethylhexanoate (18%) 100 g, dehydrated castor oil fatty acid (linoleic acid content 86%) 80 g, TSF400 (manufactured by Toshiba Silicone Co., Ltd.) as a leveling agent
5 g and 320 g of mixed xylene as a dilute solution were stirred and mixed to obtain a coating liquid for zinc oxide film. A transparent glass substrate having one surface masked was dipped in this coating solution and pulled up at a speed of about 20 cm / min to obtain a coating film on one surface. This coating film is about 1
Drying and curing in a far-infrared furnace at 50 ° C for about 15 minutes, and baking in an electric furnace at about 500 ° C for about 15 minutes to obtain a film thickness of about 750n.
m transparent zinc oxide film was formed. The refractive index of this film was about 1.8.

【0035】次に酸化シリコン膜を以下のようにゾルゲ
ル法にて成膜した。メチルトリメトキシシラン400g
とテトラメトキシシラン150gを混合し、n−ブタノ
ール1600gに加え混合する。さらに5%酢酸水溶液
84gを摘下後、約3時間攪拌し、室温で約1日放置す
ることにより酸化シリコン用塗布液を得た。この塗布液
に上記の酸化亜鉛膜の成膜された透明ガラス基板を浸漬
し、約20cm/分の速度で引き上げ片面に塗布膜を得
た。この塗布膜を約120℃で約15分間で乾燥し、約
500℃で約30分間電気炉にて焼成後、さらに約65
0℃で約2分間電気炉にて焼成した。第1の透明誘電体
膜として膜厚約700nmで屈折率約1.55の酸化亜
鉛と酸化シリコンの混合膜を成膜し、該混合膜上に第2
の透明誘電体膜として酸化シリコン膜を約50nm成膜
した。この膜の屈折率は約1.46であった。
Next, a silicon oxide film was formed by the sol-gel method as follows. Methyltrimethoxysilane 400g
And tetramethoxysilane (150 g) are mixed and added to n-butanol (1600 g) and mixed. Further, 84 g of a 5% acetic acid aqueous solution was removed, stirred for about 3 hours, and allowed to stand at room temperature for about 1 day to obtain a coating solution for silicon oxide. The transparent glass substrate having the zinc oxide film formed thereon was dipped in this coating solution and pulled up at a speed of about 20 cm / min to obtain a coating film on one surface. This coating film is dried at about 120 ° C. for about 15 minutes, baked at about 500 ° C. for about 30 minutes in an electric furnace, and then about 65
It was baked in an electric furnace at 0 ° C. for about 2 minutes. A mixed film of zinc oxide and silicon oxide having a film thickness of about 700 nm and a refractive index of about 1.55 is formed as a first transparent dielectric film, and a second film is formed on the mixed film.
A silicon oxide film having a thickness of about 50 nm was formed as the transparent dielectric film. The refractive index of this film was about 1.46.

【0036】このようにゾルゲル法により酸化亜鉛膜と
酸化シリコン膜の混合膜ならびに酸化シリコン膜を成膜
した透明ガラス基板に第3層目の高屈折率透明誘電体膜
として酸化チタン膜を約60nm(屈折率;約2.
3)、4層の低屈折率透明誘電体膜として酸化シリコン
膜を約50nm(屈折率;約1. 46)スパッタ法にて
成膜した。スパッタ成膜条件は実施例1と同一条件とし
た。
As described above, a titanium oxide film as a third high-refractive-index transparent dielectric film of about 60 nm is formed on the transparent glass substrate on which the mixed film of the zinc oxide film and the silicon oxide film and the silicon oxide film are formed by the sol-gel method. (Refractive index; about 2.
3) A silicon oxide film was formed as a low refractive index transparent dielectric film of four layers by a sputtering method with a thickness of about 50 nm (refractive index: about 1.46). The sputtering film formation conditions were the same as in Example 1.

【0037】この構成での光学的特性は可視光透過率が
70%程度で自動車用窓ガラスとして要求される十分な
視認性をもち、日射透過率が58%程度で太陽光の熱線
を十分に遮断している。また紫外線の遮断性能も、波長
380nmの透過率で7%以下であり有害な紫外線を十
分に遮断していた。
The optical characteristics of this structure are such that the visible light transmittance is about 70%, which is sufficient visibility required for a window glass for automobiles, and the solar radiation transmittance is about 58%, so that the heat rays of sunlight can be sufficiently absorbed. It is shut off. Further, the ultraviolet ray blocking performance was 7% or less at a transmittance of a wavelength of 380 nm, which was sufficient to block harmful ultraviolet rays.

【0038】実施例6 実施例5と同様に第1および第2の透明誘電体膜の成膜
をゾルゲル法にて行なった別の例である。
Example 6 This is another example in which the first and second transparent dielectric films were formed by the sol-gel method as in Example 5.

【0039】第1および第2の透明誘電体膜として実施
例5と同様の方法で酸化亜鉛膜および酸化シリコン膜を
形成したが、膜厚をそれぞれ約650nm、約150n
mとした以外は実施例と同様にして作製した。
A zinc oxide film and a silicon oxide film were formed as the first and second transparent dielectric films by the same method as in Example 5, but the film thicknesses were about 650 nm and about 150 n, respectively.
It was produced in the same manner as in the example except that m was used.

【0040】このようにゾルゲル法により酸化亜鉛膜、
酸化シリコン膜を成膜した透明ガラス基板に第3層目の
高屈折率透明誘電体膜として酸化ジルコニウム膜を約6
0nm(屈折率;約2. 0)、第4層の低屈折率透明誘
電体膜として酸化シリコン膜を約40nm(屈折率;約
1. 4)スパッタ法にて成膜した。スパッタ成膜条件は
実施例1および4と同一条件とした。
As described above, the zinc oxide film is formed by the sol-gel method,
About 6 parts of zirconium oxide film was used as the third layer of high-refractive-index transparent dielectric film on the transparent glass substrate on which the silicon oxide film was formed.
A silicon oxide film having a thickness of 0 nm (refractive index: about 2.0) and a low refractive index transparent dielectric film of the fourth layer was formed by a sputtering method with a thickness of about 40 nm (refractive index: about 1.4). The sputtering film formation conditions were the same as those in Examples 1 and 4.

【0041】この構成での光学的特性は可視光透過率が
70%程度で自動車用窓ガラスとして要求される十分な
視認性をもち、日射透過率が59%程度で太陽光の熱線
を十分に遮断している。また紫外線の遮断性能も、波長
380nmの透過率で7%以下であり有害な紫外線を十
分に遮断していた。
The optical characteristics of this structure are such that the visible light transmittance is about 70%, which is sufficient visibility required for a window glass for automobiles, and the solar radiation transmittance is about 59%, which is sufficient for heat rays of sunlight. It is shut off. Further, the ultraviolet ray blocking performance was 7% or less at a transmittance of a wavelength of 380 nm, which was sufficient to block harmful ultraviolet rays.

【0042】実施例7 第1の透明誘電体膜の成膜を他のゾルゲルにて行った例
である。実施例5において、第1層を以下の方法による
酸化セリウムに酸化チタンを添加した膜とした以外は、
実施例5と同様にした。
Example 7 This is an example of forming the first transparent dielectric film by using another sol-gel. In Example 5, except that the first layer was a film obtained by adding titanium oxide to cerium oxide by the following method,
Same as Example 5.

【0043】塩化セリウム2. 8gをエタノール35c
c中に加え溶解した。この溶液にチタニウムテトライソ
プロポキシド0.17gを添加し、シリコンテトラエト
キシド0. 9g添加し、さらに2ー(2ーメトキシエト
キシ)エタノール5. 0gを加え、80℃で1間攪拌、
加熱した。室温まで冷却後、水0. 35mlおよび61
%硝酸0. 1mlを、80℃で約1時間攪拌、加熱し
た。この時のpHは約2であった。この溶液を室温まで
冷却後スピンナーによりソーダライムガラス上に塗布し
た。スピンナー塗布条件は約1000rpmで約30秒
であった。塗布試料を大気中で乾燥させた後、電気炉中
に入れ、約500℃で約10分間焼成した。得られた薄
膜試料の膜厚は約400nmであり屈折率は約1. 9で
あった。
Cerium chloride 2.8 g was added to ethanol 35c.
It was added to c and dissolved. To this solution was added 0.17 g of titanium tetraisopropoxide, 0.9 g of silicon tetraethoxide, 5.0 g of 2- (2-methoxyethoxy) ethanol, and the mixture was stirred at 80 ° C. for 1 minute,
Heated. After cooling to room temperature, 0.35 ml of water and 61
0.1 ml of% nitric acid was stirred and heated at 80 ° C. for about 1 hour. The pH at this time was about 2. This solution was cooled to room temperature and then applied on soda lime glass by a spinner. The spinner coating conditions were about 1000 rpm and about 30 seconds. The coated sample was dried in the air, placed in an electric furnace, and baked at about 500 ° C. for about 10 minutes. The obtained thin film sample had a film thickness of about 400 nm and a refractive index of about 1.9.

【0044】この構成での光学的特性は可視光透過率が
73%程度で自動車用窓ガラスとして要求される十分な
視認性をもち、日射透過率が56%程度で太陽光の熱線
を十分に遮断している。また紫外線の遮断性能も、波長
380nmの透過率で3%以下であり有害な紫外線を十
分に遮断していた。
The optical characteristics of this structure are such that the visible light transmittance is about 73%, which is sufficient visibility required for a window glass for automobiles, and the solar radiation transmittance is about 56%, and the heat rays of sunlight are sufficiently absorbed. It is shut off. Further, the ultraviolet ray blocking performance was 3% or less at a transmittance of a wavelength of 380 nm, which was sufficient to block harmful ultraviolet rays.

【0045】比較例1 実施例1の材料、製法で第1の誘電体膜の酸化亜鉛膜の
膜厚を約30nmにした構成では、波長380nmの透
過率で30%以上であり有害な紫外線を十分に遮断する
ことはできなかった。
Comparative Example 1 In the structure in which the thickness of the zinc oxide film of the first dielectric film is set to about 30 nm by the material and the manufacturing method of Example 1, the transmittance at a wavelength of 380 nm is 30% or more and harmful ultraviolet rays are emitted. It was not possible to block it sufficiently.

【0046】比較例2 実施例1の材料、製法で第1の誘電体膜の酸化亜鉛膜の
膜厚を約2000nmにした構成では、波長380nm
の透過率で5%以下であり有害な紫外線を十分に遮断す
ることはできたが、酸化亜鉛を厚く形成しているため、
可視光域で強い干渉色が発生しウィンドウとしては好ま
しくなかった。
Comparative Example 2 With the material and manufacturing method of Example 1 and the thickness of the zinc oxide film of the first dielectric film is set to about 2000 nm, the wavelength is 380 nm.
The transmittance was 5% or less and it was possible to sufficiently block harmful ultraviolet rays, but since zinc oxide was formed thickly,
A strong interference color was generated in the visible light region, which was not preferable as a window.

【0047】比較例3 実施例3の材料、製法で第1の誘電体膜のクロム添加量
を15原子%に増やした構成では、可視光透過率が65
%程度となり十分な視認性を得ることができなっかっ
た。
Comparative Example 3 With the material and the manufacturing method of Example 3, the visible light transmittance was 65 when the amount of chromium added to the first dielectric film was increased to 15 atom%.
%, And it was not possible to obtain sufficient visibility.

【0048】比較例4 実施例3の材料、製法で第1の誘電体膜のクロム添加量
を0.3原子%に減らした構成では、光学的特性は、可
視光透過率が71%程度で自動車用窓ガラスとして要求
される十分な視認性をもち、日射透過率が60%程度で
太陽光の熱線を十分に遮断している。また紫外線の遮断
性能も、波長380nmの透過率で8%以下であり有害
な紫外線を十分に遮断していたが、実施例3のクロム添
加の効果は認められなかった。
Comparative Example 4 With the material and the manufacturing method of Example 3, the amount of chromium added to the first dielectric film was reduced to 0.3 atom%, the optical characteristics were that the visible light transmittance was about 71%. It has sufficient visibility required as a window glass for automobiles, and has a solar radiation transmittance of about 60% and sufficiently blocks the heat rays of sunlight. Further, the ultraviolet ray blocking performance was 8% or less at a transmittance of a wavelength of 380 nm, which was sufficient to block harmful ultraviolet rays, but the effect of adding chromium in Example 3 was not recognized.

【0049】[0049]

【発明の効果】本発明によれば、透明な基板上に基板側
より第1層として紫外線遮蔽性能を有する高屈折率の第
1の透明誘電体膜を50〜1200nm設け、その上に
第1層より低屈折率の透明誘電体層を第2n層として1
0〜300nm形成し、さらに第2n層よりも高屈折率
を有する透明誘電体層を第2n+1層として10〜30
0nm形成することにより、紫外線および熱線、赤外線
を効率よく遮蔽し、さらに良好な可視光透過率を有する
とともに、充分な電波透過性能を有する自動車用、建築
用窓ガラスが簡素な層構成で紫外線、熱線を遮断した窓
ガラスを提供することができる。
According to the present invention, a first high-refractive index transparent dielectric film having a UV-shielding property is provided as a first layer on the transparent substrate from the substrate side in a thickness of 50 to 1200 nm, and the first transparent dielectric film is formed on the first transparent dielectric film. A transparent dielectric layer having a refractive index lower than that of the first layer as the second n layer 1
A transparent dielectric layer having a thickness of 0 to 300 nm and having a higher refractive index than the second n-th layer is used as the second n + 1th layer, and is 10 to 30.
By forming 0 nm, ultraviolet rays, heat rays, and infrared rays are efficiently shielded, and further, it has a good visible light transmittance and has sufficient radio wave transmission performance. It is possible to provide a window glass that shields heat rays.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の紫外線熱線遮断ガラスに係わる膜構成
の例を示す。
FIG. 1 shows an example of a film structure relating to an ultraviolet heat ray-shielding glass of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 格 神奈川県横浜市神奈川区宝町2 日産自動 車株式会社内 (72)発明者 西出 利一 神奈川県横浜市神奈川区宝町2 日産自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Shibata 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Riichi Nishide 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. Within

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明な基板上に、基板側より第1層とし
て亜鉛、セリウム、カドミニウムのいずれかを主成分と
する紫外線遮断性能を有する酸化物またはこれらの複合
酸化物またはこれらの酸化物に微量の金属元素または金
属窒化物を添加した複合酸化物からなる第1の透明誘電
体膜を50〜1200nm設け、さらにその上に第1層
よりも低屈折率である誘電体層を第2n層(n=1、
2、3・・・)として10〜300nm積層し、さらに
その上に第2n層よりも高屈折率である誘電体層を第2
n+1層(n=1,2,3・・・)として10〜300
nm積層したことを特徴とする紫外線熱線遮断ガラス。
1. An oxide, a composite oxide thereof, or an oxide thereof having an ultraviolet ray-shielding property containing zinc, cerium, or cadmium as a main component as a first layer on a transparent substrate from the substrate side. A first transparent dielectric film made of a composite oxide to which a trace amount of a metal element or a metal nitride is added is provided in a thickness of 50 to 1200 nm, and a dielectric layer having a refractive index lower than that of the first layer is formed on the second n layer. (N = 1,
2, 3 ...), and a dielectric layer having a higher refractive index than the second n-layer is further laminated thereon.
10 to 300 as n + 1 layers (n = 1, 2, 3 ...)
nm heat-shielding glass characterized by being laminated in a thickness of 1 nm.
【請求項2】前記第2n層ならびに第2n+1層とし
て、シリコン、チタン、アルミニウム、錫、ジルコニウ
ム、タンタル、クロム、ステンレス、ニクロムの酸化
物、またはそれらの複合酸化物または窒素酸化物である
ことを特徴とする第1項記載の紫外線熱線遮断ガラス。
2. The second n layer and the second n + 1 layer are oxides of silicon, titanium, aluminum, tin, zirconium, tantalum, chromium, stainless steel, nichrome, or a complex oxide or nitrogen oxide thereof. The ultraviolet heat ray-shielding glass according to item 1, which is characterized in that
【請求項3】前記第1層の紫外線遮蔽膜に添加する金属
または金属窒化物が、鉄、クロム、シリコン、チタンで
あって、その添加量が1〜10原子%であることを特徴
とする第1項記載の紫外線熱線遮断ガラス。
3. The metal or metal nitride added to the ultraviolet shielding film of the first layer is iron, chromium, silicon, or titanium, and the addition amount is 1 to 10 atomic%. The ultraviolet heat ray-shielding glass according to item 1.
JP26698893A 1993-10-26 1993-10-26 Ultraviolet light heat screening glass Pending JPH07138048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26698893A JPH07138048A (en) 1993-10-26 1993-10-26 Ultraviolet light heat screening glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26698893A JPH07138048A (en) 1993-10-26 1993-10-26 Ultraviolet light heat screening glass

Publications (1)

Publication Number Publication Date
JPH07138048A true JPH07138048A (en) 1995-05-30

Family

ID=17438507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26698893A Pending JPH07138048A (en) 1993-10-26 1993-10-26 Ultraviolet light heat screening glass

Country Status (1)

Country Link
JP (1) JPH07138048A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040402A1 (en) * 1998-12-28 2000-07-13 Asahi Glass Company, Limited Layered product
JP2005538028A (en) * 2002-09-14 2005-12-15 ショット アクチエンゲゼルシャフト Coating
JP2013092551A (en) * 2011-10-24 2013-05-16 Aisin Seiki Co Ltd Resin glass
WO2017067077A1 (en) * 2015-10-20 2017-04-27 乐视移动智能信息技术(北京)有限公司 Glass coating structure, fingerprint detection device and mobile terminal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040402A1 (en) * 1998-12-28 2000-07-13 Asahi Glass Company, Limited Layered product
US7005189B1 (en) 1998-12-28 2006-02-28 Asahi Glass Company, Limited Laminate and its production method
JP2005538028A (en) * 2002-09-14 2005-12-15 ショット アクチエンゲゼルシャフト Coating
US7713638B2 (en) 2002-09-14 2010-05-11 Schott Ag Layer system
JP2013092551A (en) * 2011-10-24 2013-05-16 Aisin Seiki Co Ltd Resin glass
WO2017067077A1 (en) * 2015-10-20 2017-04-27 乐视移动智能信息技术(北京)有限公司 Glass coating structure, fingerprint detection device and mobile terminal

Similar Documents

Publication Publication Date Title
EP0080182B1 (en) Infrared shielding lamination
KR100250604B1 (en) An optical interference filter and the production method thereof
WO1992010632A1 (en) Low transmission heat-reflective glazing materials
JP2009084143A (en) Transparent substrate with antireflection coating
EP1108229A1 (en) Wavelength selective applied films with glare control
JPS6261545B2 (en)
AU1612800A (en) Solar control coatings and coated articles
JPH08283044A (en) Heat ray cutoff glass
JPH0859300A (en) Heat radiation-insulating glass
JPH08268732A (en) Heat ray reflecting glass
JPH0859301A (en) Ultraviolet heat shielding glass
JPH0423633B2 (en)
JPH07138048A (en) Ultraviolet light heat screening glass
JP2882725B2 (en) UV absorbing thermal insulation glass
JPS6027623A (en) Window glass shielding electromagnetic radiation
JPH0873242A (en) Heat ray reflecting glass
JPH07138049A (en) Ultraviolet light heat screening window and its production
JPH0743524A (en) Ultraviolet heat ray shielding window
JPH0912338A (en) Heat-insulating glass
JPH07333423A (en) Permselective membrane
JP4773592B2 (en) Laminated glass and method for producing coated synthetic resin film therefor
JPS6027624A (en) Window glass shielding electromagnetic radiation
DE102009051116B4 (en) Device with IR-reflective coating
JPH08239244A (en) Uv-absorbing glass
JPH0556296B2 (en)