JP4370396B2 - Multifunctional automatic light control insulation glass and air conditioning method - Google Patents

Multifunctional automatic light control insulation glass and air conditioning method Download PDF

Info

Publication number
JP4370396B2
JP4370396B2 JP2003117565A JP2003117565A JP4370396B2 JP 4370396 B2 JP4370396 B2 JP 4370396B2 JP 2003117565 A JP2003117565 A JP 2003117565A JP 2003117565 A JP2003117565 A JP 2003117565A JP 4370396 B2 JP4370396 B2 JP 4370396B2
Authority
JP
Japan
Prior art keywords
temperature
light control
heat
glass
dimming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003117565A
Other languages
Japanese (ja)
Other versions
JP2004004795A (en
Inventor
平 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003117565A priority Critical patent/JP4370396B2/en
Publication of JP2004004795A publication Critical patent/JP2004004795A/en
Application granted granted Critical
Publication of JP4370396B2 publication Critical patent/JP4370396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Special Wing (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、調光機能と断熱機能を併せ持つ新規多機能自動調光断熱ガラスに関するものであり、更に詳しくは、酸化バナジウム系調光膜と可視光反射防止膜、熱線反射膜を被膜したガラスに断熱機能、紫外線遮断機能、環境浄化機能等を付加することを可能とする新しいタイプの多機能自動調光断熱ガラス、当該ガラスを調光及び空調する方法等に関するものである。本発明は、例えば、建築物や自動車、列車、船舶、飛行機などの移動体に、省エネルギー、快適住居性能、環境浄化、健康志向など複数の機能を同時的に付加することを可能とする新しい多機能自動調光断熱ガラス及びその応用技術を提供するものとして有用である。
【0002】
【従来の技術】
一般に、酸化バナジウム系化合物、すなわち酸化バナジウム(VO2 )を代表とするバナジウムの酸化物は、68℃で半導体・金属相転移によるサーモクロミック特性(温度による光特性の可逆な変化)を有し、例えば、タングステン(W)などの金属元素の添加でその転移温度を下げることができるので、従来、主に、環境温度によって太陽光を自動的に調節できる窓コーティング材料として研究されている(非特許文献1参照)。酸化バナジウム系調光窓材料については、構造が非常に簡単な上、赤外調光率が非常に大きく、調光時にも常に可視光透明であるという大きな利点がある。ここで、酸化バナジウム系とは、転移温度調節のために元素添加などを行った酸化バナジウムを含む、酸化バナジウムを中心とした調光材料を意味する。しかしながら、従来型の酸化バナジウム系調光材料については、もともと可視光範囲での光透過率が非常に小さいことや、単一な調光機能しか持たないことなどの大きな欠点があった。
【0003】
また、従来、可視光に対して透明性で、赤外線(熱線)を反射する機能を有する低放射ガラス(Low−Eガラス、熱線反射ガラス)がある。これには、主としてAg,Au,Cu,Pt,Alなどの金属薄膜、或いはTiN,ZrN,HfN,CrNなどの金属窒化物薄膜、或いは透明導電性酸化物薄膜、及び保護、反射防止を施した上述の薄膜の複層が使われている(非特許文献2参照)。建築用の低放射ガラスは、例えば、夏に太陽光の流入防止による冷房負荷の低減、或いは冬の暖房熱の放出の防止による断熱に使われている。しかしながら、それらの低放射ガラスは、いずれの状況においても熱線を反射するだけであり、例えば、夏には過剰な日射熱を反射するが、冬などに必要に応じて積極的に太陽光熱を室内に取り入れる機能、すなわち、環境温度によって自動的に光熱を調節する機能がない。
【0004】
また、他にも、熱によって調光する窓コーティング材料があり、例えば、特殊ハイドロゲルを使った自律応答型熱調光ガラスなどがある(非特許文献3参照)。しかしながら、それらは、優れた調光性を示す一方、熱で調光を行うとガラスが白濁となり、外が見えなくなるという欠点がある。これらは、クリアな視界が常に要求される建築物や、特に、自動車などのような移動体の窓材料には適応されにくい。
一方、酸化チタン系(TiO2 、元素添加のものを含む)光触媒は、防汚、抗菌、消臭、環境浄化などの多彩な機能を持っている(非特許文献4参照)。しかしながら、この光触媒材料では、サーモクロミック調光機能を示すことがない。
【0005】
【非特許文献1】
S.M.Babulanam,T.S.Eriksson,G.A.Niklasson and C.G.Granqvist:Solar EnergyMatrials, 16(1987)347
【非特許文献2】
ニューガラスハンドブック,ニューガラスハンドブック編集委員会編,1991年,丸善
【非特許文献3】
渡辺晴男:太陽エネルギー,1997年,23巻,49頁
【非特許文献4】
工業材料,1999年,6月号
【0006】
【発明が解決しようとする課題】
このような状況の中で、本発明者は、上記従来技術に鑑みて、上記従来技術の諸問題を抜本的に解決することを可能とする新しい多機能調光材料を開発することを目標として鋭意研究を積み重ねた結果、酸化バナジウム系調光膜及び可視光反射防止膜を被覆したガラスの調光温度を制御して空調を行うことにより、ガラスに自動調光断熱機能、紫外線遮断機能、環境浄化機能等を付加して多機能化し得ることを見出し、更に研究を重ねて、本発明を完成するに至った。すなわち、本発明は、従来型の酸化バナジウム系調光材料における可視光透過率が小さいことを抜本的に解決すると同時に、新しく諸般機能を加えた多機能自動調光断熱ガラスを提供することを目的とする。また、本発明は、調光膜の構造や位置、調光温度を適切に設定することにより従来型の低放射断熱ガラスと同程度の断熱機能、また、従来型に全くない新しい機能、すなわち調光機能、を持たせることを可能とする新しい多機能自動調光断熱ガラスを提供することを目的とする。また、本発明は、可視光反射防止膜に透明導電体などを使うことによる熱線反射機能の強化、反射防止膜に酸化チタン系光触媒膜を使うことによって環境浄化機能、優れた紫外線遮断機能などの複数の機能を同時的に有する多機能自動調光断熱ガラスを開発し、提供することを目的とする。更に、本発明は、サーモクロミック自動調光機能、防汚、抗菌、消臭、環境浄化、撥水、或いは親水などの光触媒機能、有害紫外線遮断機能、更に、常に透明な視界を維持する高光透過性機能、及び高度な断熱機能等を具備した新しい高性能ガラスを開発し、提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明では、以下の構成が採用される。
(1)ガラスに酸化バナジウム系調光膜、可視光反射防止膜及び熱線反射膜による複層構造を形成した多機能自動調光断熱ガラスであって、
(a)ガラスに酸化バナジウム系調光膜及び可視光反射防止膜を形成したこと、
(b)上記酸化バナジウム系調光膜の調光温度を上記ガラスを設置する空間の適切快適温度付近の所定のレベルに設定したこと、
により上記ガラスに調光及び断熱機能を付加した多機能自動調光断熱ガラスにおいて、
(c)上記熱線反射膜が、少なくともITO、ZnO系、又はSnO系(系は元素添加のものを含む)の透明導電体からなること、或い少なくともAg、Au、Cu、又はlの熱線反射物質を含有してなること、
を特徴とする多機能自動調光断熱ガラス。
(2)可視光反射防止膜が、酸化チタン系材料からなる、前記(1)記載の多機能自動調光断熱ガラス。
(3)可視光反射防止膜が、少なくともITO、ZnO系、又はSnO系(系は元素添加のものを含む)からなる、前記(1)記載の多機能自動調光断熱ガラス。
(4)可視光反射防止膜が、SiO、Al、ZrO、Y、CeO、Si、HfO、Nb、Sc、又はZnSの適切光学定数を持つ誘電体材料からなる、前記(1)記載の多機能自動調光断熱ガラス。
(5)酸化バナジウム系調光膜が、金属元素を添加した酸化バナジウム、非金属元素を添加した酸化バナジウム、又は化合物を添加した酸化バナジウムである、前記(1)記載の自動調光断熱ガラス。
(6)調光膜の調光温度を上記ガラスを設置する空間の所定の暖房温度付近に設定し、常に可視光を透過させ、空間の温度が上記調光温度を下回るとき外部からの光熱を透過させ、調光温度を上回るとき暖房熱を室内に反射して断熱するようにした、前記(1)記載の多機能自動調光断熱ガラス。
(7)調光膜の調光温度を所定快適温度付近に設定し、上記ガラスを設定する空間の温度が上記調光温度を上回るとき過剰の太陽光熱を遮断させ、下回るとき外部からの太陽光熱を透過させ、また、常に可視光を透過させ、暖房熱を室内に反射して断熱するようにした、前記(1)記載の多機能自動調光断熱ガラス。
(8)前記(1)記載の多機能自動調光断熱ガラスを構成要素として含むことを特徴とする調光及び断熱機能を有する構造部材。
(9)前記(1)記載の多機能自動調光断熱ガラスを調光する方法であって、
調光膜の調光温度を上記ガラスを設置した空間の所定の暖房温度付近に設定し、空間の温度が上記調光温度を下回るとき外部からの光熱を透過させ、調光温度を上回るとき光の可視部分を透過させ、暖房熱を室内に反射して断熱することを特徴とする調光方法。
(10)前記(1)記載の多機能自動調光断熱ガラスを調光する方法であって、
調光膜の調光温度を所定快適温度付近に設定し、上記ガラスを設定する空間の温度が上記調光温度を上回るとき過剰の太陽光熱を遮断させ、下回るとき外部からの太陽光熱を透過させ、また、常に可視光を透過させ、暖房熱を室内に反射して断熱することを特徴とする調光方法。
(11)前記(1)記載の多機能自動調光断熱ガラスにより空間を省エネルギーで空調する方法であって、
調光膜の調光温度を上記ガラスを設置した空間の所定の空調温度付近に設定し、暖房時には、空間の温度が上記調光温度を下回るとき外部からの太陽光熱を透過させ、調光温度を上回るとき可視光を透過させ、外部への暖房熱の放出を遮断し、冷房時には、空間の温度が上記調光温度を上回るとき外部からの過剰の太陽光熱を遮断することを特徴とする空調方法。
(12)前記(1)記載の多機能自動調光断熱ガラスを用いた空調システムであって、
上記多機能自動調光断熱ガラスと、当該断熱ガラスを設置する空間の温度を所定のレベルに自動制御する機能を有する空調装置を構成要素として含み、調光膜の調光温度を上記ガラスを設置した空間の所定の空調温度付近に設定し、暖房時には、空間の温度が上記調光温度を下回るとき外部からの光熱を透過させ、調光温度を上回るとき可視光を透過させ、外部への暖房熱の放出を遮断し、冷房時には、空間の温度が上記調光温度を上回るとき外部からの過剰の太陽光熱を遮断するようにしたことを特徴とする上記空調システム。
【0008】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明では、ガラスに、酸化バナジウム系調光材料及び可視光反射防止材料、熱線反射材料などを適切順番及び厚さでコーティングして複層構造を形成する。本発明では、上記酸化バナジウム系調光膜の調光温度を人間に快適な温度、あるいは上記ガラスを設置する空間の空調温度付近の所定のレベルに設定するが、好適には、例えば、調光温度を室内暖房温度付近、或いはそれよりやや低め(例えば、20℃)に設定するために、酸化バナジウム調光系にタングステンなどの元素の添加を行う(特開平7−331430、サーモクロミック材料の製造法、特開平8−3546、サーモクロミック材料の製造方法)。本発明では、ガラスに上記酸化バナジウム系調光膜に加え、可視光反射防止膜を形成するが、この場合、例えば、TiO2 ,Al23 ,ZrO2 ,SiO2 ,ZnO,SiNx などの一連の化合物が有効であり、特に、上記可視光反射防止膜に酸化チタン系光触媒薄膜を使う場合が最も好適であり、また、熱線反射機能強化のため、ITO,ZnO系,SnO2 系など、透明導電体薄膜が好適である。これらの材料は特に制限されるものではなく、上記化合物と同効のものであれば同様に使用することができる。これにより、可視光透過率の向上のほか、高度な熱線反射機能、防汚、抗菌、消臭、環境浄化、撥水、或いは親水などの光触媒機能及び紫外線遮断機能が得られる。
【0009】
酸化バナジウム系調光薄膜、及び酸化チタンやその他の可視光反射防止材料、例えば、ZrO2 ,SiO2 ,Al23 ,SiNx ,ITO,ZnO系,SnO2 系など、からなる複層薄膜系の最適構造、すなわち、最適な膜構造の組み合わせや膜厚さの組み合わせは、後記する実施例に示されるように、各物質の光学常数を使って精密な光学計算により算出することができる。本発明においては、上述の光学系に、その性能を考慮して可視光反射防止効果を含め、熱線反射機能、太陽光調光機能などを最大限にするために、最も有効な材料や構造の選択や組み合わせ、また、多層膜やその傾斜組成、或いは傾斜構造を有する薄膜、或いは粒子分散系等の使用がその使用目的に応じて任意に設計可能であることは言うまでもない。酸化バナジウム系調光薄膜の調光温度は、好適には、例えば、精密な元素添加などにより暖房の設定温度(例えば、22℃)よりやや低い温度(例えば、20℃)付近に設定するが、本発明は、これらに制限されるものではなく、人間を快適と感じる空間温度、省エネルギーに最も有効な設定温度、又は空調温度と関連させた形で任意のレベルの温度に設定することができる。
【0010】
本発明では、酸化バナジウムに金属元素又は非金属を添加してその調光温度を所定のレベルに任意に制御することができる。この場合、例えば、タングステンの添加は、酸化バナジウム系調光膜の調光温度の制御に非常に有効である。しかしながら、本発明は、タングステンの添加に制限されるものではなく、調光温度の制御のために、酸化バナジウムへの他の金属、或いは非金属、例えば、Mo,Nb,Ta,F,N等の添加が有効であることは言うまでもない。また、本発明においては、調光系の熱線反射機能の向上のために、酸化バナジウムへの元素添加、具体的には、Ag,Au,Cu,Alの添加、或いは薄膜系に熱線反射層、具体的には、ITO,ZnO系,SnO系、Ag,Au,Cu,Alの取り入れ、をすることができる。また、調光系の色調調整のために、元素添加や薄膜層の導入、などをすることができる。更に、公知の諸方法により酸化チタン光触媒の特性を向上させる方法を、本発明における酸化チタン系薄膜にも適用し得ることは言うまでもない。
【0011】
本発明において、一つの例として、単板窓ガラスの場合の薄膜系については、ガラスの室内側に薄膜系が形成されるが、目的に応じて、室外側に形成することも可能である。また、ペアガラスの場合の薄膜系については、目的に応じて、室内側、室外側、またはペアガラスが挟む内側のどちらかに位置することも可能である。すなわち、本発明においては、設定温度やガラスに対する薄膜系の位置などは、必要に応じて、任意に変えることが可能である。
【0012】
タングステン添加酸化バナジウム薄膜の作製には、例えば、反応性スパッタ法が使われる。この場合、タングステンを所定量含むバナジウムの合金ターゲットを反応性スパッタ、或いはタングステンとバナジウムターゲットを二元同時スパッタ、あるいはタングステンを含む酸化バナジウム化合物ターゲットをスパッタすることにより、所定のタングステン添加の酸化バナジウム薄膜を作製する。同様に、可視光反射防止膜や熱線反射薄膜の作製も、例えば、スパッタ法により行われるが、これに制限されるものではない。
【0013】
酸化チタン系可視光反射膜については、例えば、チタン金属ターゲットを使った反応性スパッタ法、酸化チタン化合物ターゲットをスパッタする方法等により形成される。この場合、酸化チタンの光触媒特性の向上には元素添加や組成制御などが有効であり、スパッタ条件を精密に制御することにより所定の結晶相が形成される。本発明において、薄膜の製造方法としては、上述のように、スパッタ法が好適な例として例示されるが、その他の方法、例えば、真空蒸着法、ゾルゲル法、スプレー法、CVD法などの方法も、本発明に係る薄膜材料についての所定の構造及び諸特性が得られる限り、有効であり、これらの作製方法については特に制限されるものではない。
【0014】
本発明では、前記のように、ガラスに酸化バナジウム系調光薄膜及び可視光反射防止膜を被膜する。この場合、可視光反射防止膜として酸化チタン光触媒薄膜を使用すると、サーモクロミック自動調光機能の他に、防汚、抗菌、消臭、環境浄化、撥水、或いは親水などの光触媒機能、有害紫外線カット機能、更に、調光時に透明で高い可視光透過性を具備した高性能自動調光断熱ガラスとすることができる。
【0015】
本発明では、前記のように、ガラスに酸化バナジウム系調光薄膜、可視光反射防止膜、熱線反射薄膜などを被膜する。この場合、反射防止とともに熱線反射強化のため、ITO,ZnO系,SnO2 系など、透明導電体薄膜を使用すると、高度な断熱機能を具備した高性能自動調光断熱ガラスとすることができる。
【0016】
本発明において、最も重要な点は、薄膜系の構造、調光温度、形成位置などを正確に設定することによって、自動調光及び断熱機能、すなわち、自動調光及び熱線反射機能をガラスに付加することを可能にしたことである。本発明の多機能自動調光断熱ガラスの構造及び作用効果の概略を図1に基づいて説明する。ここでは、単板ガラスにTiO2 /VO2 /TiO2 3層構造を形成したものを一例として説明する。しかし、本発明の多機能自動調光断熱ガラスの構造は、この例に制限されるものではなく、元素添加などによる調光系薄膜の調光温度の設定や熱線反射特性の強化、TiO2 系以外の可視光反射防止、保護及び反射色調調整などのための膜材料の使用、及び効果的な複層構造の構築等が任意に実施できることは言うまでもない。
【0017】
以下、図1に基づいて本発明の自動調光断熱の機構を詳しく説明する。夏季など環境温度がガラスの調光温度を上回る時、調光膜が金属特性で、可視光を透過させるが過剰な太陽光熱を遮断する(右)。一方、冬季など環境温度がガラス調光温度を下回る時、調光膜が半導体特性で、太陽光熱をよく透過し、太陽エネルギーを室内に取り入れることが可能となる(左)。また、冬季暖房時による室温の上昇で調光膜が金属特性となり、あるいは、熱線反射機能の強化により、常に暖房熱を室内に反射して熱の逃げを防止できる。
【0018】
図2に例として自動調光断熱ガラスの基礎構造及び機能を説明する。基本的にはガラスの上に順次に反射防止(AR)及び機能(例えば熱線反射)層、調光層、反射防止及び機能(例えば環境浄化)層の3層構造となるが、必要に応じて層の数を増減できることが言うまでもない。建築物や移動体に応用すると、透明性、紫外線遮断、自動調光断熱、環境浄化など複数的に機能する。
【0019】
図3にガラスと自動調光断熱コーティングとの位置関係の例を示す。単板ガラスの場合、薄膜層をガラスの室内側、或いは室外側にコーティングすることにより構成される。ペアガラスの場合、薄膜層は、室外側ガラスの両面のどちらか、或いは、室内側ガラスの両面のどちらかにコーティングして構成する。図には示していないが、ガラスが3層となる真空ガラスや、合わせガラスなどにも必要な位置でコーティング層を形成することが可能となり、コーティングとガラスとの位置関係に関する制限がない。
【0020】
図4に空調による自動調光断熱方法の一例を示す。冬季暖房時温度(例えば、22℃)よりやや低めに調光膜の作動温度(例えば、20℃)を設定し、冬の場合、室外温度が例えば5℃とすると、暖房を使わない場合、室内温度が20℃より下回るため、調光膜が半導体特性で光熱をよく透過し、太陽光エネルギーを室内に取り入れることが可能となる[図4(A)]。次に、暖房が作動すると、室温が22℃に上がり、ガラスの内側にある調光膜が相転移によって自動的に金属特性となり、可視光を透過させるが、赤外線や熱を反射し、暖房時室内から暖房熱の放出を防ぐことができる[図4(B)] 。
【0021】
また、夏の場合、気温が、或いは冷房があってもその設定温度が、通常20℃を上回るので、調光膜が常に金属特性となり、室外からの過剰な太陽熱や外からの輻射熱を遮断することができる。その他の季節にも、環境温度に応じて自動的に調光及び断熱を行うことができる。更に、最外層に酸化チタン系を使用することにより、可視光反射防止の他、光触媒効果により室内環境浄化など複数の機能を発揮させることができる。
【0022】
以上は、単板ガラスの場合の一例であるが、ペアガラスの場合、ガラスの室内側にコーティングする場合、及びガラスの室外側やペアガラスの中間にコーティングする場合のいずれでも、設定した調光温度により、目的に応じて、太陽光や熱の透過・反射を自動的に制御することができる。すなわち、本発明では、必要に応じて、コーティングの形成位置を選ぶことができ、また、必要に応じて、調光温度を任意のレベルに設定することができる。
【0023】
本発明の材料系において、可視光透過率を最大にするための膜厚の最適構成を反射防止理論、例えば、“Transfer−Matrix" 法により、計算することができる(B.Harbecke:Appl.Phys.B39(1985)165)。また、酸化バナジウム、酸化チタンなど関係物質の光学定数(M.Tazawa,P.Jin,S.Tanemura:Applied Optics37(1998)1858、Handbook of OpticalConstants of Solids I:Edward D.Palik,ed.Academic Press,(1998)799.)から精密に計算を行い、各層物質の最適膜厚を得ることができる。
【0024】
本発明では、材料系として、酸化バナジウム、金属元素を添加した酸化バナジウム、非金属元素を添加した酸化バナジウム、化合物を添加した酸化バナジウムを用いることができる。この場合、例えば、タングステン添加酸化バナジウム薄膜の作製には、前述のように、反応性スパッタ法が使われる。すなわち、タングステンとバナジウムの合金ターゲットを反応性スパッタ、或いはタングステンとバナジウムターゲットを二元同時スパッタすることにより所望のタングステン添加の酸化バナジウム薄膜を作製することができる(特開平7−331430、サーモクロミック材料の製造法)。
【0025】
本発明では、ガラスに上記酸化バナジウム系調光膜に加え、可視光反射防止膜を被膜する。当該可視光反射防止膜として、好適には、酸化チタン系材料が使用されるが、これらに限らず、これらと同効の材料であれば同様に使用することができる。この場合、例えば、酸化チタン光触媒薄膜は、例えば、チタン金属ターゲットを使った反応性スパッタ法、酸化チタンセラミックターゲットをスパッタする方法等により形成される。この場合、スパッタ条件を精密に制御することにより所定の結晶相が形成される。
【0026】
本発明では、ガラスに上記酸化バナジウム系調光膜に加え、可視光反射防止効果のほか、例えば熱線反射効果を持つもの、例えばITOなど透明導電体或いは同効のものや、ガラスに傷を付けにくくするためのアルミナ系やジルコニア系或いは同効のものなどを併用することが可能である。
【0027】
上述のように、本発明の多機能自動調光断熱ガラスの作製に使用したスパッタ法は、大面積窓を均一にコーティングするためにもっとも適切な方法の一つである。しかし、その他の成膜方法、例えば、真空蒸着法、CVD法、ゾルゲル法など、本発明の薄膜材料についての所定の諸特性が得られる限り、それらの作製方法は、特に制限されるものではない。
【0028】
本発明では、上記多機能自動調光断熱ガラスに、熱線反射層を導入して複層構造とすること、又は熱線反射物質を添加することにより、上記ガラスに熱線反射機能を強化することができる。また、本発明では、上記多機能自動調光断熱ガラスと、当該自動調光断熱ガラスを設置する空間の温度を所定のレベルに自動制御する機能を有する空調装置を構成要素として含む空調システムを構築することができる。この場合、上記空調装置としては、上記自動調光断熱ガラスを設置する空間の温度を自動調節する機能を有するものであればその種類に制限されることなく使用することができる。それにより、調光膜の調光温度を上記自動調光断熱ガラスを設置した空間の所定の設定空調温度付近に設定し、空間の温度が上記調光温度を下回るとき外部からの光熱を透過させ、調光温度を上回るとき光熱を遮断して省エネルギーで所定の快適温度に空調することが可能な空調システムを提供することができる。本発明において、上記空調システムは、上記多機能調光断熱ガラスに適宜の手段を付加して構築することが可能であり、その具体的な手段は特に制限されるものではなく、適宜の手段を用いて任意に設計することができる。
【0029】
【作用】
本発明は、ガラスに酸化バナジウム系調光膜を被膜した多機能自動調光断熱ガラスであって、(1)ガラスに酸化バナジウム系調光膜及び可視光反射防止膜を形成する、(2)上記酸化バナジウム系調光膜の調光温度を適切快適温度に設定する、或いは上記ガラスを設置する空間の空調温度付近の所定のレベルに設定する、ことにより上記ガラスに調光及び断熱機能を付加したことを特徴とする多機能自動調光断熱ガラス、であり、この構成により、ガラスに、調光機能、可視光反射防止性、可視光透過性、断熱性、紫外線遮断、環境浄化等の複数の機能を同時的に付加することを可能とするだけでなく、その調光、可視光反射防止、及び断熱機能を総合することにより、所定の空間を効率よく省エネルギーで空調することを可能とする新しい空調方法及び空調システムを構築することを実現化することができる。即ち、本発明は、例えば、冬の暖房時には、調光膜の調光温度を上記ガラスを設置する空間の所定の設定暖房温度付近に設定し、空間の温度が上記調光温度を下回るとき外部からの光熱を透過させ、調光温度を上回るとき可視光を透過させ、暖房熱を室内に反射して断熱するようにすることができる。また、本発明では、例えば、夏の冷房時には、調光膜の調光温度を上記ガラスを設定する空間の所定の設定冷房温度付近に設定し、空間の温度が上記調光温度を上回るとき外部からの光熱を遮断するようにすることができる。また、本発明では、例えば、暖冷房無し時には、調光膜の調光温度を所定快適温度に設定し、上記ガラスを設定する環境の温度が上記調光温度を上回るとき外部からの過剰な光熱を自動的に遮断し、下回るとき外部から太陽光熱を取り入れるようにすることができる。
【0030】
【実施例】
次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
(1)方法
本実施例では、薄膜の作製に汎用型マグネトロンスパッタ装置を用いた。当該装置には、カソード3基まで配置することができ、それぞれに高周波電源又は直流電源で任意に電力制御することができる。この装置では、基板が回転可能であり、基板温度を室温から800℃までの範囲で精密に設定することができる。カソードに、市販のバナジウムターゲット(V、φ50mm、純度99.9%)、市販のタングステンターゲット(W、φ50mm、純度99.99%)、及び市販の酸化チタンターゲット(TiO2 、φ50mm、純度99.99%)を設置した。真空系を2.5×10-6Pa以下に排気した後、アルゴン及び酸素ガスを導入して成膜を行った。基板温度を室温から500℃までの範囲に設定し、基板として、石英ガラス、シリコン単結晶、サファイア、耐熱ガラスなどを使用した。
【0031】
図2に示す基礎構造に、ガラスに、酸化バナジウム系調光膜及び酸化チタン系可視光反射防止膜を被膜した構造を例として、ガラスの上にTiO2 /VO2 /TiO2 となる複層構造の最適な膜厚を、それらの物質の光学定数を使って反射防止理論式により計算した。その結果、VO2 の厚さが50nm、TiO2 の厚さが2層ともに25nm付近で可視光反射防止効果が最も高いことが判明した(図5)。
【0032】
また、図2に示す基礎構造に、ガラスに、ITO透明導電膜、酸化バナジウム系調光膜及び酸化チタン系可視光反射防止兼光触媒膜を被膜した構造(ITO/VO2 /TiO2 )を例として計算した。その結果、調光時に大きな透過率の変化(図6)と高度な熱線反射機能が得られた。
【0033】
そこで、この結果に基づいて、上記TiO2 /VO2 /TiO2 となる最適構造を上述のスパッタ法により作製した。VO2 薄膜の作製には、基板温度500℃、全圧0.6Pa、酸素7%の条件で、バナジウムターゲットに高周波電力180Wを加えてスパッタを行い、厚さ50nmの酸化バナジウム薄膜を形成した。タングステン添加のVO2 薄膜の作製には、以上の条件に加え、タングステンターゲットに同10−40Wを加えて同時スパッタを行い、厚さ50nmのタングステン添加酸化バナジウム薄膜を形成した。
【0034】
また、同じ真空中に、酸化チタンターゲットを高周波電力160Wでアルゴンガス中にスパッタし、酸化バナジウムを挟む形で酸化チタンをそれぞれ25nmずつ形成した。得られた複層構造について、X線回折法、RBSなどにより、その組成及び構造評価を行った。
【0035】
石英ガラスやサファイアなどの透明基板上に形成した複層構造薄膜を有するサンプルを、温度制御が可能な分光光度計を用いて、20℃(酸化バナジウム系半導体相)及び80℃(同金属相)の分光透過率、同反射率を測定した。更に、波長2000nmの透過率の温度変化を取り、透過率・温度曲線から材料の調光温度を決めた。
【0036】
(2)結果
図5に、VO2 及びTiO2 の光学定数を使って反射防止理論式により系の可視光透過率を計算して、得られた最適な膜厚の組み合わせを示す。石英ガラスの上に厚さ50nmのVO2 調光薄膜に対して、TiO2 /VO2 /TiO2 構造のTiO2 の厚さがそれぞれ25nmの時、可視光透過率が最も高く、36%から62%と大きく向上したことが明らかであった。このことは、可視光透過率が可視光反射防止膜の作用により、実用的レベルに達したことを意味する。
【0037】
図6に、上記のスパッタ法により石英ガラス透明基板上にVO2 (50nm)及びTiO2 /VO2 /TiO2 (25nm/50nm/25nm)構造をそれぞれ作製し、相転移前後(調光前後)の分光透過率及び同反射率の変化を調べた結果を示す。可視光領域で見られるように、TiO2 層の可視光反射防止による可視光透過率の大きな向上が実証された。また、赤外領域で見られるように、調光前後に可視光透過率・同反射率が余り変わらないが、赤外透過率・同反射率が大きく変化し、温度に依存する大きな赤外調光効果を示すことが判明した。また、赤外領域では波長が増加するに連れ、赤外調光効果が強化されていく傾向が明らかである。
【0038】
図7に、ガラスに、ITO透明導電膜、酸化バナジウム系調光膜及び酸化チタン系可視光反射防止兼光触媒膜を被膜した構造(ITO/VO2 /TiO2 )の理論計算光学スペクトルを示す。調光時に大きな透過率の変化が得られた。
【0039】
図8に、上記自動調光ガラスの熱線反射特性(低温時、高温時)及び熱線反射強化後の熱線反射特性と、従来型熱線反射ガラス(TiN型)との比較を実測値で示す。自動調光ガラスの調光前後、熱線反射率は数%から50%の間に可逆的に変化し、従来型と同程度の熱線反射特性を示す。また、ITOにより熱線反射特性を強化したサンプルでは、80%以上の熱線反射率を示し、高い断熱効果があることが証明されている。
【0040】
比較例1
従来型の熱線反射ガラスとして、石英ガラス基板上にTiO2 /TiN/TiO2 (30nm/30nm/30nm)構造をスパッタ法により作製したものを準備し、光学測定を行った。図9にこの系の分光透過率・同反射率を示す。この系は、可視光透過、赤外反射という典型的熱反射特性を示すが、図6及び図7に示すような温度による調光特性を有していない。
【0041】
以上、本発明を実施例に基づいて説明したが、本発明は前記した実施例に限定されるものではなく、特許請求の範囲に記載した構成要件を変更しない限り適宜の条件及び手段を用いて実施することができる。
【0042】
【発明の効果】
以上詳述したように、本発明は、従来型の熱線反射断熱ガラスに全く見られない多機能自動調光断熱ガラスを可能としたものであり、次のような格別の効果を奏する。可視光反射防止材料を使用することにより調光系の可視光透過率が大きく増大する。調光系の物性により調光を行っても常に高い透明性を持つ。反射防止に熱線反射物質の使用により優れた断熱性が得られ、また、反射防止膜を酸化チタン系光触媒とする場合、自動調光以外に、紫外線の95%以上遮断や環境浄化機能などの複数の機能を発揮する。調光温度を適切に設定することで夏における室外からの太陽光や輻射熱が遮断され、冬において積極的に太陽光の室内への取り込みと暖房熱の室内の閉じ込めが暖房温度(室内温度)によって自動的に調節される。構造が非常に簡単であり、調光のために人工エネルギーや余分の設備を必要としない。本発明は、自動調光断熱機能、高い透明性機能、強い紫外線遮断機能、様々な環境浄化機能などを統合した、従来にない、全く新しい多機能自動調光断熱ガラスを提供することを可能とする。建築物や自動車、列車、船舶、飛行機などの移動体に、省エネルギー、健康快適、環境浄化などの複数の機能を付加することを可能とする。新しい多機能自動調光断熱ガラスとして、建築産業その他産業界への応用が大いに期待できる。
【図面の簡単な説明】
【図1】図1は、本発明の自動調光断熱の機構を説明する概略図である。
【図2】図2は、本発明の自動調光断熱ガラスとなる基礎構造及び機能を示す。
【図3】図3は、自動調光断熱コーティングとガラスとの位置関係を、単板ガラス、ペアガラス、の例として示す。
【図4】図4は、空調による自動調光断熱方法の一例を示す。
【図5】図5は、反射防止理論により計算したTiO2 (d1)/VO2 (50nm)/TiO2 (d2)複層構造の膜厚と可視光透過率(Tlum )との関係を示す。
【図6】図6は、本発明に関して、石英ガラス基板上に形成したVO2 (50nm)及びTiO2 /VO2 /TiO2 (25nm/50nm/25nm)構造の相転移前後(調光前後)の分光透過率の変化を示す。
【図7】図7は、ガラス上のITO/VO2 /TiO2 構造を最適化計算した調光時の透過スペクトルの一例を示す。
【図8】図8は、自動調光ガラスの熱線反射特性(低温時、高温時、熱線反射強化型)と従来型熱線反射ガラス(TiN型)との比較を赤外スペクトル実測値で示す。
【図9】図9は、石英ガラス基板上に形成した従来型の熱線反射ガラスの一例、TiO2 /TiN/TiO2 (30nm/30nm/30nm)構造の分光透過率及び同反射率を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel multifunctional automatic light control and heat insulating glass having both a light control function and a heat insulation function. More specifically, the present invention relates to a glass coated with a vanadium oxide light control film, a visible light antireflection film, and a heat ray reflection film. The present invention relates to a new type of multi-function automatic dimming heat insulating glass capable of adding a heat insulating function, an ultraviolet ray blocking function, an environmental purification function, and a method for dimming and air conditioning the glass. The present invention is a new multi-function capable of simultaneously adding a plurality of functions such as energy saving, comfortable housing performance, environmental purification, and health-oriented to a moving body such as a building, an automobile, a train, a ship, and an airplane. It is useful for providing functional automatic light control insulating glass and its application technology.
[0002]
[Prior art]
In general, vanadium oxide compounds, ie, vanadium oxide (VO 2 The vanadium oxide represented by) has thermochromic characteristics (reversible change in optical characteristics with temperature) due to semiconductor-metal phase transition at 68 ° C., for example, by adding a metal element such as tungsten (W). Since the transition temperature can be lowered, conventionally, it has been mainly studied as a window coating material capable of automatically adjusting sunlight according to the environmental temperature (see Non-Patent Document 1). The vanadium oxide light control window material has a great advantage in that the structure is very simple, the infrared light control rate is very large, and the visible light is always transparent even during light control. Here, the vanadium oxide system means a light control material centering on vanadium oxide, including vanadium oxide added with an element for adjusting the transition temperature. However, the conventional vanadium oxide-based light control materials originally had major drawbacks such as a very low light transmittance in the visible light range and a single light control function.
[0003]
Conventionally, there is a low radiation glass (Low-E glass, heat ray reflective glass) that is transparent to visible light and has a function of reflecting infrared rays (heat rays). For this purpose, metal thin films such as Ag, Au, Cu, Pt, and Al, or metal nitride thin films such as TiN, ZrN, HfN, and CrN, or transparent conductive oxide thin films, and protection and antireflection were applied. A multilayer of the above thin film is used (see Non-Patent Document 2). Low-emission glass for construction is used, for example, in summer to reduce the cooling load by preventing the inflow of sunlight, or to insulate the winter by preventing the release of heating heat. However, these low-emission glasses only reflect heat rays in any situation, for example, they reflect excessive solar heat in the summer, but actively apply solar heat indoors as necessary in winter. In other words, there is no function for automatically adjusting the light heat according to the environmental temperature.
[0004]
In addition, there are window coating materials that are dimmed by heat, for example, autonomous response type heat dimming glass using a special hydrogel (see Non-Patent Document 3). However, they exhibit excellent dimming properties, but have the disadvantage that when dimming with heat, the glass becomes cloudy and the outside cannot be seen. These are difficult to apply to buildings that always require a clear field of view, and particularly to window materials for moving objects such as automobiles.
On the other hand, titanium oxide (TiO 2 Photocatalysts (including those added with elements) have various functions such as antifouling, antibacterial properties, deodorization, environmental purification, and the like (see Non-Patent Document 4). However, this photocatalytic material does not exhibit a thermochromic dimming function.
[0005]
[Non-Patent Document 1]
S. M.M. Babulanam, T .; S. Eriksson, G.M. A. Niklasson and C.I. G. Granqvist: Solar Energy Materials, 16 (1987) 347
[Non-Patent Document 2]
New Glass Handbook, New Glass Handbook Editorial Committee, 1991, Maruzen
[Non-Patent Document 3]
Haruo Watanabe: Solar Energy, 1997, 23, 49
[Non-Patent Document 4]
Industrial Materials, 1999, June issue
[0006]
[Problems to be solved by the invention]
Under such circumstances, the present inventor aims to develop a new multifunctional light-modulating material that can fundamentally solve the problems of the above-mentioned conventional technology in view of the above-mentioned conventional technology. As a result of intensive research, the glass is coated with a vanadium oxide light control film and a visible light antireflection film, and the air is controlled to control the air. The present inventors have found that it can be made multifunctional by adding a purification function and the like, and further researches have been made to complete the present invention. That is, the present invention aims to provide a multi-function automatic dimming and heat insulating glass with various new functions while at the same time drastically solving the low visible light transmittance of the conventional vanadium oxide dimming material. And In addition, the present invention provides a heat insulation function equivalent to that of a conventional low-radiation heat insulating glass by appropriately setting the structure, position, and light control temperature of the light control film, and a new function that is not present in the conventional type, that is, a light control function. An object of the present invention is to provide a new multifunctional automatic dimming heat insulating glass that can have an optical function. In addition, the present invention can enhance the heat ray reflection function by using a transparent conductor or the like for the visible light antireflection film, the environment purification function by using a titanium oxide photocatalyst film for the antireflection film, an excellent ultraviolet blocking function, etc. The object is to develop and provide a multi-function automatic light control insulating glass having a plurality of functions simultaneously. Furthermore, the present invention provides a thermochromic automatic dimming function, antifouling, antibacterial, deodorant, environmental purification, water repellent, hydrophilic and other photocatalytic functions, harmful UV blocking function, and high light transmission that always maintains a transparent view. The purpose is to develop and provide a new high-performance glass equipped with sexual function and advanced heat insulation function.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the following configuration is adopted in the present invention.
(1) A multi-function automatic light control heat insulating glass having a multilayer structure formed of a vanadium oxide light control film, a visible light antireflection film and a heat ray reflection film on glass,
(A) Vanadium oxide light control film and visible light antireflection film were formed on glass,
(B) that the light control temperature of the vanadium oxide light control film is set to a predetermined level near the appropriate comfortable temperature of the space in which the glass is installed;
In the multi-function automatic dimming and heat insulating glass with the dimming and heat insulating function added to the glass,
(C) The heat ray reflective film is at least ITO, ZnO, Or SnO 2 System (system includes elements added) )of Transparent conductor Consist of thing, Somehow Is at least Ag, Au , C u, Or A l Heat ray reflective material Contain thing,
Multifunctional automatic dimming heat insulation glass characterized by
(2) The multifunctional automatic light control heat insulating glass according to (1), wherein the visible light antireflection film is made of a titanium oxide-based material.
(3) The visible light antireflection film is at least ITO, ZnO system Or SnO 2 System (system includes elements added) Or The multi-function automatic light control heat insulating glass according to (1).
(4) The visible light antireflection film is made of SiO. 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 , CeO 2 , Si 3 N 4 , HfO 2 , Nb 2 O 5 , Sc 2 O 3 The multi-function automatic light control heat insulating glass according to (1), comprising a dielectric material having an appropriate optical constant of ZnS.
(5) The automatic light control and heat insulating glass according to (1), wherein the vanadium oxide light control film is vanadium oxide to which a metal element is added, vanadium oxide to which a nonmetal element is added, or vanadium oxide to which a compound is added.
(6) The light control temperature of the light control film is set in the vicinity of a predetermined heating temperature of the space where the glass is installed, visible light is always transmitted, and when the temperature of the space is lower than the light control temperature, external light heat is The multi-function automatic dimming heat insulating glass according to (1), wherein the multi-function automatic dimming heat insulating glass described above (1) is made to transmit and to heat-insulate the room by reflecting heating heat when the temperature exceeds the dimming temperature.
(7) The dimming temperature of the dimming film is set in the vicinity of a predetermined comfortable temperature, and when the temperature of the space where the glass is set exceeds the dimming temperature, excess solar heat is blocked, and when the temperature is lower, solar heat from outside The multi-function automatic light control and heat insulating glass according to the above (1), wherein visible light is always transmitted, and heat of heat is reflected indoors to be insulated.
(8) A structural member having a light control and heat insulation function, comprising the multifunctional automatic light control heat insulating glass according to (1) as a constituent element.
(9) A method for dimming the multifunctional automatic light control and heat insulating glass according to (1),
The light control temperature of the light control film is set near the predetermined heating temperature of the space where the glass is installed, and when the temperature of the space is lower than the light control temperature, light from the outside is transmitted, and light when the temperature exceeds the light control temperature. The light control method is characterized in that the visible part of the light is transmitted and the heat of heating is reflected indoors to insulate.
(10) A method for dimming the multifunctional automatic dimming heat insulating glass according to (1),
The light control temperature of the light control film is set near the predetermined comfortable temperature, and when the temperature of the space where the glass is set exceeds the light control temperature, excess solar heat is blocked, and when it is lower, external solar heat is transmitted. In addition, a dimming method characterized in that visible light is always transmitted, and heating heat is reflected indoors to be insulated.
(11) A method of air-conditioning a space with energy saving by the multifunctional automatic light control insulating glass according to (1),
The light control temperature of the light control film is set near the predetermined air conditioning temperature of the space where the glass is installed, and during heating, the solar light from the outside is transmitted when the temperature of the space is lower than the light control temperature. Air conditioning is characterized by allowing visible light to pass through when it exceeds the temperature, blocking the release of heating heat to the outside, and shutting off excess solar heat from outside when the temperature of the space exceeds the dimming temperature during cooling. Method.
(12) An air conditioning system using the multi-function automatic light control heat insulating glass according to (1),
It includes the multifunctional automatic light control insulating glass and an air conditioner having a function of automatically controlling the temperature of the space in which the heat insulating glass is installed to a predetermined level as components, and the light control temperature of the light control film is installed on the glass When the space temperature is below the dimming temperature, external light heat is transmitted, and when the space temperature is above the dimming temperature, visible light is transmitted to the outside. The air conditioning system according to claim 1, wherein heat release is cut off and excessive solar heat from outside is cut off during cooling when the temperature of the space exceeds the dimming temperature.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
In the present invention, a multilayer structure is formed by coating glass with a vanadium oxide light-modulating material, a visible light antireflection material, a heat ray reflective material, and the like in an appropriate order and thickness. In the present invention, the light control temperature of the vanadium oxide light control film is set to a temperature comfortable for humans or a predetermined level near the air conditioning temperature of the space where the glass is installed. An element such as tungsten is added to the vanadium oxide light-modulating system in order to set the temperature near the room heating temperature or slightly lower (for example, 20 ° C.) (Japanese Patent Laid-Open No. 7-331430, manufacture of thermochromic material). Method, JP-A-8-3546, production method of thermochromic material). In the present invention, in addition to the vanadium oxide light control film, a visible light antireflection film is formed on the glass. 2 , Al 2 O Three , ZrO 2 , SiO 2 , ZnO, SiN x In particular, the use of a titanium oxide photocatalytic thin film for the visible light antireflection film is most suitable, and in order to enhance the heat ray reflection function, ITO, ZnO, SnO. 2 A transparent conductor thin film such as a system is suitable. These materials are not particularly limited, and can be used in the same manner as long as they have the same effect as the above compound. Thereby, in addition to the improvement of visible light transmittance, a high heat ray reflection function, antifouling, antibacterial, deodorant, environmental purification, water repellency, hydrophilicity and other photocatalytic functions and ultraviolet blocking functions can be obtained.
[0009]
Vanadium oxide light control thin film, and titanium oxide and other visible light antireflection materials such as ZrO 2 , SiO 2 , Al 2 O Three , SiN x , ITO, ZnO, SnO 2 As shown in the examples below, the optimal structure of the multi-layered thin film system consisting of the system, etc., that is, the optimum combination of the film structure and the combination of the film thickness, is determined using precise optical constants of each substance. It can be calculated by calculation. In the present invention, in order to maximize the heat ray reflection function, solar light dimming function, etc., including the visible light antireflection effect in consideration of its performance, the above-mentioned optical system is made of the most effective material and structure. Needless to say, selection, combination, use of a multilayer film, a gradient composition thereof, a thin film having a gradient structure, or a particle dispersion system can be arbitrarily designed according to the purpose of use. The light control temperature of the vanadium oxide light control thin film is preferably set to a temperature (for example, 20 ° C.) that is slightly lower than the set temperature of the heating (for example, 22 ° C.) by, for example, precise element addition, The present invention is not limited to these, and can be set to any level of temperature in relation to the space temperature at which humans feel comfortable, the set temperature most effective for energy saving, or the air conditioning temperature.
[0010]
In the present invention, a metal element or a nonmetal can be added to vanadium oxide, and the light control temperature can be arbitrarily controlled to a predetermined level. In this case, for example, the addition of tungsten is very effective for controlling the light control temperature of the vanadium oxide light control film. However, the present invention is not limited to the addition of tungsten, and other metals or non-metals such as Mo, Nb, Ta, F, N, etc. to vanadium oxide are used for controlling the dimming temperature. Needless to say, the addition of is effective. In the present invention, in order to improve the heat ray reflection function of the dimming system, element addition to vanadium oxide, In particular , Ag, Au, Cu, A l Addition, or heat ray reflective layer to thin film system, In particular , ITO, ZnO, SnO 2 System, Ag, Au, Cu, A l Incorporation The can do. In addition, for adjusting the color tone of the light control system, element addition, introduction of a thin film layer, etc. can be performed. Furthermore, it goes without saying that a method for improving the characteristics of a titanium oxide photocatalyst by various known methods can also be applied to the titanium oxide thin film of the present invention.
[0011]
In the present invention, as an example, the thin film system in the case of a single pane is formed on the indoor side of the glass, but can be formed on the outdoor side according to the purpose. Further, the thin film system in the case of pair glass can be located either on the indoor side, on the outdoor side, or on the inner side sandwiched by the pair glass depending on the purpose. That is, in the present invention, the set temperature, the position of the thin film system with respect to the glass, and the like can be arbitrarily changed as necessary.
[0012]
For example, a reactive sputtering method is used to manufacture the tungsten-added vanadium oxide thin film. In this case, a vanadium oxide thin film to which a predetermined tungsten is added can be obtained by reactive sputtering of a vanadium alloy target containing a predetermined amount of tungsten, or by simultaneous sputtering of a tungsten and vanadium target, or by sputtering of a vanadium oxide compound target containing tungsten. Is made. Similarly, the production of the visible light antireflection film and the heat ray reflective thin film is also performed by, for example, sputtering, but is not limited thereto.
[0013]
The titanium oxide based visible light reflecting film is formed by, for example, a reactive sputtering method using a titanium metal target, a method of sputtering a titanium oxide compound target, or the like. In this case, element addition, composition control, and the like are effective for improving the photocatalytic characteristics of titanium oxide, and a predetermined crystal phase is formed by precisely controlling the sputtering conditions. In the present invention, as described above, as a method for producing a thin film, a sputtering method is exemplified as a suitable example, but other methods such as a vacuum deposition method, a sol-gel method, a spray method, and a CVD method are also possible. As long as the predetermined structure and various characteristics of the thin film material according to the present invention are obtained, the method is effective, and the manufacturing method thereof is not particularly limited.
[0014]
In the present invention, as described above, the glass is coated with the vanadium oxide light control thin film and the visible light antireflection film. In this case, when a titanium oxide photocatalytic thin film is used as a visible light antireflection film, in addition to the thermochromic automatic light control function, photocatalytic functions such as antifouling, antibacterial, deodorant, environmental purification, water repellency, and hydrophilicity, harmful ultraviolet rays It is possible to obtain a high-performance automatic light control heat insulating glass that has a cutting function and is transparent at the time of light control and has high visible light transmittance.
[0015]
In the present invention, as described above, the glass is coated with a vanadium oxide light control thin film, a visible light antireflection film, a heat ray reflective thin film, or the like. In this case, in order to prevent reflection and enhance heat ray reflection, ITO, ZnO-based, SnO 2 When a transparent conductor thin film such as a system is used, a high-performance automatic light control heat insulating glass having a high heat insulating function can be obtained.
[0016]
In the present invention, the most important point is to add the automatic light control and heat insulation function, that is, the automatic light control and heat ray reflection function to the glass by accurately setting the structure of the thin film system, the light control temperature, the formation position, etc. It is possible to do. The structure of the multifunctional automatic light control heat insulation glass of this invention and the outline of an effect are demonstrated based on FIG. Here, TiO 2 / VO 2 / TiO 2 An example in which a three-layer structure is formed will be described. However, the structure of the multi-function automatic dimming heat insulating glass of the present invention is not limited to this example. Setting of the dimming temperature of the dimming thin film by addition of elements, enhancement of heat ray reflection characteristics, TiO 2 2 Needless to say, the use of a film material other than the system for preventing reflection of visible light, protection and adjustment of reflection color tone, construction of an effective multilayer structure, and the like can be arbitrarily implemented.
[0017]
Hereinafter, the automatic light control and heat insulation mechanism of the present invention will be described in detail with reference to FIG. When the environmental temperature is higher than the light control temperature of glass, such as in summer, the light control film has metallic properties and transmits visible light but blocks excess solar heat (right). On the other hand, when the environmental temperature is lower than the glass dimming temperature, such as in winter, the dimming film has semiconductor characteristics, and it can penetrate solar heat well and incorporate solar energy indoors (left). In addition, the light control film becomes metallic due to a rise in room temperature due to heating in winter, or the heat ray reflection function can be constantly reflected in the room to prevent escape of heat.
[0018]
The basic structure and function of the automatic light control and heat insulating glass will be described with reference to FIG. Basically, it has a three-layer structure of antireflection (AR) and functional (eg heat ray reflective) layer, light control layer, antireflective and functional (eg environmental purification) layer on glass, but if necessary, It goes without saying that the number of layers can be increased or decreased. When applied to buildings and moving objects, it functions in multiple ways, including transparency, UV blocking, automatic dimming insulation, and environmental purification.
[0019]
FIG. 3 shows an example of the positional relationship between the glass and the automatic light control thermal insulation coating. In the case of single plate glass, it is configured by coating a thin film layer on the indoor side or the outdoor side of the glass. In the case of pair glass, the thin film layer is formed by coating either one of both surfaces of the outdoor glass or both surfaces of the indoor glass. Although not shown in the drawing, it is possible to form a coating layer at a required position on vacuum glass or laminated glass having three layers of glass, and there is no restriction on the positional relationship between the coating and the glass.
[0020]
FIG. 4 shows an example of an automatic light control and insulation method using air conditioning. Set the operating temperature of the light control membrane (for example, 20 ° C) slightly lower than the temperature for heating in the winter (for example, 22 ° C). Since the temperature is lower than 20 ° C., the light control film can transmit light heat well with semiconductor characteristics, and solar energy can be taken into the room [FIG. 4A]. Next, when heating is activated, the room temperature rises to 22 ° C, and the light control film inside the glass automatically becomes metallic due to the phase transition and transmits visible light, but reflects infrared rays and heat, Release of heating heat from the room can be prevented [FIG. 4 (B)].
[0021]
In the summer, even if the air temperature or the air conditioner is set, the set temperature usually exceeds 20 ° C., so the light control film always has a metallic property, and blocks excessive solar heat from outside and radiant heat from outside. be able to. In other seasons, dimming and heat insulation can be automatically performed according to the environmental temperature. Furthermore, by using a titanium oxide system for the outermost layer, it is possible to exhibit a plurality of functions such as indoor environment purification by the photocatalytic effect in addition to preventing visible light reflection.
[0022]
The above is an example in the case of a single plate glass, but in the case of a pair glass, in the case of coating on the indoor side of the glass and in the case of coating on the outside of the glass or in the middle of the pair glass, the set light control temperature Therefore, it is possible to automatically control the transmission and reflection of sunlight and heat according to the purpose. That is, in the present invention, the coating formation position can be selected as necessary, and the dimming temperature can be set to an arbitrary level as necessary.
[0023]
In the material system of the present invention, the optimum structure of the film thickness for maximizing the visible light transmittance can be calculated by an antireflection theory, for example, the “Transfer-Matrix” method (B. Harbeke: Appl. Phys). B39 (1985) 165). In addition, optical constants of related substances such as vanadium oxide and titanium oxide (M. Tazawa, P. Jin, S. Tanemura: Applied Optics 37 (1998) 1858, Handbook of Optical Constants of Solids I: Edward D. Parikd D. Palik. (1998) 799.) can be precisely calculated to obtain the optimum film thickness of each layer material.
[0024]
In the present invention, vanadium oxide, vanadium oxide added with a metal element, vanadium oxide added with a non-metal element, or vanadium oxide added with a compound can be used as a material system. In this case, for example, the reactive sputtering method is used for producing the tungsten-added vanadium oxide thin film as described above. That is, a desired tungsten-added vanadium oxide thin film can be produced by reactive sputtering of an alloy target of tungsten and vanadium, or by dual simultaneous sputtering of tungsten and vanadium target (JP-A-7-331430, thermochromic material). Manufacturing method).
[0025]
In the present invention, a visible light antireflection film is coated on the glass in addition to the vanadium oxide light control film. As the visible light antireflection film, a titanium oxide-based material is preferably used. However, the material is not limited thereto, and any material having the same effect as these can be used. In this case, for example, the titanium oxide photocatalytic thin film is formed by, for example, a reactive sputtering method using a titanium metal target, a method of sputtering a titanium oxide ceramic target, or the like. In this case, a predetermined crystal phase is formed by precisely controlling the sputtering conditions.
[0026]
In the present invention, in addition to the above-mentioned vanadium oxide light control film, glass has a heat ray reflection effect, for example, a transparent conductor such as ITO, or the like, or scratches the glass. Alumina-based, zirconia-based, or those having the same effect can be used in combination.
[0027]
As described above, the sputtering method used for the production of the multifunctional automatic light control heat insulating glass of the present invention is one of the most suitable methods for uniformly coating a large area window. However, as long as the predetermined characteristics of the thin film material of the present invention such as a vacuum deposition method, a CVD method, a sol-gel method, and the like can be obtained, the production method thereof is not particularly limited. .
[0028]
In this invention, a heat ray reflective function can be strengthened to the said glass by introduce | transducing a heat ray reflective layer into the said multifunctional automatic light control heat insulation glass to make a multilayer structure, or adding a heat ray reflective substance. . Further, in the present invention, an air conditioning system including the above-described multifunction automatic light control insulating glass and an air conditioner having a function of automatically controlling the temperature of the space in which the automatic light control heat insulating glass is installed to a predetermined level is constructed. can do. In this case, the air conditioner can be used without any limitation as long as it has a function of automatically adjusting the temperature of the space in which the automatic light control and heat insulating glass is installed. Thereby, the light control temperature of the light control film is set near the predetermined air conditioning temperature of the space where the automatic light control heat insulating glass is installed, and when the temperature of the space is lower than the light control temperature, external light heat is transmitted. It is possible to provide an air conditioning system capable of shutting down the light heat when the temperature exceeds the dimming temperature and air-conditioning to a predetermined comfortable temperature with energy saving. In the present invention, the air conditioning system can be constructed by adding appropriate means to the multifunctional dimming / insulating glass, the specific means is not particularly limited, and appropriate means are provided. And can be designed arbitrarily.
[0029]
[Action]
The present invention is a multifunctional automatic light control heat insulating glass in which a glass is coated with a vanadium oxide light control film, (1) a vanadium oxide light control film and a visible light antireflection film are formed on the glass, (2) Dimming and heat insulation functions are added to the glass by setting the dimming temperature of the vanadium oxide-based dimming film to an appropriate comfortable temperature, or by setting it to a predetermined level near the air conditioning temperature of the space where the glass is installed. Multi-function automatic dimming heat insulation glass, characterized by the fact that this structure can be used for glass with dimming function, visible light antireflection, visible light transmission, heat insulation, ultraviolet blocking, environmental purification, etc. It is possible not only to simultaneously add the functions of the above, but also to efficiently air-condition the specified space with energy saving by integrating its dimming, visible light reflection prevention, and heat insulation functions. new Constructing an air conditioning method and the air conditioning system can be realized the. That is, the present invention sets the dimming temperature of the dimming film near the predetermined heating temperature of the space in which the glass is installed, for example, during heating in winter, and externally when the temperature of the space is lower than the dimming temperature. The visible light can be transmitted when the temperature exceeds the dimming temperature, and the heating heat can be reflected and insulated from the room. Further, in the present invention, for example, during summer cooling, the light control temperature of the light control film is set near a predetermined cooling temperature of the space where the glass is set, and when the temperature of the space exceeds the light control temperature, It is possible to block light heat from the light. Further, in the present invention, for example, when there is no heating and cooling, the dimming temperature of the dimming film is set to a predetermined comfortable temperature, and when the temperature of the environment for setting the glass exceeds the dimming temperature, excessive light heat from the outside Can be cut off automatically, and when it falls below, solar heat can be taken in from the outside.
[0030]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
Example 1
(1) Method
In this example, a general-purpose magnetron sputtering apparatus was used for the production of the thin film. Up to three cathodes can be arranged in the device, and power can be arbitrarily controlled with a high-frequency power source or a direct-current power source. In this apparatus, the substrate can be rotated, and the substrate temperature can be precisely set in the range from room temperature to 800 ° C. Commercially available vanadium target (V, φ50 mm, purity 99.9%), commercially available tungsten target (W, φ50 mm, purity 99.99%), and commercially available titanium oxide target (TiO 2) 2 , Φ50 mm, purity 99.99%). Vacuum system 2.5 × 10 -6 After evacuating to Pa or lower, a film was formed by introducing argon and oxygen gas. The substrate temperature was set in the range from room temperature to 500 ° C., and quartz glass, silicon single crystal, sapphire, heat-resistant glass, or the like was used as the substrate.
[0031]
As an example, the basic structure shown in FIG. 2 is formed by coating a glass with a vanadium oxide-based light control film and a titanium oxide-based visible light antireflection film. 2 / VO 2 / TiO 2 The optimum film thickness of the multilayer structure was calculated by the antireflection theoretical formula using the optical constants of these substances. As a result, VO 2 The thickness is 50 nm, TiO 2 It was found that the antireflection effect of visible light was the highest when the thickness of the two layers was around 25 nm (FIG. 5).
[0032]
In addition, a structure (ITO / VO) in which the basic structure shown in FIG. 2 is coated with glass on an ITO transparent conductive film, a vanadium oxide-based light control film, and a titanium oxide-based visible light antireflection / photocatalyst film. 2 / TiO 2 ) As an example. As a result, a large transmittance change (FIG. 6) and an advanced heat ray reflection function were obtained during dimming.
[0033]
Therefore, based on this result, the TiO 2 / VO 2 / TiO 2 The optimum structure is prepared by the above-described sputtering method. VO 2 For the production of the thin film, sputtering was performed by applying a high frequency power of 180 W to the vanadium target under the conditions of a substrate temperature of 500 ° C., a total pressure of 0.6 Pa, and oxygen of 7% to form a 50 nm thick vanadium oxide thin film. VO with tungsten addition 2 In addition to the above conditions, the thin film was prepared by adding 10-40 W to the tungsten target and performing simultaneous sputtering to form a tungsten-added vanadium oxide thin film having a thickness of 50 nm.
[0034]
Further, in the same vacuum, a titanium oxide target was sputtered into an argon gas at a high frequency power of 160 W, and each titanium oxide was formed to have a thickness of 25 nm with vanadium oxide interposed therebetween. About the obtained multilayer structure, the composition and structure evaluation were performed by X-ray diffraction method, RBS, etc.
[0035]
Using a spectrophotometer that can control the temperature of a sample having a multilayered thin film formed on a transparent substrate such as quartz glass or sapphire, 20 ° C. (vanadium oxide semiconductor phase) and 80 ° C. (same metal phase) The spectral transmittance and the reflectance were measured. Furthermore, the temperature change of the transmittance at a wavelength of 2000 nm was taken, and the light control temperature of the material was determined from the transmittance / temperature curve.
[0036]
(2) Results
In FIG. 2 And TiO 2 The visible light transmittance of the system is calculated by the antireflection theoretical formula using the optical constants of and the optimum film thickness combinations obtained are shown. 50 nm thick VO on quartz glass 2 TiO for light control thin film 2 / VO 2 / TiO 2 Structure TiO 2 It was clear that the visible light transmittance was the highest when the thickness of each was 25 nm, which was greatly improved from 36% to 62%. This means that the visible light transmittance has reached a practical level by the action of the visible light antireflection film.
[0037]
In FIG. 6, VO is formed on a quartz glass transparent substrate by the above sputtering method. 2 (50 nm) and TiO 2 / VO 2 / TiO 2 (25 nm / 50 nm / 25 nm) structures are respectively prepared, and the results of examining the changes in spectral transmittance and reflectance before and after phase transition (before and after light control) are shown. As seen in the visible light region, TiO 2 A significant improvement in visible light transmission by preventing visible reflection of the layer was demonstrated. In addition, as seen in the infrared region, the visible light transmittance and reflectivity do not change much before and after dimming, but the infrared transmittance and reflectivity change greatly, and a large infrared control depending on temperature is required. It was found to show a light effect. Further, it is apparent that the infrared dimming effect tends to be enhanced as the wavelength increases in the infrared region.
[0038]
FIG. 7 shows a structure in which an ITO transparent conductive film, a vanadium oxide-based light control film, and a titanium oxide-based visible light antireflection / photocatalyst film are coated on glass (ITO / VO 2 / TiO 2 ) Theoretical calculation optical spectrum. A large change in transmittance was obtained during dimming.
[0039]
FIG. 8 shows a comparison between the heat ray reflection characteristics (at low temperature and high temperature) of the automatic light control glass and the heat ray reflection characteristics after strengthening the heat ray reflection, and the conventional heat ray reflection glass (TiN type) as measured values. Before and after the light control of the automatic light control glass, the heat ray reflectance changes reversibly between several% and 50%, and shows the same heat ray reflection characteristics as the conventional type. Moreover, the sample in which the heat ray reflection characteristic is enhanced by ITO shows a heat ray reflectivity of 80% or more, and it is proved that there is a high heat insulation effect.
[0040]
Comparative Example 1
TiO2 on a quartz glass substrate as a conventional heat ray reflective glass 2 / TiN / TiO 2 What prepared the structure (30nm / 30nm / 30nm) by the sputtering method was prepared, and the optical measurement was performed. FIG. 9 shows the spectral transmittance and reflectance of this system. This system exhibits typical heat reflection characteristics such as visible light transmission and infrared reflection, but does not have a light control characteristic depending on temperature as shown in FIGS.
[0041]
As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to an above-described Example, Unless the structural requirements described in the claim were changed, using appropriate conditions and means Can be implemented.
[0042]
【The invention's effect】
As described above in detail, the present invention enables a multi-function automatic light control heat insulating glass that is not found at all in the conventional heat ray reflective heat insulating glass, and has the following special effects. By using the visible light antireflection material, the visible light transmittance of the light control system is greatly increased. Even with light control due to the physical properties of the light control system, it always has high transparency. Excellent heat insulation is obtained by using a heat ray reflective material for antireflection, and when the antireflection film is a titanium oxide photocatalyst, in addition to automatic dimming, multiple functions such as blocking more than 95% of ultraviolet rays and environmental purification functions Demonstrate the function. By appropriately setting the dimming temperature, outdoor sunlight and radiant heat are blocked in the summer, and in winter, the sunlight is actively taken into the room and the indoor heat is confined by the heating temperature (room temperature). Adjusted automatically. The structure is very simple and does not require artificial energy or extra equipment for dimming. The present invention makes it possible to provide an unprecedented and completely new multifunctional automatic dimming / insulating glass that integrates an automatic dimming / insulating function, high transparency function, strong UV blocking function, various environmental purification functions, etc. To do. A plurality of functions such as energy saving, health and comfort, and environmental purification can be added to moving bodies such as buildings, automobiles, trains, ships, and airplanes. As a new multifunctional automatic dimming insulation glass, it can be expected to be applied to the construction industry and other industries.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a mechanism of automatic light control and heat insulation according to the present invention.
FIG. 2 shows the basic structure and function of the self-dimming heat insulating glass of the present invention.
FIG. 3 shows the positional relationship between the automatic light control thermal insulation coating and the glass as an example of a single plate glass and a pair glass.
FIG. 4 shows an example of an automatic light control and heat insulation method using air conditioning.
FIG. 5 shows TiO calculated by antireflection theory. 2 (D1) / VO 2 (50 nm) / TiO 2 (D2) Film thickness and visible light transmittance (T lum ).
FIG. 6 shows VO formed on a quartz glass substrate in accordance with the present invention. 2 (50 nm) and TiO 2 / VO 2 / TiO 2 The change of the spectral transmittance before and after the phase transition of the (25 nm / 50 nm / 25 nm) structure (before and after light control) is shown.
FIG. 7 shows ITO / VO on glass. 2 / TiO 2 An example of the transmission spectrum at the time of the light control which calculated the structure optimally is shown.
FIG. 8 shows a comparison between the heat ray reflection characteristics (low temperature, high temperature, heat ray reflection enhanced type) of the automatic light control glass and the conventional heat ray reflection glass (TiN type) as measured infrared spectra.
FIG. 9 is an example of a conventional heat ray reflective glass formed on a quartz glass substrate, TiO. 2 / TiN / TiO 2 The spectral transmittance and the reflectance of the (30 nm / 30 nm / 30 nm) structure are shown.

Claims (12)

ガラスに酸化バナジウム系調光膜、可視光反射防止膜及び熱線反射膜による複層構造を形成した多機能自動調光断熱ガラスであって、
(1)ガラスに酸化バナジウム系調光膜及び可視光反射防止膜を形成したこと、
(2)上記酸化バナジウム系調光膜の調光温度を上記ガラスを設置する空間の適切快適温度付近の所定のレベルに設定したこと、
により上記ガラスに調光及び断熱機能を付加した多機能自動調光断熱ガラスにおいて、
(3)上記熱線反射膜が、少なくともITO、ZnO系、又はSnO系(系は元素添加のものを含む)の透明導電体からなること、或い少なくともAg、Au、Cu、又はlの熱線反射物質を含有してなること、
を特徴とする多機能自動調光断熱ガラス。
A multi-function automatic light control heat insulating glass having a multilayer structure formed of a vanadium oxide light control film, a visible light antireflection film and a heat ray reflection film on glass,
(1) A vanadium oxide light control film and a visible light antireflection film are formed on glass.
(2) The light control temperature of the vanadium oxide light control film is set to a predetermined level near the appropriate comfortable temperature of the space in which the glass is installed,
In the multi-function automatic dimming and heat insulating glass with the dimming and heat insulating function added to the glass,
(3) The heat ray reflective film, at least ITO, ZnO-based, or SnO 2 system (the system including those of the elements added) be composed of a transparent conductive material, walk at least Ag, Au, C u, or A containing 1 heat ray reflective material,
Multifunctional automatic dimming heat insulation glass characterized by
可視光反射防止膜が、酸化チタン系材料からなる、請求項1記載の多機能自動調光断熱ガラス。  The multifunctional automatic light control heat insulating glass according to claim 1, wherein the visible light antireflection film is made of a titanium oxide-based material. 可視光反射防止膜が、少なくともITO、ZnO系、又はSnO系(系は元素添加のものを含む)からなる、請求項1記載の多機能自動調光断熱ガラス。Visible light antireflection film, at least ITO, ZnO-based, or SnO 2 system (the system including those of the elements added) or Ranaru claim 1 multifunctional automatic light insulating glass according. 可視光反射防止膜が、SiO、Al、ZrO、Y、CeO、Si、HfO、Nb、Sc、又はZnSの適切光学定数を持つ誘電体材料からなる、請求項1記載の多機能自動調光断熱ガラス。The visible light antireflection film is an appropriate optical constant of SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 , CeO 2 , Si 3 N 4 , HfO 2 , Nb 2 O 5 , Sc 2 O 3 , or ZnS. The multifunctional automatic light control heat insulating glass according to claim 1, comprising a dielectric material having 酸化バナジウム系調光膜が、金属元素を添加した酸化バナジウム、非金属元素を添加した酸化バナジウム、又は化合物を添加した酸化バナジウムである、請求項1記載の自動調光断熱ガラス。  The automatic light control and heat insulating glass according to claim 1, wherein the vanadium oxide light control film is vanadium oxide to which a metal element is added, vanadium oxide to which a nonmetal element is added, or vanadium oxide to which a compound is added. 調光膜の調光温度を上記ガラスを設置する空間の所定の暖房温度付近に設定し、常に可視光を透過させ、空間の温度が上記調光温度を下回るとき外部からの光熱を透過させ、調光温度を上回るとき暖房熱を室内に反射して断熱するようにした、請求項1記載の多機能自動調光断熱ガラス。  Set the light control temperature of the light control film near the predetermined heating temperature of the space where the glass is installed, always transmit visible light, and transmit light from the outside when the temperature of the space is lower than the light control temperature, The multifunctional automatic dimming heat insulating glass according to claim 1, wherein when the dimming temperature is exceeded, the heating heat is reflected into the room to insulate. 調光膜の調光温度を所定快適温度付近に設定し、上記ガラスを設定する空間の温度が上記調光温度を上回るとき過剰の太陽光熱を遮断させ、下回るとき外部からの太陽光熱を透過させ、また、常に可視光を透過させ、暖房熱を室内に反射して断熱するようにした、請求項1記載の多機能自動調光断熱ガラス。  The light control temperature of the light control film is set near the predetermined comfortable temperature, and when the temperature of the space where the glass is set exceeds the light control temperature, excess solar heat is blocked, and when the temperature is lower, external solar heat is transmitted. Moreover, the multifunctional automatic light control heat insulation glass of Claim 1 which always permeate | transmits visible light and reflected and heat-heated indoors. 請求項1記載の多機能自動調光断熱ガラスを構成要素として含むことを特徴とする調光及び断熱機能を有する構造部材。  A structural member having a light control and heat insulation function, comprising the multifunctional automatic light control heat insulating glass according to claim 1 as a constituent element. 請求項1記載の多機能自動調光断熱ガラスを調光する方法であって、
調光膜の調光温度を上記ガラスを設置した空間の所定の暖房温度付近に設定し、空間の温度が上記調光温度を下回るとき外部からの光熱を透過させ、調光温度を上回るとき光の可視部分を透過させ、暖房熱を室内に反射して断熱することを特徴とする調光方法。
A method for dimming the multifunctional automatic dimming heat insulating glass according to claim 1,
The light control temperature of the light control film is set near the predetermined heating temperature of the space where the glass is installed, and when the temperature of the space is lower than the light control temperature, light from the outside is transmitted, and light when the temperature exceeds the light control temperature. The light control method is characterized in that the visible part of the light is transmitted and the heat of heating is reflected indoors to insulate.
請求項1記載の多機能自動調光断熱ガラスを調光する方法であって、
調光膜の調光温度を所定快適温度付近に設定し、上記ガラスを設定する空間の温度が上記調光温度を上回るとき過剰の太陽光熱を遮断させ、下回るとき外部からの太陽光熱を透過させ、また、常に可視光を透過させ、暖房熱を室内に反射して断熱することを特徴とする調光方法。
A method for dimming the multifunctional automatic dimming heat insulating glass according to claim 1,
The light control temperature of the light control film is set near the predetermined comfortable temperature, and when the temperature of the space where the glass is set exceeds the light control temperature, excess solar heat is blocked, and when it is lower, external solar heat is transmitted. In addition, a dimming method characterized in that visible light is always transmitted, and heating heat is reflected indoors to be insulated.
請求項1記載の多機能自動調光断熱ガラスにより空間を省エネルギーで空調する方法であって、
調光膜の調光温度を上記ガラスを設置した空間の所定の空調温度付近に設定し、暖房時には、空間の温度が上記調光温度を下回るとき外部からの太陽光熱を透過させ、調光温度を上回るとき可視光を透過させ、外部への暖房熱の放出を遮断し、冷房時には、空間の温度が上記調光温度を上回るとき外部からの過剰の太陽光熱を遮断することを特徴とする空調方法。
A method for air-conditioning a space with energy saving by the multifunctional automatic light control insulating glass according to claim 1,
The light control temperature of the light control film is set near the predetermined air conditioning temperature of the space where the glass is installed, and during heating, the solar light from the outside is transmitted when the temperature of the space is lower than the light control temperature. Air conditioning is characterized by allowing visible light to pass through when it exceeds the temperature, blocking the release of heating heat to the outside, and shutting off excess solar heat from outside when the temperature of the space exceeds the dimming temperature during cooling. Method.
請求項1記載の多機能自動調光断熱ガラスを用いた空調システムであって、
上記多機能自動調光断熱ガラスと、当該断熱ガラスを設置する空間の温度を所定のレベルに自動制御する機能を有する空調装置を構成要素として含み、調光膜の調光温度を上記ガラスを設置した空間の所定の空調温度付近に設定し、暖房時には、空間の温度が上記調光温度を下回るとき外部からの光熱を透過させ、調光温度を上回るとき可視光を透過させ、外部への暖房熱の放出を遮断し、冷房時には、空間の温度が上記調光温度を上回るとき外部からの過剰の太陽光熱を遮断するようにしたことを特徴とする上記空調システム。
An air conditioning system using the multifunctional automatic dimming heat insulating glass according to claim 1,
It includes the multifunctional automatic light control insulating glass and an air conditioner having a function of automatically controlling the temperature of the space in which the heat insulating glass is installed to a predetermined level as components, and the light control temperature of the light control film is installed on the glass When the space temperature is below the dimming temperature, external light heat is transmitted, and when the space temperature is above the dimming temperature, visible light is transmitted to the outside. The air conditioning system according to claim 1, wherein heat release is cut off and excessive solar heat from outside is cut off during cooling when the temperature of the space exceeds the dimming temperature.
JP2003117565A 2002-04-22 2003-04-22 Multifunctional automatic light control insulation glass and air conditioning method Expired - Lifetime JP4370396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117565A JP4370396B2 (en) 2002-04-22 2003-04-22 Multifunctional automatic light control insulation glass and air conditioning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002119105 2002-04-22
JP2003117565A JP4370396B2 (en) 2002-04-22 2003-04-22 Multifunctional automatic light control insulation glass and air conditioning method

Publications (2)

Publication Number Publication Date
JP2004004795A JP2004004795A (en) 2004-01-08
JP4370396B2 true JP4370396B2 (en) 2009-11-25

Family

ID=30447260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117565A Expired - Lifetime JP4370396B2 (en) 2002-04-22 2003-04-22 Multifunctional automatic light control insulation glass and air conditioning method

Country Status (1)

Country Link
JP (1) JP4370396B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012977A1 (en) * 2004-03-17 2005-10-06 Institut für Neue Materialien Gemeinnützige GmbH Scratch-resistant multilayer optical system on a crystalline substrate
JP4665153B2 (en) * 2004-07-13 2011-04-06 独立行政法人産業技術総合研究所 Method for determining the film thickness of the light control layer
JP4533996B2 (en) * 2005-01-28 2010-09-01 独立行政法人産業技術総合研究所 Highly heat insulating automatic light control glass and manufacturing method thereof
JP5147034B2 (en) * 2005-03-17 2013-02-20 独立行政法人産業技術総合研究所 Automatic thermal color-harmonic shading glass and manufacturing method
JP2006276773A (en) * 2005-03-30 2006-10-12 Kyocera Kinseki Corp Infrared cut filter and optical low-pass filter using the same
EP1930302A4 (en) * 2005-09-28 2009-12-02 Nec Corp Windowpane and window film
JP4899228B2 (en) * 2006-10-06 2012-03-21 独立行政法人産業技術総合研究所 Manufacturing method and product of vanadium dioxide thin film
JP5399923B2 (en) * 2007-01-24 2014-01-29 レイブンブリック,エルエルシー Temperature response switching type optical down-converting filter
WO2009009770A1 (en) 2007-07-11 2009-01-15 Ravenbrick, Llc Thermally switched reflective optical shutter
CA2703010A1 (en) 2007-09-19 2009-03-26 Ravenbrick, Llc Low-emissivity window films and coatings incorporating nanoscale wire grids
US8169685B2 (en) 2007-12-20 2012-05-01 Ravenbrick, Llc Thermally switched absorptive window shutter
CN103513305A (en) 2008-04-23 2014-01-15 雷文布里克有限责任公司 Glare management of reflective and thermoreflective surfaces
US9116302B2 (en) 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
JP5476581B2 (en) * 2008-06-30 2014-04-23 独立行政法人産業技術総合研究所 Thermochromic fine particles, dispersion thereof, production method thereof, and light control paint, light control film and light control ink
CA2737041C (en) 2008-08-20 2013-10-15 Ravenbrick, Llc Methods for fabricating thermochromic filters
AU2010233076A1 (en) 2009-04-10 2011-11-10 Ravenbrick, Llc Thermally switched optical filter incorporating a guest-host architecture
US8867132B2 (en) 2009-10-30 2014-10-21 Ravenbrick Llc Thermochromic filters and stopband filters for use with same
WO2011062708A2 (en) 2009-11-17 2011-05-26 Ravenbrick Llc Thermally switched optical filter incorporating a refractive optical structure
CA2795111C (en) 2010-03-29 2017-07-11 Ravenbrick, Llc Polymer-stabilized thermotropic liquid crystal device
AU2011261516B2 (en) 2010-06-01 2014-09-11 Ravenbrick Llc Multifunctional building component
JP2011034116A (en) * 2010-11-08 2011-02-17 Sekisui Chem Co Ltd Transparent heat-shielding and light-controlling material
JP5516438B2 (en) * 2011-01-21 2014-06-11 住友金属鉱山株式会社 Thermochromic body and method for producing the same
CA2847185A1 (en) 2011-09-01 2013-03-07 Ravenbrick, Llc Thermotropic optical shutter incorporating coatable polarizers
JP6057255B2 (en) 2012-06-20 2017-01-11 国立研究開発法人産業技術総合研究所 Reflective light control element.
KR101520741B1 (en) * 2012-06-27 2015-05-15 코닝정밀소재 주식회사 Thermochromic window doped by dofant and method for manufacturing of the same
CN102910837A (en) * 2012-10-16 2013-02-06 中国科学院上海技术物理研究所 Intelligent low-emissivity coated glass capable of offline tempering and preparation method thereof
JP2017037261A (en) * 2015-08-12 2017-02-16 国立研究開発法人産業技術総合研究所 Reflective type dimming member
KR102036818B1 (en) * 2018-04-11 2019-10-25 고려대학교 산학협력단 Smart solar light absorber/reflector using phase change materials
JP2020012993A (en) * 2018-07-18 2020-01-23 パナソニックIpマネジメント株式会社 Optical film, and window glass including the same

Also Published As

Publication number Publication date
JP2004004795A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4370396B2 (en) Multifunctional automatic light control insulation glass and air conditioning method
JP3849008B2 (en) High performance automatic light control window coating material
JP6444891B2 (en) Anti solar glazing
JP4533996B2 (en) Highly heat insulating automatic light control glass and manufacturing method thereof
US5306547A (en) Low transmission heat-reflective glazing materials
JP4739470B2 (en) Glazing assembly comprising a substrate with a thin stack
JP4763569B2 (en) High-infrared reflective coating, thin film coating deposition method and related technology
CA3047603C (en) Low-emissivity coating for a glass substrate
RU2656284C2 (en) Substrate provided with a stack having thermal properties
EP2429965B1 (en) Solar control coating with high solar heat gain coefficient
EP1861339B1 (en) Coating composition with solar properties
JP6754895B2 (en) Functional building materials for window doors
JPS6337698B2 (en)
EA017986B1 (en) Multiple glazing unit having increased selectivity
JP2008297177A (en) Thermochromic glass and thermochromic double glazing glass
KR101499288B1 (en) Low-emissivity coated board and building material including the same
US20030196454A1 (en) Multifunctional automatic switchable heat-insulating glass and air-conditioning method
RU2636995C1 (en) Product with hybrid energy-saving coating on glass substrate
EA034706B1 (en) Substrate comprising a multilayer system including adiscontinuous metal film, method of manufacture thereof and glazing unit comprising same
JP2003104758A (en) Heat ray shielding glass and double grazing using the same
JP4836071B2 (en) High-performance vanadium dioxide-based automatic light control material and method for improving performance of light control material
JP4665153B2 (en) Method for determining the film thickness of the light control layer
EA034607B1 (en) Substrate comprising a multilayer system including a discontinuous metal film, method of manufacture thereof and glazing unit comprising same
WO2017207278A1 (en) Solar-control glazing
RU2642753C1 (en) Blue product with hybrid energy-saving coating on glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4370396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term