JPH0848545A - Low reflectivity heat ray reflection glass - Google Patents

Low reflectivity heat ray reflection glass

Info

Publication number
JPH0848545A
JPH0848545A JP1210195A JP1210195A JPH0848545A JP H0848545 A JPH0848545 A JP H0848545A JP 1210195 A JP1210195 A JP 1210195A JP 1210195 A JP1210195 A JP 1210195A JP H0848545 A JPH0848545 A JP H0848545A
Authority
JP
Japan
Prior art keywords
film
oxide film
layer
glass
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1210195A
Other languages
Japanese (ja)
Inventor
Masashi Tada
昌史 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1210195A priority Critical patent/JPH0848545A/en
Publication of JPH0848545A publication Critical patent/JPH0848545A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3615Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To produce the reflection glass which enables suppression of the reflectivity of visible light from the outside of the room without adversely affecting the solar radiation shielding performance and coloration in various color tones by successively laminating a transparent metal oxide film, a metallic film or metal nitride film, another transparent metal oxide film and another metal nitride film on a glass substrate in that order and specifying the visible light reflectivity and visible light transmissivity. CONSTITUTION:A transparent metal oxide film 11 as the first layer, a metallic film or metal nitride film 12 as the second layer, another transparent metal oxide film 13 as the third layer and another metal nitride film 14 as the fourth layer are successively laminated on a glass substrate 10 by the sputtering method to form the objective reflection glass. In this reflection glass, the reflectivity of visible light from the side of the glass substrate 10 is <=10% and also the visible light transmissivity is <=40%. Thus, the reflection glass which has reflectivity of light from the outside of the room equivalent to that of the conventional transparent plate glass and causes no adverse effect due to glare, etc., on the surroundings and is colored in various reflected color tones and also has <=40% visible light transmissivity can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建築用の熱線反射ガラス
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat-reflecting glass for construction.

【0002】[0002]

【従来の技術】ビルにおける開口部は、近年意匠性と快
適性のため拡大する傾向にある。それに伴い、太陽光の
侵入量が増加し、室内の冷房負荷が大きくなるという点
や、ビルの外観上大きな面積を占める窓のデザイン的な
重要性が増加するという点等の因子により、熱線反射ガ
ラスを使用するケースが急増している。この用途に用い
られる熱線反射ガラスは、通常ソーラーコントロールガ
ラスと呼ばれている。このようなソーラーコントロール
ガラスは、そのハーフミラー効果により独特の美観を表
し、ビルの壁面材として広く用いられている。
2. Description of the Related Art In recent years, openings in buildings have tended to expand due to their design and comfort. Along with that, the amount of sunlight entering increases and the indoor cooling load increases, and the importance of the design of windows that occupy a large area in the exterior of the building increases, so heat reflection The number of cases using glass is increasing rapidly. The heat-reflecting glass used for this purpose is usually called solar control glass. Such a solar control glass has a unique aesthetic appearance due to its half mirror effect, and is widely used as a wall material for buildings.

【0003】このような熱線反射ガラスをビルの壁面や
窓として使用した場合、そのミラー効果が逆に周囲の環
境に悪影響を及ぼし、周辺住民の苦情の対象となる場合
もある。具体的な例としては、ミラー効果を高めるため
に可視光領域の反射率も高くし、その結果として熱線反
射ガラスに反射した太陽光のために眩しくて自動車の運
転に支障が出る等である。そのためビルの施工場所によ
っては熱線反射ガラスが使用できない状況が生じる恐れ
がある。
When such heat-reflecting glass is used as a wall surface or a window of a building, its mirror effect adversely affects the surrounding environment and may be a subject of complaints from the surrounding residents. As a specific example, the reflectance in the visible light region is also increased in order to enhance the mirror effect, and as a result, the sunlight reflected on the heat ray reflective glass is dazzling and hinders the operation of the vehicle. Therefore, there is a possibility that the heat-reflecting glass cannot be used depending on the construction site of the building.

【0004】かかる問題を解決するために、熱線反射ガ
ラスの可視光領域の反射率を下げる方法として、熱線反
射膜全体の膜厚を薄くするという手段が考えられる。し
かし、その結果として可視光透過率も上がり、その影響
で太陽エネルギー透過率も上がってしまい、ソーラーコ
ントロールガラスに要求される日射遮蔽効果が低下して
しまうことが多い。現在使われている熱線反射ガラスで
も、可視光透過率が30%程度で、しかもガラス面から
の可視光反射率が比較的低い10%程度のものも認めら
れるが、色調が限定されてしまっている。
In order to solve such a problem, as a method of lowering the reflectance of the heat ray reflective glass in the visible light region, a means of reducing the thickness of the whole heat ray reflective film can be considered. However, as a result, the visible light transmittance also increases, and the solar energy transmittance also increases due to the effect, which often reduces the solar radiation shielding effect required for the solar control glass. Among the heat ray-reflecting glasses currently used, some have a visible light transmittance of about 30% and a visible light reflectance of about 10%, which is relatively low from the glass surface, but the color tone is limited. There is.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は従来技
術が有していた前述の欠点を解消し、日射遮蔽性能を落
さずに室外側(ガラス基板側)の可視光反射率を抑え、
かつ意匠性を保持するために種々の色調を呈することが
できる熱線反射ガラスを提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art and suppress the visible light reflectance on the outdoor side (glass substrate side) without deteriorating the solar radiation shielding performance. ,
Further, it is to provide a heat ray reflective glass capable of exhibiting various color tones in order to maintain its designability.

【0006】[0006]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、ガラス基板上に第1層
として透明金属酸化物膜、第2層として金属膜または金
属窒化物膜、第3層として透明金属酸化物膜、第4層と
して金属窒化物膜をスパッタリング法により順次積層さ
せた熱線反射ガラスにおいて、ガラス基板側からの可視
光反射率が10%以下であり、かつ可視光透過率が40
%以下であることを特徴とする低反射熱線反射ガラスを
提供する。
The present invention has been made to solve the above-mentioned problems, and a transparent metal oxide film as a first layer and a metal film or a metal nitride as a second layer on a glass substrate. A film, a transparent metal oxide film as the third layer, and a metal nitride film as the fourth layer, which are sequentially laminated by a sputtering method, and the visible light reflectance from the glass substrate side is 10% or less, and Visible light transmittance is 40
% Or less, the low reflection heat ray reflective glass is provided.

【0007】図1は本発明に係る低反射熱線反射ガラス
の要部断面を示し、10はガラス基板、11は第1層と
しての透明金属酸化物膜、12は第2層としての金属膜
または金属窒化物膜、13は第3層としての金属酸化物
膜、14は第4層としての金属窒化物膜を示す。
FIG. 1 is a cross-sectional view of an essential part of a low reflection heat ray reflective glass according to the present invention, 10 is a glass substrate, 11 is a transparent metal oxide film as a first layer, 12 is a metal film as a second layer, or A metal nitride film, 13 is a metal oxide film as the third layer, and 14 is a metal nitride film as the fourth layer.

【0008】本発明における金属膜材料としては、チタ
ン、クロム、ステンレスおよびニクロムからなる群から
選ばれる少なくとも1種が使用されるが、可視領域にお
ける光学特性がこれらの金属と類似したものであれば、
その金属を使用しても色調的には似たような低反射熱線
反射ガラスが得られる。しかし、ここに挙げた4種類の
金属は熱線反射膜材料としても実績を有するので好まし
い。また、その幾何学的膜厚は表現しようとする色調に
よって規定される。
As the metal film material in the present invention, at least one selected from the group consisting of titanium, chromium, stainless steel and nichrome is used, as long as the optical characteristics in the visible region are similar to these metals. ,
Even if the metal is used, a low reflection heat ray reflection glass having a similar color tone can be obtained. However, the four kinds of metals listed here are preferable because they have a track record as heat ray reflective film materials. Further, the geometric film thickness is defined by the color tone to be expressed.

【0009】本発明における金属窒化物膜は窒化チタン
膜が好ましく、該窒化チタン膜は、スパッタリングガス
として窒素100%の雰囲気中で成膜され、その結果化
学量論的に窒素過剰の膜となる。その他にスパッタリン
グ法によって窒化チタン膜を作成する方法としては、ス
パッタリングガスとしてアルゴンと窒素の混合ガスを用
いる場合がある。この場合は窒化チタンの膜中のTi:
Nの組成比が1:1に近くなる。この窒化チタン膜を用
いても色調によっては低反射熱線反射ガラスを提供する
ことができるが、窒素100%雰囲気中で成膜させる方
が安定した膜質が得やすく、成膜上も容易である。ま
た、その幾何学的膜厚は表現しようとする色調によって
規定される。
The metal nitride film in the present invention is preferably a titanium nitride film, and the titanium nitride film is formed as a sputtering gas in an atmosphere of 100% nitrogen, resulting in a stoichiometrically excessive nitrogen film. . As another method of forming a titanium nitride film by a sputtering method, a mixed gas of argon and nitrogen may be used as a sputtering gas. In this case, Ti in the titanium nitride film:
The composition ratio of N becomes close to 1: 1. Even if this titanium nitride film is used, a low reflection heat ray reflective glass can be provided depending on the color tone, but stable film quality can be obtained more easily when the film is formed in a 100% nitrogen atmosphere, and film formation is also easier. Further, the geometric film thickness is defined by the color tone to be expressed.

【0010】また、本発明の低反射熱線反射ガラスの可
視光透過率は主に第2層と第4層に使用される金属窒化
物膜や金属膜の合計の膜厚によって規定される。現在、
一般に使用されている熱線反射ガラスの可視光透過率は
40%以下であり、それらと同じレベルの透過率を得る
ためには、第2層と第4層を合わせた膜厚を幾何学的膜
厚で25nm以下に制御する必要がある。
The visible light transmittance of the low reflection heat ray reflective glass of the present invention is mainly defined by the total film thickness of the metal nitride film and the metal film used for the second and fourth layers. Current,
Visible light transmittance of generally used heat ray reflective glass is 40% or less, and in order to obtain the same level of transmittance as those, the thickness of the second layer and the fourth layer is set to the geometrical film. It is necessary to control the thickness to 25 nm or less.

【0011】本発明における透明金属酸化物膜は、チタ
ン、錫、亜鉛、ジルコニウムおよびタンタルからなる群
から選ばれる少なくとも1種の金属の酸化物が使用され
るが、好ましくはチタン、錫の酸化物がよい。その理由
は、この2つの金属酸化物が単板熱線反射ガラスに使用
される酸化物として実績があり、耐久性にも優れている
からである。また、その幾何学的膜厚は使用される材
料、表現しようとする色調によって規定されるが、あま
り膜厚が厚くなると、生産時間が長くなり、その結果と
して生産性も低下する。
For the transparent metal oxide film in the present invention, an oxide of at least one metal selected from the group consisting of titanium, tin, zinc, zirconium and tantalum is used, but preferably an oxide of titanium or tin. Is good. The reason is that these two metal oxides have a proven track record as oxides used for single-plate heat-reflecting glass and have excellent durability. Further, the geometrical film thickness is defined by the material used and the color tone to be expressed, but if the film thickness is too thick, the production time becomes long and, as a result, the productivity also decreases.

【0012】次に本発明によって、種々の色調の低反射
熱線反射ガラスを得る方法を説明する。なお、以下に示
される膜厚は、幾何学的膜厚を意味する。
Next, a method for obtaining low reflection heat ray reflective glass of various color tones according to the present invention will be described. In addition, the film thickness shown below means a geometric film thickness.

【0013】本発明によってガラス基板側からの反射色
調がグレーの低反射ガラスを得るには、ガラス基板上に
第1層として膜厚が15〜27nmの透明金属酸化物膜
を成膜し、第2層として膜厚が14〜29nmの窒化チ
タン膜を成膜し、第3層として膜厚が34〜54nmの
透明金属酸化物膜を成膜し、第4層として窒化チタン膜
を19〜36nmの膜厚で作成する。
According to the present invention, in order to obtain a low reflection glass having a gray color tone reflected from the glass substrate side, a transparent metal oxide film having a thickness of 15 to 27 nm is formed as a first layer on the glass substrate, A titanium nitride film having a film thickness of 14 to 29 nm is formed as two layers, a transparent metal oxide film having a film thickness of 34 to 54 nm is formed as a third layer, and a titanium nitride film is formed to be 19 to 36 nm as a fourth layer. Create with the film thickness of.

【0014】また他の構成としてはガラス基板上に第1
層として膜厚が31〜47nmの酸化チタン膜か酸化タ
ンタル膜、あるいは膜厚が38〜56nmの酸化錫膜、
酸化亜鉛膜または酸化ジルコニウム膜を作成し、第2層
として金属膜を4〜14nmの膜厚で成膜し、第3層と
して膜厚が25〜38nmの酸化チタン膜か酸化タンタ
ル膜、あるいは膜厚が33〜49nmの酸化錫膜、酸化
亜鉛膜または酸化ジルコニウム膜を作成し、第4層とし
て窒化チタン膜を15〜33nmの膜厚で作成する。
As another structure, the first structure is provided on the glass substrate.
As a layer, a titanium oxide film or a tantalum oxide film having a film thickness of 31 to 47 nm, or a tin oxide film having a film thickness of 38 to 56 nm,
A zinc oxide film or a zirconium oxide film is formed, a metal film is formed as a second layer with a thickness of 4 to 14 nm, and a titanium oxide film or tantalum oxide film with a thickness of 25 to 38 nm or a film is formed as a third layer. A tin oxide film, a zinc oxide film, or a zirconium oxide film having a thickness of 33 to 49 nm is formed, and a titanium nitride film is formed as a fourth layer with a film thickness of 15 to 33 nm.

【0015】本発明によってガラス基板側からの反射色
調がブルーの低反射ガラスを得るには、ガラス基板上に
第1層として膜厚が46〜68nmの酸化チタン膜か酸
化タンタル膜、あるいは膜厚が63〜85nmの酸化錫
膜、酸化亜鉛膜または酸化ジルコニウム膜を作成し、第
2層として窒化チタン膜を13〜26nmの膜厚で成膜
し、第3層として膜厚が18〜37nmの透明金属酸化
物膜を成膜し、第4層として窒化チタン膜を15〜34
nmの膜厚で作成する。
In order to obtain a low reflection glass having a blue color tone reflected from the glass substrate side according to the present invention, a titanium oxide film or a tantalum oxide film having a film thickness of 46 to 68 nm or a film thickness is formed as the first layer on the glass substrate. A tin oxide film, a zinc oxide film or a zirconium oxide film having a thickness of 63 to 85 nm, a titanium nitride film having a thickness of 13 to 26 nm as a second layer, and a film thickness of 18 to 37 nm as a third layer. A transparent metal oxide film is formed, and a titanium nitride film is formed as a fourth layer with a thickness of 15 to 34.
Created with a film thickness of nm.

【0016】また他の構成としては、ガラス基板上に第
1層として膜厚が35〜52nmの酸化チタン膜か酸化
タンタル膜、あるいは膜厚が42〜62nmの酸化錫
膜、酸化亜鉛膜または酸化ジルコニウム膜を作成し、第
2層として金属膜を3〜14nmの膜厚で成膜し、第3
層として膜厚が19〜35nmの酸化チタン膜か酸化タ
ンタル膜、あるいは膜厚が26〜39nmの酸化錫膜、
酸化亜鉛膜または酸化ジルコニウム膜を作成し、第4層
として窒化チタン膜を18〜33nmか40〜61nm
の膜厚で作成する。
As another structure, a titanium oxide film or a tantalum oxide film having a film thickness of 35 to 52 nm, or a tin oxide film, a zinc oxide film or an oxide film having a film thickness of 42 to 62 nm is formed as a first layer on a glass substrate. A zirconium film is formed, a metal film having a film thickness of 3 to 14 nm is formed as a second layer, and a third film is formed.
As a layer, a titanium oxide film or a tantalum oxide film having a film thickness of 19 to 35 nm, or a tin oxide film having a film thickness of 26 to 39 nm,
A zinc oxide film or a zirconium oxide film is formed, and a titanium nitride film is used as the fourth layer with a thickness of 18 to 33 nm or 40 to 61 nm.
Create with the film thickness of.

【0017】本発明によってガラス基板側からの反射色
調がシルバーブロンズの低反射ガラスを得るには、ガラ
ス基板上に第1層として膜厚が24〜36nmの酸化チ
タン膜か酸化タンタル膜、あるいは膜厚が32〜48n
mの酸化錫膜、酸化亜鉛膜または酸化ジルコニウム膜を
作成し、第2層として窒化チタン膜を8〜14nmか1
7〜32nmの膜厚で成膜し、第3層として膜厚が26
〜40nmの酸化チタン膜か酸化タンタル膜、あるいは
膜厚が5〜11nmの酸化錫膜、酸化亜鉛膜または酸化
ジルコニウム膜を作成し、第4層として窒化チタン膜を
14〜26nmか35〜53nmの膜厚で作成する。
In order to obtain a low reflection glass having a silver bronze color tone reflected from the glass substrate side according to the present invention, a titanium oxide film or a tantalum oxide film having a thickness of 24-36 nm or a film is formed as the first layer on the glass substrate. 32 to 48n thick
m tin oxide film, zinc oxide film or zirconium oxide film, and a titanium nitride film of 8 to 14 nm or 1 as a second layer.
The film thickness is 7 to 32 nm, and the film thickness is 26 as the third layer.
-40 nm titanium oxide film or tantalum oxide film, or 5-11 nm thick tin oxide film, zinc oxide film or zirconium oxide film is prepared, and a titanium nitride film of 14-26 nm or 35-53 nm is formed as the fourth layer. Create with film thickness.

【0018】また他の構成としては、ガラス基板上に第
1層として膜厚が26〜40nmの酸化チタン膜か酸化
タンタル膜を作成し、第2層として金属膜を5〜11n
mの膜厚で成膜し、第3層として膜厚が30〜46nm
の酸化チタン膜か酸化タンタル膜を作成し、第4層とし
て窒化チタン膜を15〜27nmの膜厚で作成する。
As another configuration, a titanium oxide film or a tantalum oxide film having a thickness of 26 to 40 nm is formed as a first layer on a glass substrate, and a metal film is formed as a second layer from 5 to 11 n.
The film thickness is 30 to 46 nm as the third layer.
A titanium oxide film or a tantalum oxide film is prepared, and a titanium nitride film is formed as a fourth layer with a film thickness of 15 to 27 nm.

【0019】[0019]

【実施例】【Example】

[実施例1]マグネトロンD.C.スパッタリング装置
の陰極上に金属チタンのターゲットをセットする。研磨
などの方法で6mm厚のフロート板ガラス基板を十分に
洗浄、乾燥した後、真空槽内に入れ、ターボポンプを使
用して1×10-5torr以下まで排気する。
[Example 1] Magnetron D. C. A metallic titanium target is set on the cathode of the sputtering apparatus. A 6 mm thick float plate glass substrate is thoroughly washed and dried by a method such as polishing, placed in a vacuum chamber, and then evacuated to 1 × 10 −5 torr or less using a turbo pump.

【0020】次に真空系内にアルゴンガス300cc/
min、酸素ガス60cc/minを導入し、系内の圧
力を3.0×10-3torrにセットし、この状態でチ
タンターゲットに3.1W/cm2 の電力を印加して酸
化チタン膜を21nm成膜する。
Next, 300 cc / argon of argon gas was added to the vacuum system.
min, oxygen gas 60 cc / min was introduced, the pressure in the system was set to 3.0 × 10 −3 torr, and in this state, a titanium target was applied with an electric power of 3.1 W / cm 2 to form a titanium oxide film. A 21 nm film is formed.

【0021】次に真空系内のガスを窒素ガス100%に
完全に置換して(導入量は500cc/min)、この
状態でチタンターゲットに同じく3.1W/cm2 の電
力を印加して窒化チタン膜を22nm成膜する。
Next, the gas in the vacuum system was completely replaced with 100% of nitrogen gas (introduced amount was 500 cc / min), and in this state, the titanium target was similarly applied with electric power of 3.1 W / cm 2 to perform nitriding. A titanium film having a thickness of 22 nm is formed.

【0022】次に再び真空系内の雰囲気をアルゴンガス
300cc/min、酸素ガス60cc/minに戻
し、チタンターゲットに3.1W/cm2 の電力を印加
して、酸化チタン膜を42nm成膜する。
Next, the atmosphere in the vacuum system is returned again to 300 cc / min of argon gas and 60 cc / min of oxygen gas, and a power of 3.1 W / cm 2 is applied to the titanium target to form a titanium oxide film of 42 nm. .

【0023】最後に真空系内のガスをもう一度窒素ガス
100%(導入量は500cc/min)にし電力を印
加して窒化チタン膜を31nm成膜する。
Finally, the gas in the vacuum system is once again set to 100% nitrogen gas (introduction amount is 500 cc / min), and power is applied to form a titanium nitride film with a thickness of 31 nm.

【0024】このようにして得られたサンプルの可視光
透過率は16.4%、ガラス面側の反射特性は、反射率
7.9%、反射色調は、a* が1.98、b* が−5.
17で、やや青味がかったグレー系の反射色であった。
また、太陽エネルギー透過率は12.0%で、遮蔽係数
(SC値)は0.47であった。
The visible light transmittance of the sample thus obtained was 16.4%, the reflection characteristic on the glass surface side was 7.9%, and the reflection color tone was a * of 1.98 and b *. Is -5.
In No. 17, it was a slightly bluish gray reflection color.
The solar energy transmittance was 12.0% and the shielding coefficient (SC value) was 0.47.

【0025】[実施例2]マグネトロンD.C.スパッ
タリング装置の陰極上に金属チタンと金属錫のターゲッ
トをセットし、研磨などの方法で6mm厚のフロート板
ガラス基板を十分に洗浄、乾燥した後、真空槽内に入
れ、ターボポンプを使用して1×10-5torr以下ま
で排気する。
[Example 2] Magnetron D. C. A target of metallic titanium and metallic tin was set on the cathode of the sputtering device, and a float plate glass substrate having a thickness of 6 mm was thoroughly washed and dried by a method such as polishing, then put in a vacuum chamber, and a turbo pump was used. Evacuate to less than × 10 -5 torr.

【0026】次に真空系内にアルゴンガス100cc/
min、酸素ガス500cc/minを導入し、この状
態で錫ターゲットに3.1W/cm2 の電力を印加して
酸化錫膜を74nm成膜する。
Next, 100 cc / argon of argon gas was introduced into the vacuum system.
min, oxygen gas of 500 cc / min is introduced, and in this state, a tin target film having a thickness of 74 nm is formed by applying electric power of 3.1 W / cm 2 to the tin target.

【0027】次に真空系内のガスを窒素100%に完全
に置換して(導入量は500cc/min)、この状態
でチタンターゲットに同じく3.1W/cm2 の電力を
印加して窒化チタン膜を20nm成膜する。
Next, the gas in the vacuum system was completely replaced with 100% nitrogen (introduced amount was 500 cc / min), and in this state, the titanium target was also supplied with an electric power of 3.1 W / cm 2 , and titanium nitride was applied. A film of 20 nm is formed.

【0028】次に再び真空系内の雰囲気をアルゴンガス
100cc/min、酸素ガス500cc/minに戻
し、錫ターゲットに3.1W/cm2 の電力を印加し
て、酸化錫膜を26nm成膜する。
Next, the atmosphere in the vacuum system is returned again to 100 cc / min of argon gas and 500 cc / min of oxygen gas, and 3.1 W / cm 2 of electric power is applied to the tin target to form a tin oxide film of 26 nm. .

【0029】最後に真空系内のガスをもう一度窒素ガス
100%(導入量は500cc/min)にし、チタン
ターゲットに電力を印加して窒化チタン膜を21nm成
膜する。
Finally, the gas in the vacuum system is once again set to 100% nitrogen gas (introduction amount is 500 cc / min), and power is applied to the titanium target to form a titanium nitride film with a thickness of 21 nm.

【0030】このようにして得られたサンプルの可視光
透過率は22.8%、ガラス面側の反射特性は、反射率
8.0%、反射色調は、a* が−3.88、b* が−
9.28で、やや緑がかったブルー系の反射色であっ
た。また、太陽エネルギー透過率は16.7%で、遮蔽
係数(SC値)は0.51であった。
The visible light transmittance of the sample thus obtained was 22.8%, the reflection characteristic on the glass surface side was 8.0%, and the reflection color tone was a * of -3.88, b. * Is −
At 9.28, it was a slightly greenish blue reflection color. The solar energy transmittance was 16.7% and the shielding coefficient (SC value) was 0.51.

【0031】[実施例3]実施例1と同様の手順で第1
層として酸化チタン膜を30nm、第2層として窒化チ
タン膜を11nm、第3層として酸化チタン膜を33n
m、第4層として窒化チタン膜を20nm成膜する。
[Third Embodiment] A first procedure is performed in the same manner as in the first embodiment.
The titanium oxide film is 30 nm thick as the layer, the titanium nitride film is 11 nm thick as the second layer, and the titanium oxide film is 33 n thick as the third layer.
m, a titanium nitride film having a thickness of 20 nm is formed as a fourth layer.

【0032】このようにして得られたサンプルの可視光
透過率は30.4%、ガラス面側の反射特性は、反射率
6.7%、反射色調は、a* が2.95、b* が7.3
0で、シルバーブロンズ系の反射色であった。また、太
陽エネルギー透過率は21.9%で、遮蔽係数(SC
値)は0.54であった。
The visible light transmittance of the sample thus obtained was 30.4%, the reflection characteristic on the glass surface side was 6.7%, and the reflection color tone was a * of 2.95 and b *. Is 7.3
At 0, the reflection color was silver bronze. Moreover, the solar energy transmittance is 21.9%, and the shielding coefficient (SC
The value) was 0.54.

【0033】[実施例4]マグネトロンD.C.スパッ
タリング装置の陰極上に金属チタン、金属錫およびステ
ンレス(SUS316)のターゲットをセットし、研磨
などの方法で6mm厚のフロート板ガラス基板を十分に
洗浄、乾燥した後、真空槽内に入れ、ターボポンプを使
用して1×10-5torr以下まで排気する。
[Example 4] Magnetron D. C. A target of metallic titanium, metallic tin and stainless steel (SUS316) was set on the cathode of the sputtering device, and a float plate glass substrate with a thickness of 6 mm was thoroughly washed by a method such as polishing and dried, and then placed in a vacuum chamber, and a turbo pump was used. Evacuate below 1 × 10 -5 torr.

【0034】次に真空系内にアルゴンガス100cc/
min、酸素ガス500cc/minを導入し、この状
態で錫ターゲットに3.1W/cm2 の電力を印加して
酸化錫間膜を47nm成膜する。
Next, 100 cc / argon of argon gas was introduced into the vacuum system.
min, oxygen gas of 500 cc / min is introduced, and in this state, an electric power of 3.1 W / cm 2 is applied to the tin target to form a tin oxide inter-layer film of 47 nm.

【0035】次に真空系内のガスをアルゴン100%に
完全に置換して(導入量は300cc/min)、この
状態でステンレスターゲットに1.9W/cm2 の電力
を印加して金属ステンレス膜を6nm成膜する。
Next, the gas in the vacuum system was completely replaced with 100% argon (introduction amount was 300 cc / min), and in this state, a power of 1.9 W / cm 2 was applied to the stainless steel target to form a metallic stainless steel film. Is deposited to a thickness of 6 nm.

【0036】次に再び真空系内の雰囲気をアルゴンガス
100cc/min、酸素ガス500cc/minに戻
し、錫ターゲットに3.1W/cm2 の電力を印加し
て、酸化錫膜を41nm成膜する。
Next, the atmosphere in the vacuum system is returned to argon gas of 100 cc / min and oxygen gas of 500 cc / min, and a tin target film of 41 nm is formed by applying an electric power of 3.1 W / cm 2 to the tin target. .

【0037】最後に真空系内のガスを窒素ガス100%
(導入量は500cc/min)にし、チタンターゲッ
トに3.1W/cm2 の電力を印加して窒化チタン膜を
26nm成膜する。
Finally, the gas in the vacuum system is 100% nitrogen gas.
(Introduction amount is 500 cc / min), and a titanium target film having a thickness of 26 nm is formed by applying electric power of 3.1 W / cm 2 to the titanium target.

【0038】このようにして得られたサンプルの可視光
透過率は19.9%、ガラス面側の反射特性は、反射率
8.3%、反射色調は、a* が−0.73、b* が−
2.82で、実施例1より青味の薄いグレー系の反射色
であった。また、太陽エネルギー透過率は15.9%
で、遮蔽係数(SC値)は0.49であった。
The visible light transmittance of the sample thus obtained was 19.9%, the reflection characteristic on the glass surface side was 8.3%, and the reflection color tone was a * of -0.73 and b. * Is −
At 2.82, the reflection color was a bluish-gray light gray color as compared with Example 1. Also, solar energy transmittance is 15.9%
The shielding coefficient (SC value) was 0.49.

【0039】[実施例5]マグネトロンD.C.スパッ
タリング装置の陰極上に金属チタンとステンレス(SU
S316)のターゲットをセットする。研磨などの方法
で6mm厚のフロート板ガラス基板を十分に洗浄、乾燥
した後、真空槽内に入れ、ターボポンプを使用して1×
10-5torr以下まで排気する。
Example 5 Magnetron D.M. C. Metal titanium and stainless steel (SU
The target of S316) is set. After thoroughly washing and drying a 6 mm thick float plate glass substrate by a method such as polishing, put it in a vacuum chamber and use a turbo pump to 1 ×.
Evacuate to below 10 -5 torr.

【0040】次に真空系内にアルゴンガス300cc/
min、酸素ガス60cc/minを導入し、系内の圧
力を3.0×10-3torrにセットし、この状態でチ
タンターゲットに3.1W/cm2 の電力を印加して酸
化チタン膜を33nm成膜する。
Next, 300 cc / argon of argon gas was introduced into the vacuum system.
min, oxygen gas 60 cc / min was introduced, the pressure in the system was set to 3.0 × 10 −3 torr, and in this state, a titanium target was applied with an electric power of 3.1 W / cm 2 to form a titanium oxide film. A film having a thickness of 33 nm is formed.

【0041】次に真空系内のガスをアルゴン100%に
完全に置換して(導入量は300cc/min)、この
状態でステンレスターゲットに1.9W/cm2 の電力
を印加して金属ステンレス膜を8nm成膜する。
Next, the gas in the vacuum system was completely replaced with 100% argon (introduction amount was 300 cc / min), and in this state, a power of 1.9 W / cm 2 was applied to the stainless steel target to form the metallic stainless film. Is formed to a thickness of 8 nm.

【0042】次に再び真空系内の雰囲気をアルゴンガス
300cc/min、酸素ガス60cc/minに戻
し、チタンターゲットに3.1W/cm2 の電力を印加
して、酸化チタン膜を38nm成膜する。
Next, the atmosphere in the vacuum system is returned to 300 cc / min of argon gas and 60 cc / min of oxygen gas, and a power of 3.1 W / cm 2 is applied to the titanium target to form a titanium oxide film of 38 nm. .

【0043】最後に真空系内のガスを窒素ガス100%
(導入量は500cc/min)にし、チタンターゲッ
トに3.1W/cm2 の電力を印加して窒化チタン膜を
21nm成膜する。
Finally, the gas in the vacuum system is 100% nitrogen gas.
(Introduction amount is 500 cc / min), and electric power of 3.1 W / cm 2 is applied to the titanium target to form a titanium nitride film of 21 nm.

【0044】このようにして得られたサンプルの可視光
透過率は22.7%、ガラス面側の反射特性は、反射率
7.8%、反射色調は、a* が2.44、b* が8.2
2で、実施例3と類似したシルバーブロンズ系の反射色
であった。また、太陽エネルギー透過率は16.9%
で、遮蔽係数(SC値)は0.50であった。
The visible light transmittance of the sample thus obtained was 22.7%, the reflection characteristic on the glass surface side was 7.8%, and the reflection color tone was a * of 2.44 and b *. Is 8.2
In No. 2, it was a silver bronze-based reflection color similar to that in Example 3. In addition, solar energy transmittance is 16.9%
The shielding coefficient (SC value) was 0.50.

【0045】以上5つの実施例においては、遮蔽係数
(SC値)が0.47から0.54と一般的なソーラー
コントロールガラス並みの値を示している。しかも可視
光の反射率は、10%以下と透明板ガラス並みまで低く
なっていることも確認できる。
In the above five examples, the shielding coefficient (SC value) is 0.47 to 0.54, which is about the same value as a general solar control glass. Moreover, it can be confirmed that the reflectance of visible light is as low as 10% or less, which is as low as that of transparent plate glass.

【0046】[0046]

【発明の効果】以上のように本発明によれば、室外側か
らの反射率が通常の透明板ガラス並みで周囲に眩しさ等
による悪影響を及ぼさず、かつ種々の反射色調を呈す
る、可視光透過率40%以下の熱線反射ガラスが得られ
る。
As described above, according to the present invention, the reflectance from the outside of the room is almost the same as that of ordinary transparent glass, and does not have an adverse effect due to glare in the surroundings and exhibits various reflection color tones. A heat ray reflective glass having a rate of 40% or less is obtained.

【0047】特に透明金属酸化物膜として酸化チタン、
吸収膜として窒化チタンを使用した組合せでは、実施例
で見られたように、金属チタンターゲットにおいてスパ
ッタリングガスを使い分けることによって、酸化チタン
膜と窒化チタン膜とを作り分けることができる。そのた
め、現在一般に使用されている窒化チタンと金属だけを
使用した通常の高反射熱線反射ガラスと本発明の低反射
熱線反射ガラスを大気開放を伴うジョブチェンジ無しに
作り分けることができる。
In particular, titanium oxide as a transparent metal oxide film,
In the combination using titanium nitride as the absorbing film, the titanium oxide film and the titanium nitride film can be formed separately by using different sputtering gases in the metal titanium target as seen in the examples. Therefore, the ordinary high reflection heat ray reflection glass using only titanium nitride and metal which is generally used at present and the low reflection heat ray reflection glass of the present invention can be separately produced without a job change involving opening to the atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる熱線反射ガラスの要部の断面の
模式図
FIG. 1 is a schematic view of a cross section of a main part of a heat ray reflective glass according to the present invention.

【符号の説明】[Explanation of symbols]

10:ガラス基板 11:透明金属酸化物膜 12:金属窒化物膜または金属膜 13:透明金属酸化物膜 14:金属窒化物膜 10: Glass substrate 11: Transparent metal oxide film 12: Metal nitride film or metal film 13: Transparent metal oxide film 14: Metal nitride film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガラス基板上に第1層として透明金属酸化
物膜、第2層として金属膜または金属窒化物膜、第3層
として透明金属酸化物膜、第4層として金属窒化物膜を
スパッタリング法により順次積層させた熱線反射ガラス
において、ガラス基板側からの可視光反射率が10%以
下であり、かつ可視光透過率が40%以下であることを
特徴とする低反射熱線反射ガラス。
1. A transparent metal oxide film as a first layer, a metal film or a metal nitride film as a second layer, a transparent metal oxide film as a third layer, and a metal nitride film as a fourth layer on a glass substrate. A low reflection heat ray reflection glass characterized in that, in the heat ray reflection glass sequentially laminated by a sputtering method, the visible light reflectance from the glass substrate side is 10% or less and the visible light transmittance is 40% or less.
【請求項2】前記金属窒化物膜が窒化チタン膜であるこ
とを特徴とする請求項1記載の低反射熱線反射ガラス。
2. The low reflection heat ray reflective glass according to claim 1, wherein the metal nitride film is a titanium nitride film.
【請求項3】前記透明金属酸化物膜がチタン、錫、亜
鉛、ジルコニウムおよびタンタルからなる群から選ばれ
る少なくとも1種の金属の酸化物膜であることを特徴と
する請求項1または2記載の低反射熱線反射ガラス。
3. The transparent metal oxide film is an oxide film of at least one metal selected from the group consisting of titanium, tin, zinc, zirconium and tantalum. Low reflection heat ray reflective glass.
【請求項4】前記金属膜がチタン、クロム、ステンレス
およびニクロムからなる群から選ばれる少なくとも1種
の金属であることを特徴とする請求項1〜3いずれか記
載の低反射熱線反射ガラス。
4. The low reflection heat ray reflective glass according to claim 1, wherein the metal film is at least one metal selected from the group consisting of titanium, chromium, stainless steel and nichrome.
JP1210195A 1994-05-31 1995-01-27 Low reflectivity heat ray reflection glass Pending JPH0848545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1210195A JPH0848545A (en) 1994-05-31 1995-01-27 Low reflectivity heat ray reflection glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-119156 1994-05-31
JP11915694 1994-05-31
JP1210195A JPH0848545A (en) 1994-05-31 1995-01-27 Low reflectivity heat ray reflection glass

Publications (1)

Publication Number Publication Date
JPH0848545A true JPH0848545A (en) 1996-02-20

Family

ID=26347666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1210195A Pending JPH0848545A (en) 1994-05-31 1995-01-27 Low reflectivity heat ray reflection glass

Country Status (1)

Country Link
JP (1) JPH0848545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092527A1 (en) * 2001-05-17 2002-11-21 Guardian Industries Corp. Heat treatable coated articles with anti-migration barrier layer between dielectric and solar control layers, and methods of making same
JP2010202465A (en) * 2009-03-04 2010-09-16 Japan Fine Ceramics Center Heat insulating glass and method for producing the same
US20170197874A1 (en) * 2014-07-25 2017-07-13 Agc Glass Europe Decorative glass panel
US20170210096A1 (en) * 2014-07-25 2017-07-27 Agc Glass Europe Heating glazing unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092527A1 (en) * 2001-05-17 2002-11-21 Guardian Industries Corp. Heat treatable coated articles with anti-migration barrier layer between dielectric and solar control layers, and methods of making same
JP2010202465A (en) * 2009-03-04 2010-09-16 Japan Fine Ceramics Center Heat insulating glass and method for producing the same
US20170197874A1 (en) * 2014-07-25 2017-07-13 Agc Glass Europe Decorative glass panel
US20170210096A1 (en) * 2014-07-25 2017-07-27 Agc Glass Europe Heating glazing unit
US10550034B2 (en) * 2014-07-25 2020-02-04 Agc Glass Europe Decorative glass panel
US10710339B2 (en) * 2014-07-25 2020-07-14 Agc Glass Europe Heating glazing unit

Similar Documents

Publication Publication Date Title
JP4739470B2 (en) Glazing assembly comprising a substrate with a thin stack
JP3902676B2 (en) Transparent substrate with a thin film stack acting on sunlight and / or infrared
JP4965254B2 (en) Transparent substrate including antireflection film
CZ195094A3 (en) Transparent substrate being provided with a strata of thin layers and the use thereof for heat-insulating and sun glasses
JP2000233947A (en) Transparent substrate equipped with thin film laminated body
JPH11302845A (en) Metal coated article and its production
KR20050084671A (en) An infra-red reflecting layered structure
JPS63242948A (en) Heat reflective glass
CA2428860A1 (en) High shading performance coatings
US4900630A (en) Glass plate with reflective multilayer coatings to give golden appearance
JP2000302486A (en) Sunlight screening light transmission plate and sunlight screening multiple layer light transmission plate using the same
JP2528937B2 (en) Low reflective coated article
JP2006117482A (en) Heat ray shielding glass and heat ray shielding double-glazed glass
JPH013036A (en) Low reflective coated articles
JPH0848545A (en) Low reflectivity heat ray reflection glass
JPS5918134A (en) Manufacture of heat reflecting laminate having oxide film
JPS63134232A (en) Infrared reflecting article having high transmittance
JPH0859301A (en) Ultraviolet heat shielding glass
JP2871401B2 (en) Heat shielding glass with reduced film surface reflection
JPH07333423A (en) Permselective membrane
EP0528710B1 (en) Technique for transforming a plate out of a transparent material into a faceplate for a facade panel
JPH07232934A (en) Heat ray reflecting glass
JP2007197237A (en) Low-radiation double glazing
JPH07291669A (en) Heat ray-reflecting glass
JPH0556296B2 (en)