JPS5918134A - Manufacture of heat reflecting laminate having oxide film - Google Patents

Manufacture of heat reflecting laminate having oxide film

Info

Publication number
JPS5918134A
JPS5918134A JP57122901A JP12290182A JPS5918134A JP S5918134 A JPS5918134 A JP S5918134A JP 57122901 A JP57122901 A JP 57122901A JP 12290182 A JP12290182 A JP 12290182A JP S5918134 A JPS5918134 A JP S5918134A
Authority
JP
Japan
Prior art keywords
film
layer
metal
oxide
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57122901A
Other languages
Japanese (ja)
Inventor
Masashi Tada
昌史 多田
Mamoru Mizuhashi
水橋 衞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57122901A priority Critical patent/JPS5918134A/en
Publication of JPS5918134A publication Critical patent/JPS5918134A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To manufacture a high-performance heat reflecting glass having excellent weatherability, by applying a thin film of a metal having high infrared reflection in the form of being sandwiched between a pair of thin films of a specific metal oxide, to a substrate such as glass. CONSTITUTION:A substrate plate such as glass is cleaned, put into a vacuum chamber, and heated at 100-150 deg.C while evacuating the vacuum chamber. A mixture of argon and oxygen having an oxygen concentration of 5-30% is introduced into the vacuum chamber, and a thin Bi2O3 film having a thickness of about 400Angstrom is deposited to the glass substrate by the reactive sputtering process using metallic Bi as the target. A thin film of Au or Ag, etc. of 50- 300Angstrom thick is formed to the surface of the Bi2O3 thin film by using a metal t arget such as Au, Ag etc. while keeping the atmosphere of the vacuum chamber unchanged, and the metallic film is coated with a Bi2O3 thin film. The produced reflecting glass has high transmittance of visible light, high reflection to IR radiation or the light having longer wavelength than IR radiation, and excellent surface weatherability.

Description

【発明の詳細な説明】 る高性能熱線反射ガラスの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-performance heat-ray reflective glass.

近年、省エネルギーの観点からビル等の建築物の窓ガラ
スに対して断熱性の高い特性が要求されるようになった
。熱反射性という面では金属膜が有用であるが、その中
でも可視光線を適当量透過させ、その上近赤外線以上の
波長の光の反射能が高いという点で、Au, Ag, 
AI, Ou等の膜が広く利用されている。ところが、
このような金属単層の膜は使用下において、金属原子の
マイグレーション酸化等が生じ易く、耐候性の点で十分
でなく、又付着力、引っ掻き強度等の機械強度も十分で
ない。
In recent years, from the viewpoint of energy conservation, window glasses of buildings and other structures have been required to have high heat-insulating properties. Metal films are useful in terms of heat reflection, but among them, Au, Ag,
Films such as AI and Ou are widely used. However,
Such single-layer metal films tend to undergo migration, oxidation, etc. of metal atoms during use, and do not have sufficient weather resistance, and also do not have sufficient mechanical strength such as adhesion and scratch strength.

このような問題点の対策として、上記、赤外反射性の高
いAu、 Ag、 Ou、 A1等の金属層と酸化物の
ような誘電体膜を組み合わせて多層構成にする事が広く
行なわれている。例えば基体面と金属膜の間に酸化物層
を挿入すれば、金属単層の場合に較べて付着力が著しく
増大する。これは酸化物薄膜がガラスに対しては酸素原
子による共有結合性をもち、金属膜に対しては金属原子
による金属結合をもって両者の媒介の役割をつとめるか
らである。又金属膜の上に酸化物膜を形成すれば、酸化
物膜が保護膜の役割をつとめ、耐候性が向上する。さら
に上記両者の構成を組み合わせて、第1層酸化物層、第
2層金属層、第3層酸化物層という3層構造にすれば、
上述の耐候性機械的強度が向上するだけではなく、各層
の膜厚を調整する事によって、金属膜単層では得られな
いような高い可視光透過率、例えば、80%程度の透過
率を実現する事も可能である。又可視光の反射率に下げ
る事もでき、この事はAu、 Ag、 Ou等の金属単
層膜をビル等に使用した場合、しばしば問題となる反射
光公害金防ぐ役割をはたす。
As a countermeasure to these problems, it is widely used to create a multilayer structure by combining a metal layer such as Au, Ag, Ou, A1, etc., which has high infrared reflectivity, with a dielectric film such as an oxide. There is. For example, if an oxide layer is inserted between the substrate surface and the metal film, the adhesion force will be significantly increased compared to the case of a single metal layer. This is because the oxide thin film has a covalent bond with the glass through oxygen atoms, and with the metal film, it acts as a mediator between the two through a metal bond through the metal atoms. Furthermore, if an oxide film is formed on the metal film, the oxide film serves as a protective film and weather resistance is improved. Furthermore, if the above two structures are combined to form a three-layer structure consisting of a first oxide layer, a second metal layer, and a third oxide layer,
In addition to improving the weather resistance and mechanical strength mentioned above, by adjusting the film thickness of each layer, a high visible light transmittance that cannot be obtained with a single layer of metal film, for example, a transmittance of about 80%, is achieved. It is also possible to do so. In addition, the reflectance of visible light can be lowered, and this serves to prevent reflected light pollution, which is often a problem when metal single-layer films such as Au, Ag, and O are used in buildings, etc.

このような酸化物薄膜をスパッター法で形成する手段と
してターゲットとし′を目的酸化物よりなる焼結ターゲ
ットを使用して通常の不活性ガス雰囲気中のスパッタを
行なう方法とターゲットとし1目的酸化物の金属成分よ
シなる金属ターゲットを使用して、不活性ガスと酸素ガ
スの混合ガス雰囲気中で反応性ス、Cツタを行なわせる
方法がある。酸化物ターゲットを用いる方法は、反応性
スパッタに較べ一〇再現性は得易いが、ターゲットの成
型に手間がかかり、又ターゲットi再生して使用する事
ができない。さらに酸化錫や酸化インヂウムのような一
部の酸化物を除いて、D、 O,スパッタを行なう事が
できないという欠点をもっている。一方金属ターゲット
を使用すれば、D、 C,スパッタが可能であり、又タ
ーゲットの成型も比較的容易で、再生して使用する事も
できる。ところが金属ターゲットから酸化物膜を得るた
めには、スパッタ雰囲気中の酸素ガスの割合をかなり多
くしなければならない。そしてかかる雰囲気中でAu、
 Ag、 Ou。
A method for forming such an oxide thin film by sputtering is a method in which sputtering is carried out in a normal inert gas atmosphere using a sintered target made of the target oxide as the target, and There is a method in which a metal target made of a metal component is used to perform reactive carbon sintering in a mixed gas atmosphere of an inert gas and an oxygen gas. Although the method using an oxide target is easier to obtain reproducibility than reactive sputtering, it takes time and effort to mold the target, and the target cannot be recycled for use. Furthermore, except for some oxides such as tin oxide and indium oxide, D, O, and sputtering cannot be performed on them. On the other hand, if a metal target is used, D, C, sputtering is possible, the target is relatively easy to mold, and it can be recycled and used. However, in order to obtain an oxide film from a metal target, the proportion of oxygen gas in the sputtering atmosphere must be increased considerably. And in such an atmosphere, Au,
Ag, Ou.

A1等のスパッタを行なうと、該金属の近赤外線領域以
上における反射特性が著しく低下し、熱線反射としての
性能が下がる結果を招く。このような事態を避けるため
には金属層と酸化物層の各層を形成する際に真空槽内の
雰囲気の切り換えが必要となり、この事は生産性という
面で不利な条件である。
If sputtering of A1 or the like is performed, the reflection characteristics of the metal in the near-infrared region or above are significantly reduced, resulting in a reduction in heat ray reflection performance. In order to avoid such a situation, it is necessary to change the atmosphere in the vacuum chamber when forming each layer of the metal layer and the oxide layer, which is a disadvantageous condition in terms of productivity.

本発明者は、かかる点を改善することを目的として研究
の結果、金属膜として酸化し難いAu。
In order to improve this point, the present inventor conducted research and found that Au is difficult to oxidize as a metal film.

Ag、 A1等を、酸化物膜として逆に酸化し易いB1
のような酸化物を選択すれば条件を調節する事によって
同一雰囲気中で5層膜を形成することが可能であること
を発見した。
B1, which easily oxidizes Ag, A1, etc., as an oxide film
It has been discovered that by selecting an oxide such as the following, it is possible to form a five-layer film in the same atmosphere by adjusting the conditions.

B1 の金属ターゲットから酸化物膜を形成する際のス
パッタ雰囲気中の酸素ガスの割合は、酸化物膜の形成速
度を10λ/θeC以下に押える限り、30チ程度で十
分であり、形成速度を下げれば、より少ない酸素ガスの
割合で酸化物膜を形成することが可能である。形成され
たB1の酸化物の膜は完全なり1203の形に到ってお
らず、やや酸素不足の状態であり、4.5A/secの
形成速度で得た酸化物膜は632.8 mμの波長で、
光学定数にの値として0.08程度の吸収がある。
Regarding the proportion of oxygen gas in the sputtering atmosphere when forming an oxide film from the metal target of B1, as long as the formation rate of the oxide film is kept below 10λ/θeC, around 30% is sufficient; For example, it is possible to form an oxide film with a smaller proportion of oxygen gas. The oxide film of B1 that was formed did not completely reach the 1203 shape and was in a slightly oxygen-deficient state. in wavelength,
There is absorption with an optical constant value of about 0.08.

一方、上述の雰囲気中でAgt、スパッタすると形成速
度を極端に低下させない限り、赤外域の光学特性も可視
域の光学特性も通常の不活性ガスだけの雰囲気中で得た
Ag膜と大きく違わない膜が得られる。
On the other hand, when Agt is sputtered in the above-mentioned atmosphere, the optical properties in the infrared region and in the visible region are not significantly different from those obtained in a normal inert gas atmosphere unless the formation rate is drastically reduced. A membrane is obtained.

上記の膜形成速度の条件及びスパッター雰囲気で、室温
においてB1酸化物/ A [1!;/B i酸化物の
3層スパッターを同一雰囲気中で行ない、得られた3層
膜の分光特性を測定したところ、700mμ以上の近赤
外及び赤外域における反射特性が著しく低下しているこ
とが判明した。かがる現象の原因は混合ガス雰囲気中で
のスパッターにょつて得られたAg膜が、不活性ガスだ
けの雰囲気中でのスパッターによって得られたAg膜よ
り機械的強度の点で劣り、そのため、Ag膜の上にB1
酸化物の膜を形成する際にAg膜の構造が破壊されると
ころにある。この事は、酸化物ターゲットを用いて不活
性ガスだけの雰囲気中で6層膜を作成してみても上記の
ような現象が起らなかった事及び、混合ガス雰囲気中で
3層膜を作成してもAg膜の上のB1酸化物層の厚みを
小さくすることによって、近赤外線、赤外線域の反射性
能の低下の程度を押えることができるという事実によっ
て確認された。
Under the above film formation rate conditions and sputtering atmosphere, B1 oxide/A [1! ;/When three-layer sputtering of B i oxide was performed in the same atmosphere and the spectral characteristics of the resulting three-layer film were measured, it was found that the reflection characteristics in the near-infrared and infrared regions of 700 mμ or more were significantly reduced. There was found. The cause of the sagging phenomenon is that the Ag film obtained by sputtering in a mixed gas atmosphere is inferior in mechanical strength to the Ag film obtained by sputtering in an atmosphere containing only an inert gas. B1 on top of Ag film
The structure of the Ag film is destroyed when forming the oxide film. This is because the above phenomenon did not occur even when a 6-layer film was created in an inert gas atmosphere using an oxide target, and when a 3-layer film was created in a mixed gas atmosphere. However, this was confirmed by the fact that by reducing the thickness of the B1 oxide layer on the Ag film, the degree of deterioration in the reflection performance in the near-infrared and infrared regions can be suppressed.

このようなり1酸化物膜によるAg膜味壊の起因力とな
るものは両方の内部応力の相違であると考えられる。
It is thought that the cause of the Ag film taste failure caused by the monoxide film is the difference in internal stress between the two.

そこで本発明者等は、両方の内部応力を緩和するために
スパッターの際に基体の温度を予め100〜150℃に
加熱することを試みた。その結果、この条件で得られた
3層膜は、近赤外線域以上においても反射特性が優れ、
熱線反射体として価値が高いことが判明した。
Therefore, the present inventors attempted to preheat the temperature of the substrate to 100 to 150° C. during sputtering in order to alleviate both internal stresses. As a result, the three-layer film obtained under these conditions has excellent reflective properties even in the near-infrared region and beyond.
It was found to be highly valuable as a heat ray reflector.

基体の温度を高めることのAg膜への影響は、この温度
ではそれ程大きくないと考えられ、又Ag膜と基体の間
に存在するB1酸化物の層が、加熱によるAgのマイグ
レーションを妨げる媒介の働きをしている。しかしこの
温度範囲以」二に加熱するとAgのマイクレージョンは
妨は切れなくなると考えられる。又Ag膜の厚みも薄す
ぎると破壊やマイグレーションが起こり易い(〜、熱線
反射性の観4点からみても、Ag膜が極端に薄いのはそ
の効果が小さい。又逆にAg膜が厚すぎると可視域の透
過率が下がる結果となり、望ましくない。このことから
赤外線高反射金属の厚みは50〜300Aが望ましい。
The effect of increasing the temperature of the substrate on the Ag film is not considered to be so large at this temperature, and the B1 oxide layer existing between the Ag film and the substrate acts as a mediator that prevents Ag migration due to heating. working. However, it is thought that if heated above this temperature range, the microclision of Ag will no longer be blocked. Also, if the thickness of the Ag film is too thin, destruction and migration are likely to occur (~, from the viewpoint of heat ray reflectivity, the effect of an extremely thin Ag film is small. Also, conversely, if the Ag film is too thick) This results in a decrease in transmittance in the visible range, which is undesirable.For this reason, the thickness of the highly infrared reflective metal is preferably 50 to 300 Å.

以上のように本発明によると、熱線展線性能を有する酸
化物/金属/酸化物型の熱線反射の積層体を作成する際
において、金属としてAg。
As described above, according to the present invention, when creating an oxide/metal/oxide type heat ray reflective laminate having heat wire drawing performance, Ag is used as the metal.

AI、 Auのような酸化し雛い物質を選択し、酸化物
としてB1のような酸化し易い金属から構成される物質
を選択すれば、基体の温度100〜150°α混合ガス
中の酸素ガスの割合5〜30チという条件で、同一雰囲
気中で5層形成することができ、特に基体を加熱するこ
とによって内部応力が緩和され、3層膜の作成が容易に
なる。
If a material that is easily oxidized such as AI or Au is selected, and a material composed of an easily oxidized metal such as B1 is selected as the oxide, the temperature of the substrate is 100 to 150° α. Five layers can be formed in the same atmosphere under conditions of a ratio of 5 to 30 inches.In particular, by heating the substrate, internal stress is relaxed, making it easy to create a three-layer film.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 研摩方法で表面を清浄した2、5簡厚ソーダライムガラ
ス基板を真空槽内に入れ、油拡散ポンプでt OX 1
0−6Torr以下まで真空に引くとともに、ガラス基
板′f:100〜110°Cに加熱しておく。真空室に
酸素ガスを30%含む酸素・アルゴン混合ガスを導入し
、真空度を4、Ox 10”−’ Torrに調節する
。金属B1ターゲットにα8〜1. OKVの電圧を印
加し、反応性スパッターを行ない厚さ400AのB1醗
化物薄膜をガラス基板上に得る。次に雰囲気を変えずに
Agターゲットに2.2〜2.4 KVの電圧を印加し
、B1酸化物薄膜上に20OAのAg、薄膜を形成した
。最後に再びB1#化物薄膜kAg薄膜の上に400X
形成した。この6層コートは、RFマグネトロンスノく
ツタ−装置を用いて行ない、又真空槽内にAgターゲッ
トとB1のターゲットの両方が同時に設置できるので、
真空を破壊す〜ることな〈実施さitたことはもちろん
、前述の、しうにB1酸化物層。
Example 1 A 2.5-inch thick soda-lime glass substrate whose surface was cleaned by polishing was placed in a vacuum chamber and heated to 1 t OX using an oil diffusion pump.
The glass substrate is evacuated to 0-6 Torr or less and heated to 100-110°C. A mixed gas of oxygen and argon containing 30% oxygen gas is introduced into the vacuum chamber, and the degree of vacuum is adjusted to 4, Ox 10"-' Torr. A voltage of α8 to 1. Sputtering is performed to obtain a 400A thick B1 oxide thin film on a glass substrate.Next, a voltage of 2.2 to 2.4 KV is applied to the Ag target without changing the atmosphere, and a 20OA thick film is formed on the B1 oxide thin film. Ag, a thin film was formed.Finally, the B1# compound thin film kAg thin film was coated again at 400X.
Formed. This 6-layer coating is performed using an RF magnetron snort device, and since both the Ag target and B1 target can be placed in the vacuum chamber at the same time,
Of course, the B1 oxide layer mentioned above was implemented without breaking the vacuum.

Ag層それぞれW囲気を変えずに同一雰囲気中でコート
された。得られた膜の光学特性を測定したところ、可視
光平均透過率は53.9%、可視光平均反射率は51.
24であった。又太陽エネルギー反射率は49.4%で
、同透過率は267%であった。
Each Ag layer was coated in the same atmosphere without changing the W atmosphere. When the optical properties of the obtained film were measured, the average visible light transmittance was 53.9%, and the average visible light reflectance was 51.
It was 24. In addition, the solar energy reflectance was 49.4% and the transmittance was 267%.

かかる熱線反射ガラスの分光特性図を第1図に示す。A spectral characteristic diagram of such a heat ray reflective glass is shown in FIG.

なお、第1図において1は透過率、2は反射率を示す。In FIG. 1, 1 indicates transmittance and 2 indicates reflectance.

実施例2 実施例1と同様な手順でガラス基板上に、400AのB
1酸化物の薄膜、100AのAgの薄膜、400XのB
1酸化物の薄膜を順次積層した。なおそれぞれの膜を作
成する際の印加電圧は実施例1の場合と同じにして、ス
パッタ時間を変えることによって各層の膜厚の調整を行
なった。得られた膜の光学特性を測定したところ、可視
光平均透過率は55.2多回視光平均反射率は12.0
チであった。又太陽エネルギー反射率は22.4チ、同
透過率は47、1 %であった。かかる熱線反射ガラス
の分光特性図を第2図に示す。なお、第2図において3
は透過率、4は反射率を示す。
Example 2 A 400A B was deposited on a glass substrate in the same manner as in Example 1.
1 oxide thin film, 100A Ag thin film, 400X B
Monooxide thin films were sequentially laminated. Note that the voltage applied when creating each film was the same as in Example 1, and the film thickness of each layer was adjusted by changing the sputtering time. When the optical properties of the obtained film were measured, the average transmittance of visible light was 55.2, and the average reflectance of multiple viewing light was 12.0.
It was Chi. The solar energy reflectance was 22.4 cm, and the solar transmittance was 47.1%. A spectral characteristic diagram of such a heat ray reflective glass is shown in FIG. In addition, in Figure 2, 3
indicates transmittance, and 4 indicates reflectance.

比較例 ガラス基板を加熱せずに常温としたほかは、実施例1と
同様の手順で、ガラス基板上に30OAのB1酸化物の
薄膜、100大のAgの薄膜、500λのB1酸化物の
薄膜を順次積層した。各層ともスパッタ時間が比較的短
かかったため、スパッタリングによる基板温度の上昇は
ほとんど認められなかった。得られた熱線反射ガラスの
分光特性を測定したところ、第3図に示すように、70
0mμ以上の波長域において透過率も反射率もその特性
が悪化していた。なお、第3図において5は透過率、6
は反射率を示す。
Comparative Example A thin film of B1 oxide of 30OA, a thin film of Ag of 100A, and a thin film of B1 oxide of 500λ were formed on a glass substrate in the same manner as in Example 1, except that the glass substrate was kept at room temperature without heating. were sequentially stacked. Since the sputtering time for each layer was relatively short, almost no increase in substrate temperature due to sputtering was observed. When the spectral characteristics of the obtained heat ray reflective glass were measured, as shown in Fig. 3, it was found that 70
In the wavelength range of 0 mμ or more, the characteristics of both transmittance and reflectance deteriorated. In addition, in Fig. 3, 5 is the transmittance, and 6 is the transmittance.
indicates reflectance.

以上のようにこの発明によれば、金属膜を破壊すること
なく、酸化物/金属/酸化物の5層構造膜を同一雰囲気
中で作成でき、このことは量産化に対して好ましい条件
を与える。
As described above, according to the present invention, a five-layer structure film of oxide/metal/oxide can be created in the same atmosphere without destroying the metal film, which provides favorable conditions for mass production. .

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は、本発明方法による熱線反射ガラスの分光
特性図、第5図は比較例に係る熱線反射ガラスの分光特
性図を示す。 芽3−)■
1 and 2 are spectral characteristic diagrams of a heat ray reflective glass according to the method of the present invention, and FIG. 5 is a spectral characteristic diagram of a heat ray reflective glass according to a comparative example. Bud 3-)■

Claims (6)

【特許請求の範囲】[Claims] (1)反応性スパッター法によシ、金属膜と酸化物膜の
積層体を基体面に形成する方法において、スパッターガ
スとして不活性ガスと酸素ガスの混合ガスを用いるとと
もに、金属膜、酸化物膜の両方とも、スパッター雰囲気
を変えずに形成させる事を特徴とする積層体の形成方法
(1) In a method of forming a laminate of a metal film and an oxide film on a substrate surface by reactive sputtering, a mixed gas of an inert gas and oxygen gas is used as the sputtering gas, and the metal film and oxide film are A method for forming a laminate, characterized in that both films are formed without changing the sputtering atmosphere.
(2)  スパッターガスの酸素濃度が5〜30%であ
る事を特徴とする特許請求の範囲第1項記載の熱線反射
積層体の形成方法。
(2) The method for forming a heat ray reflective laminate according to claim 1, wherein the sputtering gas has an oxygen concentration of 5 to 30%.
(3)基体を100〜150℃に加熱する事を特徴とす
る特許請求の範囲第1項記載の熱線反射積層体の形成方
法。
(3) A method for forming a heat ray reflective laminate according to claim 1, characterized in that the substrate is heated to 100 to 150°C.
(4)酸化物膜のターゲットとして金属を用いる事を特
徴とする特許請求の範囲第1項記載の熱線反射積層体の
形成方法。
(4) A method for forming a heat ray reflective laminate according to claim 1, characterized in that a metal is used as a target for the oxide film.
(5)積層体の構成が、第1層が酸化物層、第2層が金
属膜層、第5層が酸化物膜層という5層構造を有する事
を特徴とする特許請求の範囲第1項記載の熱線反射積層
体の形成方法。
(5) Claim 1, characterized in that the structure of the laminate has a five-layer structure in which the first layer is an oxide layer, the second layer is a metal film layer, and the fifth layer is an oxide film layer. A method for forming a heat ray reflective laminate as described in .
(6)  金属膜としてAg、 Au、 AIの少なく
とも1つを用い、且つその膜厚が50〜600にである
事を特徴とする特許請求の範囲第1項記載の熱線反射積
層体の形成方法。
(6) A method for forming a heat ray reflective laminate according to claim 1, wherein at least one of Ag, Au, and AI is used as the metal film, and the film thickness is 50 to 600 mm. .
JP57122901A 1982-07-16 1982-07-16 Manufacture of heat reflecting laminate having oxide film Pending JPS5918134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57122901A JPS5918134A (en) 1982-07-16 1982-07-16 Manufacture of heat reflecting laminate having oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57122901A JPS5918134A (en) 1982-07-16 1982-07-16 Manufacture of heat reflecting laminate having oxide film

Publications (1)

Publication Number Publication Date
JPS5918134A true JPS5918134A (en) 1984-01-30

Family

ID=14847417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122901A Pending JPS5918134A (en) 1982-07-16 1982-07-16 Manufacture of heat reflecting laminate having oxide film

Country Status (1)

Country Link
JP (1) JPS5918134A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151045A (en) * 1984-12-17 1986-07-09 ピーピージー・インダストリーズ・インコーポレーテツド Product for reflection of solar energy and manufacture
JPS6241740A (en) * 1985-08-19 1987-02-23 Nippon Sheet Glass Co Ltd Production of heat-reflection glass
JPS63274757A (en) * 1987-03-26 1988-11-11 ピーピージー インダストリーズ,インコーポレーテツド Bismuth/tin oxide film
JPS643036A (en) * 1987-05-15 1989-01-06 Ppg Ind Inc Low-reflection coated article
JPH0334028U (en) * 1990-04-26 1991-04-03
JPH069817U (en) * 1992-07-13 1994-02-08 日立造船エンジニアリング株式会社 Plate material conveying device for thin plate cutting machine
US5413864A (en) * 1990-07-05 1995-05-09 Asahi Glass Company Ltd. Low emissivity film
US5419969A (en) * 1990-07-05 1995-05-30 Asahi Glass Company Ltd. Low emissivity film
US5532062A (en) * 1990-07-05 1996-07-02 Asahi Glass Company Ltd. Low emissivity film
WO2002026488A1 (en) * 2000-09-29 2002-04-04 Nippon Sheet Glass Co., Ltd. Transparent laminate having low emissivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052113A (en) * 1973-04-12 1975-05-09
JPS5338269A (en) * 1976-09-20 1978-04-08 Nippon Precision Circuits Input*output protecting circuit of mos ic
JPS5458719A (en) * 1977-10-20 1979-05-11 Teijin Ltd Laminated glass plate
JPS569249A (en) * 1979-06-30 1981-01-30 Sanyo Shinku Kogyo Kk Electrically conductive infrared shielding glass and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052113A (en) * 1973-04-12 1975-05-09
JPS5338269A (en) * 1976-09-20 1978-04-08 Nippon Precision Circuits Input*output protecting circuit of mos ic
JPS5458719A (en) * 1977-10-20 1979-05-11 Teijin Ltd Laminated glass plate
JPS569249A (en) * 1979-06-30 1981-01-30 Sanyo Shinku Kogyo Kk Electrically conductive infrared shielding glass and its manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151045A (en) * 1984-12-17 1986-07-09 ピーピージー・インダストリーズ・インコーポレーテツド Product for reflection of solar energy and manufacture
JPS6241740A (en) * 1985-08-19 1987-02-23 Nippon Sheet Glass Co Ltd Production of heat-reflection glass
JPS63274757A (en) * 1987-03-26 1988-11-11 ピーピージー インダストリーズ,インコーポレーテツド Bismuth/tin oxide film
JPS643036A (en) * 1987-05-15 1989-01-06 Ppg Ind Inc Low-reflection coated article
JPH0334028U (en) * 1990-04-26 1991-04-03
US5413864A (en) * 1990-07-05 1995-05-09 Asahi Glass Company Ltd. Low emissivity film
US5419969A (en) * 1990-07-05 1995-05-30 Asahi Glass Company Ltd. Low emissivity film
EP0698585A1 (en) * 1990-07-05 1996-02-28 Asahi Glass Company Ltd. A low emissivity film
US5532062A (en) * 1990-07-05 1996-07-02 Asahi Glass Company Ltd. Low emissivity film
USRE37446E1 (en) 1990-07-05 2001-11-13 Asahi Glass Company Ltd. Low emissivity film
JPH069817U (en) * 1992-07-13 1994-02-08 日立造船エンジニアリング株式会社 Plate material conveying device for thin plate cutting machine
WO2002026488A1 (en) * 2000-09-29 2002-04-04 Nippon Sheet Glass Co., Ltd. Transparent laminate having low emissivity

Similar Documents

Publication Publication Date Title
JP2505276B2 (en) Gray highly permeable low emissivity article and its manufacturing method
KR920005471B1 (en) Low emissivity film for high temperature processing
EP0219273B1 (en) Transparent article having high visible transmittance
JP4763569B2 (en) High-infrared reflective coating, thin film coating deposition method and related technology
EP0645352B1 (en) Transparent substrate with a stack of thin layers acting on solar and/or infra-red radiation
US4861669A (en) Sputtered titanium oxynitride films
JP3515392B2 (en) Metal-coated articles and their manufacturing method
JP4965254B2 (en) Transparent substrate including antireflection film
JPS62196366A (en) High permeability and low emissivity article
JPH02160641A (en) Heat ray reflecting glass
JPS61111940A (en) High permeability and low radiation product and manufacture
JPS63206333A (en) Heat ray reflecting glass of single plate
JP2000229377A (en) Glass laminate and production thereof
EP1833768A2 (en) Glazing panel carrying a coating stack
KR102565397B1 (en) Low Emissivity Coatings, Glass Surfaces Including Them, and Methods of Making Them
JPH0660037B2 (en) Coated glassware for solar energy reflection and method of making same
TW201305078A (en) Triple-silver low radiation coating glass and manufacturing method thereof
JPH11228185A (en) Solar radiation shielding transparent plate and solar radiation shielding laminated transparent plate using same
US4900630A (en) Glass plate with reflective multilayer coatings to give golden appearance
JPS5918134A (en) Manufacture of heat reflecting laminate having oxide film
US4348453A (en) Glazing possessing selective transmission and reflection spectra
JPH0570580B2 (en)
JP2017132666A (en) Gray color tone radiation glass, and method for producing the gray color tone radiation glass
JPH0325506B2 (en)
JPH0460061B2 (en)