JP2007197237A - Low-radiation double glazing - Google Patents

Low-radiation double glazing Download PDF

Info

Publication number
JP2007197237A
JP2007197237A JP2006016048A JP2006016048A JP2007197237A JP 2007197237 A JP2007197237 A JP 2007197237A JP 2006016048 A JP2006016048 A JP 2006016048A JP 2006016048 A JP2006016048 A JP 2006016048A JP 2007197237 A JP2007197237 A JP 2007197237A
Authority
JP
Japan
Prior art keywords
film
less
oxide film
low
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006016048A
Other languages
Japanese (ja)
Inventor
Hirotada Wada
大正 和田
Etsuo Ogino
悦男 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006016048A priority Critical patent/JP2007197237A/en
Priority to PCT/JP2006/316464 priority patent/WO2007029494A1/en
Publication of JP2007197237A publication Critical patent/JP2007197237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-radiation double grazing that, while maintaining heat shielding properties which are a feature of a low-radiation film, can develop high visible light transmittance. <P>SOLUTION: The low-radiation double grazing comprises a first oxide film, an Ag film, a metal film, and a second oxide film stacked in this order on the surface of one of glass plates of two opposed glass plates, wherein the first oxide film has a thickness of not less than 30 nm and not more than 40 nm, the Ag film has a thickness of not less than 8 nm and not more than 10 nm, the metal film has a thickness of not less than 1 nm and not more than 8 nm, and the second oxide film has a thickness of not less than 30 nm and not more than 50 nm. When the low-radiation double grazing is installed at the boundary between the inside of the room and the outside of the room, on the outdoor side face, the visible light reflectance specified in JIS R 3106 is 8-25%, the color tone is a substantially neutral reflection color tone with a<SP>*</SP>in an L<SP>*</SP>a<SP>*</SP>b<SP>*</SP>color system being not less than -3.0 and not more than 0.0 and b<SP>*</SP>being not less than -9.0 and not more than 0.0, and the screening factor is not more than 0.57. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱線遮蔽積層膜を有する低放射(Low Emission,Low−E)複層ガラスに関する。   The present invention relates to a low emission (Low Emission, Low-E) multilayer glass having a heat ray shielding laminated film.

熱線遮蔽積層体(以下Low−E膜とも称する)は、熱線(赤外光)を反射する機能を有することから、夏季の冷房負荷や冬期の暖房負荷の緩和を目的として、住宅やビルなどの建築用ガラスの表面に形成されてきた。   The heat ray shielding laminate (hereinafter also referred to as “Low-E film”) has a function of reflecting heat rays (infrared light). Therefore, for the purpose of alleviating the cooling load in summer and the heating load in winter, It has been formed on the surface of architectural glass.

Low−E膜は、ガラス等の基体上に酸化亜鉛(ZnO)膜/銀(Ag)等を主成分とする貴金属膜/酸化亜鉛膜をこの順に積層した膜構成を有する積層体である。このうち、銀等を主成分とする貴金属膜は耐湿性、耐酸性などの化学耐久性が劣悪であり、酸化亜鉛膜被覆によっても十分な改善がなされないという問題があった。そこで、貴金属膜と外気を遮断するため、積層膜は複層ガラスの内側、すなわち、二枚のガラスによって形成される間隙側に配置されていた。しかし、この手段では単板の取り扱い時の耐久性や保存期間中の耐久性については解決されず、依然として問題は残されている。   The Low-E film is a laminate having a film configuration in which a zinc oxide (ZnO) film / a noble metal film mainly composed of silver (Ag) / zinc oxide film is laminated in this order on a substrate such as glass. Among these, noble metal films mainly composed of silver or the like have poor chemical durability such as moisture resistance and acid resistance, and there is a problem that sufficient improvement cannot be achieved even by coating with a zinc oxide film. Therefore, in order to shut off the noble metal film and the outside air, the laminated film is disposed inside the multilayer glass, that is, on the gap side formed by two sheets of glass. However, this means does not solve the durability at the time of handling the veneer and the durability during the storage period, and problems still remain.

上記問題を解決するため、たとえば特許文献1では、銀層の直下層に酸化亜鉛層を、銀層の直上層には亜鉛または亜鉛を主成分とした保護金属層がそれぞれ成膜されたものが開示されている。
特開平11−157881号公報
In order to solve the above problem, for example, in Patent Document 1, a zinc oxide layer is formed immediately below the silver layer, and a protective metal layer mainly composed of zinc or zinc is formed directly above the silver layer. It is disclosed.
Japanese Patent Laid-Open No. 11-157881

しかしながら、Low−E膜には、その他の問題点も存在している。即ち、前記したようにLow−E膜は通常複層ガラスの状態で用いられているが、Low−E膜を使用しない複層ガラスと比較して反射率が高い。したがって複層ガラスに特有の反射像が二重となる現象が、Low−E膜を使用しない複層ガラスと比較してより強く現れ、これが利用者に不快感を与えている。   However, there are other problems with the Low-E film. That is, as described above, the Low-E film is usually used in the state of a double-glazed glass, but has a higher reflectance than the double-glazed glass not using the Low-E film. Therefore, the phenomenon that the reflection image peculiar to the multilayer glass is double appears more strongly than the multilayer glass not using the Low-E film, which gives the user unpleasant feeling.

二重反射像がより強く現れる原因は、Low−E膜が反射率の高い銀膜を有するためである。銀膜が厚くなると反射率が高くなり、さらに、反射色が赤みを帯びるようになる。このように、遮熱性能をより高くするためには銀膜を厚くしなければならず、厚くすると二重反射像がより強く現れるという矛盾がある。この矛盾は前記特許文献1では解決されていない。   The reason why the double reflection image appears stronger is that the Low-E film has a silver film having a high reflectance. The thicker the silver film, the higher the reflectance, and the reflected color becomes reddish. Thus, there is a contradiction that the silver film has to be thickened in order to further improve the heat shielding performance, and that a double reflection image appears stronger when the silver film is thickened. This contradiction is not solved in Patent Document 1.

上記課題を解決するため本発明は、二枚のガラス板を対向配置した複層ガラスであって、前記二枚のガラス板のうち一方のガラス板の他方のガラス板に対向する表面には、第一の酸化物膜/Ag膜/金属膜/第二の酸化物膜をこの順に積層した熱線遮蔽積層体が形成され、前記第一の酸化物膜の膜厚は30nm以上40nm以下、前記第二の酸化物膜の膜厚は30nm以上50nm以下、前記Ag膜の厚さは8nm以上10以下、前記金属膜の厚さは1nm以上8nm以下であり、且つ前記第一の酸化物膜と第二の酸化物膜の膜厚比は0.9以上1.7以下である構成とした。   In order to solve the above-mentioned problem, the present invention is a multi-layer glass in which two glass plates are arranged to face each other, and on the surface facing the other glass plate of one of the two glass plates, A heat ray shielding laminate is formed by laminating the first oxide film / Ag film / metal film / second oxide film in this order, and the thickness of the first oxide film is 30 nm to 40 nm. The second oxide film has a thickness of 30 nm to 50 nm, the Ag film has a thickness of 8 nm to 10 nm, the metal film has a thickness of 1 nm to 8 nm, and the first oxide film and the second oxide film The thickness ratio of the second oxide film is 0.9 or more and 1.7 or less.

第一の酸化物膜と第二の酸化物膜の膜厚比を上記のようにほぼ等しいかまたは第一の酸化物膜厚を1とした際の第二の酸化物膜厚が1.7倍以下の厚みとすることで、外観だけでなく内観においても視感度の最も大きい波長550nm付近の反射率を低減でき、反射色を中性にすることができる。   The film thickness ratio of the first oxide film and the second oxide film is substantially equal as described above, or the second oxide film thickness is 1.7 when the first oxide film thickness is 1. By setting the thickness to be twice or less, the reflectance in the vicinity of the wavelength of 550 nm having the highest visibility can be reduced not only in the appearance but also in the interior, and the reflected color can be neutralized.

また、本発明に係る複層ガラスは、室内外境界に設置したときの室外側において、JISR3106で規定する可視光反射率が8%以上25%以下であり、L表色系におけるaが−3.0以上0.0以下、bが−9.0以上0.0以下(ほぼ中性色の反射色調)で、且つ遮蔽係数が0.57以下とすることができる。 Further, the multilayer glass according to the present invention has a visible light reflectance of 8% or more and 25% or less as defined in JIS R3106 at the outdoor side when installed at the indoor / outdoor boundary, and the L * a * b * color system A * in the range from -3.0 to 0.0, b * in the range from -9.0 to 0.0 (substantially neutral reflection color tone), and a shielding coefficient of 0.57 or less. .

また、本発明に係る複層ガラスは、室内外境界に設置したときの室外側において、JISR3106で規定する可視光反射率が8%以上15%以下であり、L表色系におけるaが−1.0以上5.0以下、bが−20.0以上0.0以下とすることができる。また、JIS R3106で規定する可視光透過率が50%以上75%以下であることも望ましい。 Further, the multilayer glass according to the present invention has a visible light reflectance defined by JIS R3106 of 8% or more and 15% or less on the outdoor side when installed at the indoor / outdoor boundary, and L * a * b * color system A * can be -1.0 or more and 5.0 or less, and b * can be -20.0 or more and 0.0 or less. It is also desirable that the visible light transmittance specified by JIS R3106 be 50% or more and 75% or less.

また、前記第一および第二の酸化物膜が、酸化錫膜とAlドープ酸化亜鉛膜との積層体であって、Alドープ酸化亜鉛膜が前記Ag膜側に配置され、かつ、酸化物膜の全膜厚に対するAlドープ酸化亜鉛膜厚の比率が10%より大きく40%以下であることが好ましい。   The first and second oxide films are a laminate of a tin oxide film and an Al-doped zinc oxide film, the Al-doped zinc oxide film is disposed on the Ag film side, and the oxide film The ratio of the Al-doped zinc oxide film thickness to the total film thickness is preferably greater than 10% and 40% or less.

前記Alドープ酸化亜鉛膜のAl含有量は、Znに対する原子比で10%より大きく25%以下であることが好ましく、前記金属膜はTi膜、または、Al含有量がZnに対する原子比で1%以上25%以下であるZnAl合金膜であることも好ましい。   The Al content of the Al-doped zinc oxide film is preferably greater than 10% and not more than 25% in terms of atomic ratio to Zn, and the metal film is Ti film or Al content is 1% in terms of atomic ratio to Zn. A ZnAl alloy film of 25% or less is also preferable.

本発明によれば、Low−E膜として、第一の酸化物膜と第二の酸化物膜との間に、薄いAg膜と少し厚めの金属膜を配置したことにより、可視光反射率を低減し、ぎらつきを抑え、好ましい中間色の複層ガラスとすることができる。しかも、熱遮蔽機能も十分に保持することができる。   According to the present invention, as a Low-E film, a thin Ag film and a slightly thicker metal film are disposed between the first oxide film and the second oxide film, so that the visible light reflectance is increased. It is possible to reduce the glare and suppress the glare and to obtain a preferable intermediate color multilayer glass. Moreover, the heat shielding function can be sufficiently retained.

Low−E膜の耐久性はAg膜上層の誘電体の膜応力と関係しており、Alを酸化亜鉛膜中に多くドープすることで、膜応力を低減でき、耐久性が向上する。また膜作製時の放電安定性も一層向上できるが、ドープ量が過多であると生産時に材料が酸化アルミニウムにより被膜されることで成膜速度が遅くなる。よって生産と品質のバランスから、前記Alドープ酸化亜鉛膜のさらに好ましいAl含有量は、Znに対する原子比で10%より大きく15%以下である。   The durability of the Low-E film is related to the film stress of the upper dielectric layer of the Ag film. By doping a large amount of Al in the zinc oxide film, the film stress can be reduced and the durability can be improved. Moreover, although the discharge stability at the time of film production can be further improved, if the amount of dope is excessive, the material is coated with aluminum oxide at the time of production, so that the film formation rate becomes slow. Therefore, from the balance between production and quality, the more preferable Al content of the Al-doped zinc oxide film is more than 10% and not more than 15% in terms of atomic ratio to Zn.

また前記Alドープ酸化亜鉛膜中のAl含有量とLow−E膜の紫外線透過率が比例であり、屈折率と反比例している。Al含有量が多い場合、屈折率が小さくLow−E膜の反射率を低減できるが、紫外線透過率が増加する。よって紫外線透過率と膜屈折率のバランスに関しても前記Alドープ酸化亜鉛膜のさらに好ましいAl含有量は、Znに対する原子比で10%より大きく15%以下である。   Further, the Al content in the Al-doped zinc oxide film and the ultraviolet transmittance of the Low-E film are proportional and inversely proportional to the refractive index. When the Al content is high, the refractive index is small and the reflectance of the Low-E film can be reduced, but the ultraviolet transmittance increases. Therefore, with respect to the balance between the ultraviolet transmittance and the film refractive index, the more preferable Al content of the Al-doped zinc oxide film is more than 10% and not more than 15% in terms of atomic ratio to Zn.

以下に本発明の好適な実施例を添付図面に基づいて説明する。図1は本発明に係る複層ガラスの断面図であり、複層ガラス1は、対向する一方のガラス板2の表面に、第一の酸化物膜3、Ag膜4、金属膜5および第二の酸化物膜6をこの順に積層し、間隙7を介して二枚組合せたものである。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a multi-layer glass according to the present invention. The multi-layer glass 1 has a first oxide film 3, an Ag film 4, a metal film 5 and a first film on the surface of one opposing glass plate 2. Two oxide films 6 are laminated in this order, and two are combined through a gap 7.

これらガラス板2は、通常の窓ガラス等に使用する強化ガラスや平板ガラスを使用することができ、その厚さにも制限はないが、例えば4mm、6mm、8mmのものを使用することができる。   These glass plates 2 can use tempered glass or flat glass used for ordinary window glass and the like, and the thickness thereof is not limited. For example, glass plates of 4 mm, 6 mm, and 8 mm can be used. .

ガラス板2の上に形成する第一の酸化物膜3、および、最外層として形成する第二の酸化物膜6の材料としては、酸化錫膜、酸化亜鉛膜等を使用することができるが、酸化錫膜/Alドープ酸化亜鉛膜の積層体を採用し更に酸化錫膜を最下層及び最上層に形成することで、酸化錫膜の緻密性より、耐湿性、化学耐久性の点で好ましく、さらには、Alドープ酸化亜鉛膜がAg膜4側に配置され、かつ、酸化物膜の全膜厚に対するAlドープ酸化亜鉛膜厚の比率を10以上40%以下とすることが、Agの結晶性を低減させず、酸化錫膜による耐久性向上を維持することができる点で好ましい。また、Alドープ酸化亜鉛膜のAl含有量は、Znに対する原子比で10%より大きく25%以下とすることが、酸化亜鉛膜の光学特性を維持しながら、耐久性が悪くなる原因である膜の応力を効果的に低減できる点で望ましい。   As materials for the first oxide film 3 formed on the glass plate 2 and the second oxide film 6 formed as the outermost layer, a tin oxide film, a zinc oxide film, or the like can be used. By adopting a laminated body of tin oxide film / Al-doped zinc oxide film and further forming a tin oxide film in the lowermost layer and the uppermost layer, it is preferable in terms of moisture resistance and chemical durability from the denseness of the tin oxide film Furthermore, it is possible that the Al-doped zinc oxide film is disposed on the Ag film 4 side and the ratio of the Al-doped zinc oxide film thickness to the total film thickness of the oxide film is 10% to 40%. This is preferable because the durability can be maintained by the tin oxide film without reducing the properties. The Al content of the Al-doped zinc oxide film is a film whose durability is deteriorated while maintaining the optical characteristics of the zinc oxide film when the atomic ratio to Zn is more than 10% and 25% or less. This is desirable because it can effectively reduce the stress.

第一の酸化物膜3および第二の酸化物膜6の厚さはそれぞれ30nm以上40nm以下、30nm以上50nm以下とすることが、低反射・中性色という点で好ましい。また、第一の酸化物膜3の厚みを1としたとき、第二の酸化物膜6の厚みは0.9から1.7の範囲に設定することが好ましい。このような膜厚比にすることで外気側からの視感度だけでなく、室内側から見た際の好感度を阻害する550nm付近の波長を有する可視光線の反射率をより効率的に低減し、反射色調を中性色にすることができる。同時に、JIS R3106に規定する可視光透過率を高くする効果も期待できる。なお、本発明において中性色とは、色相、彩度および明度がほぼ中間的、すなわち、中間的な明るさ、濁度のグレーをいう。   The thicknesses of the first oxide film 3 and the second oxide film 6 are preferably 30 nm or more and 40 nm or less and 30 nm or more and 50 nm or less, respectively, from the viewpoint of low reflection and neutral color. When the thickness of the first oxide film 3 is 1, the thickness of the second oxide film 6 is preferably set in the range of 0.9 to 1.7. By using such a film thickness ratio, not only the visibility from the outside air side, but also the reflectance of visible light having a wavelength near 550 nm that hinders the favorable sensitivity when viewed from the indoor side is more efficiently reduced. The reflection color tone can be neutral. At the same time, the effect of increasing the visible light transmittance defined in JIS R3106 can be expected. In the present invention, the neutral color means gray having a hue, saturation and lightness that are substantially intermediate, that is, intermediate brightness and turbidity.

本発明に係るAg膜4の厚さは8nm以上10nm以下であり、従来のLow−E膜に使用するAg膜よりも薄くしてある。Ag膜4をこの範囲に設計することで、赤みのある好ましくない光の反射率を低く抑えながら赤外光は反射させることができる。   The thickness of the Ag film 4 according to the present invention is 8 nm or more and 10 nm or less, and is thinner than the Ag film used for the conventional Low-E film. By designing the Ag film 4 in this range, it is possible to reflect infrared light while suppressing the reflectance of undesirable red light.

金属膜5としては、各種金属膜を使用することができるが、特に、Ti膜、または、Al含有量がZnに対する原子比で1%以上25%以下であるZnAl合金膜を使用することが好ましい。また、ZnAl合金膜の組成をAl含有量がZnに対する原子比で1%以上6%以下とすると、Low−E膜の紫外線透過率を低減できるため、さらに好ましい。金属膜5の酸化されずに金属として膜構成中に存在する部分の厚みは1nm以上8nm以下であり、従来のLow−E膜に使用する金属膜よりも厚くなるようにしている。金属膜5をこの範囲の厚さで配置すれば、十分に日射吸収を行うことができるため、反射率を上げずに遮熱性能を向上し、遮熱係数を0.57以下とすることができる。   Various metal films can be used as the metal film 5, and it is particularly preferable to use a Ti film or a ZnAl alloy film having an Al content of 1% or more and 25% or less in terms of atomic ratio to Zn. . Further, it is more preferable that the composition of the ZnAl alloy film is such that the Al content is 1% or more and 6% or less in terms of atomic ratio to Zn, because the ultraviolet transmittance of the Low-E film can be reduced. The thickness of the portion of the metal film 5 that is not oxidized and exists in the film structure as a metal is 1 nm or more and 8 nm or less, and is thicker than the metal film used for the conventional Low-E film. If the metal film 5 is arranged in a thickness within this range, it is possible to sufficiently absorb solar radiation, so that the heat shielding performance can be improved without increasing the reflectance, and the heat shielding coefficient can be 0.57 or less. it can.

本発明の複層ガラス1を図1の要領で室内外境界に設置したとき、室外側面におけるJIS R3106に規定の可視光反射率を8%以上25%以下の範囲に収めることができる。また、L表色系におけるaを−3.0以上0.0以下、bを−9.0以上0.0以下の範囲とすることが可能となり、ほぼ中性色の反射色調を呈するようにできる。 When the double-glazed glass 1 of the present invention is installed at the indoor / outdoor boundary in the manner shown in FIG. 1, the visible light reflectance prescribed in JIS R3106 on the outdoor side surface can fall within the range of 8% to 25%. Further, L * a * b * -3.0 or more a * in the colorimetric system 0.0 or less, b * and it is possible to -9.0 or 0.0 or less in the range of about neutral color The reflection color tone can be exhibited.

また、室内側面においても、可視光反射率を8%以上15%以下の範囲に収めることができ、またL表色系におけるaを−1.0以上〜5.0以下、bを−20.0以上−8.0以下の範囲とすることが可能となる。さらに、本発明のLow−E複層ガラスの構成をとれば、JIS R3106に規定の可視光透過率を50%以上75%以下の範囲とすることができ、高い可視光透過率を確保することができる。 Further, even in the indoor side, can fit visible light reflectance in the range of 15% or less than 8%, also L * a * b * -1.0 or more a * in the color system to 5.0 or less , B * can be in the range of −20.0 or more and −8.0 or less. Furthermore, if the composition of the Low-E double glazing of the present invention is adopted, the visible light transmittance prescribed in JIS R3106 can be in the range of 50% to 75%, and high visible light transmittance can be secured. Can do.

以下に具体的な実施例(図2)および比較例にもとづいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on specific examples (FIG. 2) and comparative examples.

寸法300mm×300mm、厚さ6mmのソーダライムガラスを洗浄、乾燥してガラス基体として用いた。前記ガラス基体をスパッタリング成膜装置内に設置し、真空度が5×10−4Pa以下になるまで排気を行い、以下のようにしてガラス基体表面に熱線反射積層体を成膜した。 Soda lime glass having a size of 300 mm × 300 mm and a thickness of 6 mm was washed and dried to be used as a glass substrate. The glass substrate was placed in a sputtering film forming apparatus and evacuated until the degree of vacuum was 5 × 10 −4 Pa or less, and a heat ray reflective laminate was formed on the glass substrate surface as follows.

(第1層の成膜)
装置内に酸素ガスを導入し、真空度を0.26Pa以上0.8Pa以下に調整した後、錫ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、酸素とSnを反応させて酸化錫膜を作製できるようにし、電力を0.9kWに調節した。その後、カソード上方を10.3×10−3m/sの速度でガラス基体を搬送し、膜厚32.2nmの酸化錫膜を作製した。
(Deposition of the first layer)
After introducing oxygen gas into the apparatus and adjusting the degree of vacuum to 0.26 Pa or more and 0.8 Pa or less, power is supplied from a DC power source to the cathode provided with the tin target to cause glow discharge, and oxygen and Sn Was allowed to react to prepare a tin oxide film, and the power was adjusted to 0.9 kW. Thereafter, the glass substrate was conveyed above the cathode at a speed of 10.3 × 10 −3 m / s to produce a tin oxide film having a thickness of 32.2 nm.

(第2層の成膜)
次に装置内に酸素ガスを導入し、真空度を0.26Pa以上0.8Pa以下に調整した後、Znに対する原子比でAlが13.1%(Znとの合計量に対する原子比でAlが11.6%)ドープされた亜鉛ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、酸素と亜鉛を反応させて酸化亜鉛膜を作製できるようにし、電力を1kWに調節した。その後、カソード上方を10.4×10−3m/sの速度でガラス基体を搬送し、第2層として膜厚4.5nmの、Znに対する原子比でAlが13.1%ドープされた酸化亜鉛膜を作製した。
(Second layer deposition)
Next, after introducing oxygen gas into the apparatus and adjusting the degree of vacuum to 0.26 Pa or more and 0.8 Pa or less, Al was 13.1% in terms of atomic ratio to Zn (Al in terms of atomic ratio relative to the total amount with Zn). 11.6%) A cathode equipped with a doped zinc target is supplied with electric power from a DC power source to generate glow discharge, allowing oxygen and zinc to react to produce a zinc oxide film, and the electric power to 1 kW Adjusted. Thereafter, the glass substrate is transported at a speed of 10.4 × 10 −3 m / s above the cathode, and the second layer is an oxide having a film thickness of 4.5 nm and doped with Al at an atomic ratio to Zn of 13.1%. A zinc film was prepared.

(第3層の成膜)
次に装置内にアルゴンガスを導入し、真空度を0.26Pa以上0.8Pa以下に調整した後、銀ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、電力を0.25kWに調節した。その後、カソード上方を16.5×10−3m/sの速度でガラス基体を搬送させ、第3層として膜厚9.6nmの銀膜を作製した。
(Deposition of the third layer)
Next, after introducing argon gas into the apparatus and adjusting the degree of vacuum to 0.26 Pa or more and 0.8 Pa or less, power is supplied from a DC power source to the cathode equipped with the silver target to cause glow discharge, Was adjusted to 0.25 kW. Thereafter, the glass substrate was transported at a speed of 16.5 × 10 −3 m / s above the cathode, and a 9.6 nm-thick silver film was produced as the third layer.

(第4層の成膜)
次に装置内にアルゴンガスを導入し、真空度を0.26Pa以上0.8Pa以下に調整した後、Znに対する原子比でAlが3.5%(Znとの合計量に対する原子比でAlが3.4%)ドープされた亜鉛ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、電力を0.2kWに調節した。その後、カソード上方を21.1×10−3m/sの速度でガラス基体を搬送させ、膜厚約5nmの、Znに対する原子比でAlが3.5%ドープされた亜鉛アルミ膜を作製した。
(Fourth layer deposition)
Next, after introducing argon gas into the apparatus and adjusting the degree of vacuum to 0.26 Pa or more and 0.8 Pa or less, Al is 3.5% by atomic ratio to Zn (Al is atomic ratio to the total amount with Zn). 3.4%) The cathode provided with the doped zinc target was supplied with power from a DC power source to cause glow discharge, and the power was adjusted to 0.2 kW. Thereafter, the glass substrate was transported at a speed of 21.1 × 10 −3 m / s above the cathode to produce a zinc aluminum film having a film thickness of about 5 nm and doped with 3.5% Al at an atomic ratio to Zn. .

(第5層の成膜)
次に装置内に酸素ガスを導入し、真空度を0.26Pa以上0.8Pa以下に調整した後、Znとの合計量に対し原子比でAlが11.6%ドープされた亜鉛ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、酸素とZnを反応させて酸化亜鉛膜を作製できるようにし、電力を1kWに調節した。その後、カソード上方を6.7×10−3m/sの速度でガラス基体を搬送させ、膜厚10nmの、Znに対する原子比でAlが13.1%(Znとの合計量に対する原子比でAlが11.6%)ドープされた酸化亜鉛膜を作製した。
Znに対する原子比でAlが13.1%ドープされた酸化亜鉛膜の作製時における第四層金属膜の亜鉛アルミ膜が酸化された膜厚は約3〜5nmであった。
(Fifth layer deposition)
Next, after introducing oxygen gas into the apparatus and adjusting the degree of vacuum to 0.26 Pa or more and 0.8 Pa or less, a zinc target doped with 11.6% of Al by atomic ratio with respect to the total amount with Zn is provided. Electric power was supplied to the cathode from a DC power source to cause glow discharge, and oxygen and Zn were allowed to react to produce a zinc oxide film, and the power was adjusted to 1 kW. Thereafter, the glass substrate was transported at a speed of 6.7 × 10 −3 m / s above the cathode, and Al was 13.1% in atomic ratio with respect to Zn having a film thickness of 10 nm (atomic ratio with respect to the total amount with Zn). A zinc oxide film doped with 11.6% Al was prepared.
When the zinc oxide film doped with 13.1% Al by atomic ratio to Zn was produced, the film thickness of the oxidized fourth layer metal film of zinc aluminum film was about 3 to 5 nm.

(第6層の成膜)
次に装置内に酸素ガスを導入し、真空度を0.26Pa以上0.8Pa以下に調整した後、錫ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、酸素と錫を反応させて酸化錫膜を作製できるようにし、電力を1kWに調節した。その後、カソード上方を8.5×10−3m/sの速度でガラス基体を搬送させ、膜厚24.5nmの酸化錫膜を作製した。
(Film formation of the sixth layer)
Next, after introducing oxygen gas into the apparatus and adjusting the degree of vacuum to 0.26 Pa or more and 0.8 Pa or less, power is supplied from a DC power source to a cathode equipped with a tin target to cause glow discharge, And tin were allowed to react to produce a tin oxide film, and the power was adjusted to 1 kW. Thereafter, the glass substrate was transported at a speed of 8.5 × 10 −3 m / s above the cathode to produce a tin oxide film having a thickness of 24.5 nm.

形成した熱線反射積層体の膜構成を表1に示す。本実施例において、第1層の酸化錫(SnO)と第2層のAlドープ酸化亜鉛層を組み合わせたものが前記第一の酸化物膜に相当し、第5層のAlドープ酸化亜鉛層と第6層の酸化錫層を組み合わせたものが前記第二の酸化物膜に相当する。以下、第一の酸化物層、第二の酸化物層は同様に解釈される。 Table 1 shows the film configuration of the formed heat ray reflective laminate. In this embodiment, a combination of the first layer of tin oxide (SnO 2 ) and the second layer of Al-doped zinc oxide layer corresponds to the first oxide film, and the fifth layer of Al-doped zinc oxide layer. And the sixth tin oxide layer correspond to the second oxide film. Hereinafter, a 1st oxide layer and a 2nd oxide layer are interpreted similarly.

前記の熱線遮蔽積層体を形成したガラス基体と、同じ寸法で同じ厚みのガラス基体を用い、常法により図1に示す構成の低放射複層ガラスを製造した。ここで、前記低放射複層ガラスのガラス基体の間隔を12mmとし、その内部(図1中7の部分)には乾燥空気を充填した。前記低放射複層ガラスについて、以下の評価を行った。結果を表2に示す。   Using a glass substrate having the same dimensions and the same thickness as the glass substrate on which the heat ray shielding laminate was formed, a low radiation multilayer glass having the configuration shown in FIG. 1 was produced by a conventional method. Here, the interval between the glass substrates of the low emission multilayer glass was 12 mm, and the inside (portion 7 in FIG. 1) was filled with dry air. The following evaluation was performed about the said low radiation multilayer glass. The results are shown in Table 2.

(可視光反射率)
日立製作所製U−4000型分光光度計を使用して、実施例1の低放射複層ガラスの室外側面と室内側面の反射スペクトルを測定し、JIS R3106に基づいて可視光反射率(単位%)を算出した。
(Visible light reflectance)
Using a U-4000 type spectrophotometer manufactured by Hitachi, Ltd., the reflection spectrum of the outdoor side surface and the indoor side surface of the low radiation multilayer glass of Example 1 was measured, and the visible light reflectance (unit%) based on JIS R3106. Was calculated.

(色度)
日立製作所製U−4000型分光光度計を使用して、前記低放射複層ガラスの室外側面と室内側面の反射スペクトルを測定し、JIS Z8722に基づいて前記低放射複層ガラスのそれぞれの面についてのL表色系におけるaおよびbを算出した。
(Chromaticity)
Using a U-4000 type spectrophotometer manufactured by Hitachi, Ltd., the reflection spectrum of the outdoor side surface and the indoor side surface of the low radiation multilayer glass is measured, and each surface of the low radiation multilayer glass is measured based on JIS Z8722. The a * and b * values in the L * a * b * color system were calculated.

(可視光透過率)
日立製作所製U−4000型分光光度計を使用して、前記低放射複層ガラスの透過スペクトルを測定し、JIS R3106に基づいて前記低放射複層ガラスの可視光透過率(単位%)を算出した。
(Visible light transmittance)
Using a U-4000 spectrophotometer manufactured by Hitachi, Ltd., the transmission spectrum of the low emission multilayer glass is measured, and the visible light transmittance (unit%) of the low emission multilayer glass is calculated based on JIS R3106. did.

(紫外線透過率)
日立製作所製U−4000型分光光度計を使用して、前記低放射複層ガラスの透過スペクトルを測定し、ISO 9050:2003に基づいて前記低放射複層ガラスの紫外線透過率(単位%)を算出した。
(UV transmittance)
Using a U-4000 spectrophotometer manufactured by Hitachi, Ltd., the transmission spectrum of the low emission multilayer glass is measured, and the ultraviolet transmittance (unit%) of the low emission multilayer glass is measured based on ISO 9050: 2003. Calculated.

(遮蔽係数)
前記低放射複層ガラスについて、JIS R3106に基づいて遮蔽係数を測定した。ここで遮蔽係数とは、3mmの透明板ガラス(単板)の透過、及び再放射による室内流入熱量を1とした時の流入熱量を表す相対値であり、JIS R3106で規定される日射熱取得率との間には、遮蔽係数=日射熱取得率/0.88の関係がある。
(Shielding coefficient)
About the said low radiation multilayer glass, the shielding coefficient was measured based on JISR3106. Here, the shielding coefficient is a relative value representing the inflow heat amount when the inflow heat amount in the room due to the transmission and re-radiation of 3 mm transparent plate glass (single plate) is 1, and the solar heat gain rate defined in JIS R3106 There is a relation of shielding factor = solar heat acquisition rate / 0.88.

(耐久性)
実施例1の熱線反射積層体の耐久性を評価するため、前記熱線反射積層体を形成したガラス基体を、環境試験機(スガ製作所製)を用いて85℃、湿度95%の環境に48時間保持し、膜の劣化度合いを観察た。ここで劣化とは、銀層が凝集し、膜に白点が生じることをいう。白点を目視で判別した結果を表に示す。凝集数が2個/1cm以下であれば耐久性が良として○で示し、3個/1cm以上であれば耐久性が劣るとして×と表示した。
(durability)
In order to evaluate the durability of the heat ray reflective laminate of Example 1, the glass substrate on which the heat ray reflective laminate was formed was subjected to an environment of 85 ° C. and 95% humidity for 48 hours using an environmental tester (manufactured by Suga Seisakusho). The film was held and the degree of deterioration of the film was observed. Here, the deterioration means that the silver layer is aggregated and white spots are formed on the film. The results of visual discrimination of white spots are shown in the table. When the aggregation number was 2/1 cm 2 or less, the durability was indicated as “good”, and when it was 3/1 cm 2 or more, the durability was inferior.

各層の膜厚が異なる以外は実施例1と同様に、ガラス基体上に熱線反射積層体を形成した。各層の膜厚は放電電力を調整することにより変更した。膜構成は表1に記載の通りであった。また、実施例1と同様に、低放射複層ガラスを製造した。前記低放射複層ガラスについて実施例1と同様に評価した結果を表2に示す。   A heat ray reflective laminate was formed on a glass substrate in the same manner as in Example 1 except that the thickness of each layer was different. The film thickness of each layer was changed by adjusting the discharge power. The film configuration was as shown in Table 1. Moreover, the low radiation | emission multilayer glass was manufactured similarly to Example 1. FIG. Table 2 shows the evaluation results of the low emission multilayer glass in the same manner as in Example 1.

(実施例3〜6)
実施例2と同様に、膜構成の異なる低放射複層ガラスを製造し、評価した。膜構成は表1に記載の通りである。評価結果を表2に示す。
(Examples 3 to 6)
In the same manner as in Example 2, low-radiation multilayer glass having a different film configuration was produced and evaluated. The film structure is as shown in Table 1. The evaluation results are shown in Table 2.

(比較例1〜6)
膜構成が異なる以外は実施例1と同様に、ガラス基体上に熱線反射積層体を形成した。各層の厚みは放電電力を調整することにより変更した。膜構成は表1に記載の通りであった。また、実施例1と同様に、低放射複層ガラスを製造した。前記低放射複層ガラスについて実施例1と同様に評価した結果を表2に示す。
(Comparative Examples 1-6)
A heat ray reflective laminate was formed on a glass substrate in the same manner as in Example 1 except that the film configuration was different. The thickness of each layer was changed by adjusting the discharge power. The film configuration was as shown in Table 1. Moreover, the low radiation | emission multilayer glass was manufactured similarly to Example 1. FIG. Table 2 shows the evaluation results of the low emission multilayer glass in the same manner as in Example 1.

実施例1〜6においては、前記第一の酸化物膜に相当する部分と前記第二の酸化物膜に相当する部分の厚さを、それぞれ30nm以上40nm以下と30nm以上50nm以下の範囲にしたため、非膜面側の可視光反射率、特に視感度の最も高い550nmの反射率を低く抑えることができた。これにより、非膜面側の反射によるぎらつき感を抑え、中性反射色を実現することができた。   In Examples 1 to 6, the thickness corresponding to the first oxide film and the thickness corresponding to the second oxide film were in the range of 30 nm to 40 nm and 30 nm to 50 nm, respectively. The visible light reflectance on the non-film surface side, particularly the reflectance at 550 nm, which has the highest visibility, could be kept low. As a result, the glare caused by reflection on the non-film surface side was suppressed, and a neutral reflection color could be realized.

また、第3層のAg膜の厚さを8nm以上10nm以下の範囲にすることにより反射率を低減し、さらに第4層の金属膜の厚さを1nm以上8nm以下の範囲にすることによって遮蔽係数を0.57以下に抑えることができ、中性反射色と遮熱性能向上を同時に満たすことができた。   Further, the reflectance is reduced by setting the thickness of the Ag film of the third layer to be in the range of 8 nm to 10 nm, and further the shielding is achieved by setting the thickness of the metal film of the fourth layer to be in the range of 1 nm to 8 nm. The coefficient could be suppressed to 0.57 or less, and the neutral reflection color and the improvement of the heat shielding performance could be satisfied at the same time.

実施例2および5の結果から、金属膜として、Al含有量がZnに対する原子比で1%以上6%以下の範囲のZnAl合金膜を使用することで、紫外線透過率を低減できることがわかる。   From the results of Examples 2 and 5, it is understood that the ultraviolet transmittance can be reduced by using a ZnAl alloy film having an Al content in the range of 1% or more and 6% or less in terms of atomic ratio to Zn as the metal film.

一方、比較例1においては酸化物の膜厚が薄いため、また比較例3では酸化物の膜厚が厚いために、非膜面色調が中性色から外れて不快感を与える色合いとなった。   On the other hand, in Comparative Example 1, the oxide film was thin, and in Comparative Example 3, the film thickness of the oxide was thick. .

また、比較例2においては、Ag膜を厚く、金属膜を薄くしたが、遮蔽係数を効果的に低減することはできず、非膜面色調が中性色から外れることとなった。   In Comparative Example 2, although the Ag film was thick and the metal film was thin, the shielding coefficient could not be effectively reduced, and the non-film surface color tone deviated from the neutral color.

比較例4においては、Ag膜厚を薄くすることにより色調を中性色として不快感を低減することができたが、遮蔽係数が高くなった。   In Comparative Example 4, it was possible to reduce the discomfort by making the color tone neutral by reducing the Ag film thickness, but the shielding coefficient increased.

比較例5においては、Ag膜に接するようにAlドープ酸化亜鉛膜を作製していないために、耐久性が悪い結果となった。   In Comparative Example 5, since an Al-doped zinc oxide film was not produced so as to be in contact with the Ag film, the durability was poor.

比較例6においては、Ag層の上に酸化錫膜のみを成膜したために、耐久性が悪い結果となった。   In Comparative Example 6, because only the tin oxide film was formed on the Ag layer, the durability was poor.

本発明の低放射複層ガラスによれば、遮熱性能を維持しながら、高い可視光透過率を確保することが可能なため、好適に窓等の室内外境界に設置することができる。   According to the low radiation multilayer glass of the present invention, it is possible to ensure high visible light transmittance while maintaining the heat shielding performance, and therefore it can be suitably installed at the indoor / outdoor boundary such as a window.

本発明に係る複層ガラスの断面図Sectional view of the multilayer glass according to the present invention 実施例1に係るガラス板の断面図Sectional drawing of the glass plate which concerns on Example 1.

符号の説明Explanation of symbols

1 複層ガラス
2 ガラス板
3 第一の酸化物膜
4 Ag膜
5 金属膜
6 第二の酸化物膜
7 間隙

DESCRIPTION OF SYMBOLS 1 Multi-layer glass 2 Glass plate 3 1st oxide film 4 Ag film 5 Metal film 6 2nd oxide film 7 Gaps

Claims (9)

二枚のガラス板を対向配置した複層ガラスであって、前記二枚のガラス板のうち一方のガラス板の他方のガラス板に対向する表面には、第一の酸化物膜/Ag膜/金属膜/第二の酸化物膜をこの順に積層した熱線遮蔽積層体が形成され、前記第一の酸化物膜の膜厚は30nm以上40nm以下、前記第二の酸化物膜の膜厚は30nm以上50nm以下、前記Ag膜の厚さは8nm以上10nm以下、前記金属膜の厚さは1nm以上8nm以下であり、且つ前記第一の酸化物膜と第二の酸化物膜の膜厚比は0.9以上1.7以下であることを特徴とする低放射複層ガラス。   A multi-layer glass in which two glass plates are arranged opposite to each other, on the surface of the two glass plates facing the other glass plate, the first oxide film / Ag film / A heat ray shielding laminate is formed by laminating a metal film / second oxide film in this order, the first oxide film has a thickness of 30 nm to 40 nm, and the second oxide film has a thickness of 30 nm. 50 nm or less, the thickness of the Ag film is 8 nm or more and 10 nm or less, the thickness of the metal film is 1 nm or more and 8 nm or less, and the film thickness ratio of the first oxide film to the second oxide film is A low-emission multilayer glass characterized by being 0.9 or more and 1.7 or less. 請求項1に記載の低放射複層ガラスにおいて、前記複層ガラスを室内外境界に設置したときの室外側において、JIS R3106で規定する可視光反射率が8%以上25%以下であり、L表色系におけるaが−3.0以上0.0以下、bが−9.0以上0.0以下であり、遮蔽係数が0.57以下であることを特徴とする低放射複層ガラス。 The low emission multilayer glass according to claim 1, wherein the visible light reflectance defined by JIS R3106 is 8% or more and 25% or less on the outdoor side when the multilayer glass is installed at an indoor / outdoor boundary, * A * b * characterized in that a * in the color system is −3.0 to 0.0, b * is −9.0 to 0.0, and the shielding coefficient is 0.57 or less. Low emission multilayer glass. 請求項1または請求項2に記載の低放射複層ガラスにおいて、前記室内外境界に設置したときの室内側において、JIS R3106で規定する可視光反射率が8%以上15%以下であり、L表色系におけるaが−1.0以上5.0以下、bが−20.0以上0.0以下であることを特徴とする低放射複層ガラス。 The low radiation multilayer glass according to claim 1 or 2, wherein the visible light reflectance defined by JIS R3106 is 8% or more and 15% or less on the indoor side when installed at the indoor / outer boundary, * A * b * Low radiation multilayer glass characterized in that a * in the color system is -1.0 to 5.0 and b * is -20.0 to 0.0. 請求項1乃至請求項3のいずれかに記載の低放射複層ガラスにおいて、JIS R3106で規定する可視光透過率が50%以上75%以下であることを特徴とする低放射複層ガラス。   The low radiation multilayer glass according to any one of claims 1 to 3, wherein the visible light transmittance defined by JIS R3106 is 50% or more and 75% or less. 請求項1乃至請求項4のいずれかに記載の低放射複層ガラスにおいて、前記第一および第二の酸化物膜が、酸化錫膜とAlドープ酸化亜鉛膜との積層体であって、Alドープ酸化亜鉛膜が前記Ag膜側に配置され、かつ、酸化物膜の全膜厚に対するAlドープ酸化亜鉛膜厚の比率が10%より大きく40%以下であることを特徴とする低放射複層ガラス。   5. The low emission multilayer glass according to claim 1, wherein the first and second oxide films are a laminate of a tin oxide film and an Al-doped zinc oxide film, A low radiation multi-layer characterized in that a doped zinc oxide film is disposed on the Ag film side, and the ratio of the Al doped zinc oxide film thickness to the total film thickness of the oxide film is greater than 10% and not more than 40% Glass. 請求項1乃至請求項5のいずれかに記載の低放射複層ガラスにおいて、前記Alドープ酸化亜鉛膜のAl含有量は、Znに対する原子比で10%より大きく25%以下であることを特徴とする低放射複層ガラス。   The low emission multilayer glass according to any one of claims 1 to 5, wherein the Al content of the Al-doped zinc oxide film is greater than 10% and 25% or less in terms of atomic ratio to Zn. Low emission multilayer glass. 請求項6に記載のAlドープ酸化亜鉛膜のAl含有量は、Znに対する原子比で10%より大きく15%以下であることを特徴とする低放射複層ガラス。   The low radiation multilayer glass, wherein the Al content of the Al-doped zinc oxide film according to claim 6 is greater than 10% and 15% or less in terms of atomic ratio to Zn. 請求項1乃至請求項6のいずれかに記載の低放射複層ガラスにおいて、前記金属膜はTi膜、またはAl含有量がZnに対する原子比で1%以上25%以下であるZnAl合金膜であることを特徴とする低放射複層ガラス。   7. The low emission multilayer glass according to claim 1, wherein the metal film is a Ti film or a ZnAl alloy film having an Al content of 1% or more and 25% or less in terms of an atomic ratio with respect to Zn. A low-emission multilayer glass characterized by that. 請求項8に記載の合金金属膜組成はAl含有量がZnに対する原子比で1%以上6%以下であることを特徴とする低放射複層ガラス。   The alloy metal film composition according to claim 8, wherein the Al content is 1% or more and 6% or less in terms of atomic ratio to Zn.
JP2006016048A 2005-09-06 2006-01-25 Low-radiation double glazing Pending JP2007197237A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006016048A JP2007197237A (en) 2006-01-25 2006-01-25 Low-radiation double glazing
PCT/JP2006/316464 WO2007029494A1 (en) 2005-09-06 2006-08-23 Low-radiation double glazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016048A JP2007197237A (en) 2006-01-25 2006-01-25 Low-radiation double glazing

Publications (1)

Publication Number Publication Date
JP2007197237A true JP2007197237A (en) 2007-08-09

Family

ID=38452208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016048A Pending JP2007197237A (en) 2005-09-06 2006-01-25 Low-radiation double glazing

Country Status (1)

Country Link
JP (1) JP2007197237A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063500A (en) * 2009-08-17 2011-03-31 Central Glass Co Ltd Heat ray shielding laminated film
JP2011173764A (en) * 2010-02-25 2011-09-08 Central Glass Co Ltd Low radiation film
JP2017081787A (en) * 2015-10-29 2017-05-18 セントラル硝子株式会社 Multiple glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182192A (en) * 1996-12-25 1998-07-07 Central Glass Co Ltd Heat insulating glass
JPH1134216A (en) * 1997-05-21 1999-02-09 Asahi Glass Co Ltd Laminate and glass laminate for window
JPH11157881A (en) * 1997-09-18 1999-06-15 Central Glass Co Ltd Low radiation glass-laminated body
JP2000044290A (en) * 1998-07-31 2000-02-15 Central Glass Co Ltd Low pressure double layer glass and its production
JP2006159580A (en) * 2004-12-06 2006-06-22 Nippon Sheet Glass Co Ltd Heat ray blocking laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182192A (en) * 1996-12-25 1998-07-07 Central Glass Co Ltd Heat insulating glass
JPH1134216A (en) * 1997-05-21 1999-02-09 Asahi Glass Co Ltd Laminate and glass laminate for window
JPH11157881A (en) * 1997-09-18 1999-06-15 Central Glass Co Ltd Low radiation glass-laminated body
JP2000044290A (en) * 1998-07-31 2000-02-15 Central Glass Co Ltd Low pressure double layer glass and its production
JP2006159580A (en) * 2004-12-06 2006-06-22 Nippon Sheet Glass Co Ltd Heat ray blocking laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063500A (en) * 2009-08-17 2011-03-31 Central Glass Co Ltd Heat ray shielding laminated film
JP2011173764A (en) * 2010-02-25 2011-09-08 Central Glass Co Ltd Low radiation film
JP2017081787A (en) * 2015-10-29 2017-05-18 セントラル硝子株式会社 Multiple glass

Similar Documents

Publication Publication Date Title
JP4763569B2 (en) High-infrared reflective coating, thin film coating deposition method and related technology
JP6970754B2 (en) Low emissivity coating for glass substrates
EP2611750B1 (en) Temperable three layer antireflective coating, coated article including temperable three layer antireflective coating, and/or method of making the same
JP4739470B2 (en) Glazing assembly comprising a substrate with a thin stack
US8728634B2 (en) Appliance transparency
EP1861339B1 (en) Coating composition with solar properties
US20070236798A1 (en) Antireflective coating and substrates coated therewith
JPH07149545A (en) Transparent base material provided with thin film laminate acting to sunlight and/or infrared ray
RU2747376C2 (en) Substrate equipped with a set having thermal properties, its application and its manufacture
JP2011520755A (en) Glazing provided with a laminate consisting of multiple thin layers
KR101768257B1 (en) Low-emissivity coat and building material for window including the same
US10000965B2 (en) Insulating glass unit transparent conductive coating technology
JP2007070146A (en) Low emissive multilayered glass
WO2012115111A1 (en) Laminate
CN112194383A (en) Low-emissivity glass and preparation method thereof
JPH11228185A (en) Solar radiation shielding transparent plate and solar radiation shielding laminated transparent plate using same
CN109716180B (en) Solar radiation shielding member
WO2014109368A1 (en) Optical multilayer film, laminated body, and double-glazed glass
JP4013329B2 (en) Laminate and glass laminate for window
EP1044934A2 (en) Solar-shading light-transmissive panel and solar-shading multi-layer light-tranmissive panel using same
JP2004058592A (en) Laminated body and structural body
JP6024369B2 (en) Glass laminate for windows
JPH08104547A (en) Heat insulating glass
JP6601419B2 (en) Glass plate with laminated film and multilayer glass
JP6703267B2 (en) Gray tone low emissivity glass

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20080214

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD05 Notification of revocation of power of attorney

Effective date: 20080411

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A131 Notification of reasons for refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417