JP2007070146A - Low emissive multilayered glass - Google Patents

Low emissive multilayered glass Download PDF

Info

Publication number
JP2007070146A
JP2007070146A JP2005257440A JP2005257440A JP2007070146A JP 2007070146 A JP2007070146 A JP 2007070146A JP 2005257440 A JP2005257440 A JP 2005257440A JP 2005257440 A JP2005257440 A JP 2005257440A JP 2007070146 A JP2007070146 A JP 2007070146A
Authority
JP
Japan
Prior art keywords
film
oxide film
multilayer glass
low
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005257440A
Other languages
Japanese (ja)
Inventor
Hirotada Wada
大正 和田
Etsuo Ogino
悦男 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2005257440A priority Critical patent/JP2007070146A/en
Priority to PCT/JP2006/316464 priority patent/WO2007029494A1/en
Publication of JP2007070146A publication Critical patent/JP2007070146A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayered glass which develops a high visible light transmittance while maintaining heat-shielding performance that is a characteristic of a Low-E film. <P>SOLUTION: The multilayered glass comprises laminating a first oxide film/an Ag film/a metal film/a second oxide film in this order on one surface of two glass plates facing each other. Wherein the first oxide film thickness is 30-40 nm, the Ag film thickness is 8-10 nm, the metal film thickness is 1-8 nm, and the second oxide film thickness is 30-40 nm. When the multilayered glass is installed at a border between the interior and the exterior of a chamber, the visible light reflectance defined by JIS R 3106 at the exterior side of the chamber is 8-25%, the reflected color tone gives a nearly neutral color having a<SP>*</SP>of -3.0 to 0.0 and b<SP>*</SP>of 0.0 to -9.0 in the L<SP>*</SP>a<SP>*</SP>b<SP>*</SP>color system, and the shielding coefficient is 0.57 or smaller. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱線遮蔽積層膜を有する低放射(Low Emission)複層ガラスに関する。   The present invention relates to a low emission multilayer glass having a heat ray shielding laminated film.

熱線遮蔽積層体(以下Low−E膜とも称する)は、熱線(赤外光)を反射する機能を有することから、夏季の冷房負荷や冬期の暖房負荷の緩和を目的として、住宅やビルなどの建築用ガラスの表面に形成されてきた。   The heat ray shielding laminate (hereinafter also referred to as “Low-E film”) has a function of reflecting heat rays (infrared light). Therefore, for the purpose of alleviating the cooling load in summer and the heating load in winter, It has been formed on the surface of architectural glass.

Low−E膜は、ガラス等の基体上に酸化亜鉛(ZnO)膜/銀(Ag)等を主成分とする貴金属膜/酸化亜鉛膜をこの順に積層した膜構成を有する積層体である。このうち、銀等を主成分とする貴金属膜は耐湿性、耐酸性などの化学耐久性が劣悪であり、酸化亜鉛膜被覆によっても十分な改善がなされないという問題があった。そこで、貴金属膜と外気を遮断するため、積層膜は複層ガラスの内側、すなわち、2枚のガラスによって形成される間隙側に配置されていた。しかし、この手段では単板時の取り扱い時や保存期間中の耐久性については解決されず、依然として問題は残されている。   The Low-E film is a laminate having a film configuration in which a zinc oxide (ZnO) film / a noble metal film mainly composed of silver (Ag) / zinc oxide film is laminated in this order on a substrate such as glass. Among these, noble metal films mainly composed of silver or the like have poor chemical durability such as moisture resistance and acid resistance, and there is a problem that sufficient improvement cannot be achieved even by coating with a zinc oxide film. Therefore, in order to shut off the noble metal film and the outside air, the laminated film is disposed inside the double-glazed glass, that is, on the gap side formed by two pieces of glass. However, this means does not solve the durability at the time of handling a single plate or during storage, and a problem still remains.

上記問題を解決するため、たとえば特許文献1では、銀層の直下層に酸化亜鉛層を、銀層の直上層には亜鉛または亜鉛を主成分とした保護金属層をそれぞれ成膜している。
特開平11−157881号公報
In order to solve the above problem, for example, in Patent Document 1, a zinc oxide layer is formed immediately below the silver layer, and a protective metal layer mainly composed of zinc or zinc is formed directly above the silver layer.
Japanese Patent Laid-Open No. 11-157881

しかしながら、Low−E膜には、その他の問題点も存在している。即ち、前記したようにLow−E膜は通常複層ガラスの状態で用いられているが、Low−E膜を使用しない複層ガラスと比較して反射率が高い。したがって複層ガラスに特有の反射像が二重となる現象が、Low−E膜を使用しない複層ガラスと比較してより強く現れ、これが利用者に不快感を与えている。   However, there are other problems with the Low-E film. That is, as described above, the Low-E film is usually used in the state of a double-glazed glass, but has a higher reflectance than the double-glazed glass not using the Low-E film. Therefore, the phenomenon that the reflection image peculiar to the multilayer glass is double appears more strongly than the multilayer glass not using the Low-E film, which gives the user unpleasant feeling.

二重反射像がより強く現れる原因は、Low−E膜が反射率の高い銀膜を有するためである。銀膜が厚くなると反射率が高くなり、さらに、反射色が赤みを帯びるようになる。このように、遮熱性能をより高くするためには銀膜を厚くしなければならず、厚くすると二重反射像がより強く現れるという矛盾がある。   The reason why the double reflection image appears stronger is that the Low-E film has a silver film having a high reflectance. The thicker the silver film, the higher the reflectance, and the reflected color becomes reddish. Thus, there is a contradiction that the silver film has to be thickened in order to further improve the heat shielding performance, and that a double reflection image appears stronger when the silver film is thickened.

上記課題を解決するため本発明は、2枚のガラス板を対向配置した複層ガラスであって、前記2枚のガラス板のうちの一方のガラス板の他方のガラス板に対向する表面には、第1の酸化物膜/Ag膜/金属膜/第2の酸化物膜をこの順に積層した薄膜構造体が形成され、前記第1の酸化物膜と第2の酸化物膜の膜厚比は1.0〜1.3でいずれの酸化物膜もその厚さが30〜40nmで、前記Ag膜の厚さが8〜10nm、金属膜の厚さが1〜8nmである構成とした。   In order to solve the above-mentioned problem, the present invention is a multi-layer glass in which two glass plates are arranged opposite to each other, and on the surface of one of the two glass plates facing the other glass plate, A thin film structure in which the first oxide film / Ag film / metal film / second oxide film are laminated in this order is formed, and the film thickness ratio of the first oxide film to the second oxide film 1.0 to 1.3, and each oxide film has a thickness of 30 to 40 nm, the Ag film has a thickness of 8 to 10 nm, and the metal film has a thickness of 1 to 8 nm.

第1の酸化物膜と第2の酸化物膜の膜厚比を上記のようにほぼ等しくすることで、外観だけでなく内観においても視感度の最も大きい波長550nm付近の反射率を低減でき、反射色を中性にすることができる。   By making the film thickness ratio of the first oxide film and the second oxide film substantially equal to each other as described above, it is possible to reduce the reflectance near the wavelength of 550 nm, which has the highest visual sensitivity not only in appearance but also in interior, The reflected color can be neutral.

また、本発明に係る複層ガラスは、室内外境界に設置したときの室外側において、JIS R 3106で規定する可視光反射率が8〜25%であり、L表色系におけるaが−3.0〜0.0、bが0.0〜−9.0であるほぼ中性色の反射色調を呈し、かつ、遮蔽係数が0.57以下とすることができる。 In addition, the double-glazed glass according to the present invention has a visible light reflectance of 8 to 25% defined by JIS R 3106 at the outdoor side when installed at the indoor / outdoor boundary, and the L * a * b * color system In this case, the reflection color tone is almost neutral with a * of −3.0 to 0.0 and b * of 0.0 to −9.0, and the shielding coefficient can be 0.57 or less. .

また、本発明に係る複層ガラスは、室内外境界に設置したときの室外側において、JIS R 3106で規定する可視光反射率が8〜15%であり、L表色系におけるaが−1.0〜5.0、bが0.0〜−20.0とすることができる。また、JIS R 3106で規定する可視光透過率が50〜75%であることも望ましい。 In addition, the double-glazed glass according to the present invention has a visible light reflectance defined by JIS R 3106 of 8 to 15% on the outdoor side when installed at the indoor / outdoor boundary, and the L * a * b * color system A * may be -1.0 to 5.0 and b * may be 0.0 to -20.0. It is also desirable that the visible light transmittance specified by JIS R 3106 is 50 to 75%.

また、前記第1および第2の酸化物膜が、酸化錫膜とAlドープ酸化亜鉛膜との積層体であって、Alドープ酸化亜鉛膜が前記Ag膜側に配置され、かつ、酸化物膜の全膜厚に対するAlドープ酸化亜鉛膜厚の比率が10〜40%であることが好ましい。   The first and second oxide films are a laminate of a tin oxide film and an Al-doped zinc oxide film, the Al-doped zinc oxide film is disposed on the Ag film side, and the oxide film The ratio of the Al-doped zinc oxide film thickness to the total film thickness is preferably 10 to 40%.

前記Alドープ酸化亜鉛膜に含有されるAl量は、Znに対する原子量比率が10〜25%であることが好ましく、前記金属膜はTi膜、または、Al含有量がZnに対する原子量比率で1〜25%であるZnAl合金膜であることも好ましい。また、ZnAl合金膜のAl含有量はさらに好ましくはZnに対する原子量比率で1〜6%である。   The amount of Al contained in the Al-doped zinc oxide film is preferably 10 to 25% in atomic weight ratio to Zn, and the metal film is a Ti film, or the Al content is 1 to 25 in atomic weight ratio with respect to Zn. % ZnAl alloy film is also preferable. Further, the Al content of the ZnAl alloy film is more preferably 1 to 6% in terms of atomic weight ratio with respect to Zn.

本発明によれば、Low−E膜として、ほぼ同じ厚さの第1の酸化物膜と第2の酸化物膜との間に、薄いAg膜と少し厚めの金属膜を配置したことにより、可視光反射率を低減し、ぎらつきを抑え、好ましい中間色の複層ガラスとすることができる。しかも、熱遮蔽機能も十分に保持することができる。   According to the present invention, as the Low-E film, the thin Ag film and the slightly thick metal film are disposed between the first oxide film and the second oxide film having substantially the same thickness. Visible light reflectance is reduced, glare is suppressed, and a preferable multilayer glass having a neutral color can be obtained. Moreover, the heat shielding function can be sufficiently retained.

また、金属膜として、Al含有量がZnに対する原子量比率で10〜25%含まれる材料を使用すれば、放電安定性を従来製品よりも一層向上させることができる。   Moreover, if a material containing 10 to 25% of the Al content in terms of atomic weight ratio to Zn is used as the metal film, the discharge stability can be further improved as compared with the conventional product.

以下に本発明の好適な実施例を添付図面に基づいて説明する。図1は本発明に係る複層ガラスの断面図であり、複層ガラス1は、対向する一方のガラス板2の表面に、第1の酸化物膜3、Ag膜4、金属膜5および第2の酸化物膜6をこの順に積層し、間隙7を介して2枚組合せたものである。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a multilayer glass according to the present invention. The multilayer glass 1 has a first oxide film 3, an Ag film 4, a metal film 5, and a first film on the surface of one opposing glass plate 2. Two oxide films 6 are laminated in this order, and two oxide films 6 are combined through a gap 7.

これらガラス板2は、通常の窓ガラス等に使用する強化ガラスや平板ガラスを使用することができ、その厚さにも制限はないが、例えば4mm、6mm、8mmのものを使用することができる。   These glass plates 2 can use tempered glass or flat glass used for ordinary window glass and the like, and the thickness thereof is not limited. For example, glass plates of 4 mm, 6 mm, and 8 mm can be used. .

ガラス板2の上に形成する第1の酸化物膜3、および、最外層として形成する第2の酸化物膜6の材料としては、酸化錫膜、酸化亜鉛膜等を使用することができるが、酸化錫膜/Alドープ酸化亜鉛膜の積層体を採用することが、酸化錫膜を最下層及び最上層に形成することで、酸化錫膜の緻密性より、耐湿性、化学耐久性の点で好ましく、さらには、Alドープ酸化亜鉛膜がAg膜4側に配置され、かつ、酸化物膜の全膜厚に対するAlドープ酸化亜鉛膜厚の比率を10〜40%とすることが、Agの結晶性を低減させず、酸化錫膜による耐久性向上を維持することができる点で好ましい。また、Alドープ酸化亜鉛膜に含有されるAl量は、Znに対する原子量比率で10〜25%とすることが、酸化亜鉛膜の光学特性を維持しながら、耐久性が悪くなる原因である膜の応力を効果的に低減できる点で望ましい。   As materials for the first oxide film 3 formed on the glass plate 2 and the second oxide film 6 formed as the outermost layer, a tin oxide film, a zinc oxide film, or the like can be used. By adopting a stack of tin oxide film / Al-doped zinc oxide film, the tin oxide film is formed in the lowermost layer and the uppermost layer. Preferably, the Al-doped zinc oxide film is disposed on the Ag film 4 side, and the ratio of the Al-doped zinc oxide film thickness to the total film thickness of the oxide film is 10 to 40%. This is preferable in that the improvement in durability by the tin oxide film can be maintained without reducing the crystallinity. In addition, the Al content in the Al-doped zinc oxide film is 10 to 25% in terms of atomic weight ratio with respect to Zn, while maintaining the optical characteristics of the zinc oxide film, the durability of the film is deteriorated. It is desirable in that stress can be effectively reduced.

第1の酸化物膜3および第2の酸化物膜6の厚さは30〜40nmが、低反射・中性色という点で好ましい。また、第1の酸化物膜3の厚みを1としたとき、第2の酸化物膜6の厚みは1.0から1.3の範囲に設定すること、すなわち両膜の厚さをほぼ等しくするが好ましい。第1の酸化物膜3および第2の酸化物膜6の厚さをほぼ同じとすることで、外気側からの視感度だけでなく、室内側から見た際の好感度を阻害する550nm付近の波長を有する可視光線の反射率をより効率的に低減し、反射色調を中性色にすることができる。同時に、JIS R 3106に規定する可視光透過率を高くする効果も期待できる。なお、本発明において中性色とは、色相、彩度および明度がほぼ中間的、すなわち、中間的な明るさ、濁度のグレーをいう。   The thicknesses of the first oxide film 3 and the second oxide film 6 are preferably 30 to 40 nm from the viewpoint of low reflection and neutral color. When the thickness of the first oxide film 3 is 1, the thickness of the second oxide film 6 is set in the range of 1.0 to 1.3, that is, the thicknesses of both films are substantially equal. It is preferable. By making the thicknesses of the first oxide film 3 and the second oxide film 6 substantially the same, not only the visibility from the outside air side, but also the vicinity of 550 nm which inhibits the favorable sensitivity when viewed from the indoor side It is possible to more efficiently reduce the reflectance of visible light having a wavelength of 1, and to make the reflection color tone neutral. At the same time, the effect of increasing the visible light transmittance defined in JIS R 3106 can be expected. In the present invention, the neutral color means gray having a hue, saturation and lightness that are substantially intermediate, that is, intermediate brightness and turbidity.

本発明に係るAg膜4の厚さは8〜10nmであり、従来のLowE膜に使用するAg膜よりも薄くしてある。Ag膜4をこの範囲に設計することで、赤みのある好ましくない光の反射率を低く抑えながら赤外光は反射させることができる。   The thickness of the Ag film 4 according to the present invention is 8 to 10 nm, which is thinner than the Ag film used for the conventional LowE film. By designing the Ag film 4 in this range, it is possible to reflect infrared light while suppressing the reflectance of undesirable red light.

金属膜5としては、各種金属膜を使用することができるが、特に、Ti膜、または、Al含有量がZnに対する原子量比率で1〜25%であるZnAl合金膜を使用することが好ましい。金属膜5の酸化されずに金属として膜構成中に存在する膜厚は1〜8nmであり、従来のLow−E膜に使用する金属膜よりも厚くしてある。金属膜5をこの範囲の厚さで配置すれば、十分に日射吸収を行うことができるため、反射率を上げずに遮熱性能を向上し、遮熱係数を0.57以下とすることができる。   Various metal films can be used as the metal film 5, and it is particularly preferable to use a Ti film or a ZnAl alloy film having an Al content of 1 to 25% in terms of atomic weight ratio to Zn. The film thickness of the metal film 5 existing in the film structure as a metal without being oxidized is 1 to 8 nm, which is thicker than the metal film used for the conventional Low-E film. If the metal film 5 is arranged in a thickness within this range, it is possible to sufficiently absorb solar radiation, so that the heat shielding performance can be improved without increasing the reflectance, and the heat shielding coefficient can be 0.57 or less. it can.

本発明の複層ガラス1を室内外境界に設置したとき、室外側においてはJIS R 3106で規定する可視光反射率は8〜25%の範囲に収めることができる。また、L表色系におけるaを−3.0〜0.0、bを0.0〜−9.0の範囲とすることも可能となりほぼ中性色の反射色調を呈することができる。 When the multilayer glass 1 of the present invention is installed at the indoor / outdoor boundary, the visible light reflectance defined by JIS R 3106 can be within the range of 8 to 25% on the outdoor side. Further, L * a * b * near neutral color of the reflection color tone becomes possible to a * a -3.0~0.0, b * the range of 0.0 - 9.0 in the color system Can be presented.

また、室内側においても、可視光反射率を8〜15%の範囲に収めることでき、L表色系におけるaを−1.0〜5.0、bを−8.0〜−20.0の範囲とすることが可能となる。さらに、本発明のLowE複層ガラスの構成をとれば、JIS R 3106に規定する可視光透過率を50〜75%の範囲とすることができ、高い可視光透過率を確保することができる。 Further, even in the indoor side, can accommodate the visible light reflectance in the range of 8~15%, L * a * b * -1.0~5.0 the a * in the colorimetric system, b * -8 It becomes possible to set it as the range of 0.0--20.0. Furthermore, if the structure of the LowE multilayer glass of this invention is taken, the visible light transmittance prescribed | regulated to JISR3106 can be made into the range of 50 to 75%, and a high visible light transmittance can be ensured.

以下に具体的な実施例および比較例にもとづいて本発明を詳細に説明する。
実施例1〜3および比較例1〜4
(実施例1)
洗浄した厚さ3mmのガラス基体をスパッタリング成膜装置内に設置し、真空度が5×10−4Pa以下になるまで排気を行った。装置内に酸素ガスを導入し、真空度を0.26〜0.8Paに調整した後、錫ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、酸素とSnを反応させて酸化錫膜を作製できるようにし、電力を0.9kwに調節した。その後、カソード上方を10.3×10−3m/sの速度でガラス基体を搬送させ、膜厚32.2nmの酸化錫膜を作製した。
次に装置内に酸素ガスを導入し、真空度を0.26〜0.8Paに調整した後、Znとの合計量に対し原子比でAlが12%ドープされた亜鉛ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、酸素と亜鉛を反応させて酸化亜鉛膜を作製できるようにし、電力を1kwに調節した。その後、カソード上方を10.4×10−3m/sの速度でガラス基体を搬送させ、膜厚4.5nmの、Znとの合計量に対し原子比でAlが12%ドープされた酸化亜鉛膜を作製した。
次に装置内にアルゴンガスを導入し、真空度を0.26〜0.8Paに調整した後、銀ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、電力を0.25Akwに調節した。その後、カソード上方を16.5×10−3m/sの速度でガラス基体を搬送させ、膜厚9.6nmの銀膜を作製した。
次に装置内にアルゴンガスを導入し、真空度を0.26〜0.8Paに調整した後、Znとの合計量に対し原子比でAlが3.1%ドープされた亜鉛ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、電力を0.2kwに調節した。その後、カソード上方を21.1×10−3m/sの速度でガラス基体を搬送させ、膜厚約5nmの、Znとの合計量に対し原子比でAlが3.1%ドープされた亜鉛アルミ膜を作製した。
次に装置内に酸素ガスを導入し、真空度を0.26〜0.8Paに調整した後、Znとの合計量に対し原子比でAlが12%ドープされた亜鉛ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、酸素とZnを反応させて酸化亜鉛膜を作製できるようにし、電力を1kwに調節した。その後、カソード上方を6.7×10−3m/sの速度でガラス基体を搬送させ、膜厚10nmの、Znとの合計量に対し原子比でAlが12%ドープされた酸化亜鉛膜を作製した。
Znとの合計量に対し原子比でAlが12%ドープされた酸化亜鉛膜の作製時における第4層金属膜の亜鉛アルミ膜が酸化された膜厚は約3〜5nmであった。
次に装置内に酸素ガスを導入し、真空度を0.26〜0.8Paに調整した後、
錫ターゲットが備えられたカソードに直流電源より電力を供給してグロー放電を生じさせ、酸素と錫を反応させて酸化錫膜を作製できるようにし、電力を1kwに調節した。その後、カソード上方を8.5×10−3m/sの速度でガラス基体を搬送させ、膜厚24.5nmの酸化錫膜を作製した。
Hereinafter, the present invention will be described in detail based on specific examples and comparative examples.
Examples 1-3 and Comparative Examples 1-4
(Example 1)
The cleaned glass substrate having a thickness of 3 mm was placed in a sputtering film forming apparatus, and evacuation was performed until the degree of vacuum was 5 × 10 −4 Pa or less. After introducing oxygen gas into the device and adjusting the degree of vacuum to 0.26 to 0.8 Pa, a glow discharge is generated by supplying power from a direct current power source to a cathode equipped with a tin target, and oxygen and Sn are supplied. The reaction was allowed to produce a tin oxide film, and the power was adjusted to 0.9 kW. Thereafter, the glass substrate was conveyed above the cathode at a speed of 10.3 × 10 −3 m / s to produce a tin oxide film having a thickness of 32.2 nm.
Next, after introducing oxygen gas into the apparatus and adjusting the degree of vacuum to 0.26 to 0.8 Pa, a cathode provided with a zinc target doped with 12% Al by atomic ratio with respect to the total amount with Zn Electric power was supplied from a DC power source to cause glow discharge, and oxygen and zinc were allowed to react to produce a zinc oxide film, and the power was adjusted to 1 kW. Thereafter, the glass substrate was conveyed at a speed of 10.4 × 10 −3 m / s above the cathode, and zinc oxide having a film thickness of 4.5 nm and doped with 12% Al by atomic ratio with respect to the total amount of Zn. A membrane was prepared.
Next, after introducing argon gas into the apparatus and adjusting the degree of vacuum to 0.26 to 0.8 Pa, power is supplied from a DC power source to the cathode equipped with the silver target to cause glow discharge, Adjusted to 0.25 Akw. Thereafter, the glass substrate was transported at a speed of 16.5 × 10 −3 m / s above the cathode to produce a 9.6 nm-thick silver film.
Next, after introducing argon gas into the apparatus and adjusting the degree of vacuum to 0.26 to 0.8 Pa, a zinc target doped with 3.1% Al by atomic ratio with respect to the total amount with Zn is provided. The cathode was supplied with electric power from a DC power source to cause glow discharge, and the electric power was adjusted to 0.2 kW. Thereafter, the glass substrate was transported at a speed of 21.1 × 10 −3 m / s above the cathode, and zinc having a film thickness of about 5 nm and doped with 3.1% Al by atomic ratio with respect to the total amount of Zn. An aluminum film was produced.
Next, after introducing oxygen gas into the apparatus and adjusting the degree of vacuum to 0.26 to 0.8 Pa, a cathode provided with a zinc target doped with 12% Al by atomic ratio with respect to the total amount with Zn Electric power was supplied from a direct current power source to cause glow discharge, and oxygen and Zn were allowed to react to produce a zinc oxide film, and the power was adjusted to 1 kW. Thereafter, the glass substrate is conveyed at a speed of 6.7 × 10 −3 m / s above the cathode, and a zinc oxide film having a film thickness of 10 nm and doped with 12% Al by atomic ratio with respect to the total amount of Zn is formed. Produced.
When the zinc oxide film doped with 12% Al by atomic ratio with respect to the total amount with Zn was produced, the thickness of the oxidized fourth layer metal film of zinc aluminum film was about 3 to 5 nm.
Next, after introducing oxygen gas into the apparatus and adjusting the degree of vacuum to 0.26 to 0.8 Pa,
Electric power was supplied from a direct current power source to a cathode equipped with a tin target to cause glow discharge, and oxygen and tin were allowed to react to produce a tin oxide film, and the power was adjusted to 1 kW. Thereafter, the glass substrate was transported at a speed of 8.5 × 10 −3 m / s above the cathode to produce a tin oxide film having a thickness of 24.5 nm.

実施例2,3及び比較例1〜4についても同様に各膜を形成した。なお、本例において、第1の酸化物膜と第2の酸化物膜については、それぞれ酸化錫層とAlドープ酸化亜鉛層の2層を組合わせた。したがって、表1に記載の1層目と2層目を併せたものが第1の酸化物膜に該当し、5層目と6層目を併せたものが第2の酸化物膜に該当する。   Each film was similarly formed in Examples 2 and 3 and Comparative Examples 1 to 4. In this example, for the first oxide film and the second oxide film, two layers of a tin oxide layer and an Al-doped zinc oxide layer were combined. Therefore, the combination of the first and second layers described in Table 1 corresponds to the first oxide film, and the combination of the fifth and sixth layers corresponds to the second oxide film. .

〔評価項目〕
(1)非膜面(ガラス面がそのまま露出した面)と膜面(各層を載せた面)の可視光反射率(%)をJIS R 3106にもとづいて、また、L表色系におけるaおよびbをJIS Z 8722にもとづいて、いずれも日立製作所製U−4000型分光光度計を使用して測定し、aおよびbについては、JIS Z 8729に準じて算出した。
(2)可視光透過率は、本例で作成したLow−E膜を形成した複層ガラスを製造し、JIS R 3106にもとづいて測定した。
(3)上記複層ガラスについて、JIS R 3106にもとづいて遮蔽係数を測定した。
前記遮蔽係数とは、3mmの透明板ガラス(単板)の透過、及び再放射による室内流入熱量を1とした時の流入熱量を表す相対値であり、JIS R 3106で規格される日射熱取得率との間には、遮蔽係数=日射熱取得率/0.88の関係がある。
これらの結果を表1に示す。
〔Evaluation item〕
(1) The visible light reflectance (%) of the non-film surface (surface where the glass surface is exposed as it is) and the film surface (surface on which each layer is placed) is based on JIS R 3106, and L * a * b * table Both a * and b * in the color system are measured using a U-4000 spectrophotometer manufactured by Hitachi, based on JIS Z 8722, and a * and b * are calculated according to JIS Z 8729. did.
(2) Visible light transmittance was measured based on JIS R 3106 by producing a double-layer glass having a Low-E film prepared in this example.
(3) About the said multilayer glass, the shielding coefficient was measured based on JISR3106.
The shielding coefficient is a relative value representing the inflow heat amount when the inflow heat amount in the room due to the transmission and re-radiation of 3 mm transparent plate glass (single plate) is 1, and the solar heat acquisition rate specified in JIS R 3106 There is a relation of shielding factor = solar heat acquisition rate / 0.88.
These results are shown in Table 1.

実施例1および2では、第1の酸化物膜と第2の酸化物膜の厚さを、それぞれ30〜40nmの範囲に設計したため、非膜面側の可視光反射率、特に視感度の最も高い550nmの反射率を低く抑えることができた。これにより、非膜面側の反射によるぎらつき感を抑え、中性反射色を実現することができた。   In Examples 1 and 2, since the thicknesses of the first oxide film and the second oxide film were each designed in the range of 30 to 40 nm, the visible light reflectance on the non-film surface side, in particular, the highest visual sensitivity. The high reflectivity at 550 nm could be kept low. As a result, the glare caused by reflection on the non-film surface side was suppressed, and a neutral reflection color could be realized.

また、Ag膜である第3層を8〜10nmとすることで、反射率を低減し、さらに、金属膜である第4層の膜厚を1〜10nmとすることで遮蔽係数を0.57以下に抑えることができ、中性反射色と遮熱性能向上を同時に満たすことが可能となった。   Further, the reflectance is reduced by setting the third layer, which is an Ag film, to 8 to 10 nm, and the shielding coefficient is set to 0.57 by setting the thickness of the fourth layer, which is a metal film, to 1 to 10 nm. As a result, the neutral reflection color and the heat shielding performance can be improved at the same time.

一方、比較例1では、酸化物の膜厚が薄く、また、比較例3では厚いため、非膜面色調が中性色から外れ、不快感を与える色合いとなった。   On the other hand, in Comparative Example 1, the film thickness of the oxide was thin, and in Comparative Example 3, the non-film surface color tone deviated from the neutral color, resulting in an unpleasant hue.

また、比較例2では、Ag膜を厚く、金属膜を薄くしたが、遮蔽係数を効果的に低減することはできず、非膜面色調が中性色から外れることとなった。   In Comparative Example 2, although the Ag film was thick and the metal film was thin, the shielding coefficient could not be effectively reduced, and the non-film surface color tone deviated from the neutral color.

また比較例4では、Ag膜厚を薄くすることで、色調を中性色とし、不快感を低減させたが、遮蔽係数が高くなった。   In Comparative Example 4, by reducing the Ag film thickness, the color tone was neutral and the discomfort was reduced, but the shielding coefficient increased.

本発明の複層ガラスは、遮熱性能を維持しながら、高い可視光透過率を確保することが可能なため、好適に窓等の室内外境界に設置することができる。   Since the double-glazed glass of the present invention can ensure high visible light transmittance while maintaining heat shielding performance, it can be suitably installed at the indoor / outdoor boundary such as a window.

本発明に係る複層ガラスの断面図Sectional view of the multilayer glass according to the present invention

符号の説明Explanation of symbols

1…複層ガラス、2…ガラス板、3…第1の酸化物膜、4…Ag膜、5…金属膜、6…第2の酸化物膜、7…間隙。   DESCRIPTION OF SYMBOLS 1 ... Multi-layer glass, 2 ... Glass plate, 3 ... 1st oxide film, 4 ... Ag film, 5 ... Metal film, 6 ... 2nd oxide film, 7 ... Gap | interval.

Claims (7)

2枚のガラス板を対向配置した複層ガラスであって、前記2枚のガラス板のうちの一方のガラス板の他方のガラス板に対向する表面には、第1の酸化物膜/Ag膜/金属膜/第2の酸化物膜をこの順に積層した薄膜構造体が形成され、前記第1の酸化物膜と第2の酸化物膜の膜厚比は1.0〜1.3でいずれの酸化物膜もその厚さが30〜40nmで、前記Ag膜の厚さが8〜10nm、金属膜の厚さが1〜8nmであることを特徴とする低放射複層ガラス。 A multi-layer glass in which two glass plates are arranged opposite to each other, and a first oxide film / Ag film is formed on a surface of one of the two glass plates facing the other glass plate. / Metal film / second oxide film is laminated in this order to form a thin film structure, and the film thickness ratio between the first oxide film and the second oxide film is 1.0 to 1.3. The low emission multilayer glass characterized in that the oxide film also has a thickness of 30 to 40 nm, the Ag film has a thickness of 8 to 10 nm, and the metal film has a thickness of 1 to 8 nm. 請求項1に記載の低放射複層ガラスにおいて、前記複層ガラスを室内外境界に設置したときの室外側において、JIS R 3106で規定する可視光反射率が8〜25%であり、L表色系におけるaが−3.0〜0.0、bが0.0〜−9.0であるほぼ中性色の反射色調を呈し、かつ、遮蔽係数が0.57以下であることを特徴とする低放射複層ガラス。 The low emission multilayer glass according to claim 1, wherein the visible light reflectance defined by JIS R 3106 is 8 to 25% on the outdoor side when the multilayer glass is installed at an indoor / outdoor boundary, and L * In the a * b * color system, a * is approximately −3.0 to 0.0, b * is approximately 0.0 to −9.0, and the reflection color tone is almost neutral, and the shielding coefficient is 0. A low-emission multilayer glass characterized by being 57 or less. 請求項1または請求項2に記載の低放射複層ガラスにおいて、前記室内外境界に設置したときの室内側において、JIS R 3106で規定する可視光反射率が8〜15%であり、L表色系におけるaが−1.0〜5.0、bが0.0〜−20.0であることを特徴とする低放射複層ガラス。 The low radiation multilayer glass according to claim 1 or 2, wherein the visible light reflectance defined by JIS R 3106 is 8 to 15% on the indoor side when installed at the indoor / outer boundary, and L * a * b * a * in the color system is -1.0~5.0, low emissivity double glazing, characterized in that b * is 0.0-20.0. 請求項1乃至請求項3のいずれかに記載の低放射複層ガラスにおいて、JIS R 3106で規定する可視光透過率が50〜75%であることを特徴とする低放射複層ガラス。 The low radiation multilayer glass according to any one of claims 1 to 3, wherein the visible light transmittance defined by JIS R 3106 is 50 to 75%. 請求項1乃至請求項4のいずれかに記載の低放射複層ガラスにおいて、前記第1および第2の酸化物膜が、酸化錫膜とAlドープ酸化亜鉛膜との積層体であって、Alドープ酸化亜鉛膜が前記Ag膜側に配置され、かつ、酸化物膜の全膜厚に対するAlドープ酸化亜鉛膜厚の比率が10〜40%であることを特徴とする低放射複層ガラス。 5. The low emission multilayer glass according to claim 1, wherein the first and second oxide films are a laminate of a tin oxide film and an Al-doped zinc oxide film, A low emission multilayer glass, wherein a doped zinc oxide film is disposed on the Ag film side, and a ratio of an Al doped zinc oxide film thickness to a total film thickness of the oxide film is 10 to 40%. 請求項1乃至請求項5のいずれかに記載の低放射複層ガラスにおいて、前記Alドープ酸化亜鉛膜に含有されるAl量は、Znに対する原子量比率が10〜25%であることを特徴とする低放射複層ガラス。 6. The low emission multilayer glass according to claim 1, wherein the Al content in the Al-doped zinc oxide film is such that an atomic weight ratio with respect to Zn is 10 to 25%. Low-emission multilayer glass. 請求項1乃至請求項6のいずれかに記載の低放射複層ガラスにおいて、前記金属膜はTi膜、またはAl含有量がZnに対する原子量比率で1〜25%であるZnAl合金膜であり、さらに好ましくは1〜6%であるZnAl合金膜であることを特徴とする低放射複層ガラス。 The low emission multilayer glass according to any one of claims 1 to 6, wherein the metal film is a Ti film or a ZnAl alloy film having an Al content of 1 to 25% in terms of atomic weight ratio to Zn, Low emission multilayer glass characterized by being a ZnAl alloy film, preferably 1-6%.
JP2005257440A 2005-09-06 2005-09-06 Low emissive multilayered glass Withdrawn JP2007070146A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005257440A JP2007070146A (en) 2005-09-06 2005-09-06 Low emissive multilayered glass
PCT/JP2006/316464 WO2007029494A1 (en) 2005-09-06 2006-08-23 Low-radiation double glazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257440A JP2007070146A (en) 2005-09-06 2005-09-06 Low emissive multilayered glass

Publications (1)

Publication Number Publication Date
JP2007070146A true JP2007070146A (en) 2007-03-22

Family

ID=37931926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257440A Withdrawn JP2007070146A (en) 2005-09-06 2005-09-06 Low emissive multilayered glass

Country Status (1)

Country Link
JP (1) JP2007070146A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150839A1 (en) 2009-06-24 2010-12-29 株式会社ブリヂストン Heat ray-shielding glass, and heat ray-shielding multi-layered glass
JP2011051803A (en) * 2009-08-31 2011-03-17 Bridgestone Corp Heat ray shielding glass and multilayered glass using the same
WO2011155522A1 (en) 2010-06-10 2011-12-15 株式会社ブリヂストン Heat-radiation-blocking multi-layered glass
WO2012086414A1 (en) 2010-12-22 2012-06-28 株式会社ブリヂストン Heat ray shielding glass and double glazing using same
CN102584030A (en) * 2012-01-31 2012-07-18 林嘉宏 Coated glass with high light transmission and low radiation
CN103481582A (en) * 2013-08-05 2014-01-01 常熟市卓诚玻璃制品贸易有限公司 Mirror glass
JP2014076937A (en) * 2012-10-06 2014-05-01 Figla Co Ltd Multilayer glass
WO2020070824A1 (en) 2018-10-03 2020-04-09 三菱マテリアル株式会社 Multilayer film, and ag alloy sputtering target
KR20220100856A (en) 2019-11-15 2022-07-18 미쓰비시 마테리알 가부시키가이샤 laminated structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150839A1 (en) 2009-06-24 2010-12-29 株式会社ブリヂストン Heat ray-shielding glass, and heat ray-shielding multi-layered glass
US9162425B2 (en) 2009-06-24 2015-10-20 Bridgestone Corporation Solar control glass and solar control double glass
JP2011051803A (en) * 2009-08-31 2011-03-17 Bridgestone Corp Heat ray shielding glass and multilayered glass using the same
WO2011155522A1 (en) 2010-06-10 2011-12-15 株式会社ブリヂストン Heat-radiation-blocking multi-layered glass
WO2012086414A1 (en) 2010-12-22 2012-06-28 株式会社ブリヂストン Heat ray shielding glass and double glazing using same
CN102584030A (en) * 2012-01-31 2012-07-18 林嘉宏 Coated glass with high light transmission and low radiation
JP2014076937A (en) * 2012-10-06 2014-05-01 Figla Co Ltd Multilayer glass
CN103481582A (en) * 2013-08-05 2014-01-01 常熟市卓诚玻璃制品贸易有限公司 Mirror glass
WO2020070824A1 (en) 2018-10-03 2020-04-09 三菱マテリアル株式会社 Multilayer film, and ag alloy sputtering target
KR20210070264A (en) 2018-10-03 2021-06-14 미쓰비시 마테리알 가부시키가이샤 Laminated film, and Ag alloy sputtering target
KR20220100856A (en) 2019-11-15 2022-07-18 미쓰비시 마테리알 가부시키가이샤 laminated structure

Similar Documents

Publication Publication Date Title
JP4739470B2 (en) Glazing assembly comprising a substrate with a thin stack
JP3902676B2 (en) Transparent substrate with a thin film stack acting on sunlight and / or infrared
JP5096001B2 (en) Transparent substrates that can be used alternatively or progressively for thermal control, electromagnetic shielding, and heating windows
JP5279123B2 (en) Solar shielding laminated structure
JP4602498B2 (en) Transparent substrate with thin film laminate
JP4763569B2 (en) High-infrared reflective coating, thin film coating deposition method and related technology
JP5681100B2 (en) Glazing provided with a laminate consisting of multiple thin layers
JP2007070146A (en) Low emissive multilayered glass
EP0934913B1 (en) Sunlight shielding translucent glass panel and sunlight shielding translucent multilayer glass panel assembly
WO2012115111A1 (en) Laminate
JP2016520031A (en) Substrate provided with a laminate having thermal properties
JP4114429B2 (en) Laminates and structures
CN112194383A (en) Low-emissivity glass and preparation method thereof
JP6853486B2 (en) Solar shielding member
JP4013329B2 (en) Laminate and glass laminate for window
JP2000302486A (en) Sunlight screening light transmission plate and sunlight screening multiple layer light transmission plate using the same
JP6024369B2 (en) Glass laminate for windows
JPH08104547A (en) Heat insulating glass
JP6601419B2 (en) Glass plate with laminated film and multilayer glass
JP2017132666A (en) Gray color tone radiation glass, and method for producing the gray color tone radiation glass
JP6703267B2 (en) Gray tone low emissivity glass
JP2006117482A (en) Heat ray shielding glass and heat ray shielding double-glazed glass
JP2007197237A (en) Low-radiation double glazing
JP2004217432A (en) Laminate and structure
JPH11277668A (en) Solar radiation shielding glass

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20080214

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090605