JP4095742B2 - 伝導冷却型超電導マグネット - Google Patents

伝導冷却型超電導マグネット Download PDF

Info

Publication number
JP4095742B2
JP4095742B2 JP27847099A JP27847099A JP4095742B2 JP 4095742 B2 JP4095742 B2 JP 4095742B2 JP 27847099 A JP27847099 A JP 27847099A JP 27847099 A JP27847099 A JP 27847099A JP 4095742 B2 JP4095742 B2 JP 4095742B2
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
superconducting coil
coil
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27847099A
Other languages
English (en)
Other versions
JP2001102212A (ja
Inventor
征治 林
剛 神門
衛 濱田
和幸 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27847099A priority Critical patent/JP4095742B2/ja
Publication of JP2001102212A publication Critical patent/JP2001102212A/ja
Application granted granted Critical
Publication of JP4095742B2 publication Critical patent/JP4095742B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、伝導冷却型超電導マグネットに関する技術分野に属し、より詳細には、磁場発生用超電導コイルを冷凍機と熱的に接触させて該冷凍機からの伝導冷却によって冷却すると共に、前記磁場発生用超電導コイルに通電して強磁場(高磁場)を発生させる伝導冷却型超電導マグネットに関する技術分野に属するものである。
【0002】
【従来の技術】
超電導現象は抵抗が0で大電流を流し得るという特徴を活かして大電流送電、強磁場発生機器等の各方面での利用が拡がりつつある。特に、磁界強度が高い磁場を利用するNMR(Nuclear Magnetic Resonance)、ESR(Electron Spin Resonance )、ドハースファンアルフェン効果等の測定(半導体のフェルミレベル測定等)においては、発生磁場が高ければ高いほど分解能が高まり、また、不純物濃度やサンプル量などの対象試料に対する制約も緩和されるので、近年ますます高磁場化の傾向にある。
【0003】
磁場発生手段としては、鉄ポールピースに巻き付けた銅線に通電することによって鉄ポールピース間に強磁場を発生させるマグネット等の如き常電導マグネットと、NbTi又はNb3Sn 等の超電導線材を巻線して製作されたコイル、即ち超電導コイルに通電することによって強磁場を発生させる超電導マグネットとがある。これらの中、常電導マグネットは、鉄の飽和磁化によって磁場の上限が決まるため、ほぼ2Tが磁場の上限となるが、上述の如く期待される磁場は高磁場化の傾向にあり、このため超電導マグネットが主流になりつつある。
【0004】
しかし、従来の一般的な超電導マグネットは、液体ヘリウム浸漬型であり、液体ヘリウムに浸し冷却して使用するため、非常に取り扱いが煩雑である。
【0005】
かかる煩雑さを解消する新方式の超電導マグネットとして、伝導冷却型(伝導冷却方式)の超電導マグネットがあり、このマグネットはこれまで超電導マグネットと縁の無かった研究者たちにも容易に強磁場環境を提供するものとして期待されている。この伝導冷却型の超電導マグネットは、4.2 K冷凍機のコールドヘッド(冷凍機のセカンドステージ)に超電導マグネットを直接熱的に接触させ、伝熱(伝導冷却)によって冷却するので、液体ヘリウム等の寒剤(液体冷媒)は一切必要としない。このため、伝導冷却型超電導マグネットを使った研究が各方面で開始されつつある。
【0006】
【発明が解決しようとする課題】
ところが、伝導冷却型超電導マグネットが各方面で使われ始めるにつれて、大きな問題が生じてきた。即ち、伝導冷却型超電導マグネットに通電して高磁場を発生させたときの漏れ磁場(漏洩磁場)が近傍の研究機器や測定器等に影響を及ぼすという問題点が生じてきたのである。例えば、電子顕微鏡による測定中に、隣の部屋で伝導冷却型超電導マグネットにより磁場を発生させると、ピントがぼけてしまったり、また、ブラウン管方式のディスプレイが色ずれを起こすなどの事態が生じた。
【0007】
従って、かかる影響をできるだけ軽減するため、伝導冷却型超電導マグネットからの漏洩磁場を小さくすることが強く望まれている。
【0008】
ところで、液体ヘリウム浸漬型超電導マグネットにおいては、マグネットからの漏洩磁場を小さくするための漏洩磁場低減手段として、パッシブシールド方式の漏洩磁場低減手段やアクティブシールド方式の漏洩磁場低減手段が採用されている。
【0009】
上記のパッシブシールド方式の漏洩磁場低減手段は、マグネット全体を鉄等の高透磁率材料で作った部屋に入れて覆い、この覆い(部屋)から外への漏れ磁場を少なくしたものである。しかし、この場合、大がかりな工事を要し、また、装置全体が大重量になるという欠点がある。
【0010】
一方、上記のアクティブシールド方式の漏洩磁場低減手段は、超電導マグネットの磁場発生用超電導コイル(主コイル)の外側に該主コイルとは逆向きの磁場を発生するコイル(磁場シールド用超電導コイル)を配し、前記主コイルの外側にできる磁場(前記主コイルからの漏洩磁場)を打ち消すことによって、前記主コイルからの漏洩磁場を小さくしたものである。
【0011】
伝導冷却型超電導マグネットにおいても、漏洩磁場低減手段として、上記の如きパッシブシールド方式の漏洩磁場低減手段やアクティブシールド方式の漏洩磁場低減手段を適用することが考えられる。
【0012】
しかし、パッシブシールド方式の漏洩磁場低減手段を適用する場合には、液体ヘリウム浸漬型超電導マグネットの場合と同様、大がかりな工事を要し、また、装置全体が大重量になるという欠点がある。
【0013】
アクティブシールド方式の漏洩磁場低減手段を適用する場合には、磁場発生用超電導コイル(主コイル)の外側に磁場シールド用超電導コイルを配し、この磁場シールド用超電導コイルの冷却を冷凍機により行うことになるが、この冷却を単に磁場発生用超電導コイルの場合と同様の形態で行う場合、即ち、磁場シールド用超電導コイルを単に冷凍機のセカンドステージ(4.2 K冷凍機のコールドヘッド)に熱的に接触させ、該セカンドステージからの伝導冷却によって行う場合、冷凍機のセカンドステージで冷却すべき対象物の重量(質量)が非常に大きくなってしまい、また、最外層の磁場シールド用超電導コイルの表面積が大きくなるために外部からの輻射熱が大きくなってしまい、このため、冷凍機のセカンドステージの冷凍能力を上回る熱流入が生じてしまい、ひいては、伝導冷却型超電導マグネットを安定して励磁することができなくなってしまうと考えられる。
【0014】
本発明は、この様な事情に着目してなされたものであって、その目的は、漏洩磁場低減手段としてアクティブシールド方式の漏洩磁場低減手段を適用した伝導冷却型超電導マグネット(アクティブシールド方式の伝導冷却型超電導マグネット)であって、安定して励磁することができて定格磁場を発生することができ、且つ、漏洩磁場を小さくすることができる伝導冷却型超電導マグネットを提供しようとするものである。
【0015】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る伝導冷却型超電導マグネットは、請求項1〜3記載の伝導冷却型超電導マグネットとしており、それは次のような構成としたものである。即ち、請求項1記載の伝導冷却型超電導マグネットは、コイル巻線が超電導線材よりなる磁場発生用超電導コイルを冷凍機のセカンドステージと熱的に接触させて該セカンドステージからの伝導冷却によって冷却すると共に、前記磁場発生用超電導コイルに通電して、磁場を発生させる伝導冷却型超電導マグネットであって、前記冷凍機のセカンドステージとファーストステージの最低到達温度が異なり、前者の方が低温であり、前記磁場発生用超電導コイルの外周面の外側にコイル巻線が酸化物系超電導線材よりなる磁場シールド用超電導コイルを配し、該磁場シールド用超電導コイルを前記冷凍機のファーストステージと熱的に接触させて該ファーストステージからの伝導冷却によって冷却すると共に、酸化物電流リードを介して該磁場シールド用超電導コイルに電力供給がなされ、さらに該磁場シールド用超電導コイルから酸化物超電導体を介して前記磁場発生用超電導コイルに電力供給がなされる構成とし、該磁場シールド用超電導コイルに通電して、前記磁場発生用超電導コイルからの漏洩磁場を低減させる漏洩磁場低減手段を備えたことを特徴とする伝導冷却型超電導マグネットである(第1発明)。
【0016】
請求項2記載の伝導冷却型超電導マグネットは、前記磁場発生用超電導コイルの超電導線材がNbTi又はNb3Sn 等の金属系超電導線材である請求項1記載の伝導冷却型超電導マグネットである(第2発明)。請求項3記載の伝導冷却型超電導マグネットは、前記磁場発生用超電導コイルの超電導線材が酸化物系超電導線材である請求項1記載の伝導冷却型超電導マグネットである(第3発明)
【0017】
【発明の実施の形態】
本発明は例えば次のようにして実施する。
コイル巻線が超電導線材よりなる磁場発生用超電導コイルを冷凍機のセカンドステージと熱的に接触させて該セカンドステージからの伝導冷却によって冷却し得るようにすると共に、前記磁場発生用超電導コイルに通電し得るようにする。更に、前記磁場発生用超電導コイルの外周面の外側に、コイル巻線が酸化物系超電導線材よりなる磁場シールド用超電導コイルを配し、該磁場シールド用超電導コイルを前記冷凍機のファーストステージと熱的に接触させて該ファーストステージからの伝導冷却によって冷却し得るようにすると共に、酸化物電流リードを介して該磁場シールド用超電導コイルに電力供給がなされ、さらに該磁場シールド用超電導コイルから酸化物超電導体を介して前記磁場発生用超電導コイルに電力供給がなされる構成とし、該磁場シールド用超電導コイルに通電し得るようにし、これにより、前記磁場発生用超電導コイルからの漏洩磁場を低減させる漏洩磁場低減手段を有するようにする。そうすると、本発明に係る伝導冷却型超電導マグネットが得られる。
【0018】
このような形態で本発明に係る伝導冷却型超電導マグネットが得られ、そして高磁場を必要とする機器、装置に用いられる。
【0019】
以下、本発明について主にその作用効果を説明する。
【0020】
本発明に係る伝導冷却型超電導マグネットは、前述の如く磁場発生用超電導コイルの外側に磁場シールド用超電導コイルを配しているので、アクティブシールド方式の伝導冷却型超電導マグネット(漏洩磁場低減手段としてアクティブシールド方式の漏洩磁場低減手段を適用した伝導冷却型超電導マグネット)である。
【0021】
そして、本発明に係る伝導冷却型超電導マグネットは、磁場発生用超電導コイルを冷凍機のセカンドステージと熱的に接触させて該セカンドステージからの伝導冷却によって冷却するようにし、一方、磁場シールド用超電導コイルを前記冷凍機のファーストステージと熱的に接触させて該ファーストステージからの伝導冷却によって冷却するようにしているので、磁場発生用超電導コイルも磁場シールド用超電導コイルも各々機能を充分に発揮するに必要な低い温度になるように充分に冷却され、このため、磁場発生用超電導コイルは定格磁場を発生し得、一方、磁場シールド用超電導コイルは磁場発生用超電導コイルからの漏洩磁場を小さくし得る。
【0022】
従って、本発明に係る伝導冷却型超電導マグネットは、アクティブシールド方式の伝導冷却型超電導マグネットであって、安定して励磁することができて定格磁場を発生することができ、且つ、漏洩磁場を小さくすることができる。
【0023】
上記本発明についての作用効果等の詳細を、以下に説明する。
【0024】
冷凍機のファーストステージについては、冷凍パワーは大きいが、最低到達温度は高く、冷凍機のセカンドステージについては、冷凍パワーは小さいが、最低到達温度は低くできるという特性がある。
【0025】
このように冷凍機のセカンドステージについては冷凍パワーは小さいが、最低到達温度は低くできるという特性があるので、磁場発生用超電導コイルは冷凍機のセカンドステージと熱的に接触させて該セカンドステージからの伝導冷却によって冷却するようにするが、磁場シールド用超電導コイルをも前記冷凍機のセカンドステージと熱的に接触させて該セカンドステージからの伝導冷却によって冷却するようにすると、該セカンドステージは冷凍パワーが小さく、それにもかかわらず最外層の表面積が大きくて外部からの輻射熱が大きい磁場シールド用超電導コイルも該セカンドステージでの冷却対象物となると共に該セカンドステージでの冷却対象物の重量が非常に大きいので、前記セカンドステージの冷凍パワーを上回る熱流入が生じ、このため、磁場発生用超電導コイルの冷却が充分でなくなり、従って、安定して励磁することができなくて定格磁場を発生することができなくなる。更には、場合によっては磁場シールド用超電導コイルの冷却が充分でなくなり、漏洩磁場の低減が不充分となる。
【0026】
これに対し、磁場発生用超電導コイルは冷凍機のセカンドステージと熱的に接触させて該セカンドステージからの伝導冷却によって冷却し、磁場シールド用超電導コイルは前記冷凍機のファーストステージと熱的に接触させて該ファーストステージからの伝導冷却によって冷却するようにすると、磁場発生用超電導コイルが充分に冷却される。従って、安定して励磁し得て定格磁場を発生し得ると共に、磁場シールド用超電導コイルが充分に冷却され、ひいては漏洩磁場を充分に低減し得る。
【0027】
即ち、冷凍機のセカンドステージは冷凍パワーは小さいが、最低到達温度は低くできるという特性があるので、かかる冷凍機のセカンドステージに熱的に接触した磁場発生用超電導コイルは該セカンドステージからの伝導冷却によって安定した励磁を発現するに必要な低い温度になるように充分に冷却され、このため、磁場発生用超電導コイルは定格磁場を発生し得る。一方、冷凍機のファーストステージは最低到達温度は高いが、冷凍パワーは大きいという特性があり、最低到達温度は高いが、この最低到達温度は磁場シールド用超電導コイルに漏洩磁場低減という機能を発現させるに充分に低い温度であるので、かかる冷凍機のファーストステージに熱的に接触した磁場シールド用超電導コイルは該ファーストステージからの伝導冷却によって漏洩磁場の低減機能を発現するに必要な低い温度になるように充分に冷却され、このため、磁場シールド用超電導コイルは漏洩磁場を充分に低減し得る。
【0028】
本発明に係る伝導冷却型超電導マグネットは、磁場発生用超電導コイルを冷凍機のセカンドステージと熱的に接触させて該セカンドステージからの伝導冷却によって冷却するようにし、一方、磁場シールド用超電導コイルを前記冷凍機のファーストステージと熱的に接触させて該ファーストステージからの伝導冷却によって冷却するようにしている。故に、磁場発生用超電導コイルが充分に冷却され、ひいては安定して励磁し得て定格磁場を発生し得ると共に、磁場シールド用超電導コイルが充分に冷却され、ひいては漏洩磁場を充分に低減し得る。
【0029】
従って、本発明に係る伝導冷却型超電導マグネットによれば、安定して励磁することができて定格磁場を発生することができ、且つ、漏洩磁場を小さくすることができる。
【0030】
前記磁場発生用超電導コイルでの超電導コイルは、コイル巻線が超電導線材よりなるコイルである。この超電導線材としては、特には限定されず、例えばNbTi又はNb3Sn 等の金属系超電導線材や、酸化物系超電導線材を使用することができる(第2発明、第3発明)。
【0031】
前記磁場シールド用超電導コイルでの超電導コイルは、コイル巻線が超電導線材よりなるコイルである。この超電導線材としては、ファーストステージで冷却して超電導状態になる酸化物系超電導線材を使用するこの理由について以下説明する。
【0032】
磁場シールド用超電導コイルは、冷凍機のファーストステージと熱的に接触されて該ファーストステージからの伝導冷却によって冷却され、この冷却されたときの温度(以下、冷却到達温度)において通電されて漏洩磁場低減という機能を発現する必要がある。この磁場シールド用超電導コイルの冷却到達温度は、冷凍機のセカンドステージからの伝導冷却によって冷却される磁場発生用超電導コイルの冷却到達温度に比較して高く、例えば、後述する実施例1の場合の如く、磁場発生用超電導コイルの冷却到達温度は3.9 Kであるのに対し、磁場シールド用超電導コイルの冷却到達温度は30.5Kである。かかる磁場シールド用超電導コイルの冷却到達温度において、磁場シールド用超電導コイルが通電されて漏洩磁場低減という機能を発現するには、コイル巻線の超電導線材として酸化物系超電導線材が好適であり、コイル巻線が酸化物系超電導線材よりなる磁場シールド用超電導コイルは確実に安定して漏洩磁場低減という機能を発現し得る。かかる点から、磁場シールド用超電導コイルの超電導線材としては、酸化物系超電導線材を使用する。
【0033】
上記酸化物系超電導線材としては、例えばBi-2212 系線材(Bi2Sr2CaCu2OX )やBi-2223 系線材(Bi2Sr2Ca2Cu3OX )等を使用することができる。
【0034】
前記磁場発生用超電導コイルの形態としては、ソレノイドコイル状のものに限定されず、軸方向に分割されたコイル等を採用することができる。また、前記磁場シールド用超電導コイルの形状としては、ソレノイドコイル状のものに限定されず、軸方向に分割されたコイル、鞍型のコイル等を採用することができる。
【0035】
前記磁場シールド用超電導コイルの大きさは、特には限定されず、例えば軸方向の長さが磁場発生用超電導コイルの軸方向の長さと同じものの他、磁場発生用超電導コイルの軸方向の長さよりも大きいもの或いは小さいものを採用することができる。尚、上記軸方向の長さは、ソレノイドコイルの場合は軸方向長さであり、軸方向に分割されたコイルの場合は各々の軸方向長さの合計長さである。
【0036】
前記磁場シールド用超電導コイルは磁場発生用超電導コイルの外側に配置する必要があるが、磁場発生用超電導コイルの外側に配置されて磁場発生用超電導コイルからの漏洩磁場を低減する機能を発現する限りにおいて磁場シールド用超電導コイルの配置位置は特には限定されず、例えば、後述する実施例1の如く磁場発生用超電導コイルの軸方向長さと磁場シールド用超電導コイルの軸方向長さとが等しい場合に磁場発生用超電導コイルの下端部と磁場シールド用超電導コイルの下端部とが同じ高さ位置になるように配置することもできるが、両者の下端部の高さ位置がずれるように配置することもでき、あるいは、磁場発生用超電導コイルの上端部と磁場シールド用超電導コイルの下端部とが同じ高さ位置になるように配置することもできる。この他、例えば、それぞれのコイルの中心軸をずらすように配置することもでき、また、ある特定方向への洩れ磁場を小さくするために中心軸同士を傾けて配置することもできる。但し、いずれの場合も、漏洩磁場の低減の均一性の点からすると、磁場発生用超電導コイルの中心軸と磁場シールド用超電導コイルの中心軸とが一致するように配置することが望ましい。
【0037】
【実施例】
(比較例1)
比較例1に係る伝導冷却型超電導マグネットを図1に示す。図1に示す如く、超電導線材としてNbTi又はNb3Sn よりなる超電導線材を枠体27に巻線して製作された磁場発生用超電導コイル(主コイル)6を、冷凍機21,23のセカンドステージ24と熱的に接触させて該セカンドステージ24からの伝導冷却によって冷却し得るようにした。即ち、磁場発生用超電導コイル6の枠体27と冷凍機のセカンドステージ24とを、銅製伝熱用編み線よりなる伝熱媒体(伝熱導体)25及び伝熱用銅板よりなる伝熱媒体26により連結し、これにより磁場発生用超電導コイル6を冷凍機のセカンドステージ24と熱的に接触させ、該セカンドステージ24からの伝熱媒体25,26及び枠体27を介しての伝導冷却によって磁場発生用超電導コイル6が冷却され得るようにした。
【0038】
また、前記磁場発生用超電導コイル6に通電し得るようにした。即ち、励磁用電源(図示していない)が電力供給用の入力端子11に接続され、この入力端子11から電流導入用リード線12、超電導体であると共に熱遮蔽体である酸化物超電導体13、電流導入用リード線15を介して磁場発生用超電導コイル6に電力供給がなされるようにした。尚、14は、酸化物超電導体13を絶縁しつつ、伝熱媒体26側に熱を逃がして冷却するためのものである。
【0039】
上記磁場発生用超電導コイル6や伝熱媒体25,26等は、輻射シールド3によりなる輻射シールド室4の内部に配置されている。この輻射シールド3は冷凍機のファーストステージ22と熱的に接触しており、該ファーストステージ22によって冷却され得るようになっている。この輻射シールド3を含む全系は、真空容器2の内部に収納されている。尚、図において、28は熱スイッチを示すものである。
【0040】
上記磁場発生用超電導コイル6は、10Tを発生するコイル、即ち、定格磁場:10Tのコイルに設計されている。コイル巻線の内径は約130mm φ、外径は約300mm φ、長さは約270mm である。
【0041】
このような構成を有する伝導冷却型超電導マグネット1を製作した。そして、冷凍機を運転して磁場発生用超電導コイル6を冷凍機のセカンドステージ24からの伝導冷却によって冷却すると共に、励磁用電源から電力供給をして前記磁場発生用超電導コイル6に通電して磁場を発生させた。
【0042】
10Tに励磁して(10Tの磁場を発生させて)安定したとき、磁場発生用超電導コイル6の温度を測定したところ、4.5 Kであった。冷凍機の運転を停めて磁場発生用超電導コイル6の状態を観察し調査したところ、磁場発生用超電導コイル6の温度が5.8 Kまで上昇したときに超電導現象の破壊が生じてクエンチした。故に、磁場発生用超電導コイル6は、定格磁場:10Tを発生させるという定常状態においては充分安定な温度に保たれていることになる。
【0043】
10Tに励磁して安定して運転している状態での漏れ磁場を測定したところ、5ガウスラインは磁場発生用超電導コイル6の径方向でコイル中心軸から2.9 m、軸方向でコイル中心から3.6 mであった。
【0044】
(比較例2)
比較例2に係る伝導冷却型超電導マグネットを図2に示す。図2に示す如く、このマグネットは、比較例1に係る伝導冷却型超電導マグネットの磁場発生用超電導コイル6の外側に磁場シールド用超電導コイル31を配し、該磁場シールド用超電導コイル31を磁場発生用超電導コイル6の場合と同様に冷凍機のセカンドステージ24と熱的に接触させて該セカンドステージ24からの伝導冷却によって冷却し得るようにすると共に該磁場シールド用超電導コイル31に通電し得るようにしたものである。
【0045】
即ち、磁場発生用超電導コイル6の外周面5の外側に、図2に示す如く、コイル巻線が超電導線材(酸化物系超電導線材)よりなる磁場シールド用超電導コイル31を配し、該磁場シールド用超電導コイル31の枠体を磁場発生用超電導コイル6の場合と同様に伝熱用銅板製の伝熱媒体26に連結して接触させ、これにより、冷凍機21,23のセカンドステージ24と熱的に接触させて該セカンドステージ24からの伝導冷却によって磁場シールド用超電導コイル31も冷却し得るようにした。また、上記磁場シールド用超電導コイル31に通電し得るようにした。但し、入力端子11から電流導入用リード線12、酸化物超電導体13、電流導入用リード線32を介して磁場シールド用超電導コイル31に電力供給がなされ、そして、この磁場シールド用超電導コイル31を介して磁場発生用超電導コイル6に電力供給がなされるようにした。これらの点を除き、比較例2に係る伝導冷却型超電導マグネットは、比較例1の場合と同様の構成を有する伝導冷却型超電導マグネットである。
【0046】
このような比較例2に係る伝導冷却型超電導マグネットについて、先ず、励磁用電源から電力供給をしない状態(磁場発生用超電導コイル6及び磁場シールド用超電導コイル31への通電をしない状態)にて、冷凍機を運転して磁場発生用超電導コイル6及び磁場シールド用超電導コイル31を冷凍機のセカンドステージ24からの伝導冷却によって冷却した。そして、このとき(励磁直前)の磁場発生用超電導コイル6及び磁場シールド用超電導コイル31の温度を測定したところ、磁場発生用超電導コイル6の温度は5.2 Kであり、磁場シールド用超電導コイル31の温度は5.5 Kであった。
【0047】
次に、励磁用電源から電力供給をして磁場シールド用超電導コイル31に通電すると共に、磁場発生用超電導コイル6に通電して励磁を試みたところ、すぐに磁場発生用超電導コイル6及び磁場シールド用超電導コイル31の温度が上昇し、先ず磁場シールド用超電導コイル31がクエンチし(超電導現象の破壊が生じ)、次に磁場発生用超電導コイル6がクエンチした。このとき、励磁速度をできるだけ小さくしても、結局7.5 Tに達したところでクエンチし、定格磁場:10Tを発生させることができなかった。この原因は、磁場発生用超電導コイル6の外側に外表面積の大きい磁場シールド用超電導コイル31を配置し、該磁場シールド用超電導コイル31も磁場発生用超電導コイル6と共に冷凍機のセカンドステージ24と熱的に接触させたため、該セカンドステージ24の熱負荷が大きくなり、結局磁場発生用超電導コイル6、磁場シールド用超電導コイル31の両方とも高い温度で運転せざるをえなくなったためと考えられる。
【0048】
従って、比較例2に係る伝導冷却型超電導マグネットでは、磁場発生用超電導コイル6からの漏洩磁場を低減させるどころか、それ以前に磁場発生用超電導コイル6の定格磁場(10T)自体を達成し得ないという大きな問題点があることが確認された。
【0049】
(実施例1)
本発明の実施例1に係る伝導冷却型超電導マグネットを図3に示す。図3に示す如く、このマグネットは、比較例1に係る伝導冷却型超電導マグネットの磁場発生用超電導コイル6の外側に磁場シールド用超電導コイル41を配し、該磁場シールド用超電導コイル41を冷凍機のファーストステージ22と熱的に接触させて該ファーストステージ22からの伝導冷却によって冷却し得るようにすると共に該磁場シールド用超電導コイル41に通電し得るようにし、これにより、磁場発生用超電導コイル6からの漏洩磁場を低減させる漏洩磁場低減手段を有するようにしたものである。
【0050】
即ち、磁場発生用超電導コイル6の外側に、図3に示す如く、コイル巻線が超電導線材(酸化物超電導線材)よりなる磁場シールド用超電導コイル41を配し、該磁場シールド用超電導コイル41の枠体に伝熱部材43を連結し、該伝熱部材43を伝熱板42を介して冷凍機のファーストステージ22に連結し、これにより、磁場シールド用超電導コイル41を伝熱板42及び伝熱部材43を介して冷凍機のファーストステージ22と熱的に接触させて該ファーストステージ22からの伝導冷却によって磁場シールド用超電導コイル41を冷却し得るようにした。尚、このファーストステージ22からの伝導冷却によって磁場シールド用超電導コイル41は30〜40Kに冷却される。
【0051】
また、上記磁場シールド用超電導コイル41に通電し得るようにした。但し、入力端子11から酸化物電流リード44、電流導入用リード線45を介して磁場シールド用超電導コイル41に電力供給がなされ、そして、この磁場シールド用超電導コイル41から電流導入用リード線46、酸化物超電導体13、電流導入用リード線47を介して磁場発生用超電導コイル6に電力供給がなされるようにした。尚、上記酸化物電流リード44は、電流リードからの熱侵入を低減するためのものである。
【0052】
これらの点を除き、実施例1に係る伝導冷却型超電導マグネットは、比較例1の場合と同様の構成を有する伝導冷却型超電導マグネットである
【0053】
このような本発明の実施例1に係る伝導冷却型超電導マグネットについて、先ず、励磁用電源から電力供給をしない状態(磁場発生用超電導コイル6及び磁場シールド用超電導コイル41への通電をしない状態)にて、冷凍機を運転して磁場発生用超電導コイル6を冷凍機のセカンドステージ24からの伝導冷却によって冷却すると共に、磁場シールド用超電導コイル41を冷凍機のファーストステージ22からの伝導冷却によって冷却した。そして、温度が安定したところで、励磁直前の磁場発生用超電導コイル6及び磁場シールド用超電導コイル41の温度を測定したところ、磁場発生用超電導コイル6の温度は3.9 Kであり、磁場シールド用超電導コイル41の温度は30.5Kであった。
【0054】
次に、励磁用電源から電力供給をして磁場シールド用超電導コイル41に通電すると共に、磁場発生用超電導コイル6に通電して励磁を試みたところ、何の問題もなく定格磁場:10Tに到達した。即ち、磁場シールド用超電導コイル41のクエンチも磁場発生用超電導コイル6のクエンチも生じることなく、安定して定格磁場:10Tを発生させることができた。
【0055】
このように10Tに励磁して安定して運転している状態での漏れ磁場を測定したところ、5ガウスラインは磁場発生用超電導コイル6の径方向でコイル中心軸から1.6 m、軸方向でコイル中心から2.1 mであった。これらは、比較例1での漏れ磁場5ガウスラインに比較して極めて小さく、磁場発生用超電導コイルからの漏洩磁場が著しく低減されている。
【0056】
従って、本発明の実施例1に係る伝導冷却型超電導マグネットにおいては、定格磁場を発生させ得ると共に、磁場発生用超電導コイル6からの漏洩磁場を大幅に低減させ得ることが確認された。
【0057】
(実施例2)
本発明の実施例2に係る伝導冷却型超電導マグネットを図4に示す。図4に示す如く、このマグネットは、比較例1に係る伝導冷却型超電導マグネットの磁場発生用超電導コイル6の外側に磁場シールド用超電導コイル51を配し、該磁場シールド用超電導コイル51を冷凍機のファーストステージ22と熱的に接触させて該ファーストステージ22からの伝導冷却によって冷却し得るようにすると共に該磁場シールド用超電導コイル51に通電し得るようにし、これにより、磁場発生用超電導コイル6からの漏洩磁場を低減させる漏洩磁場低減手段を有するようにしたものである。
【0058】
即ち、磁場発生用超電導コイル6の外側に、図4に示す如く、コイル巻線が超電導線材(酸化物超電導線材)よりなる磁場シールド用超電導コイル51を配し、該磁場シールド用超電導コイル41の枠体に熱伝導部材52を連結し、該熱伝導部材52を伝熱板を介して冷凍機のファーストステージ22に連結し、これにより、磁場シールド用超電導コイル51を伝熱板及び熱伝導部材52を介して冷凍機のファーストステージ22と熱的に接触させて該ファーストステージ22からの伝導冷却によって磁場シールド用超電導コイル51を冷却し得るようにした。
【0059】
また、上記磁場シールド用超電導コイル51に通電し得るようにした。但し、入力端子11から酸化物電流リード44、電流導入用リード線54を介して磁場シールド用超電導コイル51に電力供給がなされ、そして、この磁場シールド用超電導コイル51から電流導入用リード線55、酸化物超電導体13、電流導入用リード線56を介して磁場発生用超電導コイル6に電力供給がなされるようにした。
【0060】
尚、前記磁場シールド用超電導コイル51は、良熱伝導性の巻枠に酸化物超電導線材を巻き線し、絶縁部材をかぶせた後、マルチレヤーインシュレーションを施工して製作されたものである。又、この磁場シールド用超電導コイル51は、図4からわかるように、軸方向長さが磁場発生用超電導コイル6の軸方向長さよりも長い。
【0061】
磁場発生用超電導コイル6の枠体27と冷凍機のセカンドステージ24とは伝熱媒体25及び伝熱用銅板(26)および追加して設けられた良熱伝導部材53を介して熱的に接触しており、磁場発生用超電導コイル6はこれらの伝熱媒体を介して冷凍機のセカンドステージ24からの伝導冷却によって冷却されるようになっている。
【0062】
図4において、39は輻射シールドを示すものである。この輻射シールド39は、比較例1の場合と形態が異なり、磁場発生用超電導コイル6のまわりは磁場シールド用超電導コイル51によって形成されている。即ち、磁場シールド用超電導コイル51は漏洩磁場の低減の役割と輻射シールドの役割とを兼ね備えている。このようにすることにより、輻射シールド39を含む全系を収納するに必要な真空容器の大きさを、比較例1や実施例1の場合に比較して70%程度までコンパクト化することができた。
【0063】
これらの点を除き、実施例2に係る伝導冷却型超電導マグネットは、比較例1の場合と同様の構成を有する伝導冷却型超電導マグネットである。
【0064】
このような本発明の実施例2に係る伝導冷却型超電導マグネットについて、先ず、励磁用電源から電力供給をしない状態(磁場発生用超電導コイル6及び磁場シールド用超電導コイル51への通電をしない状態)にて、冷凍機を運転して磁場発生用超電導コイル6を冷凍機のセカンドステージ24からの伝導冷却によって冷却すると共に、磁場シールド用超電導コイル51を冷凍機のファーストステージ22からの伝導冷却によって冷却した。そして、励磁直前の磁場発生用超電導コイル6及び磁場シールド用超電導コイル51の温度を測定したところ、磁場発生用超電導コイル6の温度は4.0 Kであり、磁場シールド用超電導コイル51の温度は32.5Kであった。
【0065】
次に、励磁用電源から電力供給をして磁場シールド用超電導コイル51に通電すると共に、磁場発生用超電導コイル6に通電して励磁を試みたところ、何の問題もなく定格磁場:10Tが達成された。即ち、磁場シールド用超電導コイル51のクエンチも磁場発生用超電導コイル6のクエンチも生じることなく、安定して定格磁場:10Tを発生させることができた。
【0066】
このように10Tに励磁して安定して運転している状態での漏れ磁場を測定したところ、5ガウスラインは磁場発生用超電導コイル6の径方向でコイル中心軸から1.6 m、軸方向でコイル中心から2.1 mであった。これらは、比較例1での漏れ磁場5ガウスラインに比較して極めて小さく、磁場発生用超電導コイルからの漏洩磁場が著しく低減されている。
【0067】
従って、本発明の実施例2に係る伝導冷却型超電導マグネットにおいては、定格磁場を発生させ得ると共に、磁場発生用超電導コイル6からの漏洩磁場を大幅に低減させ得ることが確認された。
【0068】
実施例1の場合と比較すると、磁場発生用超電導コイルからの漏洩磁場の低減効果は同等であるが、必要な真空容器の大きさを実施例1の場合の約70%の大きさにコンパクト化し得る利点がある。
【0069】
尚、前記実施例1及び2においては磁場発生用超電導コイル6を構成する超電導線材として、NbTi又はNb3Sn 等の金属系超電導線材を用いたが、これに代えて酸化物系超電導線材を用いても、同様の良好な結果が得られる。
【0070】
また、前記実施例1及び2においては磁場発生用超電導コイル6及び磁場シールド用超電導コイル41,51はいずれも一続きのソレノイドコイルであるが、軸方向に分割されたコイルであっても、同様の良好な結果が得られる。
【0071】
【発明の効果】
本発明に係る伝導冷却型超電導マグネットは、アクティブシールド方式の伝導冷却型超電導マグネットであって、安定して励磁することができて定格磁場を発生することができ、且つ、漏洩磁場を小さくすることができるようになるという効果を奏する。
【図面の簡単な説明】
【図1】 比較例1に係る伝導冷却型超電導マグネットの縦断面構成の概要を示す模式図である。
【図2】 比較例2に係る伝導冷却型超電導マグネットの縦断面構成の概要を示す模式図である。
【図3】 本発明の実施例1に係る伝導冷却型超電導マグネットの縦断面構成の概要を示す模式図である。
【図4】 本発明の実施例2に係る伝導冷却型超電導マグネットの縦断面構成の概要を示す模式図である。
【符号の説明】
1--伝導冷却型超電導マグネット、2--真空容器、3--輻射シールド、4--輻射シールド室、5--磁場発生用超電導コイルの外周面、6--磁場発生用超電導コイル、 11--入力端子、12--リード線、13--酸化物超電導体、15--リード線、 21,23--冷凍機、22--冷凍機のファーストステージ、24--冷凍機のセカンドステージ、25--伝熱媒体、26--伝熱媒体、27--枠体、28--熱スイッチ、 31--磁場シールド用超電導コイル、32--リード線、39--輻射シールド、 41--磁場シールド用超電導コイル、42--伝熱板、43--伝熱部材、45--リード線、46--リード線、 47--リード線、 51--磁場シールド用超電導コイル、52--熱伝導部材、53--伝導部材、54--リード線、55--リード線、56--リード線。

Claims (3)

  1. コイル巻線が超電導線材よりなる磁場発生用超電導コイルを冷凍機のセカンドステージと熱的に接触させて該セカンドステージからの伝導冷却によって冷却すると共に、前記磁場発生用超電導コイルに通電して、磁場を発生させる伝導冷却型超電導マグネットであって、前記冷凍機のセカンドステージとファーストステージの最低到達温度が異なり、前者の方が低温であり、前記磁場発生用超電導コイルの外周面の外側にコイル巻線が酸化物系超電導線材よりなる磁場シールド用超電導コイルを配し、該磁場シールド用超電導コイルを前記冷凍機のファーストステージと熱的に接触させて該ファーストステージからの伝導冷却によって冷却すると共に、酸化物電流リードを介して該磁場シールド用超電導コイルに電力供給がなされ、さらに該磁場シールド用超電導コイルから酸化物超電導体を介して前記磁場発生用超電導コイルに電力供給がなされる構成とし、該磁場シールド用超電導コイルに通電して、前記磁場発生用超電導コイルからの漏洩磁場を低減させる漏洩磁場低減手段を備えたことを特徴とする伝導冷却型超電導マグネット。
  2. 前記磁場発生用超電導コイルの超電導線材がNbTi又はNb3Sn 等の金属系超電導線材である請求項1記載の伝導冷却型超電導マグネット。
  3. 前記磁場発生用超電導コイルの超電導線材が酸化物系超電導線材である請求項1記載の伝導冷却型超電導マグネット。
JP27847099A 1999-09-30 1999-09-30 伝導冷却型超電導マグネット Expired - Lifetime JP4095742B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27847099A JP4095742B2 (ja) 1999-09-30 1999-09-30 伝導冷却型超電導マグネット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27847099A JP4095742B2 (ja) 1999-09-30 1999-09-30 伝導冷却型超電導マグネット

Publications (2)

Publication Number Publication Date
JP2001102212A JP2001102212A (ja) 2001-04-13
JP4095742B2 true JP4095742B2 (ja) 2008-06-04

Family

ID=17597790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27847099A Expired - Lifetime JP4095742B2 (ja) 1999-09-30 1999-09-30 伝導冷却型超電導マグネット

Country Status (1)

Country Link
JP (1) JP4095742B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234692B2 (en) 2009-06-15 2016-01-12 Kabushiki Kaisha Toshiba Superconducting magnetic apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171603A (ja) * 1989-11-29 1991-07-25 Fuji Electric Co Ltd 超電導電磁石
JPH0590022A (ja) * 1991-09-27 1993-04-09 Hitachi Cable Ltd 超電導マグネツトシステム
JP2953212B2 (ja) * 1992-09-11 1999-09-27 株式会社神戸製鋼所 制動ファン付膨張タービン
JPH06188466A (ja) * 1992-12-17 1994-07-08 Sumitomo Electric Ind Ltd 超電導マグネット冷却システム
JPH0794319A (ja) * 1993-09-20 1995-04-07 Toshiba Corp 電流リード装置
JPH07142771A (ja) * 1993-11-22 1995-06-02 Toshiba Corp 電流リード装置
JPH10294213A (ja) * 1997-04-22 1998-11-04 Hitachi Ltd 酸化物系超電導マグネットシステムの製造方法及び酸化物系超電導マグネットシステム及び超電導磁場発生装置
JPH11144938A (ja) * 1997-11-10 1999-05-28 Mitsubishi Electric Corp 電流リード装置および冷凍機冷却型超電導マグネット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234692B2 (en) 2009-06-15 2016-01-12 Kabushiki Kaisha Toshiba Superconducting magnetic apparatus

Also Published As

Publication number Publication date
JP2001102212A (ja) 2001-04-13

Similar Documents

Publication Publication Date Title
US4876510A (en) Apparatus for nuclear spin tomography having superconducting base field magnetic coils and a radiation shield
US8162037B2 (en) Device for generating a pulsed magnetic field
WO2010140398A1 (ja) 冷凍機冷却型超電導磁石
US6489769B2 (en) Nuclear magnetic resonance apparatus
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
JP2007136202A (ja) 冷却の必要性が低い磁気共鳴イメージングシステム
JP6668350B2 (ja) 超電導線、超電導コイル、mri及びnmr
JP4095742B2 (ja) 伝導冷却型超電導マグネット
JP2010272745A (ja) 超電導コイル及び超電導マグネット装置
JP2010232432A (ja) 磁場発生装置及びその利用方法
Masuyama et al. NbTi split magnet directly cooled by cryocooler
Morita et al. 10 T conduction cooled Bi-2212/Ag HTS solenoid magnet system
JP2002324707A (ja) 超電導磁石
JPH10275719A (ja) 超電導体の冷却方法
JP3734630B2 (ja) 伝導冷却型超電導磁石装置
JP2004111581A (ja) 超電導マグネット装置
Wang et al. Conduction-cooled superconducting magnet with persistent current switch for gyrotron application
JPH10116721A (ja) 超電導バルク体マグネット
JP2607661Y2 (ja) 極低温容器
JPH11329834A (ja) 超伝導材料からなる導体を備えた超伝導装置
JP2000150224A (ja) 超電導コイルの励磁制御方法
JP3677166B2 (ja) 高磁場発生用永久電流マグネット装置
WO2018150819A1 (ja) 超電導磁石装置またはそれを用いた磁気共鳴イメージング装置
JP2022157696A (ja) 超伝導線材、超伝導磁石および超伝導機器
JP3052662B2 (ja) 酸化物超電導線材を用いた交流マグネット

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050816

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4095742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

EXPY Cancellation because of completion of term