JP4093843B2 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP4093843B2
JP4093843B2 JP2002325222A JP2002325222A JP4093843B2 JP 4093843 B2 JP4093843 B2 JP 4093843B2 JP 2002325222 A JP2002325222 A JP 2002325222A JP 2002325222 A JP2002325222 A JP 2002325222A JP 4093843 B2 JP4093843 B2 JP 4093843B2
Authority
JP
Japan
Prior art keywords
light emitting
mesa structure
layer
angle
top surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002325222A
Other languages
English (en)
Other versions
JP2004158778A (ja
Inventor
尚一 大山
弘志 中津
孝尚 倉橋
哲朗 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002325222A priority Critical patent/JP4093843B2/ja
Publication of JP2004158778A publication Critical patent/JP2004158778A/ja
Application granted granted Critical
Publication of JP4093843B2 publication Critical patent/JP4093843B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体発光素子に関し、表示用、通信用に使用される発光素子、特に発光ダイオードに関するものである。
【0002】
【従来の技術】
本発明に関連する先行技術文献としては次のものがある。
【0003】
【特許文献1】
特許第2901823号公報(図1)
【0004】
従来の発光素子100aでは、図8に示すように、活性層101(発光層)、p−クラッド層102、および電流拡散層103からなる多層構造を有し、電流拡散層103の上面にはp−電極104を備える。この発光素子100に電流を流すと、活性層101が発光するようになっている。この活性層101から発生した光は、等方向に放射され素子表面105から結晶外部へ放出される。このとき、活性層101から発生して外部へ放出される光は、素子表面105への入射角が全反射角以内の光(例えば、矢印で示す経路a,b)に限定される。入射角が全反射角以上の光(例えば、矢印で示す経路c)は、素子表面105において全反射されて結晶内部に戻ってしまう。
【0005】
図9に示すように、他の発光素子100bでは、素子表面105を粗面化することにより、入射角が全反射角以上の光(例えば、矢印で示す経路d)を発光素子外部に取り出すようにしている。しかしながら、電流拡散層103がGaPや(AlGax−1In1−yP(0≦x≦1、0≦y≦1)などの材料から構成されている場合、HFまたは塩酸ボイルなどを用いて素子表面105を粗面化できないという問題があった。
【0006】
この問題を解決するため、図10に示す発光素子100cは、発光素子表面105にメサ構造106を設けたものである。このとき、入射角が全反射角以上の光(例えば、矢印で示す経路e,f)を、素子100c外部へと取り出すことが可能となり、発光素子100cの輝度が向上する。
【0007】
前記メサ構造を備えた発光素子100cにおける光取り出し効率について検討する。発光素子モデルは、図11に示すように、活性層上面から素子表面までの垂直方向の距離h1を5μmとし、素子表面からメサ構造天面までのメサ高さh2を4μmとした。また、メサ構造の天面幅mは14μmである。また、メサ構造斜面と垂直方向との間の角度tは、41°である。光取り出し効率とは、発光素子モデルの活性層上の発光位置P(x、0)において水平方向に対して角度θで発光される光に関して、角度θが0〜πまでの範囲内において、発光角度θが1°毎に素子表面で光が全反射されるか否かを判定し、このときの全反射されない光の割合である(但し、結晶内での多重反射及び電流拡散層/空気界面の透過率の角度依存性は考慮していない。)。また、光取り出し効率が1とは、発光素子にメサ構造が設けられていない場合の光取り出し効率を表す。
【0008】
以上のようにして得られた発光位置P(x、0)に応じた光取り出し効率を、図12に示す。これによると、光取り出し効率は、発光位置Pがメサ構造天面の中心点Q(図11に図示)と平面視において対応する活性層の中心点(原点O)から約10μm程度離れた位置では、発光素子にメサ構造が設けられていない場合より低下する。また、発光位置Pが原点Oから10μm以上離れた位置では、発光素子にメサ構造が設けられていない場合とほぼ等しい。このことから、活性層のメサ構造下方からむやみに離れた位置に発光位置Pを設けても、発光素子の輝度が向上しないことが分かる。
【0009】
その為、図13に示す発光素子100dのように、前記メサ構造106下方に開口部107aを有する電流狭窄層107を設け、矢印で示すように、通電時に電流狭窄を行うことによって電流密度を高めたものが公知である(例えば、特許文献1を参照)。これにより、この発光素子100dでは、メサ構造106下方の活性層101(発光層)において発光領域Rを限定し、メサ構造106による光取り出し効率の向上を図っている。
【0010】
【発明が解決しようとする課題】
前記発光素子100dにおいて、メサ構造のメサ高さh2および天面幅mの各値に応じた光取り出し効率を求めた。このとき、前記メサ高さh2が4,6,8μmである場合について、また、メサ構造の天面幅mが40,48,56,64,72μmであるときの光取り出し効率を求めた。
【0011】
その結果、図14、図15、図16に示すように、光取り出し効率は、メサ構造のメサ高さh2に比例して高くなることが分かった(特に、発光位置P(x,0)が活性層の中心点(原点O)から約−10〜10μm程度離れた位置において、光取り出し効率が、メサ構造のメサ高さh2に比例して高い)。メサ高さh2を、4μm以上、特に12μm以上にするために、メサ構造106が形成される電流拡散層103の材料にAlGaAsや(AlGax−1In1−yP(0≦x≦1、0≦y≦1)を用いることが考えられる。このとき、電流拡散層103が格子整合し、歪による劣化が抑制される。しかしながら、それ以外の材料を用いた場合、格子不整合が生じるので、メサ高さh2を制限し、歪による劣化を抑制する必要がある。なお、電流拡散層103が積層されるp−クラッド層102の材料は、発光層101と格子不整合が生じないように選択されている。
【0012】
また、前記グラフから前記メサ構造106の天面幅mを広くしても光取り出し効率が向上しないことが分かった。逆に狭いと発光部の中心部分(発光位置P(x,0)が活性層の中心点(原点O)から約−10〜10μm程度離れた位置)の光取り出し効率は向上するが、発光部の周辺部分の取り出し効率は向上せず、全体としてはむしろ効果が低下する。例えば、発光波長570nmのAlGaInP系発光ダイオードでは、光度30mcdから20mcdに低下した。
【0013】
このように、単純にメサ構造を設けるだけでは光度は向上せず、適切な形状を有するメサ構造を備える半導体発光素子が必要とされていた。
【0014】
そこで、本発明では、前記従来の問題に鑑み、輝度および光取り出し効率を向上させた半導体発光素子を提供することを課題とする。
【0015】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、
発光層と、該発光層に積層された電流拡散層と、該電流拡散層表面をエッチングすることにより形成されたメサ構造とを備える半導体発光素子において、
前記メサ構造の天面の見込み半角を、ほぼ全反射角にしたものである。
【0016】
前記発明によれば、メサ構造の天面の見込み半角がほぼ全反射角になっているので、発光層からメサ構造の天面に見込み半角内の角度で入射した光は、メサ構造の天面を介して素子外部に取り出され、発光素子の輝度を向上する。ここで、メサ構造の天面の見込み半角とは、平面においてメサ構造の天面の中心点と対応する発光層の発光位置からメサ構造の天面外縁に入射するときの入射角度のことをいう。
【0017】
前記電流拡散層は、(AlGax−1In1−yP(0≦x≦1、0≦y≦1)からなり、前記メサ構造の側面の見込み角が、35°以上150°以下であることが好ましい。電流拡散層を(AlGax−1In1−yP(0≦x≦1、0≦y≦1)で形成した場合、全反射角は約17°となる。このとき、前記メサ構造の天面の見込み半角は、14°〜17°、好ましくは17°である。また、メサ構造の側面の見込み角の上限値を150°にしたのは、メサ構造側面(斜面)と垂直方向との間の角度を41°とした場合、見込み角がおよそ150°となるためである。これにより、メサ構造の天面の見込み半角が全反射角となり、発光した光のうち内部に戻っていた光をメサ構造の側面より外部へと取り出し、発光素子の輝度を向上させることができる。ここで、メサ構造の側面の見込み角とは、平面においてメサ構造の天面の中心点と対応する発光層の発光位置からメサ構造の側面外縁に入射するときの入射角度の2倍の大きさを有する角度のことである。また、電流拡散層が発光層に対して格子整合するので、メサ構造の高さを12μm以上の高さに形成できる。また、短波長の発光素子に適用可能である。
【0018】
また、前記電流拡散層は、AlGaAsからなり、前記メサ構造の側面の見込み角が、35°以上150°以下であることが好ましい。電流拡散層をAlGaAsで形成した場合、全反射角は約17°となる。このとき、前記メサ構造の天面の見込み半角は、17°である。これにより、メサ構造の天面の見込み半角が全反射角となり、発光した光のうち内部に戻っていた光をメサ構造の側面より外部へと取り出し、発光素子の輝度を向上させることができる。また、電流拡散層が発光層に対して格子整合するので、メサ構造の高さを12μm以上の高さに形成できる。
【0019】
前記発光層は、(AlGax−1In1−yP(0≦x≦1、0≦y≦1)からなることが好ましい。このとき、発光層から発光される光の発光波長は、570nmである。
【0020】
前記メサ構造の高さを4μm以上12μm以下とすることが好ましい。メサ構造の高さを高くして光取り出し効率を向上するためには、メサ構造が形成される電流拡散層の層厚を厚くする必要がある。このとき、電流拡散層が発光層に対して格子不整合となる場合、電流拡散層の層厚を厚くすると歪によりメサ構造を含む電流拡散層に劣化が生じる。このメサ構造の劣化を防止するため、メサ構造の高さを4μm以上12μm以下とする。メサ構造の高さを4μm以上12μm以下とするとき、電流拡散層厚制御を行うことにより達成することが好ましい。
【0021】
前記メサ構造は、前記電流拡散層表面を複数回エッチングすることによりドーム形状に形成されることにより、光取り出し効率が向上する。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に従って説明する。
【0025】
図1は、本発明に係る半導体発光素子1の断面図である。この半導体発光素子1は、基板2、活性層3(発光層)、p−クラッド層4、および電流拡散層5からなる多層構造を有する。基板2の下面に裏面電極6を設け、電流拡散層5の上面にp−電極7を設けたものである。前記活性層3および前記電流拡散層5は、(AlGax−1In1−yP(0≦x≦1、0≦y≦1)からなる。この発光素子1に通電すると、活性層3が発光するようになっている。また、p−クラッド層4と電流拡散層5との間には、従来の発光素子と同様に、電流狭窄することによって電流密度を高めるための電流狭窄層8が形成されている。
【0026】
また、電流拡散層5の上面5a(素子表面)には、メサ構造9が形成されている。このメサ構造9のメサ高さh2、すなわち電流拡散層5表面からメサ構造9の天面までの高さは4μm以上12μm以下であり、前記メサ構造の天面幅mは3〜9μmである。
【0027】
また、メサ構造9の天面9aの見込み半角r1は、ほぼ全反射角(約17°)になっている。ここで、メサ構造の天面の見込み半角r1とは、平面においてメサ構造9の天面9aの中心点Qと対応する活性層3の発光位置Oからメサ構造9の天面9a外縁に入射するときの入射角度のことをいう。
【0028】
また、メサ構造9の側面9bの見込み角r2は、35°である。ここで、メサ構造の側面の見込み角r2とは、前記発光位置Oからメサ構造9の側面9b外縁に入射するときの入射角度r3の2倍の大きさを有する角度r2のことである。なお、本実施形態においては、メサ構造9の側面9bの見込み角r2は、35°としたが35°以上150°以下であればよい。
【0029】
次に、前記半導体発光素子1を製造する製造方法について説明する。
【0030】
図2(a)に示すように、先ず、基板2上に(AlGax−1In1−yP(0≦x≦1、0≦y≦1)からなる活性層3、p−クラッド層4、電流狭窄層8および(AlGax−1In1−yP(0≦x≦1、0≦y≦1)からなる電流拡散層5を順次積層する。ここで、p−クラッド層4上面から電流拡散層5表面までの高さh3は、14μmであり、活性層3上面から電流拡散層5表面までの高さh4は、13μmとなるように積層した。
【0031】
次に、図2(b)に示すように、電流拡散層5上面の一部をレジスト10により保護する。そして、図2(c)に示すように、電流拡散層5をエッチングし、メサ構造9を形成する。このエンチング時に使用するエッチャントは、硫酸系エッチャントでは、60℃で10分間エッチングを行っても約1μm程度しかエッチングできない為、塩酸:酢酸:過水のエッチャントを使用する。その際、エッチャント作成後約15分ほど経過してからエッチングを開始する。これは、図3に示すように、エッチャント作成直後から1時間後のエッチングレートを見ると、エッチングレートが大きく異なり、エッチャント作成直後が最もエッチングレートが速いが、エッチングばらつきが多くなり、逆に、作成後1時間経つとエッチングレートが遅くなり、エッチングするのが困難になるためである。
【0032】
続いて、図2(d)に示すように、レジスト10を剥離した後、スパッタ法或いは蒸着法により電流拡散層5上面に電極材料を薄膜形成し、p−電極7を形成する。さらに、前記基板2の下面に裏面電極6を蒸着する。
【0033】
次に、前記構成からなる半導体発光素子1の作用について説明する。
【0034】
以上のようにして、製造された発光ダイオード1では、図1に示す発光領域Rから発光される光のうち、メサ構造9の天面9aに見込み半角r1以内の角度で入射した光は、見込み半角r1がほぼ全反射角(約17°)であるので天面9aにより反射されることなく外方に射出される。また、発光領域Rから発光される光のうち、メサ構造9の側面9bに入射した光は、メサ構造9の側面9bの見込み角r2が、35°以上であるので、側面9bにより反射されることなく外方に射出される。これにより、光取り出し効率が向上する。また、放出する光の光度を向上することができた。なお、本発明を発光波長570nmのAlGaInP系発光ダイオードに適用した場合、従来の発光素子では30mcdであった光度を58mcdに向上できた。
【0035】
前記実施形態の変形例として、図4に示すように、メサ構造9をドーム形状に形成してもよい。これは、前述した半導体発光素子1を製造する製造方法において、レジスト10剥離後にさらに追加エッチングを行ったものである。これにより、前記実施形態と同様に放出する光の光度を向上することができる。
【0036】
図5(a)は、本発明の他の実施形態に係る半導体発光素子1’の断面図である。この半導体発光素子1’では、図5(b)に示すように、p−電極7’がメサ構造9の天面9aに形成されている。また、環形状の活性層3’(発光層)が、平面視において前記p−電極7’の周囲を囲むように配置されている。また、前記実施形態の電流狭窄層8は、設けられていない。他の前記実施形態と同様である部分は、同一符号を付して詳細な説明は省略する。
【0037】
以上の構成からなる半導体発光素子1’では、p−電極7’の外縁と環形状の活性層3’の外縁との距離が均等であるので、発光領域Rにおいて通電する電流の電流拡散が均一となる。これに対して、図6に示すように、p−電極7’の外縁と活性層3’の外縁との距離が不均等な場合、電流拡散が不均一になり発光領域(特に、活性層3’の角部)の輝度が低下してしまう。また、図7に示すように、環形状の活性層3’を設けるのではなく、p−電極7’の外縁と環形状の活性層3’の外縁との距離が均等になるように多角形状の活性層3’を形成してもよい。
【0038】
【発明の効果】
以上の説明から明らかなように、本発明は、発光層と、該発光層に積層された電流拡散層と、発光層と電流拡散層との間に設けられた電流狭窄層と、電流拡散層表面をエッチングすることにより形成されたメサ構造とを備える半導体発光素子において、電流狭窄層によりメサ構造の天面と対応する位置に発光領域を設け、メサ構造の天面の中心点と対応する発光層の発光位置からメサ構造の天面の外縁に入射するときのメサ構造の天面の見込み半角を、ほぼ全反射角にしたので、発光層からメサ構造の天面に見込み半角内の角度で入射した光は、メサ構造の天面により反射されることなく素子外部に取り出され、発光素子の輝度および光取り出し効率を向上する。
【図面の簡単な説明】
【図1】 本発明の半導体発光素子の断面図である。
【図2】 (a),(b),(c),(d)は、図1の発光ダイオードの製造時を示す断面図である。
【図3】 エッチャント作成後放置時間に応じたエッチングレートを示したグラフである。
【図4】 図1の半導体発光素子の変形例を示す断面図である。
【図5】 (a)は、本発明の他の実施形態に係る半導体発光素子の断面図である。(b)は、(a)の平面図である。
【図6】 p−電極の外縁と活性層の外縁との距離が不均等な場合を示した半導体発光素子の平面図である。
【図7】 図5の変形例を示した平面図である。
【図8】 従来の半導体発光素子の断面図である。
【図9】 従来の半導体発光素子の断面図である。
【図10】 従来の半導体発光素子の断面図である。
【図11】 従来の半導体発光素子の発光素子モデルである。
【図12】 図11の発光素子モデルにおける光取り出し効率を示すグラフである。
【図13】 従来の半導体発光素子の断面図である。
【図14】 図13の半導体発光素子における光取り出し効率を示すグラフである。
【図15】 図13の半導体発光素子における光取り出し効率を示すグラフである。
【図16】 図13の半導体発光素子における光取り出し効率を示すグラフである。
【符号の説明】
1…半導体発光素子
3…活性層(発光層)
5…電流拡散層
9…メサ構造
r1…メサ構造の天面の見込み半角
r2…メサ構造の側面の見込み角

Claims (3)

  1. 発光層と、該発光層に積層された電流拡散層と、前記発光層と前記電流拡散層との間に設けられた電流狭窄層と、前記電流拡散層表面をエッチングすることにより形成されたメサ構造とを備える半導体発光素子において、
    前記電流狭窄層により前記メサ構造の天面と対応する位置に発光領域を設け、
    前記メサ構造の天面の中心点と対応する発光層の発光位置から前記メサ構造の天面の外縁に入射するときの前記メサ構造の天面の見込み半角を、ほぼ全反射角にしたことを特徴とする半導体発光素子。
  2. 前記発光層は、(AlGax−1In1−yP(0≦x≦1、0≦y≦1)からなることを特徴とする請求項に記載の半導体発光素子。
  3. 前記メサ構造は、前記電流拡散層表面を複数回エッチングすることによりドーム形状に形成されることを特徴とする請求項に記載の半導体発光素子。
JP2002325222A 2002-11-08 2002-11-08 半導体発光素子 Expired - Fee Related JP4093843B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325222A JP4093843B2 (ja) 2002-11-08 2002-11-08 半導体発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325222A JP4093843B2 (ja) 2002-11-08 2002-11-08 半導体発光素子

Publications (2)

Publication Number Publication Date
JP2004158778A JP2004158778A (ja) 2004-06-03
JP4093843B2 true JP4093843B2 (ja) 2008-06-04

Family

ID=32804519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325222A Expired - Fee Related JP4093843B2 (ja) 2002-11-08 2002-11-08 半導体発光素子

Country Status (1)

Country Link
JP (1) JP4093843B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016560A (ja) * 2007-07-04 2009-01-22 Sharp Corp 半導体発光素子
JP5324116B2 (ja) * 2008-03-28 2013-10-23 京セラ株式会社 発光デバイスおよびその製造方法
CN117916900A (zh) * 2021-08-30 2024-04-19 索尼集团公司 发光器件和图像显示设备

Also Published As

Publication number Publication date
JP2004158778A (ja) 2004-06-03

Similar Documents

Publication Publication Date Title
JP5521478B2 (ja) 窒化物半導体発光素子の製造方法及び窒化物半導体発光素子
JP5963004B2 (ja) 窒化物半導体発光素子
US9991418B2 (en) Semiconductor light emitting element
US20080308833A1 (en) Group III nitride-based compound semiconductor light-emitting device
CN101316026A (zh) 氮化物半导体激光器芯片及其制造方法
JP6947386B2 (ja) 半導体発光素子および半導体発光素子の製造方法
WO2014006813A1 (ja) 半導体発光素子
WO2018083896A1 (ja) 半導体素子、半導体レーザ及び半導体素子の製造方法
TW201432938A (zh) Led元件及其製造方法
US10381804B2 (en) Vertical cavity light emitting element
JP2006128659A (ja) 窒化物系半導体発光素子及びその製造方法
JP2010251531A (ja) 半導体発光素子
JP4093843B2 (ja) 半導体発光素子
JP2011091251A (ja) 窒化物半導体発光素子
US20070158662A1 (en) Two-dimensional photonic crystal LED
JP2020126995A (ja) 半導体レーザ素子及びその製造方法
JPH08255952A (ja) 半導体発光素子の製法
JPH11177184A (ja) 半導体レーザ装置およびその製造方法
JP2011258883A (ja) 半導体レーザ
JP2004128107A (ja) 光半導体素子
JP2008091664A (ja) 発光素子及び照明装置並びに光ピックアップ
JP2007250714A (ja) 発光素子
JP2005203804A (ja) レーザ素子
JP2005268725A (ja) 半導体素子およびその製造方法
JP2001185802A (ja) 半導体素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees