JP4089507B2 - 内燃機関の触媒劣化検出装置 - Google Patents

内燃機関の触媒劣化検出装置 Download PDF

Info

Publication number
JP4089507B2
JP4089507B2 JP2003142247A JP2003142247A JP4089507B2 JP 4089507 B2 JP4089507 B2 JP 4089507B2 JP 2003142247 A JP2003142247 A JP 2003142247A JP 2003142247 A JP2003142247 A JP 2003142247A JP 4089507 B2 JP4089507 B2 JP 4089507B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
deterioration
purification catalyst
exhaust purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003142247A
Other languages
English (en)
Other versions
JP2004346767A (ja
Inventor
伸基 大橋
孝 下町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003142247A priority Critical patent/JP4089507B2/ja
Publication of JP2004346767A publication Critical patent/JP2004346767A/ja
Application granted granted Critical
Publication of JP4089507B2 publication Critical patent/JP4089507B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路上に配設された排気浄化触媒の劣化を検出する、内燃機関の触媒劣化検出装置に関する。
【0002】
【従来の技術】
内燃機関の排気ガス内の窒素酸化物NOx、一酸化炭素CO、炭化水素HCなどの浄化すべき物質は、排気通路上に配設された三元触媒等によって浄化されている(ディーゼルエンジンでは、上述した物質に加えて粒子状物質も浄化する四元触媒等も用いられる)。この触媒の酸素吸蔵作用に着目して浄化すべき物質の浄化率をより一層向上させるために、この酸素吸蔵作用を効果的に利用した空燃比制御が従来から検討されている。酸素吸蔵作用を利用する際には、排気浄化触媒が実際に吸蔵していると思われる酸素量や、吸蔵することができる限界値(排気浄化触媒の状況によって変動し得る)が推定されるが、これらの推定値を利用して排気浄化触媒の劣化を検出/判定することも行われている。
【0003】
【特許文献1】
特許公報第3228006号公報
【0004】
【発明が解決しようとする課題】
酸素吸蔵作用を利用して排気浄化触媒の劣化を検出するものとしては、上述した[特許文献1]に記載のものなどが知られている。[特許文献1]に記載のものは、空燃比を強制的にリッチ側とリーン側とに振動させ、そのときの排気浄化触媒下流側の酸素センサの出力ピーク値から触媒の劣化を判定する。特に、排気浄化触媒が既に劣化している場合には、酸素センサによって検出される空燃比が理論空燃比(ストイキ)を超えてリッチとなるように、空燃比振動の振幅・周期が定められている。しかし、劣化していない触媒と劣化した触媒とで、酸素センサの出力ピーク値に違いが生じるが、その差は大きくはない。このため、触媒劣化検出/判定時のS/N比が良くなく、精度の高い検出/判定を行うことができなかった。
【0005】
本発明者らは、このような排気浄化触媒の酸素吸蔵量に基づく触媒劣化検出をより一層正確に行うべく更なる改良研究を進め、本発明を創出するに至った。即ち、本発明の目的は、排気浄化触媒の劣化をより一層正確に検出することのできる触媒劣化検出装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の内燃機関の触媒劣化検出装置は、内燃機関の排気通路上の排気浄化触媒の上流側に配設された上流側空燃比センサと、前記排気浄化触媒の下流側に配設された下流側酸素センサと、前記上流側空燃比センサの検出結果を利用して空燃比を制御する空燃比制御手段と、前記下流側酸素センサの検出結果に基づいて前記排気浄化触媒の劣化状態を判定する劣化判定手段とを備えている。前記空燃比制御手段は、予め決定されたパターンで空燃比をリッチ側とリーン側とに振動させる空燃比振動モードを実行可能である。
【0007】
そして、前記劣化判定手段は、前記排気浄化触媒の劣化状態下で空燃比振動モードを実行した場合に前記下流側酸素センサの出力電圧が反転する空燃比を劣化時反転空燃比として予め記憶している。劣化判定手段は、空燃比振動モード実行時に、前記上流側空燃比センサの検出値が劣化時反転空燃比を示したときの前記下流側酸素センサの検出値の変化に基づいて前記排気浄化触媒の劣化を判定する。
【0008】
酸素センサは、検出する空燃比がリッチであるかリーンであるかによって、その出力電圧をオン−オフ的に変化させる。このため、上述したように、排気浄化触媒が劣化している際に、酸素センサの出力電圧が反転する(即ち、出力電圧が急変する)空燃比を劣化時反転空燃比として劣化判定手段に予め記憶させておき、空燃比振動モード実行時に空燃比が劣化時反転空燃比を示したときに下流側酸素センサの出力が急変するか否かを検出することで、S/N比を大きく取れ、検出/判定精度を向上させることができる。
【0009】
【発明の実施の形態】
本発明の触媒劣化検出装置の一実施形態について以下に説明する。本実施形態の触媒劣化検出装置を有するエンジン1を図1に示す。図1のエンジン1は、右方より吸入空気を得て、燃焼後の排気ガスを図中左方に排出している。
【0010】
本実施形態で説明するエンジン1は、多気筒エンジンであるが、ここではそのうちの一気筒のみが断面図として図1に示されている。エンジン1は、点火プラグ2によって各シリンダ3内の混合気に対して点火を行うことによって駆動力を発生する。エンジン1の燃焼に際して、外部から吸入した空気は吸気通路4を通り、インジェクタ5から噴射された燃料と混合され、混合気としてシリンダ3内に吸気される。シリンダ3の内部と吸気通路4との間は、吸気バルブ6によって開閉される。シリンダ3の内部で燃焼された混合気は、排気ガスとして排気通路7に排気される。シリンダ3の内部と排気通路7との間は、排気バルブ8によって開閉される。
【0011】
吸気通路4上には、シリンダ3内に吸入される吸入空気量を調節するスロットルバルブ9が配設されている。このスロットルバルブ9には、その開度を検出するスロットルポジショニングセンサ10が接続されている。スロットルバルブ9は、スロットルモータ11によって電気的に開閉される。また、スロットルバルブ9の近傍には、アクセルペダルの踏み込み量を検出するアクセルポジショニングセンサ12も配設されている。本実施形態では、アクセルポジショニングセンサ12によってアクセルペダルの踏み込み量を検出し、これに基づいてスロットルモータ11を駆動してスロットルバルブ9を開閉する。即ち、本実施形態のエンジン1ではいわゆる電子制御スロットルバルブが採用されている。
【0012】
さらに、吸気通路4上には、吸入空気量を検出するためのエアフローメーター13も取り付けられている。エアフローメーター13は、吸入空気の温度を検出する吸気温センサとしての機能も併有している。エンジン1のクランクシャフト近傍には、クランクシャフトの回転位置を検出するクランクポジショニングセンサ14が取り付けられている。クランクポジショニングセンサ14の出力からは、シリンダ3内のピストン15の位置や、エンジン回転数を求めることもできる。また、エンジン1には、エンジン1のノッキングを検出するノックセンサ16や冷却水温度を検出する水温センサ17も取り付けられている。
【0013】
一方、排気通路7上には排気浄化触媒19が配設されており、この排気浄化触媒19にはその温度を検出する温度センサ21が内蔵されている。さらに、排気浄化触媒19の上流側には、排気浄化触媒19に流入する排気ガスの空燃比(排気空燃比)を検出する上流側空燃比センサ25(以下、単に空燃比センサ25と言う)が取り付けられている。空燃比センサ25は、排気空燃比をリニアに検出する、いわゆるリニア空燃比センサである。
【0014】
また、排気浄化触媒19の下流側には、排気浄化触媒19から流出する排気ガスの空燃比を検出する下流側酸素センサ26(以下、単に酸素センサ26と言う)が取り付けられている。酸素センサ26は、理論空燃比の前後でその出力(出力電圧)をオン−オフ的に急変させるものである。ジルコニア素子を用いた酸素センサが一般的であるが、本実施形態の酸素センサ26もこのタイプのものである。区雲煙卑賤さ25と酸素センサ26とは、その検出がリニアであるかオン−オフ的であるかの相違はあるが、何れもそれぞれの取付位置における排気ガス中の酸素濃度から排気空燃比を検出する。
【0015】
なお、排気浄化触媒は、排気通路上に複数設けられる場合もある。直列的に複数設けられる場合や、分岐部分に並列的に複数設けられる場合などである。例えば、四気筒のエンジンに対して、そのうちの二気筒の排気管が一つにまとめられた箇所に排気浄化触媒が一つ設置され、残りの二気筒の排気管が一つにまとめられた箇所にもう一つの排気浄化触媒が設置される場合がある。本実施形態においては、各シリンダ3毎の排気管が一つにまとめられらた箇所よりも下流側に一つの排気浄化触媒19が配設されている。
【0016】
これらの点火プラグ2、インジェクタ5、スロットルポジショニングセンサ10、スロットルモータ11、アクセルポジショニングセンサ12、エアフローメーター13、クランクポジショニングセンサ14、ノックセンサ16、水温センサ17、空燃比センサ25、酸素センサ26や、その他のセンサ類は、エンジン1を総合的に制御する電子制御ユニット(ECU)18と接続されており、ECU18からの信号に基づいて制御され、あるいは、検出結果をECU18に対して送出している。なお、空燃比センサ25や酸素センサ26は、所定の温度(活性化温度)以上とならなければ正確な検出を行えないため、早期に活性化温度に昇温されるように、ECU18から供給される電力によって昇温される。
【0017】
ECU18は、内部に演算を行うCPUや演算結果などの各種情報量を記憶するRAMやバッテリによってその記憶内容が保持されるバックアップRAM等を有している。ECU18は、空燃比センサ25や酸素センサ26などの検出結果を用いて排気浄化触媒19の酸素吸蔵量や酸素吸蔵能力を推定する。また、ECU18は、排気浄化触媒19の酸素吸蔵作用に関連した空燃比変化を利用して排気浄化触媒19の劣化を判定する劣化判定手段としても機能する。さらに、ECU18は、空燃比センサ25の検出結果を用いて(あるいは酸素センサ26の検出結果も併用して)スロットルバルブ9やインジェクタ5からの燃料噴射量を制御して空燃比を制御する空燃比制御手段としても機能する。
【0018】
次に、排気浄化触媒19の酸素吸蔵作用について簡単に説明する。
【0019】
排気浄化触媒19としては、酸素吸蔵作用を有する三元触媒が用いられている。この三元触媒は、セリア(CeO2)等の成分を有し、排気ガス中の酸素を吸蔵・放出する性質を有している。この三元触媒の酸素吸蔵放出機能は、混合気の空燃比がリーンになると排気ガス中に存在する過剰酸素を吸着保持し、空燃比がリッチになると吸着保持した酸素を放出するものである。混合気がリーンになったときには過剰な酸素が三元触媒に吸着保持されるために窒素酸化物NOxが還元されることとなる。一方、混合気がリッチになったときには三元触媒に吸着保持された酸素が放出されることで一酸化炭素COや炭化水素HCが酸化されることとなる。
【0020】
このとき、上述したように、三元触媒がその酸素吸蔵能力の限界まで酸素を吸蔵していれば、入ガスの排気空燃比がリーンとなったときに酸素を吸蔵することができなくなり、排気ガス中の窒素酸化物NOxを充分に浄化できなくなる。一方、三元触媒が酸素を放出しきって酸素を全く吸蔵していなければ、入ガスの排気空燃比がリッチとなったときに酸素を放出することができないので、排気ガス中の一酸化炭素COや炭化水素HCを充分に浄化できなくなる。このため、通常は、入ガスの排気空燃比がリーンとなってもリッチとなっても対応できるように酸素吸蔵量を制御している。
【0021】
排気浄化触媒19が新しければ酸素を十分に吸蔵できるので、排気浄化触媒19に流入する排気ガスの空燃比がリッチ又はリーンとなっても、酸素吸蔵能力によってNOxを還元したり、吸蔵した酸素を用いてCOやHCを酸化できるので直ちに排気浄化触媒19からの流出排気ガスがリッチ又はリーンとなることはない。酸素吸蔵能力が利用できなくなった状態(吸蔵した酸素を使い切った状態や酸素を能力の限界まで吸蔵してしまった状態)となったところで、排気浄化触媒19の下流側の空燃比がリッチ又はリーンとなる。
【0022】
しかし、排気浄化触媒19が劣化すると、酸素吸蔵能力が低下し、酸素を吸蔵できなくなる(あるいは、その容量が低下する)。このため、排気浄化触媒19が劣化している場合は、排気浄化触媒19に流入する排気ガスの空燃比がリッチ又はリーンとなると、直ちに(あるいは若干のズレの後に)排気浄化触媒19からの流出排気ガスもリッチ又はリーンとなってしまう。そこで、排気浄化触媒19に流入する排気ガスの空燃比を強制的にリッチ−リーンに振動させ、そのときの酸素センサ26の出力をモニターすることで、排気浄化触媒19の劣化を検出することができる。
【0023】
上述した酸素吸蔵作用を利用した劣化検出自体は従来から行われているが、本実施形態では検出精度をより一層向上させるために、排気浄化触媒19が劣化したときに酸素センサ26の出力が反転する空燃比を予めECU18に記憶させておき、この情報と実際に空燃比を振動させたときの酸素センサ26の出力とから、排気浄化触媒19が劣化しているか否かを検出する。以下、これについて詳しく説明する。
【0024】
まず、排気浄化触媒19が劣化している状態下で空燃比を強制的にリッチ−リーンに振動させ(空燃比振動モードを実行)た場合に、酸素センサ26の出力電圧が反転する空燃比を劣化時反転空燃比として予めECU18内のROMなどに記憶させておく。劣化時反転空燃比を図2を用いて説明する。
【0025】
図2(a)に示されるように、排気浄化触媒19に流入する空燃比が当初(酸素センサ26がリーン反転するまで)十分にリーンにされ、その後ストイキを経てリッチにされ、再度ストイキを経てリッチにされ、これを繰り返すものである。これが空燃比振動モードである。なお、当初の空燃比をリッチにしておき、ストイキ−リーン−ストイキ−リッチと振動させる場合も考えられる。この場合については図4を用いて追って説明する。この振動モードの振幅、特に最もリッチとされたときの空燃比は、排気浄化触媒19が劣化していた際に、排気浄化触媒19の下流側の酸素センサ26の出力(電圧)が反転する値が設定される。
【0026】
この値が、劣化時反転空燃比としてECU18内に格納される。劣化時反転空燃比は、劣化した排気浄化触媒を実際に用いて実験などを通して予め取得しておき、これをECU18に記憶させている。ここでは、このリッチ側に位置する劣化時反転空燃比に対してストイキを挟んで反対側に位置する空燃比をリーン側の振動頂点としている。また、振動の周期も予め決定されている。このように予め決定された空燃比振動モードが実行されると、排気浄化触媒19が劣化している場合には、酸素センサ26の出力電圧は図2(b)における実線のように変化する。
【0027】
即ち、排気浄化触媒19に流入する空燃比が上述した劣化時反転空燃比に達すると、排気浄化触媒19の酸素吸蔵作用が発揮されなくなっているため、酸素センサ26の出力は反転する。この反転は、酸素センサ26の特性上急変することとなり、酸素センサ26の値が変化したことを良好なS/N比で検出できる。そこで、この急変が発生したか否かを検出することで、排気浄化触媒19が劣化しているか否かを検出精度良く検出することができる。判定のための閾値をリーン時の出力電圧とリッチ時の出力電圧と間の任意の値(例えば、ほぼ中間の値)に設定すれば、劣化を良好に検出できる。
【0028】
もし、排気浄化触媒19が劣化しておらず、新品であった場合は、空燃比振動モードを実行したとしても、排気浄化触媒19の酸素吸蔵機能が有効に働く。特に、ここでは、空燃比振動モードに際して十分にリーンとしてから振動が行われるので、排気浄化触媒19は酸素を十分に吸蔵した状態から空燃比振動に移行する。このため、排気浄化触媒19に流入する空燃比の振動は排気浄化触媒19の酸素吸蔵作用によってうち消され、排気浄化触媒19の下流側の酸素センサ26の出力電圧は、ストイキとリーンを示す電圧の間でのみ振動する。あるいは、排気浄化触媒19がその能力一杯にまで吸蔵してしまうような状況にまで達しなければ、排気浄化触媒19の下流側の酸素センサ26の出力電圧は、図2(b)中の点線で示されるように、ほぼストイキ相当の電圧を維持する。
【0029】
排気浄化触媒19が新品ではなく、かつ、劣化しているとされる状態にまで達していない場合は、空燃比振動モードを実行すると、新品時の排気浄化触媒19ほどではないにしても、排気浄化触媒19の酸素吸蔵機能が働く。このため、排気浄化触媒19の下流側の酸素センサ26の出力電圧は、図2(b)中の一点鎖線で示されるように、酸素吸蔵機能が機能した後に反転する。その波形は、劣化時の波形に対して時間的に遅れを持った形となり、排気浄化触媒19に流入する空燃比が劣化時反転空燃比に達してすぐに反転することはない。このため、このような状況では排気浄化触媒19が劣化している判定されることはない。
【0030】
このようにすることで、精度良く劣化を検出することができるだけでなく、劣化検出時にエミッションの悪化を抑制することもできる。これは、排気浄化触媒19が劣化していなければ、空燃比振動モードを行っても酸素吸蔵作用によって排気ガスは浄化されるからである。図3に、上述した劣化検出制御のフローチャートを示す。まず、排気浄化触媒19に流入する排気ガスの空燃比(入A/F)がリーンとなるように空燃比制御を行う(ステップ300)。このとき、空燃比センサ25を用いてフィードバック制御を行う。
【0031】
次に、上述した劣化判定モード(空燃比振動モード)を実行する(ステップ310)。このときも空燃比センサ25を用いてフィードバック制御を行う。そして、モード中における排気浄化触媒19への入A/Fのリッチ反転時、即ち、排気浄化触媒19に流入する排気ガスの空燃比が劣化時反転空燃比となったときの酸素センサ26の出力値が上述した閾値未満であるか否かを判定する(ステップ320)。ステップ320が肯定され、酸素センサ26の出力が閾値未満であれば、上述したように排気浄化触媒19は劣化していないと判断できるので、劣化判定は行われずに図3のフローチャートの制御を終える。
【0032】
一方、ステップ320が否定され、酸素センサ26の出力が閾値以上である場合は、酸素センサ26の出力が急変してリッチを示しているので、排気浄化触媒19が劣化していると判断でき、劣化判定が行われて(ステップ330)図3のフローチャートの制御を終える。なお、ここでは、空燃比振動モード中に何回か劣化時反転空燃比での検出を行うことでさらに検出精度を向上させている。
【0033】
また、図3のフローチャートの制御では、排気浄化触媒19に流入する排気ガスの空燃比がリーンである状態から空燃比振動モードが開始されたが、リッチである状態から開始されても良い。この場合の図2相当図を図4に示す。図2の場合は、リーン側から空燃比振動が開始されるため、排気浄化触媒19への流入排気ガスの空燃比のリッチ側反転部に劣化時反転空燃比が設定された。この図4の場合は、リッチ側から空燃比振動が開始され、排気浄化触媒19への流入排気ガスの空燃比のリーン側反転部に劣化時反転空燃比が設定される。このようにして、図3と同様の制御を行っても良い。なお、図4(b)には、図2(b)における劣化中に相当する出力は示されていない。
【0034】
あるいは、空燃比振動モードに移行する際に、排気浄化触媒19に流入する排気ガスの空燃比を空燃比センサ25によって検出し、その検出結果に基づいて図2又は図4のパターンを選択して制御するようにしても良い。この場合の制御のフローチャートを図5に示す。なお、この場合、空燃比振動モード開始時に、入A/Fを十分にリッチまたリーンにしていない状況にもなり得るが、空燃比振動モード中に何回か劣化時反転空燃比での検出を行うので問題はない。
【0035】
図5のフローチャートに示されるように、まず、劣化判定モード(空燃比振動モード)を実行する前に、酸素センサ26によって、排気浄化触媒19の下流側の空燃比がリッチであるかリーンであるかを判定する(ステップ500)。排気浄化触媒19の下流側の空燃比がリーンである場合は、図2のパターンとなり、排気浄化触媒19に流入する排気ガスの空燃比がリッチ側で反転した際に劣化判定を行うこととなり、このための閾値(劣化判定閾値:Lean)が採用され(ステップ510)、空燃比振動モードが開始される。
【0036】
そして、この場合は、モード中における排気浄化触媒19への入A/Fのリッチ反転時、即ち、排気浄化触媒19に流入する排気ガスの空燃比が劣化時反転空燃比となったときの酸素センサ26の出力値が上述した閾値未満であるか否かを判定する(ステップ520)。ステップ520が肯定され、酸素センサ26の出力が閾値未満であれば、上述したように排気浄化触媒19は劣化していないと判断できるので、劣化判定は行われずに図5のフローチャートの制御を終える。
【0037】
一方、ステップ520が否定され、酸素センサ26の出力が閾値以上である場合は、酸素センサ26の出力が急変してリッチを示しているので、排気浄化触媒19が劣化していると判断でき、劣化判定が行われて(ステップ530)図5のフローチャートの制御を終える。なお、ここでも、空燃比振動モード中に何回か劣化時反転空燃比での検出を行うことでさらに検出精度を向上させている。
【0038】
ステップ500において排気浄化触媒19の下流側の空燃比がリッチであると判定された場合は、図4のパターンとなり、排気浄化触媒19に流入する排気ガスの空燃比がリーン側で反転した際に劣化判定を行うこととなり、このための閾値(劣化判定閾値:Rich)が採用され(ステップ540)、空燃比振動モードが開始される。なお、ここでは、空燃比振動モード前の酸素センサ26の出力がリッチを示しているかリーンを示しているかで異なる閾値(劣化判定閾値:Lean及び劣化判定閾値:Rich)を採用したが、同じ値の閾値を用いても高精度な判定が可能であるならば、一つの閾値で制御することも可能である。
【0039】
そして、この場合は、モード中における排気浄化触媒19への入A/Fのリーン反転時、即ち、排気浄化触媒19に流入する排気ガスの空燃比が劣化時反転空燃比となったときの酸素センサ26の出力値が上述した閾値を超えているか否かを判定する(ステップ550)。ステップ550が肯定され、酸素センサ26の出力が閾値を超えているようであれば排気浄化触媒19は劣化していないと判断できるので、劣化判定は行われずに図5のフローチャートの制御を終える。
【0040】
一方、ステップ550が否定され、酸素センサ26の出力が閾値以下である場合は、酸素センサ26の出力が急変してリーンを示しているので、排気浄化触媒19が劣化していると判断でき、劣化判定が行われて(ステップ530)図5のフローチャートの制御を終える。ここでも、空燃比振動モード中に何回か劣化時反転空燃比での検出を行うことでさらに検出精度を向上させている。
【0041】
なお、本発明は上述した実施形態に限定されるものではない。例えば、上述した実施形態では、劣化時反転空燃比をリッチ側又はリーン側の反転部に設定した。このようにすることで、空燃比を不必要にリッチ又はリーンにすることなく劣化検出を行えるので好ましいが、必ずしもこのように劣化時反転空燃比が空燃比の反転部に設定されていなくても良い。
【0042】
【発明の効果】
本発明の内燃機関の触媒劣化検出装置は、排気浄化触媒の上流側に上流側空燃比センサを、下流側に下流側酸素センサとを有しており、空燃比制御手段によって予め決定されたパターンで空燃比振動モードを実行しながら、劣化判定手段が上流側空燃比センサの検出値が劣化時反転空燃比を示したときの下流側酸素センサの検出値の変化に基づいて排気浄化触媒の劣化を判定する。酸素センサは、検出する空燃比がリッチであるかリーンであるかによって、その出力電圧をオン−オフ的に変化させるので、空燃比振動モード実行時に空燃比が劣化時反転空燃比を示したときに下流側酸素センサの出力が急変するか否かを検出することで、S/N比を大き取って排気浄化触媒の劣化を精度良く検出することができる。
【図面の簡単な説明】
【図1】本発明の触媒劣化検出装置の一実施形態を有する内燃機関(エンジン)の構成を示す構成図である。
【図2】本発明の触媒劣化検出装置の一実施形態における、(a)空燃比振動モード時の空燃比変化と、(b)酸素センサ出力値の変化とを示すグラフである。
【図3】本発明の触媒劣化検出装置の一実施形態における触媒劣化検出制御のフローチャートである。
【図4】本発明の触媒劣化検出装置の一実施形態における、(a)空燃比振動モード時の空燃比変化と、(b)酸素センサ出力値の変化とを示すグラフである。
【図5】本発明の触媒劣化検出装置の一実施形態における触媒劣化検出制御のフローチャートである。
【符号の説明】
1…エンジン、2…点火プラグ、3…シリンダ、4…吸気通路、5…インジェクタ、6…吸気バルブ、7…排気通路、8…排気バルブ、9…スロットルバルブ、10…スロットルポジショニングセンサ、11…スロットルモータ、12…アクセルポジショニングセンサ、13…エアフローメーター、14…クランクポジショニングセンサ、15…ピストン、16…ノックセンサ、17…水温センサ、18…ECU(劣化判定手段,空燃比制御手段)、19…排気浄化触媒、21…温度センサ、25…(上流側)空燃比センサ、26…(下流側)酸素センサ。

Claims (1)

  1. 内燃機関の排気通路上の排気浄化触媒の上流側に配設された上流側空燃比センサと、前記排気浄化触媒の下流側に配設された下流側酸素センサと、前記上流側空燃比センサの検出結果を利用して空燃比を制御する空燃比制御手段と、前記下流側酸素センサの検出結果に基づいて前記排気浄化触媒の劣化状態を判定する劣化判定手段とを備えており、
    前記空燃比制御手段は、予め決定されたパターンで空燃比をリッチ側とリーン側とに振動させる空燃比振動モードを実行可能であり、
    前記劣化判定手段は、前記排気浄化触媒の劣化状態下で空燃比振動モードを実行した場合に前記下流側酸素センサの出力電圧が反転する空燃比を劣化時反転空燃比として予め記憶し、空燃比振動モード実行時に前記上流側空燃比センサの検出値が劣化時反転空燃比を示したときの前記下流側酸素センサの検出値の変化に基づいて前記排気浄化触媒の劣化を判定することを特徴とする内燃機関の触媒劣化検出装置。
JP2003142247A 2003-05-20 2003-05-20 内燃機関の触媒劣化検出装置 Expired - Fee Related JP4089507B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142247A JP4089507B2 (ja) 2003-05-20 2003-05-20 内燃機関の触媒劣化検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142247A JP4089507B2 (ja) 2003-05-20 2003-05-20 内燃機関の触媒劣化検出装置

Publications (2)

Publication Number Publication Date
JP2004346767A JP2004346767A (ja) 2004-12-09
JP4089507B2 true JP4089507B2 (ja) 2008-05-28

Family

ID=33530392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142247A Expired - Fee Related JP4089507B2 (ja) 2003-05-20 2003-05-20 内燃機関の触媒劣化検出装置

Country Status (1)

Country Link
JP (1) JP4089507B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1960644B1 (de) * 2005-12-05 2009-10-28 Robert Bosch Gmbh Verfahren zur diagnose eines in einem abgasbereich einer brennkraftmaschine angeordneten katalysators und vorrichtung zur durchführung des verfahrens
KR100993369B1 (ko) 2008-07-18 2010-11-09 현대자동차주식회사 차량의 촉매 진단장치 및 방법
FR2938008B1 (fr) * 2008-11-06 2010-11-26 Valeo Sys Controle Moteur Sas Procede de diagnostic des performances d'un pot catalytique

Also Published As

Publication number Publication date
JP2004346767A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4537417B2 (ja) NOxセンサの異常診断装置
JP4253294B2 (ja) エンジンの自己診断装置
US9068491B2 (en) SCR catalyst diagnostics
JP4877610B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US9328646B2 (en) Integrated fuel catalyst monitor
JP2008215315A (ja) NOx触媒の劣化診断装置
US7168240B2 (en) Control apparatus for an internal combustion engine
JP6834917B2 (ja) 内燃機関の排気浄化装置
JP2018135858A (ja) 内燃機関の異常診断装置
JP4089507B2 (ja) 内燃機関の触媒劣化検出装置
JP2009150367A (ja) 内燃機関の触媒劣化診断装置
JP6995154B2 (ja) 内燃機関の排ガス浄化装置
JP4411755B2 (ja) 排気浄化触媒の劣化状態診断装置
JP2002364428A (ja) 触媒劣化判定装置
JP2010168923A (ja) 触媒劣化診断装置
JP5035670B2 (ja) 内燃機関の触媒劣化検出装置
JP4924924B2 (ja) 内燃機関の触媒劣化検出装置
JP2000337130A (ja) 内燃機関の排出ガス浄化装置
JP7204426B2 (ja) 内燃機関の燃料噴射制御装置
JP3721878B2 (ja) 内燃機関の空燃比制御装置
JP4635365B2 (ja) 排気浄化触媒の劣化判定装置
JP6034139B2 (ja) 内燃機関の制御装置
JP7459813B2 (ja) 内燃機関の制御装置
US7415818B2 (en) Control device of internal combustion engine
JP2005330848A (ja) 触媒劣化推定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees