JP4089316B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP4089316B2
JP4089316B2 JP2002199570A JP2002199570A JP4089316B2 JP 4089316 B2 JP4089316 B2 JP 4089316B2 JP 2002199570 A JP2002199570 A JP 2002199570A JP 2002199570 A JP2002199570 A JP 2002199570A JP 4089316 B2 JP4089316 B2 JP 4089316B2
Authority
JP
Japan
Prior art keywords
wiring
connection hole
insulating film
wide
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002199570A
Other languages
English (en)
Other versions
JP2004047526A (ja
Inventor
容幸 榎本
啓司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002199570A priority Critical patent/JP4089316B2/ja
Priority to TW092118349A priority patent/TWI231005B/zh
Priority to US10/487,440 priority patent/US7038317B2/en
Priority to PCT/JP2003/008661 priority patent/WO2004006328A1/ja
Publication of JP2004047526A publication Critical patent/JP2004047526A/ja
Application granted granted Critical
Publication of JP4089316B2 publication Critical patent/JP4089316B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76808Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving intermediate temporary filling with material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多層配線を備えた半導体装置に関し、詳しくは異なる配線層間において幅の広い配線と幅の狭い配線とを接続する多層配線を備えた半導体装置に関する。
【0002】
【従来の技術】
異なる配線層間を接続する接続孔は、接続する配線幅および接続孔内に形成される配線を流れる電流により、配置数が決定される。しかしながら、幅広配線(例えば1μm以上の配線)と微細幅の配線(例えば0.14μm程度の配線)とを接続する場合、例えば、電源線から電位固定のために微細配線で引き出す場合には、単一の接続孔にて接続される。
【0003】
上記配線層を形成する材料および配線層間の絶縁に使用する材料は、配線ピッチのスケールダウンによる配線遅延に対応させるため、銅(Cu)に代表される低抵抗配線材料やポリアリールエーテル系樹脂(例えば、アライドシグナル社製のFLARE、ダウケミカル社製のSiLK、シューマッカー社製のVE等が知られている)、炭化酸化シリコン(SiOC)等に代表される低誘電率絶縁材料へと移行している。
【0004】
低抵抗材料としてのCuは、配線材料として広く用いられてきたアルミニウム(Al)よりもエレクトロマイグレーション耐性にも優れるとの報告もある。ただし、Cuで微細配線を形成する場合、下地となる絶縁膜に対して高い選択比でCuをエッチングする適当なドライエッチングガスが見出されていないため、ドライエッチング方法を用いることは困難となっている。そこで、溝配線法〔例えばダマシン(Damascene)法〕によって埋め込み配線を形成するのが一般的である。特に、接続孔と配線層とを同時に埋め込む方法(例えばデュアルダマシン法)は、リソグラフィーでの合わせマージンの拡大および工程の短縮化の観点で有望とされている。
【0005】
【発明が解決しようとする課題】
上記説明したように、配線材料はAlからCuへと移行している。図12に示すように、線/接続孔径≧7なる関係を満足する幅広配線121に微細配線123を接続させるための単一の接続孔125を配置し、また線/接続孔径≧7なる関係を満足する幅広配線122に微細配線124を接続させる単一の接続孔126を配置したパターンを用いて、配線信頼性評価としての高温放置試験(225℃に500時間放置)を行った。その結果、配線の抵抗が上昇し、最終的には、電気的導通が遮断される現象が確認された。
【0006】
本現象の不良部分を解析した結果、図13に示すように、接続孔125下層の幅広配線121側でCuの消失が確認された。また図14に示すように、幅広配線121が接続孔125上部に配置される場合にも同様の現象が確認されており、この場合には、接続孔125内部でCuの消失が発生している。本不良に対するメカニズムは明確になっていないが、配線と絶縁膜の熱膨張係数差にともなうストレス、絶縁膜自体のストレスの影響により、密着性に乏しい箇所、例えば接続孔形成時のダメージの影響を受ける接続孔直下の配線でCuのマイグレーションが引き起こされ、消失に至ると推測される。また、配線幅に対する依存性が見られることから、配線の結晶成長にともなう体積収縮の影響も起因していると考えられる。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされた半導体装置である。
【0011】
本発明の半導体装置は、第1配線と、前記第1配線を被覆する層間絶縁膜と、前記第1配線に達するもので前記層間絶縁膜に形成された接続孔と、前記接続孔を通して前記第1配線に接続される第2配線とを備え、前記第1配線もしくは前記第2配線が一方の配線よりも幅広の配線で形成される半導体装置において、前記接続孔の最低必要数は、前記幅広の配線の幅をW、前記接続孔の径をVとして、W/V<7の場合には1個、7≦W/V<70の場合には2個、70≦W/Vの場合には3個であるものである。
【0012】
上記半導体装置では、本願発明により解決を図る不良の発生要因として考えられる、配線の結晶成長による体積収縮の体積収縮分が接続孔に集中すると考えられるが、上記説明したように接続孔の数を最適化することで、体積収縮量(配線幅に依存する)を吸収することができ、導通に必要とされる接続孔数が見出される。
【0013】
図10には、パラメータに接続孔数をとって、Cuの接続孔内部と配線溝内部とを同時に埋め込みを行って形成する配線構造における第2配線と比較して幅広の第1配線での配線幅W/接続孔径Vの比と、高温放置試験(225℃に500時間放置)での不良率との関係を示す。図10に示すように、配線幅W/接続孔径Vが7を超えると、単一の接続孔では、高温放置試験により不良が発生するが、接続孔を2個配置することで不良発生を抑制することができる。また、配線幅がさらに広くなり、配線幅W/接続孔径Vが70を超えた場合には、2個の接続孔を配置しても不良が発生し、3個の接続孔を配置することで不良を回避することができる。このように、配線幅に応じて複数個の接続孔を配置することで高温放置試験での不良を回避することができる。
【0014】
本発明の半導体装置は、第1配線と、前記第1配線を被覆する層間絶縁膜と、前記第1配線に達するもので前記層間絶縁膜に形成された接続孔と、前記接続孔を通して前記第1配線に接続される第2配線とを備え、前記第1配線もしくは前記第2配線が一方の配線よりも幅広の配線で形成される半導体装置において、前記幅広の配線に連続して形成されるもので該幅広の配線よりも幅の狭い引き出し配線を備え、前記接続孔は前記引き出し配線に達するもので前記層間絶縁膜に形成されるものである。前記引き出し配線の幅をWs、前記接続孔径をVとして、Ws/V<7を満足するとともに、前記幅広の配線から前記接続孔が配置されるまでの前記引き出し配線部分の占有面積をS、W/V≧7となる前記幅広の配線の幅をWとして、W/S<143μm-1を満足するものである。
【0015】
上記半導体装置では、配線幅に応じた接続孔を配置できない場合の対策として、接続孔は、幅広の配線に連続して形成されたもので幅広の配線よりも幅の狭い引き出し配線部分に接続されることから、幅広の配線部分に発生していた問題が回避される。図11には、幅広の配線の幅をW、引き出し配線部分における幅広の配線から接続孔が配置される部分までの面積Sとして、W/Sに対する高温放置試験(225℃に500時間放置)での不良率を示す。上記面積Sは、幅広の配線に連続して形成されたもので幅広の配線よりも幅の狭い引き出し配線部分の幅をWs、引き出し配線部分において幅広の配線から接続孔が配置される部分までの距離をLsとし、Ws×Lsで求められる。
【0016】
図11に示すように、W/S≦143μm-1と設定することで、接続孔1個でも不良発生を回避することができる。このとき、幅広の配線よりも幅の狭い配線部分の幅Wsは、Ws/V<7なる関係を満足している必要がある。この理由は、前記図10によって説明した通りである。
【0020】
本発明の半導体装置の製造方法は、第1の配線を形成する工程と、前記第1配線上に層間絶縁膜を形成する工程と、前記層間絶縁膜に前記第1配線に達する接続孔を形成する工程と、前記層間絶縁膜上に前記接続孔内を通して前記第1配線に接続する第2配線を形成する工程とを備え、前記第1配線もしくは前記第2配線が一方の配線よりも幅広の配線で形成される半導体装置の製造方法において、前記幅広の配線の幅をW、前記接続孔径をVとして、W/V<7の場合には1個の接続孔、7≦W/V<70の場合には2個の接続孔、70≦W/Vの場合には3個の接続孔を形成することを特徴とする。
【0021】
上記半導体装置の製造方法では、幅広の配線の幅をW、接続孔の径をVとして、W/V<7の場合には1個、7≦W/V<70の場合には2個、70≦W/Vの場合には3個の接続孔を形成することから、前記図10によって説明した通り、配線幅に応じて複数個の接続孔を配置することで高温放置試験での不良を回避することができる。
【0022】
本発明の半導体装置の製造方法は、第1の配線を形成する工程と、前記第1配線上に層間絶縁膜を形成する工程と、前記層間絶縁膜に前記第1配線に達する単一の接続孔を形成する工程と、前記層間絶縁膜上に前記接続孔内を通して前記第1配線に接続する第2配線を形成する工程とを備え、前記第1配線もしくは前記第2配線が一方の配線よりも幅広の配線で形成される半導体装置の製造方法において、前記幅広の配線とともに前記幅広の配線に連続して前記幅広の配線よりも幅の狭い引き出し配線を形成し、前記もう一方の配線は前記層間絶縁膜上に前記接続孔内を通して前記引き出し配線に接続するように形成することを特徴とする。前記引き出し配線の幅をWs、前記接続孔径をVとして、Ws/V<7を満足するとともに、前記幅広の配線から前記接続孔が配置されるまでの前記引き出し配線部分の占有面積をS、W/V≧7となる前記幅広の配線の幅をWとして、W/S<143μm-1を満足することを特徴とする。
【0023】
上記半導体装置の製造方法では、幅広の配線には、幅広の配線に連続して形成される幅広の配線よりも幅の狭い引き出し配線を形成し、接続孔を引き出し配線部分に接続することから、幅広の配線部分に発生していた問題が回避される。またWs/V<7を満足するとともに、W/S<143μm-1を満足することから、前記図11によって説明した通り、W/Sに対する高温放置試験での不良率が0になる。
【0024】
【発明の実施の形態】
本発明の半導体装置に係る第1実施の形態を、図1の配線レイアウト図によって説明する。なお、説明を簡単にするために、図面では、シリコン基板に形成された素子領域や素子分離領域、層間絶縁膜等の図示は省略し、配線のみを示す。
【0025】
図1に示すように、シリコン基板(図示せず)上には絶縁膜(図示せず)を介して第1配線層の第1配線21、22、23、24が例えばX方向に形成されている。この第1配線21〜24は、例えば銅、銅合金、アルミニウム等で形成することができる。さらに第1配線層上には層間絶縁膜(図示せず)を介して横切るように第2配線層の第2配線31、32、33が例えばY方向に形成されている。この第2配線31〜33は、例えば銅、銅合金、アルミニウム等で形成することができる。
【0026】
また上記第1配線層と第2配線層との間に形成された層間絶縁膜には、第1配線21と第2配線31とを接続する接続孔41、42が形成され、第1配線22と第2配線33とを接続する接続孔43、44、45が形成され、第1配線23と第2配線34とを接続する接続孔46が形成され、第1配線24と第2配線32とを接続する接続孔47が形成されている。各接続孔41〜47の内部には導電性を持つ接続部が備えられている。各接続孔41〜47は各配線と一体に形成されたものであってもよく、または別体に形成されたものであってもよい。ここでは各第2配線と一体に形成されたものとする。したがって、接続部は第2配線と同様な材料で形成されている。
【0027】
上記第1配線21、22は、第1配線の幅をW1、接続孔径をVとして、7≦W1/Vを満足するものであり、第1配線23、24は、第1配線の幅をW1、接続孔径をVとして、W1/V<7を満足するものである。上記第2配線31、32、33は、第2配線の幅をW2、接続孔径をVとして、W2/V<7を満足するものである。
【0028】
上記複数の接続孔41、42は、その接続孔41、42間の距離が接続孔径Vの1倍以上18倍以下の範囲内に配置される。同様に、接続孔43、44、45も、それぞれの接続孔間の距離が接続孔径Vの1倍以上18倍以下の範囲内に配置される。
【0029】
第1配線に対する接続孔の最低必要数は、第1配線の幅をW、接続孔径をVとして、W/V<7の場合には1個、7≦W/V<70の場合には2個、70≦W/Vの場合には3個となる。
【0030】
上記半導体装置では、第1配線21が第2配線31よりも、また第1配線22が第2配線33よりも幅広の配線で形成されていても、接続孔41〜45のように複数に設けられていることから、不良発生確率が低下する。これは、接続孔数の増加により、例えば少なくとも2個の接続孔で配線間が接続された場合、2個の接続孔で同時に不良が発生しない限り、電気的導通が遮断されないためである。このように複数の接続孔を設けることが有効となる。
【0031】
上記説明したように、複数個の接続孔を配置する場合、その接続孔間は一定の距離内に配置されることが望まれる。図9に、接続孔径に対する接続孔間距離の比に対する、高温放置試験(225℃に500時間放置)での不良発生率(以下、不良率という)を示す。図9に示すように、複数の接続孔は、その接続孔間の距離が接続孔径の1倍以上18倍以下の範囲内に配置されることにより、不良率が0であることがわかる。このことからして、複数の接続孔は、その接続孔間の距離が接続孔径の1倍以上18倍以下の範囲内に配置されることが望ましい。
【0032】
また上記半導体装置では、接続孔の数を最適化することで、体積収縮量(配線幅に依存する)を吸収することができ、導通に必要とされる接続孔数が見出される。このことは、前記図10によって説明したように、配線幅W/接続孔径Vが7を超えると、単一の接続孔では、高温放置試験により不良が発生するが、接続孔を2個配置することで不良発生を抑制することができる。また、配線幅がさらに広くなり、配線幅W/接続孔径Vが70を超えた場合には、2個の接続孔を配置しても不良が発生し、3個の接続孔を配置することで不良を回避することができる。このように、配線幅に応じて複数個の接続孔を配置することで高温放置試験での不良を回避することができることから言える。
【0033】
次に、本発明の半導体装置に係る第2実施の形態を、図2の配線レイアウト図によって説明する。なお、説明を簡単にするために、図面では、シリコン基板に形成された素子領域や素子分離領域、層間絶縁膜等の図示は省略し、配線のみを示す。また、前記図1によって説明した構成部品と同様なる構成部品には同一符号を付与する。
【0034】
図2に示すように、シリコン基板(図示せず)上には絶縁膜(図示せず)を介して第1配線層の第1配線21、22、23、24が例えばX方向に形成されている。第1配線21には、第1配線21に連続もしくは接続して形成されたもので第1配線21よりも幅の狭い配線25(以下、狭い配線25という)が形成されている。また、第1配線22には、第1配線22に連続もしくは接続して形成されたもので第1配線22よりも幅の狭い配線26(以下、狭い配線26という)が形成されている。さらに第1配線層上には層間絶縁膜(図示せず)を介して横切るように第2配線層の第2配線31、32、33が例えばY方向に形成されている。
【0035】
また上記第1配線層と第2配線層との間に形成された層間絶縁膜には、狭い配線25と第2配線31とを接続する接続孔48が形成され、狭い配線26と第2配線33とを接続する接続孔49が形成され、第1配線23と第2配線34とを接続する接続孔46が形成され、第1配線24と第2配線32とを接続する接続孔47が形成されている。各接続孔46〜49の内部には導電性を持つ接続部が備えられている。各接続孔46〜49は各配線と一体に形成されたものであってもよく、または別体に形成されたものであってもよい。ここでは各配線と一体に形成されたものとする。
【0036】
上記配線構造では、上記狭い配線25、26の配線幅をWs、接続孔48、49の径をVとすると、Ws/V<7なる関係を満足する必要があり、かつ狭い配線25の幅をWs、狭い配線25の第1配線21から接続孔48が配置されている位置までの距離をLsとすると、狭い配線25における第1配線21から接続孔48までの領域の占有面積をSはWs×Lsとなる。そして、W/V≧7となる第1配線21の幅をWとすると、W/S<143μm-1なる関係を満足する必要がある。狭い配線26についても同様に、狭い配線26における第2配線22から接続孔49までの領域の占有面積をS、W/V≧7となる第1配線22の幅をWとすると、W/S<143μm-1なる関係を満足する必要がある。
【0037】
上記構成によれば、W/V≧7となる第1配線に対して単一の接続孔で第2配線を接続させることができる。
【0038】
また、上記図2によって説明した狭い配線は、直線的に形成されていたが、折れ線状に形成することも可能である。この一例を図3の配線レイアウト図によって説明する。なお、説明を簡単にするために、図面では、シリコン基板に形成された素子領域や素子分離領域、層間絶縁膜等の図示は省略し、配線のみを示す。また、前記図2によって説明した構成部品と同様なる構成部品には同一符号を付与する。
【0039】
図3に示すように、幅広のW/V≧7となる第1配線21、22に連続もしくは接続される狭い配線25、26は、例えばL字形状に折れ曲げた形状に形成され、折れ曲げた先の部分に第2配線31,33を接続させるための接続孔48、49が配置されている。この場合にも、W/S<143μm-1なる関係を満足する必要がある。この構成は、幅広の第1配線と接続孔との間に十分な距離が取れない場合には有効である。
【0040】
また、図4に示すように、第1配線21がX方向に延長形成されている場合には、上記狭い配線25は、第1配線21の側部よりY方向に形成されていてもよい。したがって、接続孔48は、狭い配線25と第2配線31との間に形成される。同様に、第2配線22がX方向に延長形成されている場合には、狭い配線26は、第2配線22の側部よりY方向に形成されていてもよい。したがって、接続孔49は、狭い配線26と第2配線33との間に形成される。これらの場合も、前記図2によって説明したのと同様に、Ws/V<7およびW/S<143μm-1なる関係を満足する必要がある。
【0041】
上記半導体装置では、配線幅に応じた接続孔を配置できない場合の対策として、第2配線は、第1配線に連続して形成されたもので第1配線よりも幅の狭い引き出し配線部分に接続されることから、幅広配線部分に発生していた問題が回避される。この理由は、前記図11によって説明したとおりであり、W/S≦143μm-1と設定することで、接続孔1個でも不良発生を回避することができる。このとき、第1配線よりも幅の狭い配線部分の幅Wsは、Ws/V<7なる関係を満足している必要がある。この理由は、前記図10によって説明した通りである。
【0042】
次に、本発明の半導体装置の製造方法に係る実施の形態を、図5〜図8の製造工程断面図によって説明する。各製造工程図では、前記図1に示した第1配線21と第2配線31とが交差する部分で第2配線31の配設方向に沿った断面を示している。なお、前記図1によって説明した構成部品と同様なる構成部品には同一符号を付与する。
【0043】
図5の(1)に示すように、図示はしない例えばトランジスタ、キャパシタ等の素子等が形成された基板11を覆う第1絶縁膜12を形成する。リソグラフィー技術およびエッチング技術により、この第1絶縁膜12の第1配線層を形成すべき個所に例えば200nmの深さの配線溝13を形成する。ここでは幅広の配線を形成する配線溝13wと微細配線を形成する配線溝13nとを形成した。
【0044】
次に、図5の(2)に示すように、第1絶縁膜12表面および配線溝13の内面にバリア層14を形成する。このバリア層14は、例えばタンタル(Ta)膜を10nmの厚さに堆積して形成する。さらに例えばスパッタリングによって、銅(Cu)シード膜15を形成する。銅シード膜15は、例えば銅を80nmの厚さに堆積して形成する。次いで電解めっき法によって、銅(Cu)めっき層16を第1絶縁膜12上に例えば700nmの厚さに堆積する。
【0045】
次いで、図5の(3)に示すように、化学的機械研磨(以下CMPという、CMPはChemical Mechanical Polishingの略)技術により、第1絶縁膜12表面が露出するまで、研磨を行い、第1絶縁膜12表面の余分な銅およびバリア層14を除去して、配線溝13内にバリア層14を介して銅を残し、配線溝13wに第1配線層の第1配線21を形成し、配線溝13nに第1配線23を形成する。ここで説明する図5〜図8は第1配線21、23の幅方向断面を示している。このように形成される第1配線のうち、第1配線21は幅広の配線であり、後に形成される接続孔の径をVとし、第1配線21の幅をWとした場合、W/V≧7なる関係を満たすものである。また第1配線23は、後に形成される接続孔の径をVとし、第1配線23の幅をWとした場合、W/V<7なる関係を満たす配線である。
【0046】
次いで、図6の(4)に示すように、第1絶縁膜12上に第1配線21を覆う銅の拡散防止膜51を形成する。この拡散防止膜51は、例えば炭化シリコン(SiC)膜を50nmの厚さに成膜して形成する。その後、第2配線層が形成される第2絶縁層52を例えば酸化シリコン系材料、もしくはポリアリールエーテル系樹脂、炭化酸化シリコン(SiOC)等に代表される低誘電率絶縁材料を用いて例えば600nmの厚さに形成する。
【0047】
続いて、図6の(5)に示すように、リソグラフィー技術およびエッチング技術によって、第1配線21に達する接続孔41、42を形成する。このとき、接続孔41、42の底部には、最低限、銅の拡散防止膜51が残存していることが望ましい。また、第1/第2配線層間の接続孔数は、W/V≧7なる関係を満たす第1配線の幅W、接続孔径Vとして、W/V<7の場合には1個、7≦W/V<70の場合には2個、70≦W/Vの場合には3個となる。また、W/V≧7なる関係を満たす第1配線21に対して複数の接続孔が形成される場合には、複数の接続孔は、その接続孔間の距離が接続孔径の1倍以上18倍以下の範囲内に配置されている。なお、図示はされていないが、第1配線23に接続される接続孔も上記接続孔41、42と同時に形成される。
【0048】
次いで、図7の(6)に示すように、第2絶縁膜52とエッチング選択比がとれる埋め込み材料53を、例えば塗布により接続孔42、42内に埋め込む。このとき、埋め込み材料53は、第2絶縁膜52上にも形成される。その後、埋め込み材料53上にレジストを塗布し、リソグラフィー技術により第2配線層が形成される領域を開口したレジストパターン54を形成する。
【0049】
続いて、上記レジストパターン54をマスクにして、エッチング技術により埋め込み材料53および第2絶縁膜52を加工し、図7の(7)に示すように、第2配線層が形成される配線溝(図面では代表して配線溝55を示す)を形成するとともに、第1配線層との接続孔を再び開口する。このとき、配線溝55は例えば300nmの深さになるように加工した。図面では第1配線21に達する接続孔41、42を示している。図示はしていないが、第1配線23に達する接続孔およびその接続孔に接続される配線溝も同時に形成されている。その際、接続孔42、42底部に形成されている拡散防止膜51も除去する。
【0050】
次に、図8の(8)に示すように、第2配線層を形成するために、配線溝55の内面、接続孔42、42の内面および第2絶縁膜52上にバリア層56を形成する。このバリア層56は、例えばタンタル(Ta)膜を20nmの厚さに堆積して形成する。さらに例えばスパッタリングによって、銅(Cu)シード膜57を形成する。銅シード膜57は、例えば銅を80nmの厚さに堆積して形成する。次いで電解めっき法によって、銅(Cu)めっき層58を第1絶縁膜12上に例えば800nmの厚さに堆積する。
【0051】
次いで、図8の(9)に示すように、CMP技術により、第2絶縁膜52表面が露出するまで、研磨を行い、第2絶縁膜52表面の余分な銅およびバリア層56を除去して、配線溝55および接続孔41、42内にバリア層56を介して銅を残し、配線溝55および接続孔41、42内に第2配線層の第2配線31を形成する。このように形成される第2配線31は、接続孔41、42の径をVとし、第2配線31の幅をWとした場合、W/V<7なる関係を満たす配線である。
【0052】
以降、図示はしないが、上記説明したのと同様な方法によって、絶縁膜、配線層を形成することで、多層配線を形成することができる。
【0053】
上記図5〜図8によって説明した製造方法において、前記図2〜図4によって説明した引き出し配線25、26を形成する場合には、第1配線21、22とともに、第1配線21、22に連続して第1配線21、22よりも幅の狭い引き出し配線25、26を形成すればよい。この場合には、第1配線21に着目すると、引き出し配線25の幅をWs、接続孔48の径をVとして、Ws/V<7を満足するとともに、第1配線21から接続孔48が配置されるまでの引き出し配線25部分の占有面積をS、W/V≧7となる第1配線21の幅をWとして、W/S<143μm-1なる関係を満足する必要がある。第2配線22に形成される引き出し配線26についても同様に、Ws/V<7を満足するとともに、W/S<143μm-1なる関係を満足する必要がある。
【0054】
上記半導体装置の製造方法では、第1配線21、22を第2配線31、33よりも幅広の配線で形成しても、複数の接続孔41〜45を設けることから、接続孔部分における不良発生確率が低減された半導体装置が製造される。これは、接続孔数を増加させたことにより、例えば少なくとも2個の接続孔で配線間が接続された場合、2個の接続孔に同時に不良が発生しないと、電気的導通が遮断されないためである。このように複数の接続孔を形成することが有効となる。
【0055】
また複数個の接続孔41、42および接続孔43〜45を配置する場合、その接続孔間は一定の距離内に配置されることが望まれる。この理由は、前記図9によって説明した通りである。
【0056】
上記半導体装置の製造方法では、第1配線の幅をW、接続孔の径をVとして、W/V<7の場合には1個、7≦W/V<70の場合には2個、70≦W/Vの場合には3個の接続孔を形成することから、前記図10によって説明した通り、配線幅に応じて複数個の接続孔を配置することで高温放置試験での不良を回避することができる。
【0057】
また、第1配線に連続して形成される第1配線よりも幅の狭い引き出し配線を形成し、接続孔をこの引き出し配線部分に接続する製造方法であっても、幅広の配線部分に発生していた問題が回避される。またWs/V<7を満足するとともに、W/S<143μm-1を満足することから、前記図11によって説明した通り、W/Sに対する高温放置試験での不良率が0になる。
【0058】
上記各実施の形態では、下層側に幅広の配線を形成した例を説明したが、本発明は、上層側の配線が幅広の配線で形成されている場合にも、同様に適用することができる。
【0059】
【発明の効果】
以上、説明したように本発明の半導体装置によれば、配線幅に応じ、幅広の配線への接続孔の数の調整もしくは接続孔を配置する位置の調整を行う程度で、幅広の配線に接続された接続孔部分で生じているCu消失現象を回避することができるので、信頼性の高い半導体装置を提供することができる。また、幅広の配線の接続孔部分でのCu消失対策として、接続孔の数による対応と、接続孔を配置する配線側での対応の2種類を有する点は、LSI設計への制約を最小限にとどめる効果を奏する。
【0060】
本発明の半導体装置の製造方法によれば、配線幅に応じ、幅広の配線への接続孔の数の調整もしくは接続孔を配置する位置の調整を行う程度で、幅広の配線に接続された接続孔部分で生じているCu消失現象を回避することができるので、信頼性の高い半導体装置を製造することができる。また、幅広の配線の接続孔部分でのCu消失対策として、接続孔の数による対応と、接続孔を配置する配線側での対応の2種類を有する点は、LSI設計への制約を最小限にとどめる効果を奏する。
【図面の簡単な説明】
【図1】本発明の半導体装置に係る第1実施の形態を示す配線レイアウト図である。
【図2】本発明の半導体装置に係る第2実施の形態を示す配線レイアウト図である。
【図3】本発明の半導体装置に係る第2実施の形態の変形例を示す配線レイアウト図である。
【図4】本発明の半導体装置に係る第2実施の形態の別の変形例を示す配線レイアウト図である。
【図5】本発明の半導体装置の製造方法に係る実施の形態を示す製造工程断面図である。
【図6】本発明の半導体装置の製造方法に係る実施の形態を示す製造工程断面図である。
【図7】本発明の半導体装置の製造方法に係る実施の形態を示す製造工程断面図である。
【図8】本発明の半導体装置の製造方法に係る実施の形態を示す製造工程断面図である。
【図9】不良率と接続孔間距離/接続孔径との関係図である。
【図10】不良率と第1配線幅W/接続孔径Vとの関係図である。
【図11】不良率と第1配線幅W/(引き出し配線における第1配線から接続孔までの面積S)との関係図である。
【図12】従来の半導体装置に係る配線接続構造を示す配線レイアウト図である。
【図13】不良部分の解析結果を説明する概略構成断面図である。
【図14】不良部分の解析結果を説明する概略構成断面図である。
【符号の説明】
21,22…第1配線、41,42,43,44,45…接続孔、31,33…第2配線

Claims (4)

  1. 第1配線と、
    前記第1配線を被覆する層間絶縁膜と、
    前記第1配線に達するもので前記層間絶縁膜に形成された接続孔と、
    前記接続孔を通して前記第1配線に接続される第2配線とを備え、
    前記第1配線もしくは前記第2配線が一方の配線よりも幅広の配線で形成される半導体装置において、
    前記接続孔の最低必要数は、
    前記幅広の配線の幅をW、前記接続孔の径をVとして、
    W/V<7の場合には1個、
    7≦W/V<70の場合には2個、
    70≦W/Vの場合には3個
    であることを特徴とする半導体装置。
  2. 第1配線と、
    前記第1配線を被覆する層間絶縁膜と、
    前記第1配線に達するもので前記層間絶縁膜に形成された接続孔と、
    前記接続孔を通して前記第1配線に接続される第2配線とを備え、
    前記第1配線もしくは前記第2配線が一方の配線よりも幅広の配線で形成される半導体装置において、
    前記幅広の配線に連続して形成されるもので該幅広の配線よりも幅の狭い引き出し配線を備え、
    前記接続孔は前記引き出し配線に達するもので前記層間絶縁膜に形成され、
    前記引き出し配線の幅をWs、前記接続孔径をVとして、
    Ws/V<7を満足するとともに、
    前記幅広の配線から前記接続孔が配置されるまでの前記引き出し配線部分の占有面積をS、W/V≧7となる前記幅広の配線の幅をWとして、
    W/S<143μm-1を満足する
    ことを特徴とする半導体装置
  3. 第1の配線を形成する工程と、
    前記第1配線上に層間絶縁膜を形成する工程と、
    前記層間絶縁膜に前記第1配線に達する接続孔を形成する工程と、
    前記層間絶縁膜上に前記接続孔内を通して前記第1配線に接続する第2配線を形成する工程とを備え、
    前記第1配線もしくは前記第2配線が一方の配線よりも幅広の配線で形成される半導体装置の製造方法において、
    前記幅広の配線の幅をW、前記接続孔径をVとして、前記接続孔を、
    W/V<7の場合には1個、
    7≦W/V<70の場合には2個、
    70≦W/Vの場合には3個形成する
    ことを特徴とする半導体装置の製造方法。
  4. 第1の配線を形成する工程と、
    前記第1配線上に層間絶縁膜を形成する工程と、
    前記層間絶縁膜に前記第1配線に達する単一の接続孔を形成する工程と、
    前記層間絶縁膜上に前記接続孔内を通して前記第1配線に接続する第2配線を形成する工程とを備え、
    前記第1配線もしくは前記第2配線が一方の配線よりも幅広の配線で形成される半導体装置の製造方法において、
    前記幅広の配線とともに前記幅広の配線に連続して前記幅広の配線よりも幅の狭い引き出し配線を形成し、
    前記もう一方の配線と前記層間絶縁膜上に前記接続孔内を通して前記引き出し配線に接 続するように形成し、
    前記引き出し配線の幅をWs、前記接続孔径をVとして、
    Ws/V<7を満足するとともに、
    前記幅広の配線から前記接続孔が配置されるまでの前記引き出し配線部分の占有面積をS、W/V≧7となる前記幅広の配線の幅をWとして、
    W/S<143μm-1を満足する
    ことを特徴とする半導体装置の製造方法。
JP2002199570A 2002-07-09 2002-07-09 半導体装置およびその製造方法 Expired - Lifetime JP4089316B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002199570A JP4089316B2 (ja) 2002-07-09 2002-07-09 半導体装置およびその製造方法
TW092118349A TWI231005B (en) 2002-07-09 2003-07-04 Semiconductor device and the manufacturing method thereof
US10/487,440 US7038317B2 (en) 2002-07-09 2003-07-08 Semiconductor device and method of manufacturing same
PCT/JP2003/008661 WO2004006328A1 (ja) 2002-07-09 2003-07-08 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199570A JP4089316B2 (ja) 2002-07-09 2002-07-09 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2004047526A JP2004047526A (ja) 2004-02-12
JP4089316B2 true JP4089316B2 (ja) 2008-05-28

Family

ID=30112471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199570A Expired - Lifetime JP4089316B2 (ja) 2002-07-09 2002-07-09 半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US7038317B2 (ja)
JP (1) JP4089316B2 (ja)
TW (1) TWI231005B (ja)
WO (1) WO2004006328A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238146A (ja) * 2009-03-31 2010-10-21 Fujitsu Ltd 半導体基板配線設計支援装置及びその制御方法
KR101712628B1 (ko) 2010-05-03 2017-03-06 삼성전자 주식회사 가변 콘택을 포함한 반도체 소자

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190687A (ja) * 1992-01-09 1993-07-30 Yamaha Corp 集積回路装置
US5416431A (en) * 1994-03-21 1995-05-16 At&T Corp. Integrated circuit clock driver having improved layout
JPH1056162A (ja) * 1996-05-24 1998-02-24 Toshiba Corp 半導体集積回路およびその設計方法
JPH10214893A (ja) * 1996-11-26 1998-08-11 Hitachi Ltd 半導体集積回路装置
US6268661B1 (en) * 1999-08-31 2001-07-31 Nec Corporation Semiconductor device and method of its fabrication
JP2000068383A (ja) 1998-08-25 2000-03-03 Matsushita Electric Ind Co Ltd 半導体集積回路装置の設計方法および半導体集積回路装置
JP3822009B2 (ja) * 1999-11-17 2006-09-13 株式会社東芝 自動設計方法、露光用マスクセット、半導体集積回路装置、半導体集積回路装置の製造方法、および自動設計プログラムを記録した記録媒体
JP2002124565A (ja) * 2000-10-12 2002-04-26 Fujitsu Ltd 多層配線構造を有する半導体装置

Also Published As

Publication number Publication date
TWI231005B (en) 2005-04-11
US20040219782A1 (en) 2004-11-04
US7038317B2 (en) 2006-05-02
JP2004047526A (ja) 2004-02-12
WO2004006328A1 (ja) 2004-01-15
TW200409287A (en) 2004-06-01

Similar Documents

Publication Publication Date Title
KR100917455B1 (ko) 반도체 장치 및 그 제조 방법
US7250681B2 (en) Semiconductor device and a method of manufacturing the semiconductor device
US7312532B2 (en) Dual damascene interconnect structure with improved electro migration lifetimes
US6373136B2 (en) Damascene wiring structure and semiconductor device with damascene wirings
JP2004064046A (ja) 半導体装置及びその製造方法
US7651941B2 (en) Method of manufacturing a semiconductor device that includes forming a via hole through a reaction layer formed between a conductive barrier and a wiring
US20180005967A1 (en) Semiconductor device and method of manufacturing the semiconductor device
KR100640535B1 (ko) 더미 비아 컨택을 가지는 반도체 소자의 다층 구리 배선구조 및 그 형성 방법
US8164160B2 (en) Semiconductor device
JP3012187B2 (ja) 半導体装置の製造方法
US20080296772A1 (en) Semicondutor device
US7154181B2 (en) Semiconductor device and method of manufacturing the same
US20070018282A1 (en) Semiconductor device and fabrication method thereof
US20040245643A1 (en) Semiconductor device and method of manufacturing the same
JP4174412B2 (ja) 半導体装置及びその製造方法
JP4089316B2 (ja) 半導体装置およびその製造方法
KR20040090482A (ko) 반도체장치 및 그 제조방법
KR100462759B1 (ko) 확산 장벽층을 갖는 금속 배선 및 그 제조 방법
KR100295141B1 (ko) 반도체소자의금속배선층형성방법
JP4258914B2 (ja) 半導体装置
US20060180934A1 (en) Wiring structures for semiconductor devices
KR100190074B1 (ko) 금속배선층 구조 및 그 형성방법
KR100325303B1 (ko) 반도체 소자의 금속 배선 및 그의 제조 방법
KR20050018798A (ko) 반도체 장치 및 그 제조방법
JP2005057063A (ja) 電子デバイス及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R151 Written notification of patent or utility model registration

Ref document number: 4089316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term