JP4087612B2 - 延性の粒子で強化された非晶質基地複合材の製造方法 - Google Patents

延性の粒子で強化された非晶質基地複合材の製造方法 Download PDF

Info

Publication number
JP4087612B2
JP4087612B2 JP2002021400A JP2002021400A JP4087612B2 JP 4087612 B2 JP4087612 B2 JP 4087612B2 JP 2002021400 A JP2002021400 A JP 2002021400A JP 2002021400 A JP2002021400 A JP 2002021400A JP 4087612 B2 JP4087612 B2 JP 4087612B2
Authority
JP
Japan
Prior art keywords
amorphous
powder
ductile
particles
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002021400A
Other languages
English (en)
Other versions
JP2003221657A (ja
Inventor
ドン・ヒュン・バエ
ミン・ハ・リー
ジン・キュ・リー
ド・ヒャン・キム
ウォン・テ・キム
ソーデレット・ダニエル・ジェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yonsei University
Original Assignee
Yonsei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yonsei University filed Critical Yonsei University
Priority to JP2002021400A priority Critical patent/JP4087612B2/ja
Publication of JP2003221657A publication Critical patent/JP2003221657A/ja
Application granted granted Critical
Publication of JP4087612B2 publication Critical patent/JP4087612B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質金属粉末に延性の金属粉末を一定量混合して熱間押出し及び熱間鍛造をとおして粉末を一体化させることにより、微細気孔の形成が減少され、製造された複合材の延伸率を向上させて破壊靭性を向上させ、更に、非粒質材料を大型化及び多様化することができるため、大型化された高品質、高強度製品を製作することができる延性粒子で強化された非晶質複合材の製造方法に関する。
【0002】
【従来の技術】
非晶質材料は、非晶質遷移温度以下にて高強度の機械的性質を示す。例えば、Ni,Ti,Zr基地の非晶質の場合、約2GPa程度の破壊強度を示し、Al基地の場合は1GPa程度である。このような高強度の特性は、非晶質材料の特異な原子配置に起因するものであり、それにより、高品質構造用材料への応用可能性は限りない。
【0003】
しかし、非晶質成形能に優れた前記合金は、製造可能な大きさが限定されている。即ち、前記合金は熔湯を冷却して製造する際、比較的に低い冷却条件(1−250K/s)でも非晶質の組織を得ることができるが、約直径10mm程度の大きさが限界である。また、非晶質材料は、非晶質遷移温度以下においては延性が殆ど無く、延性があるとしてもせん断ひずみ帯が形成され、ひずみ硬化(strain hardening)現象が生じないため急激に破壊される(A.Inoue, Prog. Mat. Sci., 43(1998)365参照)。
【0004】
まず、大きさの問題を解決するための方法には、非晶質合金粉末を製造して熱間押出しの方法により一体化させる方法が米国特許第4,523,621号に提示されている。前記先行特許は、ガス噴霧法(gas atomization method)により急冷条件にて粉末を製造し、その内非晶質の粉末だけを選択しCu容器内に入れて密閉した後、非晶質遷移温度以上の温度にて押出しまたは鍛造して、粉末が一体化された非晶質材料を大きさに制限されず製作する方法である。
【0005】
前記方法の場合は、根本的に、非晶質相が結晶化されていない条件で粉末間の結合を行うことに難点がある。即ち、粉末を一体化させる際、非晶質相が結晶化されるのを防止するためには押出し比を大きくすることができず、また一般的に非晶質合金粉末の表面に酸化膜が形成されているが、この膜を粉砕する能力が不足なため非晶質粒子間の結合力を低下させることとなり、微細気孔が粒子間に存在することになる。
【0006】
前記酸化膜形成を防止するには、全ての製造工程がArガスまたは真空のような特別な雰囲気で行われなければならないため、製造費用が増加する。また、押出し後に試片を急冷して熱による相変化(即ち、結晶化)を最大限に防止しなければならない。
【0007】
次に、粉末を一体化して製造しても、または熔湯を急冷して製造しても、全ての非晶質材料は、前記のとおり急激な破壊現象を起すため、実際産業的に用いるためには、クラック伝播(crack propagation)を防止することができる材料の開発が要求される。
【0008】
このような破壊靭性の問題を解決するために様々な方法が提示されている。例えば、熔湯にセラミック(ceramic)または金属粒子を混合し急冷してなる粒子が分散された非晶質基地の複合材料(R. D. Conner, R. B. Dandliker and W. L. Johnson, Acta Mater., 46(1998)6089参照)、タングステンワイヤーを配列した後、熔湯を透過冷却して製造された複合材(米合衆国特許第6,010,580号参照)、凝固の速度を調節して延性の相が凝固の際先に形成され残りは非晶質となる材料(C. C. Hays, C. P. Kim and W. L. Johnson, Proc. ISMANAM. ISMANAM-99, Mater. Sci. Forum, Dresden, Germany, 2000 参照)などが開発された。しかし、前記の場合、たとえ延伸率を向上させることができるとしても、熔湯凝固の際、非晶質を形成するため大きさの制約がある。
【0009】
【発明が解決しようとする課題】
従って、本発明はこのようないろいろな、大きさ、形状、破壊靭性、製造工程の問題点を解決するために提案されたものであり、その目的は、延性の金属粉末を非晶質合金粉末粒子と適正な比で混合した後、混合体を密閉して非晶質遷移温度以上、結晶化温度以下の温度条件(即ち、過冷区域)にて押出しまたは鍛造して非晶質合金粉末と延性粉末との両方を一定量変形するようにし相互に結合させることにより、延性の金属粒子が非晶質基地内に一定量分散された複合材の製造方法を提供することにある。
【0010】
本発明においては、非晶質材料による延性粉末の選定、非晶質合金粉末と延性粉末の混合比率、これらを一体化する製造方法及び製造条件を提供する。
【0011】
【課題を解決するための手段】
前記目的を達成するために、本発明は、延性の金属粉末が非晶質合金粉末内に分散され一体化されたことを特徴とする非晶質基地複合材を提供する。
【0012】
前記複合材に用いられる非晶質合金粉末は、非晶質合金構造に製造され得る全ての合金系が含まれ、前記非晶質合金系には、例えば、Ni,Ti,Zr,Al,Fe,La,Cu,Mg基地などの合金系を用いることができる。
【0013】
前記延性の金属粉末は、過冷区域における成形の際に、非晶質合金粉末の変形ストレスより低い変形ストレスを有する全ての種類の材料、即ち、非晶質粒子が過冷区域にて押出し及び鍛造される時、非晶質粒子は結晶化させず、混合された延性粉末が非晶質粒子よりも一層変形されるようにして、全体粒子の一体化に役立つ材料として設定されている。
【0014】
前記のような延性の金属粉末を非晶質合金粉末の変形ストレスより低い変形ストレスを有する材料に設定しなければならない理由は、過冷区域にて非晶質合金粉末を変形させる際、非晶質材料は粘性(viscouse)変形することになるが、この時、延性の金属粉末もまた同一な変形またはそれ以上の変形をしなければならないためである。
【0015】
そのような目的を達成するためには、当然、延性の金属粉末の変形ストレスは、非晶質合金粉末のフローストレス(flow stress)より低くなければならず、もし粉末の変形ストレスが高い場合は、延性の金属粉末が変形されないため、最初に混合された形状をそのまま維持するか、非晶質合金粉末と比べて遥かに少量の変形がなされることとなり、延性粉末粒子と非晶質粒子間の界面の結合力が劣るか、または界面間に気孔が形成され、材料の機械的性質に悪影響を及ぼすことになる。
【0016】
前記延性粉末の含有量は、複合材の製造後に非晶質合金粉末だけで製造されたものと比べて、その強度は顕著に減少させず、延伸率を向上させることができる範囲内に設定されなければならない。
【0017】
前記目的を達成するために、前記延性粉末の含有量は、延性粉末間の接触が生じないか、生じるとしても接触が甚だしくなく、機械的な性質に影響が少ない0.1vol%乃至40vol%範囲に設定するのが好ましい。
【0018】
先ず、延性粉末の含有量が50vol%以上になると、これは非晶質基地ではなく延性粉末基地となるため、延性粉末の含有量は50vol%未満にしなければならない。
【0019】
一般的に粉末の含有量が30%以上になると(粉末の混合の際現れる一般的な特性である)延性粒子間の固まり現象が現れ所期の目的を達成するのが難しくなる。即ち、最大の効果を得るためには、添加される延性粒子それぞれは非晶質基地内で分離され均一に分散させなければならない。
【0020】
しかし、本発明にて延性粉末の上限含有量を40vol%に設定した理由は、後に述べる図6にて示すとおり、含有量が30vol%の場合、機械的な特性は、延性粒子の固まり現象の効果が著しくは現れなかったし、このような固まりの現象は、粉末粒子の混合技術に依存するためである。また、延性粉末の下限含有量を0.1vol%に設定した理由は、0.1vol%未満の時も混合の効果が殆ど現れなかったためである。
【0021】
また、前記延性の金属粉末は、成形の際、非晶質合金粉末の変形ストレスより低い変形ストレスを有する材料として設定されるので、初期の延性粉末の粒子形状がファイバー(fiber)であろうと球型であろうと関係無く、大きさも初期非晶質合金粉末と混合させることができる大きさであれば関係が無いので粒子の大きさや形状に制約されない。
【0022】
本発明の他の特徴によると、本発明は、延性の金属粉末が非晶質合金粉末内に分散され一体化された非晶質基地複合材を製造する方法を提供する。
【0023】
本発明の非晶質基地複合材の製造方法は、前記のように選択された非晶質粒子に一定量の延性粒子を分散混合する工程と、前記延性の混合された粉末を押出し成形(compacting)しビレットを得る工程と、前記ビレットを非晶質過冷区域の温度で加工して一体化させる工程とで構成される。
【0024】
前記ビレットは、例えば、熱間圧出または鍛造工程により全ての粒子の一体化が行われ、この場合、非晶質粒子は結晶化されずに非晶質相を維持しなければならない。
【0025】
前記方法により得られた非晶質基地複合材は、例えば、機械加工、放電加工または過冷区間にてフォーミング(forming)などの過程をとおして最終製品として製造される。
【0026】
前記のように、本発明により製造された非晶質基地複合材は、延性の粒子を含んでいるため、非晶質合金粉末だけで一体化させる工程にて発生する微細気孔の形成を減少させることができ、非晶質合金粉末だけで製造された従来の非晶質材料と比べて、延性の粒子がせん断ひずみ形成の始発点として作用し、また、せん断ひずみやクラック電波を防止するための障壁として機能することにより、既存の非晶質合金粉末だけの材料において問題となっていた常温での延伸率と破壊靭性を向上させることができる。
【0027】
また、本発明においては、従来の急冷凝固された非晶質材料、熔湯で粒子を混合した後凝固して製造された粒子強化非晶質基地複合材料と比べて大きさの制限を除去して大型化及び多様化させることができるので、大型化された高品質、高強度製品を製作するのに広く用いられる。
【0028】
本発明を実施例に基づいて詳しく説明すると次のとおりであるが、本発明が実施例に限定されるものではない。
【0029】
【発明の実施の形態】
第1実施の形態乃至第3実施の形態
非晶質形成能に優れたNi基地合金(Ni59Zr20Ti16Si2Sn3、原子量%)をアルゴン雰囲気下にて誘導溶解し母合金を製造して凝固し、再びガス噴霧(gas atomization)炉にて溶解した後、3.2mm直径のノズルを通して粉末を製造した。この時、圧力は約2.8MPaで、液状の温度は約1623Kであった。これら粉末は10μmより小さいものから150μm以上に及ぶものまで様々な大きさの分布をみせるため、約10μmの間隔で粒子を分類した。
【0030】
図1は、前記Ni59Zr20Ti16Si2Sn3から得られた10、45、75、106及び150μmの大きさの非晶質粒子と、リボン型に成形された試料とをX線回折させた結果を示すものであり、粒子の大きさが75μm以上の粉末においては結晶化が生じていることが分かる。従って、後続の試験においては大きさ75μm以下の粉末だけが用いられた。
【0031】
次に、前記粉末の内、熱分析器(DSC:differential scanning calorimetry)を用いて得た、大きさが10μm及び45μmの粉末に対する熱的特性グラフを図2に示す。前記熱的特性グラフは、熱分析器を用いて粉末を30K/minの加熱速度で連続的に加熱し得たものであり、グラフで非晶質遷移温度(Tg)は815K、結晶化温度(Tx)は878Kであることを示している。従って、粉末を一体化する区間は、この両温度の間、即ち過冷区域温度である848Kに定め、この温度にて押出しの際ラム速度が0.48cm/secである場合、非晶質合金粉末だけの変形ストレスは実験をとおして510MPaであることが分かった。
【0032】
これによって、延性粉末の選択は、この製造条件にて変形ストレスが非晶質合金粉末より非常に低い銅(Cu)粉末を選択した。非晶質粒子と類似した大きさの銅粉末を非晶質合金粉末に対してそれぞれ10vol%、20vol%、30vol%ずつ含ませた後、非晶質合金粉末と均一に混合して、第1実施の形態乃至第3実施の形態の混合粉末を準備した。そして、内径が125mmの銅管内に第1実施の形態乃至第3実施の形態の混合粉末を別々に装填した後、真空密閉状態で常温にて圧力を加え成形し(compacting)、三つのビレット(billet)を得た。その後、これらビレット(billet)を押出し温度である848Kまで急速加熱してから、ラム速度0.48cm/sec、押出し比5の条件で押出した後、空気中で冷却し第1実施の形態乃至第3実施の形態のサンプルを製造した。製造された第1実施の形態乃至第3実施の形態の非晶質基地複合材の大きさは、直径25mm、長さ100mmである。
【0033】
図3及び図4は、それぞれ銅粒子が10vol%含まれた第1実施の形態の非晶質基地複合材サンプルの断面と押出し方向面の組織写真であり、銅粒子が一定の間隔で非晶質基地に分散され(図3)、最初に球形であった銅粒子が押出し方向に変形され分布されているの(図4)を示す。
【0034】
図5は、第1実施の形態(10vol%Cu)及び第3実施の形態(30vol%Cu)の複合材をX線に回折させた結果を示すものであり、銅結晶以外の他の結晶が現れないことから非晶質相が維持されていることが明らかとなった。その他、ここには非晶質合金粉末だけで製造された結果であるモノリシック(Monolithic)も一緒に示した。20vol%の銅が含まれた他の複合材でも同一の傾向を示した。
【0035】
図6においては、第1実施の形態乃至第3実施の形態の複合材サンプルの圧縮試験結果を、ストレス(Stress)−ストレイン(Strain)関係で示したものであり、ここには非晶質合金粉末だけで製造された結果、モノリシック(Monolithic)も共に示した。非晶質合金粉末だけの場合は約2.0GPaの破壊強度を示すが、これは急冷凝固された同一な組成の非晶質合金粉末の破壊強度(2.2GPa)と殆ど類似した性質を示す。
【0036】
図6を参照すると、銅の量が増加するに従って強度(Stress)は予想したとおり多少減少する傾向を示すが、塑性変形し延伸率が増加される現象を示した。前記塑性変形、即ち、延伸率の増加は、非晶質材料を構造用材料として用いられるようにする非常に重要な要因として、今までに粉末を一体化し製造された材料においては、殆ど現れなかった特性である。塑性変形が無い場合は、一般的に材料の破壊がどの条件で発生されるかの予想は不可能であり、構造用材料の適用に難点が多い。
【0037】
しかし、本発明のように高強度の非晶質材料が延性の金属状を内部に含んでいる場合、この金属状がせん断ひずみの始発点として、またはせん断ひずみ伝播の妨害物として同時に作用し得るため、材料の塑性変形を複数ヵ所で誘発し全体的に塑性変形を誘発させ、これにより破壊靭性が向上されることになる。
【0038】
最後に、図7は、本発明による複合材サンプルに対する破断面を走査電子顕微鏡(SEM)で観察したものであり、非晶質の破断特性であるベインパターン(vein pattern)が複数ヵ所で観察され、また粉末粒子が分離され破壊された形状を示す。即ち、本発明による複合材では、延性破壊と脆性破壊が複合的に発生したものと判断される。
【0039】
前記実施の形態ではNi−基地の合金だけに対して例を挙げ説明したが、前記実施例は、非晶質材料の基本特性である過冷区域での粘性フロー(viscouse flow)を用いて製造されたものとして、これは全ての非晶質材料にて現れた固有の特性であるため、他の合金系にも同一に適用される。
【0040】
【発明の効果】
前記のとおり、本発明では非晶質合金粉末に延性の粒子を分布させ、全ての粒子を一体化させる熱間押出しまたは鍛造の製造方法をとおして、大きさに制約の無い複合材を得ることができ、従来の熔湯を急冷し製造する場合問題とされていた大きさ制限の問題を解決した。
【0041】
更に、本発明では非晶質合金粉末だけでの製造の際に問題とされていた靭性が無いという問題を、延性の相が添加されることにより強度を殆ど減少させず非晶質材料の靭性を向上させることができるため、様々な高強度、高品質の構造材料として用いられるようにすることに効果がある。
【0042】
以上においては、本発明を特定の好ましい実施の形態を例として挙げ、図示し説明したが、本発明は前記の実施の形態に限定されるものではなく、本発明の精神を逸脱しない範囲内にて、当該発明の属する技術分野にて通常の知識を有する者により様々な変更と修正が可能であろう。
【図面の簡単な説明】
【図1】Ni59Zr20Ti16Si2Sn3から得られた10、45、75、106及び150μmの大きさの非晶質粒子とリボン型成形試料に対するX線回折グラフ。
【図2】図1の粉末の内、10μm及び45μmの大きさの粉末に対する熱的特性グラフ。
【図3】銅粒子が10vol%含まれた第1実施の形態の非晶質基地複合材サンプルの断面の組織写真。
【図4】銅粒子が10vol%含まれた第1実施の形態の非晶質基地複合材サンプルの押出し方向面の組織写真。
【図5】第1実施の形態(10vol%Cu)及び第3実施の形態(30vol%Cu)の複合材に対するX線回折グラフ。
【図6】第1実施の形態から第3実施の形態の複合材サンプルの押出し試験結果をストレス(Stress)−ストレイン(Strain)関係で示したグラフ。
【図7】本発明による複合材サンプルの破断面に対する走査電子顕微鏡(SEM)写真。

Claims (3)

  1. 非晶質合金粉末に前記非晶質合金粉末の過冷区域の温度における成形時に前記非晶質合金粉末の変形応力より小さい変形応力を有する延性の金属粉末を混合して前記延性の金属粉末の含有量が0.1vol%乃至40vol%の範囲内にある混合粉末を準備する工程と、
    前記混合粉末を圧縮成形しビレットを得る工程と、
    前記ビレットを非晶質過冷区域の前記温度で加工し混合粉末を一体化させる工程とを含むことを特徴とする延性の粒子で強化された非晶質基地複合材の製造方法。
  2. 前記非晶質合金系は、Ni,Ti,Zr,Al,Fe,La,Cu,Mg基地の内いずれか一つの合金系であることを特徴とする請求項1に記載の非晶質基地複合材の製造方法。
  3. 前記混合粉末の一体化工程は、熱間押出しまたは熱間鍛造により成されることを特徴とする請求項1に記載の非晶質基地複合材の製造方法。
JP2002021400A 2002-01-30 2002-01-30 延性の粒子で強化された非晶質基地複合材の製造方法 Expired - Lifetime JP4087612B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002021400A JP4087612B2 (ja) 2002-01-30 2002-01-30 延性の粒子で強化された非晶質基地複合材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021400A JP4087612B2 (ja) 2002-01-30 2002-01-30 延性の粒子で強化された非晶質基地複合材の製造方法

Publications (2)

Publication Number Publication Date
JP2003221657A JP2003221657A (ja) 2003-08-08
JP4087612B2 true JP4087612B2 (ja) 2008-05-21

Family

ID=27744651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021400A Expired - Lifetime JP4087612B2 (ja) 2002-01-30 2002-01-30 延性の粒子で強化された非晶質基地複合材の製造方法

Country Status (1)

Country Link
JP (1) JP4087612B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021504B (zh) * 2009-09-23 2012-03-21 中国科学院金属研究所 镁基非晶/多孔钛双相三维连通复合材料及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602210B2 (ja) * 2005-09-27 2010-12-22 独立行政法人科学技術振興機構 延性を有するマグネシウム基金属ガラス合金−金属粒体複合材
CN100516276C (zh) * 2006-11-17 2009-07-22 中国科学院金属研究所 铌颗粒增强的镁基非晶态合金复合材料及其制备方法
JP5250388B2 (ja) * 2008-10-31 2013-07-31 福田金属箔粉工業株式会社 強度と導電性を兼ね備えた複合化金属ガラスおよびその製造方法
CN103849823B (zh) * 2012-11-29 2016-05-04 中国科学院金属研究所 钛基非晶/纯钛双连续相复合材料及其制备方法
CN103233188A (zh) * 2013-04-23 2013-08-07 苏州斯玛格软磁新材料有限公司 一种非晶态抗电磁干扰材料及其制造方法
CN104772455B (zh) * 2015-04-17 2017-03-08 湖南理工学院 一种Cu70Zr20Ti10/Cu非晶合金片状复合粉末的制备工艺
CN104827044B (zh) * 2015-04-17 2017-11-17 湖南理工学院 一种Cu50Zr40Ti10/Cu非晶合金片状复合粉末及其制备工艺
CN108372211A (zh) * 2016-12-22 2018-08-07 中国航空制造技术研究院 一种非晶增强轻质合金复合防护材料的制备方法
CN109465442B (zh) * 2018-11-12 2019-10-25 华中科技大学 一种非晶合金零件的锻造/增材复合制造方法
CN110724885B (zh) * 2019-11-21 2020-09-18 华中科技大学 一种大尺寸轻质镁铝基非晶合金的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021504B (zh) * 2009-09-23 2012-03-21 中国科学院金属研究所 镁基非晶/多孔钛双相三维连通复合材料及其制备方法

Also Published As

Publication number Publication date
JP2003221657A (ja) 2003-08-08

Similar Documents

Publication Publication Date Title
KR101226174B1 (ko) 나노 알루미늄/알루미나 금속 매트릭스 복합물의 제조 방법
US4582536A (en) Production of increased ductility in articles consolidated from rapidly solidified alloy
US20100003536A1 (en) Metal matrix composite material
KR20020078936A (ko) 열간 성형성이 우수한 준결정상 강화 마그네슘계 합금
JP3693583B2 (ja) 高強度高延性Mg基合金
JPH1088268A (ja) 高強度高靱性アルミニウム合金およびその製造方法
JP4087612B2 (ja) 延性の粒子で強化された非晶質基地複合材の製造方法
US20060130943A1 (en) Method of making dense composites of bulk-solidifying amorphous alloys and articles thereof
US5851317A (en) Composite material reinforced with atomized quasicrystalline particles and method of making same
US6669899B2 (en) Ductile particle-reinforced amorphous matrix composite and method for manufacturing the same
JP4602210B2 (ja) 延性を有するマグネシウム基金属ガラス合金−金属粒体複合材
Kawamura et al. High strength nanocrystalline Mg-Al-Ca alloys produced by rapidly solidified powder metallurgy processing
KR20100010181A (ko) 주조용 금속기지 복합재 및 제조 방법
JP2807374B2 (ja) 高強度マグネシウム基合金およびその集成固化材
JPH04500240A (ja) 急速凝固高温alベース合金の摩擦―駆動押出成形
KR100448152B1 (ko) 연성의 입자가 강화된 비정질 기지 복합재 및 그의 제조방법
JPH03267355A (ja) アルミニウム―クロミウム系合金およびその製法
JP3838803B2 (ja) 複合高強度材及びその製造方法
JP7158658B2 (ja) アルミニウム合金、アルミニウム合金線、及びアルミニウム合金の製造方法
KR101449954B1 (ko) 복합 비정질 금속재료 및 그 제조방법
US3177573A (en) Method of die-expressing an aluminum-base alloy
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
US5744734A (en) Fabrication process for high temperature aluminum alloys by squeeze casting
US5256183A (en) Process for production of reinforced composite materials and products thereof
CN1570173A (zh) 一种耐热铝合金的制备方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term