JP4087117B2 - 同位体ガス分離方法および同位体ガス分離装置 - Google Patents

同位体ガス分離方法および同位体ガス分離装置 Download PDF

Info

Publication number
JP4087117B2
JP4087117B2 JP2002010515A JP2002010515A JP4087117B2 JP 4087117 B2 JP4087117 B2 JP 4087117B2 JP 2002010515 A JP2002010515 A JP 2002010515A JP 2002010515 A JP2002010515 A JP 2002010515A JP 4087117 B2 JP4087117 B2 JP 4087117B2
Authority
JP
Japan
Prior art keywords
gas
isotope
adsorption chamber
adsorption
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002010515A
Other languages
English (en)
Other versions
JP2003210945A (ja
Inventor
清人 猪俣
一弘 金澤
安彦 浦邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2002010515A priority Critical patent/JP4087117B2/ja
Publication of JP2003210945A publication Critical patent/JP2003210945A/ja
Application granted granted Critical
Publication of JP4087117B2 publication Critical patent/JP4087117B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、同位体ガスの分離方法あるいは分離装置に関する。特に、低消費電力で効率良く同位体ガスを分離する方法あるいは装置に適用して有効な技術に関する。
【0002】
【従来の技術】
良く知られているように、自然界に存在する物質には同位体がある程度の割合で含まれている。たとえば質量数12の炭素原子(12C)の同位体として質量数13の炭素原子(13C)が存在し、たとえば天然ガスとして採取されるメタンガスには、質量数16のメタンガス(12CH)に加えて質量数17のメタンガス(13CH)が1.1%の割合で存在する。同位体の産業上の応用分野は各種存在するが、たとえば医療分野において質量数13の炭素(13C)が利用されることがある。13Cを用いてたとえば効率的な医療上の検査方法等が提供される。
【0003】
同位体同士の化学的性質の差異はほとんどないので、自然界から質量数の異なる同位体を分離するには物理的性質の相違つまり質量の相違を利用せざるを得ない。炭素同位体の場合、メタンガスあるいは二酸化炭素ガスに含まれる質量数の大きい同位体ガス(13CHあるいは13CO)を蒸留法(低温精密蒸留法)によって分離する技術が知られている。
【0004】
蒸留による同位体分離法は、13CHの沸点と12CHの沸点の差を利用して分離する方法である。
この蒸留分離法では、蒸留塔と呼ばれる装置を利用する。蒸留塔の上部は冷却され下部は加熱される構造となっている。メタンガスを蒸留塔の上部に導入し、蒸留塔内の温度分布を微妙に調整すると、低沸点成分(12CH)は液化し難いので、蒸留塔の上部に集まり、高沸点成分(13CH)は液化し易いので、蒸留塔の下部に集まる。こうして、メタンガスは13CH12CHとに分離される。
【0005】
【発明が解決しようとする課題】
ところが、前記した蒸留法には以下のような問題がある。第1に、被処理ガスの沸点が一般に極低温になることに起因する問題があり、第2に、同位体ガスの沸点の差が僅かであることに起因する問題がある。
【0006】
蒸留分離法では処理温度を被処理ガスの沸点近傍に制御すべきことは原理から明らかであろう。一般に、1気圧、300k程度の常温常厚雰囲気でガス状態にある物質の沸点は極低温であり、たとえばメタンガスの沸点は約−162℃である。このような極低温に蒸留塔を制御するには、多大な冷却エネルギーを必要とする。特に、一方の同位体ガスに対して他方の同位体の存在割合が小さい蒸留初期の段階では、多量のガスを極低温に制御する必要があるので、多くの冷却エネルギーを消費する。
【0007】
また、同位体同士の質量数の差が小さい場合、一般に沸点の差は僅かなので、この僅かな沸点の温度差の程度に応じた温度制御が必要になる。たとえばメタンの場合、僅か0.03℃の沸点の差を利用することになる。よって、その温度制御には高度で複雑な技術が必要になる。さらに、純度99%以上の13CHを得るには、蒸留を数千回繰り返す必要がある。これら高度かつ微妙な温度制御、多大な投入エネルギー、あるいは多数回の蒸留工程の繰り返しを背景に、自ずと高いコストが必要になるという問題がある。
【0008】
本発明の目的は、多大な投入エネルギーを必要としない同位体ガスの分離技術を提供することにある。また、本発明の他の目的は、微妙な温度制御を必要としない同位体ガスの分離技術を提供することにある。さらに本発明の目的は、低コストで同位体ガスを分離する技術を提供することにある。
【0009】
なお、蒸留による方法以外の技術としては、特開平10−128071号公報に記載された技術が提案されている。これは、同位体ガスの分子径に近似した開口径を持つゼオライトを用い、異なる質量数の同位体ガスのゼオライトへの吸着性の違いを利用して、同位体ガスの分離を行うものである。
【0010】
【課題を解決するための手段】
本発明は、後述するような、多孔質材料の細孔径の違いによって、同位体ガスの吸着の仕方が異なるという現象を利用したものであり、本発明者が得た多孔質材料の細孔径と同位体ガスの吸着状態との関係に関する知見に基づき構成されたものである。
【0011】
即ち、本発明は、特定の条件(具体的には、吸着材料の細孔径が被吸着ガスの分子または原子径の自然数倍)を満たす吸着材料に対して、より質量数の大きい同位体ガスが吸着および脱着し難いという現象を利用したものである。つまり、本発明は、特定の条件を満たす吸着材料に対して、より質量数の大きい同位体ガスがより遅く吸着し、より遅く脱着する現象を利用し、同位体ガスの分離を行うものである。なお、本明細書において、脱着とは、吸着している物質が被吸着面から離脱する現象をいう。
【0012】
本発明では、特定の条件を満たす吸着材料に2種類以上の同位体ガスを含んだ混合ガスを接触させ、その接触したガスの回収し始めにおいて、質量数の大きい同位体ガスの濃度が高くなっている現象を利用する。例えば、特定の条件を満たす吸着材料に分離対象である同位体ガスが吸着されていない状態において、上記混合ガスを流すと、質量数の小さい同位体ガスの分子が最初に捕捉され、その後にタイミングが遅れて質量数の大きい同位体ガスの分子が捕捉される。このため、流し始めた初期の混合ガスは、相対的に質量数の大きい同位体ガスの割合が質量数の小さい同位体ガスの割合に比較して大きくなる。これにより、質量数の大きい同位体ガスが分離され濃縮された混合ガスを得られる。
【0013】
また本発明では、特定の条件を満たす吸着材料に2種類以上の同位体ガスを吸着させた状態から脱着を行い、脱着ガスを脱着開始後の所定時間経過後に回収することで、脱着の遅れた質量数の大きい同位体ガスの比率が高まったガスを得る。
【0014】
本発明の概略は下記の通りである。本発明の同位体ガス分離方法は、分子状または原子状の第1ガスを含む混合ガスから前記第1ガスの同位体ガスを分離する同位体ガス分離方法であって、前記混合ガスを吸着室のガス吸入口に供給するステップ、および、前記混合ガスの供給開始から所定時間経過までの間前記吸着室のガス流出口から流出する前記第1ガスの同位体ガスを取り出すステップを含む第1処理手順、または、前記混合ガスを吸着室に封入するステップ、および、前記流出の開始から所定時間経過後に前記第1ガスの同位体ガスを取り出すステップを含む第2処理手順、の何れかの処理手順を含み、前記吸着室には、前記第1ガスの分子径または原子径のn倍(n=1、2、3、4、・・・)に近接した細孔径を有する活性炭もしくは多孔質錯体を設置することを特徴とする。また、本発明の他の同位体ガス分離方法は、前記発明同様の第1処理手順または第2処理手順を含み、前記吸着室には、前記第1ガスの分子径または原子径のm倍(m=2、3、4、・・・)に近接した細孔径を有する多孔質体を設置することを特徴とする。
【0015】
上記発明によれば、低質量数の同位体ガスが活性炭または多孔質錯体または多孔質体に吸着し、その吸着および脱着が平衡状態であり、一方で高質量数の同位体ガスの吸着が完全に行われていない段階において、吸着室内からの流出ガスを取り出すことで、高質量数の同位体ガスの濃度が高められた混合ガスが得られる。また、上記発明によれば、吸着室に封入された状態から吸着室外に流出するガスを流出の開始から所定時間経過後に回収することで、脱着の遅れた高質量数の同位体ガスの濃度が高まったガスを回収できる。
【0016】
ここで、低質量数の同位体ガスというのは、より質量数の小さい原子を構成要素とするガスをいう。また、高質量数の同位体ガスというのは、より質量数の大きい原子を構成要素とするガスをいう。例えば、メタンガスを例に挙げると、12CHが低質量数の同位体ガスであり、13CHが高質量数の同位体ガスとなる。
【0017】
分子状のガスというのは、メタンのように構成要素が分子でなるものをいう。原子状のガスというのは、アルゴンのように構成要素が原子でなるものをいう。混合ガスというのは、複数種類の同位体ガスを含む処理対象となるガスである。混合ガスには、その他の不純物が含まれていても良い。混合ガスとしては、12CH13CHとを0.99:0.01の割合で含む天然ガスから分離されるメタンガスが挙げられる。
【0018】
第1ガスとしては、CHガス、COガス、Hガス、Heガス、Arガス、NeガスまたはXeガスその他希ガスが選択できる。例えば第1ガスとして12CHガスを選択した場合、その同位体ガスは13CHとなる。本発明では、第1ガスが低質量数の同位体ガスであり、分離対象となる第1ガスの同位体ガスが高質量数の同位体ガスとなる。なお、一般に同位体の用語は、質量数の異なる同一元素からなる原子または分子を相互に同位体と称するように用いられるが、前記発明の説明における同位体の用語は分離対象となる高質量数のガスを「同位体ガス」と表現している。前記第1ガスと前記表現における同位体ガスとは互いに同位体の関係にあるので、広義には第1ガスを同位体ガスと表記することも可能であるが質量数の小さい同位体ガスを「第1ガス」、質量数の大きい同位体ガスを「同位体ガス」の用語を用いて表現している。
【0019】
上記発明で規定される細孔径を有する細孔は、最低限発明の効果が得られる程度の密度で存在していればよい。つまり、本発明の効果に寄与しない径の開孔の存在を本発明は排除しない。細孔径は、例えば、本発明の効果に寄与する細孔群の平均細孔径あるいは細孔径分布のピークで判断できる。
【0020】
細孔径は、本発明で規定する値に完全に一致していなくてもよい。本発明における近接の範囲とは、同一を含み、好ましくは−20%〜20%の範囲内、より好ましくは−10%〜10%の範囲内、さらにより好ましくは−5%〜5%の範囲内である。
【0021】
上記発明において、平均細孔径は分離対象分子の2倍に近接しているのが分離効率を高める上で好ましい。
【0022】
上記発明において、同位体ガスの分離を行った後に、吸着材料を減圧雰囲気下で加熱し、吸着している物質を除去し、さらに再び同位体ガスの分離工程を繰り返して行うのは好ましい。
【0023】
高質量数の同位体ガスの吸着が進むと、飽和状態となり、吸着と脱着が同程度になり平衡状態となる。こうなると、吸着材料に接触する前と後とで、混合ガス中における同位体ガスの割合は同じとなり、目的とする高質量数の同位体ガスの分離効率は低下する。よって、分離対象の同位体ガスの吸着が行われた後に、一旦吸着材料に吸着している物質を除去し、吸着材料の吸着力を回復させることで、再度の同位体ガス分離を実施できる。そして、同位体ガスの分離工程と吸着材料の再生工程とを繰り返して行うことで、効率よく同位体ガスの分離が行える。
【0024】
本発明は、同位体ガスの分離装置としても把握可能である。この場合、上述した同位体ガスの分離方法を実行するための構成あるいは手段を備えた装置として把握される。
【0025】
なお、本明細書において、多孔質錯体には、有機金属錯体を含む。また、多孔質体にはゼオライトを含む。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、本実施の形態の記載内容に限定して解釈すべきではない。なお、実施の形態の全体を通して同じ要素には同じ番号を付するものとする。
【0027】
まず、本発明に到る前提となった知見を得た実験について説明する。すなわち細孔径を変えた場合における12CH13CHの活性炭への吸着状態の違いを検証した実験データについて説明する。
【0028】
(実験例)
図1は、実験を行ったシステムの概要を示す図である。図1に示す実験システムは、窒素ガスを導入する配管201、13CHガスを導入する配管202、高純度メタンガスを導入する配管203、バルブ204、バルブ205、バルブ206、容器207、試料209、精密重量計210、重量測定装置211、容器207の温度を調節する温度調節装置212、配管213、バルブ214および排気ポンプ215を含む。なお、ここでは重量法によって以下に説明する各種特性を測定する例を説明するが、容量法(圧力の変動を特定する測定法)を用いて実験を行っても良い。
【0029】
本実験において、窒素ガスは、6Nグレードの高純度のものを用いた。13CHガスは、12CH13CHの比率が、0.0093:0.98886で、メタン成分の純度が99.5%以上のものを用いた。配管203から導入される高純度メタンガスは、12CHガスの代わりに利用するもので、12CH13CHの比率が、0.9899:0.0101で、メタン成分の純度が99.9999%(6Nグレード)のものを用いた。
【0030】
試料としては、下記表1に示す5種類の活性炭を用いた。
【0031】
【表1】
Figure 0004087117
【0032】
上記物性は、77Kにおける窒素吸着等温線の測定を行い、t−プロット法による解析に基づいて算出した。
【0033】
実験は、以下のようにして行った。まず、容器207内に試料を格納し、ついで配管201から窒素ガスを容器207内に導入する。次に排気ポンプ215を動作させて容器207内を1×10−4Pa台の高真空状態になるまで排気し、この状態を2時間維持した。またこの時、温度調節装置212によって、容器207内の温度を200℃に保った。
【0034】
次に容器207内の温度を7℃に維持した状態で13CHガスを所定の圧力になるまで容器207内に導入した。そして、その状態において、精密重量計210の計測値の変動が600秒で50μg以内となるまで静かに待った。前記条件が満たされた段階で試料の重量値を重量測定装置211で測定し、その値から試料への13CHの吸着量を算出した。そして圧力を徐々に上げて行きながらこの作業を繰り返し行い、吸着時の吸着等温線を得た。ここで、吸着等温線とは、温度一定条件で雰囲気圧力を徐々に上げていった場合における圧力と試料への13CHの吸着量の関係を示すグラフである。
【0035】
所定の圧力に達したら、今度は圧力を徐々に下げてゆき、上述したのと同様な手順により、圧力を段階的に降下させていった場合における圧力と試料への13CHの吸着量の関係を得た。こうして、脱着時の吸着等温線を得た。なお、脱着時という用語の使用は、圧力を降下させてゆくと、吸着していた13CHが徐々に試料から離脱(脱着)してゆく場合の吸着等温線を表現する意味で用いている。
【0036】
図2は、試料1に対する13CHの吸着等温線および脱着等温線を示すグラフである。比較例として、12CH(この場合は高純度メタンで代用)の吸着等温線および脱着等温線を同時に示す。比較例における測定条件は、吸着ガスを12CHに変更したこと以外は前記条件と同じである。図3は、前記測定条件において温度を30℃に変更した場合の試料1に対する13CHの吸着等温線および脱着等温線を示すグラフである。比較例として、12CHの吸着等温線および脱着等温線を同時に示す。図4は、試料2に対する13CHの吸着等温線および脱着等温線を示すグラフである。図5は、試料3に対する13CHの吸着等温線および脱着等温線を示すグラフである。図6は、試料4に対する13CHの吸着等温線および脱着等温線を示すグラフである。
【0037】
図2および図3より試料1は、12CHに対して、吸着等温線と脱着等温線がほぼ一致しているのが読み取れる。これは、上述した吸着量の計測が平衡状態において行われていることを意味している。即ち、試料に対して、吸着する12CH分子と脱着する12CH分子とがバランスしている状態で吸着量の計測が行われたことを意味している。なお、全ての試料において、12CHの吸着等温線と脱着等温線とが一致するデータが得られている。
【0038】
一方、全ての試料において、13CHは吸着等温線と脱着等温線とが一致していない。13CHの吸着等温線と脱着等温線とが一致しない傾向は、程度の違いこそあれ、全ての試料において確認される。13CHの吸着等温線と脱着等温線とが一致しないのは、吸着量の計測時点において、平衡状態となっていないからと考えられる。つまり、圧力を上昇させていった段階では、13CHの吸着が完全に行われていない段階で吸着量の計測が行われるので、やや低い値が計測され、逆に圧力を下降させていった段階では、13CHの脱着が完全に行われていない段階で吸着量の計測が行われるので、やや高い値が計測される、と理解される。このような理由により、図2〜図6に示すように吸着等温線の上側に脱着等温線が位置してしまうデータが得られる。
【0039】
図2〜図6に示す吸着等温線と脱着等温線のずれは、試料への13CHの吸着および脱着のし易さあるいはし難さに関係する。ここで、13CHが吸着および脱着し易い試料の場合、13CHが示す吸着等温線と脱着等温線のずれは小さくなる。これは、より平衡状態に達しやすいからである。逆に、13CHの吸着および脱着がし難い試料の場合、13CHが示す吸着等温線と脱着等温線のずれは大きくなる。これは、より平衡状態に達し難いためである。つまり、吸着および脱着がし難ければ、吸着しきれていない状態で図2〜図6に例示する吸着等温線が得られ、他方で脱着しきれていない平衡状態の前の段階で図2〜図6に例示する脱着等温線が得られるので、両等温線の乖離は大きくなる。
【0040】
以上の考察から、吸着等温線と脱着等温線の乖離が大きい程、13CHの試料への吸着、および試料からの脱着がし難いのが結論される。そこで、以下に説明するような乖離係数の概念を導入する。
【0041】
図7は、図2に示す13CHの吸着等温線および脱着等温線を基に作成したLangmuirプロットを示すグラフであり、直線はプロットを一次関数で近似したものである。図7から分かるように、吸着時のデータを基にしたLangmuirプロットの直線近似と脱着時のデータを基にしたLangmuirプロットの直線近似とは、傾きが異なっている。吸着等温線と脱着等温線の乖離が大きいほど、Langmuirプロットを直線近似した線の傾きの乖離は大きくなる。従って、Langmuirプロットを直線近似した線の傾きの乖離を利用して、試料への13CHの吸着のし易さおよび脱着のし易さが評価できる。このような吸着のし易さあるいはし難さの評価代用特性として、乖離係数を定義する。乖離係数=(吸着等温線の近似直線の傾き)/(脱着等温線の近似直線の傾き)、で表す。
【0042】
図8は、各試料の乖離係数をメタン分子径に対する細孔径の比で表したグラフである。図8は、13CHの吸着効率あるいは脱着効率を評価した結果を示すことになる。
【0043】
図8において、乖離係数の上限は1である。乖離係数が1の時に吸着等温線と脱着等温線とは一致する。当然、12CHは各試料に対する乖離係数はほぼ1である。そして、乖離係数が1より小さくなればなる程、吸着等温線と脱着等温線とが乖離していることを示す。従って、乖離係数が小さい程、13CHは、試料に吸着し難く、かつ脱着し難いと判断できる。
【0044】
図8から、乖離係数が最も小さくなるのは、(試料の開孔径)/(メタン分子径)の比が2付近であることが分かる。これは、(試料の開孔径)/(メタン分子径)の比が2付近である場合に13CHは試料に最も吸着し難く、かつ脱着し難いのを意味している。つまり、(試料の開孔径)/(メタン分子径)の比が2付近である場合に、12CHの場合に比較して、13CHはより遅く試料に吸着し、より遅く試料から脱着する傾向が強くなる。
【0045】
なお、図3から分かるように、13CHの吸着等温線と脱着等温線との乖離は、30℃の条件で行うとより小さくなる。これは、より低温の方が試料に対する13CHの吸着あるいは脱着がし易いことを意味している。
【0046】
以上説明したように、細孔径が分子径の2倍の場合に最も13CHの吸着および脱着が遅くなる。このような現象を説明する物理的なモデルとして、吸着粒子(分子あるいは原子)がちょうど細孔内にはまり込む状態を実現できると質量数の大きい分子の吸着および脱着がし難くなるというモデルを提示できる。細孔を正方柱と仮定し粒子を球と仮定すると、粒子が細孔内にちょうどはまり込む条件において粒子は底面(底部に吸着粒子が存在する場合は吸着粒子)および側壁(側面に吸着粒子がある場合は吸着粒子)と5点で接触することになる。細孔径が粒子径の2倍からずれている場合と比較するとその接触点数が多くなることは容易に推考できる。活性炭での吸着は物理吸着が支配的であることを考慮すると、接触点数の多さが吸脱着のし易さ(し難さ)に対する質量の影響を増幅していると推定できる。このようなモデルを仮定すれば、質量数の大きい同位体ガスの吸脱着は、ガス粒子径の自然数倍の細孔径を持つ吸着材料において、その乖離係数が小さく(吸脱着し難く)なるというモデルに一般化できる。本発明はこのようなモデルに基づく知見を基礎に構成される。
【0047】
すなわち、所定寸法(吸着粒子径の自然数倍)の開孔を有する多孔質材料に対して、12CHの吸着等温線と脱着等温線とは一致するが、13CHの吸着等温線と脱着等温線とは乖離する現象を利用する。
【0048】
この現象を利用すると、メタンガス中における13CHの濃縮が行える。即ち、前記所定寸法の開孔を有する多孔質材料に対してメタンガスを接触させ、この際、12CHが吸着しきっている状態でかつ13CHが吸着しきれていない状態では、排気されるメタンガス中では相対的に13CHの濃度が高くなる。よって、13CHが分離されその濃度の高められたメタンガスが得られる。
【0049】
また、13CHが十分に吸着した後に吸着成分の脱着を行うと、最初に12CHが脱着されて、遅れて13CHが脱着される。よって、十分に吸着した後に脱着を開始した後の一定時間経過後の脱着ガスにおいて、13CHの比率が高くなる。そこで、この脱着ガスを回収することで、13CHが濃縮されたメタンガスが得られる。
【0050】
(実施の形態1)
以下において、上述した知見に基づいて構成した同位体ガス分離方法の一例を説明する。本実施の形態は、吸着材料として開孔径をメタンガス分子径の2倍に制御した活性炭を用い、この活性炭にメタンガスを流し、流し始めてから一定期間、排出ガスにおける13CH濃度が上昇する効果を利用したものである。
【0051】
図9は、本発明の同位体ガスの分離方法を実施するためのシステムの一例を示す図である。図9において、流量調整装置100、配管101、バルブ102、配管103、バルブ104、活性炭105、ポンプ106、容器107、温度調整装置108、配管109、流量調整装置110、バルブ111、バルブ112、排気ポンプ113、配管114、蒸留塔115、配管116、配管117、蒸留塔118、配管119、配管120、蒸留塔121、配管122および配管123を含む。
【0052】
配管101からは、容器107内をパージするための窒素(N)ガスが導入される。配管103からは、高純度メタン(CH)ガスが導入される。高純度メタンには12CH13CHの両方を含むことは言うまでもない。容器107は、吸着室として機能し、内部を減圧状態に維持できる構造を有している。容器107は、温度調整装置108によって、所定の温度に加熱または冷却でき、内部の温度を任意に調整可能となっている。容器107内部は、排気ポンプ113によって減圧状態にできる。活性炭105は、その平均細孔径がメタンの分子径の2倍に極力近い値を有するものを使用する。
【0053】
活性炭の製造方法の一例を以下に示す。活性炭の原料としては、セルロース、セルロース化合物、ポリイミド、ポリイミド化合物、セルロースを主成分とする天然物または人工物の中から選択される何れかの材料または複数を混合したものを利用できる。製造に当たっては、まず原料を粉末状にし、そこに必要に応じてバインダを加えて型に入れる。これを加圧し、所定形状の試料を得る。しかる後に成型された試料に対して熱処理を施す。熱処理は、2段階に分けて行う。まず炭化のための熱処理を行う。この熱処理は例えば窒素雰囲気中において、800℃、6時間の条件で行う。この熱処理によって、試料の炭化が行なわれる。次に第2の熱処理を行う。この第2の熱処理は、例えば二酸化炭素雰囲気中において、900℃、6時間の条件で行う。この第2の熱処理により、賦活が行われ、多孔質状態への変化が進行する。第1の熱処理においも多孔質化が進行しているが、第2の熱処理を行うことで、多孔質化がより進行する。第2の熱処理条件を制御することで、開孔の密度や開孔径を制御できる。開孔径や開口の密度の制御条件は、原料や雰囲気によって異なるので、実験的に求める必要がある。
【0054】
蒸留塔115、118および121では、12CH13CHの分離が行われる。蒸留塔115、118および121は、上部および下部に図示しない温度調節装置を備え、高沸点成分を蒸留塔の下部へ集め、低沸点成分を蒸留塔の上部へ集め、高沸点成分と低沸点成分とを分離する機能を有している。
【0055】
以下、高純度メタンガスから13CHを分離抽出する工程の一例を説明する。以下において、12CHメタンガスが本発明における第1ガスに相当し、13CHメタンガスが本発明における第1ガスの同位体ガスに相当する。そして、高純度メタンガスが本発明における第1ガスを含む混合ガスに相当する。
【0056】
図10は、本発明の同位体ガスの分離方法を適用した一実施形態の処理手順を例示したフローチャートである。
【0057】
まず、全てのバルブを閉じた状態で排気ポンプ113を動作させてバルブ112を開き、容器107を減圧状態にする。そして、バルブ112を閉じ、ついでバルブ102を開けて、容器107内を窒素ガスで満たす。そしてバルブ102を閉じ、排気ポンプ113を動作させた状態でバルブ112を開いて容器107内の窒素ガスを排気する。この一連の動作を複数回繰り返し、容器107に存在する不純物を極力除去する。そして、容器107を0.1Torr以下の高真空状態にする。
【0058】
この状態から同位体ガスの分離、この場合は、12CHガスの同位体ガスである13CHガスの分離を開始する(ステップ501)。まず、バルブ112を閉鎖した状態でバルブ104を開き、ついでバルブ111を開き、配管103から高純度メタンガスを容器107内に導入する(ステップ502)。この際、ポンプ106を動作させ、流量調整装置100および110を調整して、容器107内が所定の圧力に維持され、所定の流量が流れるようにする。また、温度調整装置108を動作させて容器107内の温度は一定(例えば5℃)に保っておく。
【0059】
容器107内を流入したメタンガスは、容器107内を流通し、配管114から取り出される(ステップ503)。容器107へ流入したメタンガスの流れにおいて、12CH13CHに比較して活性炭105に吸着し易いので、 CHが最初に活性炭に吸着し始め、遅れたタイミングで13CHが活性炭105に吸着し始める。この結果、容器107から配管114へと排出されるガスは、初期において13CHの濃度が12CHに比較して高くなる。なお、メタンガスをある程度の時間流しつづけると、13CHの吸着量と脱着量が平衡し、容器107から排出されるメタンガス中における12CH13CHとの比は、容器107に流入するメタンガス中における12CH13CHとの比とほぼ等しくなる。
【0060】
そこで、所定の時間が経過した段階でバルブ104と111を閉鎖し、流通ガスの取り出しを停止する(ステップ504)。この容器107へのメタンガスの流入開始から流入停止までの時間は、例えば200秒とする。この期間中に容器107から排出されるメタンガスは、13CH濃度が高い。容器107からの排気ガスは、配管114を介して蒸留塔115に導かれる。
【0061】
容器107へのメタンガスの流入を停止させた後、バルブ111を閉め、排気ポンプ113を動作させた状態でバルブ112を開き、容器107内を高真空状態にする。この際、温度調節装置108を制御して、容器107内を加熱する。加熱温度は、例えば100℃とする。こうして、活性炭105に吸着している12CH分子および13CH分子を脱着させる再生工程を実行する(ステップ505)。
【0062】
再生工程の後、再び13CHを分離する工程を繰り返す判断を行い(ステップ506)、再度容器107内にメタンガスを導入し、次サイクルの13CH分離工程を行う。こうして、活性炭105を使用した13CHの分離工程と活性炭105の再生工程とを繰り返し、13CHの濃度が高められたメタンガスを蒸留塔115へ間欠的に送る。なお、13CHの分離工程を終了する場合は、ステップ506において偽の判断を行い同位体ガスの分離を終了する(ステップ507)。以上の各ステップは、図示しないコンピュータ制御装置等を用いて予め定められたプログラムに従って自動的に実行することができる。
【0063】
蒸留塔115へ送られたメタンガスは、そこでさらに12CH13CHとの分離が行われる。蒸留塔115では、その内部がメタンの沸点付近の温度に調整され、12CH13CHが共に液化し易くなる条件が作られている。この状態で蒸留塔115の下部を僅かに加熱し、上部を僅かに冷却すると、微妙な条件において、沸点差に起因して13CHに比較して低沸点成分である12CHがより多く気化する状態が得られる。つまり、蒸留塔118に備え付けられた図示しない温度調整装置を微妙に調整することで、0.03℃の沸点の違いを利用して、低沸点成分が気化し易く、高沸点成分が気化しにくく液化し易い状態を作る。この結果、配管117から12CHが蒸留塔118外部に排出され、他方13CHが配管116から次の蒸留塔118へ送られる。
【0064】
蒸留塔118および121では、上述した13CHの濃縮がさらに重ねて行われる。なお、蒸留塔118で分離される12CHは、配管119から蒸留塔115に戻される。また、蒸留塔121で分離される12CHは、配管123から蒸留塔118に戻される。これは、配管119や123に流れるガス中に分離できなかった13CHが含まれているからである。
【0065】
図9には、12CH13CHの分離を行う蒸留塔として、115、118および121の3つが記載されているが、実施に当たっては、目的とする13CHの純度に合わせてさらに多段に蒸留塔を配置し、蒸留をさらに多段に行うことができる。
【0066】
以上説明した活性炭を利用した13CHの分離方法(濃縮方法)では、極低温技術を利用しないので、消費電力が低く、高い経済性を得られる。また、処理速度も速い。また、細孔径の制御が容易で安価な活性炭を利用し、しかも実用的に制御可能な分子径の2倍のものを利用するので、低コスト化を計れる。
【0067】
特に本実施の形態で示した方法では、理論上は数千段が必要とされる蒸留塔を用いた13CHの抽出を簡略化でき、また大量のメタンガスを処理しなければならない分離工程の初段に大電力を消費する蒸留工程を使用しないので、高純度の13CHを得るためのトータルコストを蒸留のみを用いた従来技術に比較して大きく低減できる。
【0068】
(実施の形態2)
本実施の形態は、吸着材料が格納された吸着室に混合ガスを一旦封入し、その後に吸着室から流出する混合ガスを流出が開始されてから所定時間経過後に取り出すことで、高質量数の同位体ガスを分離濃縮する方法である。
【0069】
本実施の形態は、図9に例示するシステムを利用する。本実施の形態においても実施の形態1と同様に高純度メタンガスから12CHの同位体ガスである13CHを分離する場合の例を説明する。また、本実施の形態でも実施の形態1と同じ活性炭を吸着材料として利用する例を説明する。
【0070】
図12は、本発明の同位体ガスの分離方法を適用した一実施形態の処理手順を例示したフローチャートである。
【0071】
まず、全てのバルブを閉じた状態でバルブ112を開き、排気ポンプ113を動作させ、容器107を減圧状態にする。そして、バルブ112を閉じ、ついでバルブ102を開けて、容器107内を窒素ガスで満たす。そしてバルブ102を閉じ、排気ポンプ113を動作させた状態でバルブ112を開いて容器107内の窒素ガスを排気する。この一連の動作を複数回繰り返し、容器107に存在する不純物を極力除去する。そして、容器107を0.1Torr以下の高真空状態にする。
【0072】
この状態から同位体ガスの分離、この場合は、12CHガスの同位体ガスである13CHガスの分離を開始する(ステップ601)。まず、バルブ112を閉鎖した状態でバルブ104を開き、配管103から高純度メタンガスを容器107内に導入する。この際、流量調整装置100を調整して、容器107内が所定の圧力になるまで高純度メタンガスを容器107内に流入させる。容器107内が高純度メタンガスで満たされ、所定の内部圧力になったら、バルブ104を閉め、高純度メタンガスを容器107内に封入した状態を得る(ステップ602)。この際、温度調整装置108を動作させて容器107内の温度を一定(例えば5℃)に保つ。
【0073】
容器107への高純度メタンガスの封入状態の維持時間は、13CHが活性炭105に十分に吸着するまでの時間とする。容器107への高純度メタンガスの封入状態の維持時間は、例えば500秒とする。
【0074】
容器107内に高純度メタンガスを所定時間封入後、バルブ112を開け、容器107に封入されていた高純度メタンガスを排出する(ステップ603)。そして、高純度メタンガスの流出の開始から所定時間の経過後、バルブ112を閉じ、バルブ111を開ける。こうして、ある時点から容器107に封入されていた高純度メタンガスを配管114から取り出す(ステップ604)。ここで、流出開始からの所定時間は、50秒とする。
【0075】
配管114への容器107からの高純度メタンガスの取り出しが終了したら、バルブ111を閉鎖する。
【0076】
高純度メタンガスが容器107に封入されていた状態において、13CHおよび12CHは活性炭105に吸着する。そして、容器107から封入されていた高純度メタンガスを取り出すと、12CHが最初に活性炭から脱着し始め、遅れたタイミングで13CHが活性炭105から脱着し始める。そこで、容器107から高純度メタンガスが流出し始めてから所定時間経過後に流出ガスを回収すると、その流出ガスには、脱着の遅れた13CHが先に脱着してしまっている12CHに対して、存在比率が高くなって存在している。こうして、13CHが濃縮された高純度メタンガスが得られる。
【0077】
容器107から配管114を介して取り出された高純度メタンガスは、蒸留塔115に導かれ、さらに13CHの濃縮が行われる。なお、蒸留塔115,118および121での処理は実施の形態1と同じであるので説明を省略する。
【0078】
次に排気ポンプ113を動作させた状態でバルブ112を開き、容器107内を高真空状態にする。この際、温度調節装置108を制御して、容器107内を加熱する。加熱温度は、例えば100℃とする。こうして、活性炭105に吸着している12CH分子および13CH分子を脱着させる再生工程を実行する(ステップ605)。
【0079】
再生工程の後、通常は、再び13CHを分離する工程を繰り返す判断を行い(ステップ606)、再度容器107内にメタンガスを導入し、次サイクルの13CHの分離工程を行う。こうして、活性炭105を使用した13CHの分離工程と活性炭105の再生工程とを繰り返し、13CHの濃度が高められたメタンガスを蒸留塔115へ間欠的に送る。
【0080】
なお、13CHの分離工程を終了する場合は、ステップ606において偽の判断を行い同位体ガスの分離を終了する(ステップ607)。また、以上の各ステップは、図示しないコンピュータ制御装置等を用いて予め定められたプログラムに従って自動的に実行できる。
【0081】
本実施の形態においても低コストで13CHの分離が行えるという実施の形態1と同様の優位性を得られる。
【0082】
本実施の形態では、吸着室である容器107にメタンガスを流入させる配管と容器107からメタンガスを排出させる配管は、同一の配管であってもよい。
【0083】
以上の実施の形態では、吸着材料として、活性炭を例に挙げたが、他に多孔質錯体、ゼオライト、その他適宜開孔径を調整したあるいは適当な開孔径を有する多孔質体を利用できる。多孔質錯体としては、ジカルボン酸金属系3次元型錯体等が挙げられる。また、分離あるいは濃縮対象となる同位体ガスとしては、13CHメタン以外に水素ガス(H)の同位体ガスである重水素ガス()あるいは三重水素ガス)、二酸化炭素ガス(13CO)、希ガスの同位体ガス等が挙げられる。
【0084】
以上本発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更することが可能である。
【0085】
活性炭を用いた13CHの分離(濃縮)は、多段階に行っても良い。また、活性炭を用いた13CHの濃縮を複数並列して行っても良い。また、吸着を利用した同位体ガスの分離処理を複数並行して行えるように分離装置を複数用意し、各分離装置の処理タイミングを適宜ずらすことで、13CH濃度の高められたメタンガスが蒸留塔115に連続的に供給されるようにしてもよい。これらの変形あるいは応用は、活性炭以外の吸着材料を用いる場合、あるいは他の同位体の分離を行う場合でも同様に適用できる。
【0086】
なおここで、吸着材料として、活性炭、ゼオライト、多孔質錯体、有機金属錯体、またはその他の多孔質材料が選択できる。分離すべき同位体ガスとしては、同位体成分を含んでいるメタンガス(13CH)、二酸化炭素ガス(13CO)、重水素ガス()、希ガス、その他異なる同位体原子を含むガスが選択できる。
【0087】
【発明の効果】
本願で開示される発明のうち、代表的なものによって得られる効果は、以下の通りである。すなわち、本発明により、低コストで同位体元素を得る技術が提供される。また、本発明により、低コストで13Cを得られる。
【図面の簡単な説明】
【図1】 実験を行ったシステムの概要を示す図である。
【図2】 温度を7℃とした場合の試料1に対する13CHの吸着等温線および脱着等温線と、12CHの吸着等温線および脱着等温線を示すグラフである。
【図3】 温度を30℃とした場合の試料1に対する13CHの吸着等温線および脱着等温線と、12CHの吸着等温線および脱着等温線を示すグラフである。
【図4】 温度を7℃とした場合の試料2に対する13CHの吸着等温線および脱着等温線を示すグラフである。
【図5】 温度を7℃とした場合の試料3に対する13CHの吸着等温線および脱着等温線を示すグラフである。
【図6】 温度を7℃とした場合の試料4に対する13CHの吸着等温線および脱着等温線を示すグラフである。
【図7】 図2に示す13CHの吸着等温線および脱着等温線を基に作成したLangmuirプロットを直線近似したグラフである。
【図8】 各試料に対する13CHの吸着効率と脱着効率を評価した結果を示すグラフである。
【図9】 本発明の同位体ガスの分離方法を実施するためのシステムの一例を示す図である。
【図10】 本発明の同位体ガスの分離方法を適用した一実施形態の処理手順を例示したフローチャートである。
【図11】 本発明の同位体ガスの分離方法を適用した一実施形態の処理手順を例示したフローチャートである。
【符号の説明】
100…流量調整装置、101…配管、102…バルブ、103…配管、104…バルブ、105…活性炭、106…ポンプまたは流量調整装置、107…容器、108…温度調整装置、109…配管、110…流量調整装置、111…バルブ、112…バルブ、113…排気ポンプ、114…配管、115…蒸留塔、116…配管、117…配管、118…蒸留塔、119…配管、120…配管、121…蒸留塔、122…配管、123…配管、201…配管、202…配管、203…配管、204…バルブ、205…バルブ、206…バルブ、207…容器、209…試料、210…精密重量計、211…重量測定装置、212…温度調節装置、213…配管、214…バルブ、215…排気ポンプ。

Claims (13)

  1. 分子状または原子状の第1ガスを含む混合ガスから前記第1ガスの同位体ガスを分離する同位体ガス分離方法であって、
    前記混合ガスを吸着室のガス吸入口に供給するステップ、および、前記混合ガスの供給開始から所定時間経過までの間前記吸着室のガス流出口から流出する前記第1ガスの同位体ガスを取り出すステップを含む第1処理手順、または、
    前記混合ガスを吸着室に封入するステップ、および、前記流出の開始から所定時間経過後に前記第1ガスの同位体ガスを取り出すステップを含む第2処理手順、
    の何れかの処理手順を含み、
    前記吸着室には、前記第1ガスの分子径または原子径のn倍(n=2、3、4、・・・)に近接した細孔径を有する活性炭もしくは多孔質錯体を設置することを特徴とする同位体ガス分離方法。
  2. 分子状または原子状の第1ガスを含む混合ガスから前記第1ガスの同位体ガスを分離する同位体ガス分離方法であって、
    前記混合ガスを吸着室のガス吸入口に供給するステップ、および、前記混合ガスの供給開始から所定時間経過までの間前記吸着室のガス流出口から流出する前記第1ガスの同位体ガスを取り出すステップを含む第1処理手順、または、
    前記混合ガスを吸着室に封入するステップ、および、前記流出の開始から所定時間経過後に前記第1ガスの同位体ガスを取り出すステップを含む第2処理手順、
    の何れかの処理手順を含み、
    前記吸着室には、前記第1ガスの分子径または原子径のm倍(m=2、3、4、・・・)に近接した細孔径を有する多孔質体を設置することを特徴とする同位体ガス分離方法。
  3. 前記nまたはmは2であることを特徴とする請求項1または2記載の同位体ガス分離方法。
  4. 前記第1ガスはCHガス、COガスもしくはHガス、または、Heガス、Arガス、NeガスもしくはXeガスその他の希ガスであることを特徴とする請求項1〜3の何れか一項に記載の同位体ガス分離方法。
  5. 前記混合ガスの供給または封入を停止した後、前記吸着室の内部を減圧にし、前記活性炭もしくは多孔質錯体または前記多孔質体を再生するステップをさらに含むことを特徴とする請求項1〜4の何れか一項に記載の同位体ガス分離方法。
  6. 前記第1処理手順または第2処理手順、および、前記再生ステップを複数回繰り返すことを特徴とする請求項5記載の同位体ガス分離方法。
  7. 前記取り出した第1ガスの同位体ガスを蒸留法によってさらに高純度化するステップをさらに含むことを特徴とする請求項1〜の何れか一項に記載の同位体ガス分離方法。
  8. 分子状または原子状の第1ガスを含む混合ガスから前記第1ガスの同位体ガスを分離する同位体ガス分離装置であって、
    その内部を大気圧より低い圧力の減圧状態にできる吸着室と、
    前記吸着室からガスを排気する排気手段と、
    前記吸着室にガスを供給するガス供給口および前記吸着室からガスを排出するガス排出口、または、前記吸着室にガスを供給しもしくは排出するガス供給排出口と、
    前記吸着室へのガスの供給、排出、封入もしくは供給流量または前記吸着室内のガス圧力を制御する単一もしくは複数のバルブまたはガス流量制御手段と、
    前記吸着室に設置された活性炭または多孔質錯体と、
    を有し、
    前記活性炭または多孔質錯体は、前記第1ガスの分子径または原子径のn倍(n=2、3、4、・・・)に近接した細孔径を有するものであることを特徴とする同位体ガス分離装置。
  9. 分子状または原子状の第1ガスを含む混合ガスから前記第1ガスの同位体ガスを分離する同位体ガス分離装置であって、
    その内部を大気圧より低い圧力の減圧状態にできる吸着室と、
    前記吸着室からガスを排気するガス排気手段と、
    前記吸着室にガスを供給するガス供給口および前記吸着室からガスを排出するガス排出口、または、前記吸着室にガスを供給しもしくは排出するガス供給排出口と、
    前記吸着室へのガスの供給、排出、封入もしくは供給流量または前記吸着室内のガス圧力を制御する単一もしくは複数のバルブまたはガス流量制御手段と、
    前記吸着室に設置された多孔質体と、
    を有し、
    前記多孔質体は、前記第1ガスの分子径または原子径のm倍(m=2,3,4、・・・)に近接した細孔径を有するものであることを特徴とする同位体ガス分離装置。
  10. 前記nまたはmは、2であることを特徴とする請求項8または9記載の同位体ガス分離装置。
  11. 前記第1ガスはCHガス、COガスもしくはHガス、または、Heガス、Arガス、NeガスもしくはXeガスその他の希ガスであることを特徴とする請求項8〜10の何れか一項に記載の同位体ガス分離装置。
  12. 前記吸着室内の前記活性炭もしくは多孔質錯体または多孔質体加熱する手段をさらに備えることを特徴とする請求項8〜11の何れか一項に記載の同位体ガス分離装置。
  13. 前記ガス排出口またはガス供給排出口の後段に前記ガス排出口またはガス供給排出口から取り出した排出ガスを蒸留する蒸留装置をさらに備えることを特徴とする請求項8〜12の何れか一項に記載の同位体ガス分離装置。
JP2002010515A 2002-01-18 2002-01-18 同位体ガス分離方法および同位体ガス分離装置 Expired - Fee Related JP4087117B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002010515A JP4087117B2 (ja) 2002-01-18 2002-01-18 同位体ガス分離方法および同位体ガス分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002010515A JP4087117B2 (ja) 2002-01-18 2002-01-18 同位体ガス分離方法および同位体ガス分離装置

Publications (2)

Publication Number Publication Date
JP2003210945A JP2003210945A (ja) 2003-07-29
JP4087117B2 true JP4087117B2 (ja) 2008-05-21

Family

ID=27648237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002010515A Expired - Fee Related JP4087117B2 (ja) 2002-01-18 2002-01-18 同位体ガス分離方法および同位体ガス分離装置

Country Status (1)

Country Link
JP (1) JP4087117B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1499423A2 (en) * 2002-03-08 2005-01-26 Tokyo Gas Co., Ltd. A separation method and separation apparatus of isotopes from gaseous substances
JP4509886B2 (ja) * 2005-07-25 2010-07-21 東京瓦斯株式会社 ガス処理方法およびガス処理装置
US7828939B2 (en) 2006-03-23 2010-11-09 Taiyo Nippon Sanso Corporation Method for concentrating heavy nitrogen isotope
JP5425384B2 (ja) 2007-09-19 2014-02-26 大陽日酸株式会社 窒素同位体濃縮方法
CN102338711B (zh) * 2010-07-22 2013-11-06 中国石油天然气股份有限公司 一种惰性气体萃取和分离的制样系统及其应用
CN103691579B (zh) * 2013-12-07 2015-08-05 河南理工大学 煤矿回风流低浓度瓦斯多级提纯试验装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438274A (en) * 1977-08-31 1979-03-22 Toshiba Corp Separating method for molecule, atom, or its isotope
JP2721022B2 (ja) * 1989-01-24 1998-03-04 新日鐵化学株式会社 炭素13の濃縮方法
JP3462677B2 (ja) * 1996-10-28 2003-11-05 三菱重工業株式会社 速度分離型吸着剤を利用した同位体ガスの分離方法
JP4107781B2 (ja) * 2000-02-14 2008-06-25 三菱重工業株式会社 13co富化coガスの製造方法

Also Published As

Publication number Publication date
JP2003210945A (ja) 2003-07-29

Similar Documents

Publication Publication Date Title
Jiang et al. Simultaneous biogas purification and CO2 capture by vacuum swing adsorption using zeolite NaUSY
Kapoor et al. Kinetic separation of methane—carbon dioxide mixture by adsorption on molecular sieve carbon
Olajossy et al. Methane separation from coal mine methane gas by vacuum pressure swing adsorption
Warmuziński et al. Multicomponent pressure swing adsorption Part I. Modelling of large-scale PSA installations
WO2018217532A1 (en) Apparatus and system for swing adsorption processes using selectivation of adsorbent materials
JP2003071232A (ja) 窒素製造方法および装置
KR20080031646A (ko) 압력 스윙 흡착 시스템의 얕은 베드에 있어서의 작동안정성
KR20040028715A (ko) 산소ㆍ질소 혼합 가스로부터 질소를 분리하기 위한흡착제와 이를 이용한 질소 제조 방법
Marx et al. The role of water in adsorption-based CO2 capture systems
WO2019139712A1 (en) Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature
WO2019078970A1 (en) CYCLE TIME CONTROL OF MODULATED ADSORPTION PROCESS USING AMBIENT CO2 MONITORING
JP4087117B2 (ja) 同位体ガス分離方法および同位体ガス分離装置
JP2005519733A (ja) 同位体ガス分離方法および同位体ガス分離装置
RU2756180C1 (ru) Избирательный по скорости/кинетически избирательный цикл процесса адсорбции на множестве слоев
JP4444208B2 (ja) 同位体ガス分離方法および同位体ガス分離装置
JP2020527455A (ja) Co2の吸着及び捕捉のためのv型吸着剤及びガス濃縮の使用
Kupiec et al. Adsorption–desorption cycles for the separation of vapour-phase ethanol/water mixtures
JP6978042B2 (ja) 酸素同位体の分離方法及び分離装置
Saberimoghaddam et al. Design and construction of a helium purification system using cryogenic adsorption process
JP4509886B2 (ja) ガス処理方法およびガス処理装置
BR102019016323A2 (pt) Adsorvente de peneira molecular de carbono melhorado
JP2007245111A (ja) 空気液化分離における前処理方法及び装置
JP2008136935A (ja) トリフルオロメタンの選択的処理方法、処理ユニットおよび該処理ユニットを用いた試料処理システム
JPH04371209A (ja) 圧力差再生方式吸着塔の再生法
Izumi et al. 14 CO and 12 CO separation on Na-X using pressure swing adsorption at low temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees