JP4085489B2 - Charging method of lithium ion secondary battery - Google Patents

Charging method of lithium ion secondary battery Download PDF

Info

Publication number
JP4085489B2
JP4085489B2 JP30487398A JP30487398A JP4085489B2 JP 4085489 B2 JP4085489 B2 JP 4085489B2 JP 30487398 A JP30487398 A JP 30487398A JP 30487398 A JP30487398 A JP 30487398A JP 4085489 B2 JP4085489 B2 JP 4085489B2
Authority
JP
Japan
Prior art keywords
charging
secondary battery
lithium ion
ion secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30487398A
Other languages
Japanese (ja)
Other versions
JP2000133320A5 (en
JP2000133320A (en
Inventor
薫 井上
肇 西野
浩司 芳澤
宏和 木宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP30487398A priority Critical patent/JP4085489B2/en
Publication of JP2000133320A publication Critical patent/JP2000133320A/en
Publication of JP2000133320A5 publication Critical patent/JP2000133320A5/ja
Application granted granted Critical
Publication of JP4085489B2 publication Critical patent/JP4085489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池の充電方法、特に充電時に周期的に充電電流を加えるパルス充電方法に関するものである。
【0002】
【従来の技術】
近年、高出力、高エネルギー密度の電源として非水電解液二次電池が注目され、数多くの研究が行われている。
【0003】
従来、非水電解液二次電池としてリチウム二次電池が注目され、検討されてきた。リチウム二次電池は、正極活物質にLiCoO2、LiNiO2等のリチウム含有遷移金属酸化物やMoS2等のカルコゲン化合物が用いられ、これらは層状構造を有し、リチウムイオンを可逆的に挿入、脱離することができる。一方、負極活物質には金属リチウムが用いられてきた。しかし、負極活物質に金属リチウムを用いると、充放電を繰り返すことによりリチウムが溶解、析出反応を繰り返し、リチウム表面上に樹枝状のリチウムが形成される。この樹枝状リチウムの形成は充放電効率を低下させたり、あるいは正極と接触して内部短絡を生じるという問題を有していた。
【0004】
このような問題を解決するために、リチウム金属負極の合金化や充電方式を制御することにより樹枝状リチウムの形成を抑制する試みがされてきた。例えば特開平5−114422号公報や特開平7−263031号公報に開示されるようにパルス電流を用いて充電することが提案されている。
【0005】
さらに、電極材料の面からは、リチウムを可逆的に吸蔵、放出することのできる黒鉛質または炭素質の炭素材料が負極材料として提案されている。このタイプの電池は、リチウムイオン二次電池と称され、現在、実用化されている。
【0006】
このような、リチウムイオン二次電池の充電方法としては、特開平5−111184号公報に開示されるように定電流制御と定電圧制御を組み合わせて充電を行うことが提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のリチウムイオン二次電池を定電流制御と定電圧制御とを組み合わせて充電した場合、充放電サイクル寿命特性が不十分であり、充電方法を改良することで充放電サイクル寿命特性が向上することを見いだして本発明に至った。
【0008】
すなわち、本発明はリチウムイオン二次電池の充放電サイクル寿命を向上させる充電方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記の課題を解決するために本発明は、リチウムイオン二次電池を充電する方法において、周期的に充電電流を加える充電方法であり、その充電時の周波数を、前記二次電池の交流インピーダンスの位相θが−5〜0deg.の範囲となる任意の周波数とすることを特徴とする。さらには、リチウムイオン二次電池を充電する方法において、充電時に電池電圧が設定した充電電圧に達するまでは定電流で充電を行い、設定電圧に到達後に、周期的に充電電流を加えるパルス充電方法であり、その充電時の周波数が、前記二次電池の交流インピーダンスの位相θが−5〜0deg.の範囲となる任意の周波数であることを特徴とする。
【0010】
また、上記の充電方法における充電終了条件としては、充電されるリチウムイオン二次電池の開回路電圧が、設定値に達した時点で充電を終了することを特徴とする。さらには、充電されるリチウムイオン二次電池の閉回路電圧が、設定値に達した時点で充電を終了することを特徴とする。さらには、充電されるリチウムイオン二次電池の開回路電圧もしくは閉回路電圧の少なくともどちらか一方が、それぞれの設定電圧に達した時点で充電を終了することを特徴とする。
【0011】
【発明の実施の形態】
本発明は各請求項に特定した構成を実施の形態とすることができるものである。すなわち、請求項1記載のように、リチウムイオン二次電池を充電する方法において、周期的に充電電流を加える充電方法であり、その充電時の周波数を、前記二次電池の交流インピーダンスの位相θが−5〜0deg.の範囲となる任意の周波数とするものである。さらには、請求項2記載のように、リチウムイオン二次電池を充電する方法において、充電時に電池電圧が設定した充電電圧に達するまでは定電流で充電を行い、設定電圧に到達後に、周期的に充電電流を加える充電方法であり、その充電時の周波数を、前記二次電池の交流インピーダンスの位相θが−5〜0deg.の範囲となる任意の周波数とするものである。
【0012】
また、上記の充電方法における充電終了条件としては、請求項3記載のように、充電されるリチウムイオン二次電池の開回路電圧が、設定値に達した時点で充電を終了するものとする。さらには、請求項4記載のように、充電されるリチウムイオン二次電池の閉回路電圧が、設定値に達した時点で充電を終了するものとする。より好ましくは、請求項5記載のように、充電されるリチウムイオン二次電池の開回路電圧もしくは閉回路電圧の少なくともどちらか一方が、それぞれの設定電圧に達した時点で充電を終了するものとする。
【0013】
また、本発明の充電方法で充電することができる電池としては、負極材料にリチウムを吸蔵、放出することのできる材料、例えば、黒鉛質材料や炭素質材料もしくは遷移金属酸化物、遷移金属硫化物、遷移金属窒化物もしくはリチウム合金などを用いたリチウムイオン二次電池が適している。この場合、正極材料としてはリチウムイオンを可逆的にインターカレートおよびデインターカレートすることのできる遷移金属酸化物や遷移金属硫化物などを用いることができる。
【0014】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0015】
(実施例1)
図1に本発明に用いた円筒形電池の縦断面図を示す。図において1は正極を示し、活物質であるLiCoO2と導電材としてのアセチレンブラックと、さらに結着剤としてのポリ四フッ化エチレンを重量比で100:3:7の割合で混合し、増粘剤を用いてペースト状にしたものをアルミニウム箔の両面に塗着、乾燥、圧延した後、所定の寸法(37mm×390mm)に切断したものである。さらにこの正極1には2のアルミニウム製リード板を溶接している。
【0016】
3は負極で、炭素材料として鱗片状の人造黒鉛と結着剤としてスチレンブタジエン共重合体とを重量比で100:4の割合で混合し、増粘剤を用いてペースト状にしたものを銅箔の両面に塗着、乾燥、圧延した後、所定の寸法(39mm×465mm)に切断したものである。この負極3にも4のニッケル製のリード板を溶接している。
【0017】
5はポリエチレン製の微孔性フィルムからなるセパレータで、正極1と負極3との間に介在し、全体が渦巻状に捲回されて極板群を構成している。この極板群の上下の端には、それぞれポリプロピレン製の絶縁板6,7を配して鉄にニッケルメッキしたケース8に挿入する。そして正極リード2を安全弁を設けた封口板10に、負極リード4をケース8の底部にそれぞれ溶接した。
【0018】
さらにエチレンカーボネートとエチルメチルカーボネートとの体積比1:3の混合溶媒に電解質として六フッ化リン酸リチウムを濃度が1.5mol/lとなるように溶かして得た電解液を加え、ガスケット9を介して封口板10で封口し、本発明における実施例の電池を作製した。なお11は電池の正極端子で、負極端子はケース8がこれを兼ねている。電池の寸法は直径17mm、高さ50mmである。
【0019】
この電池を用いて本発明による充電を行った。以下、本発明の充電方法について詳しく述べる。図2に本発明の実施例の充電波形を示す。図2の矩形波を用い、充電電流を900mAとした。充電の周期は3kHz、1kHz、800Hz、100Hz、10Hz、1Hz、0.1Hz、および、0.02Hzとした。
【0020】
充電は、電池の開回路電圧が4.15Vもしくは閉回路電圧が4.4Vのどちらか一方に達するまで行った。放電は900mAの定電流で行い、終止電圧を3Vとした。充放電試験は20℃の環境下で行った。
【0021】
電池の交流インピーダンス測定は、電池が公称容量の100%の充電状態で行った。
【0022】
(実施例2)
充電時の電池電圧が4.2Vに達するまで900mAの定電流で充電した後、図2の矩形波を用いて充電を行った。充電電流を900mAとし、充電の周期を3kHz、1kHz、800Hz、100Hz、10Hz、1Hz、0.1Hz、および、0.02Hzとした。充電は、電池の開回路電圧が4.15Vもしくは閉回路電圧が4.4Vのどちらか一方に達するまで行った。それ以外は実施例1と同様にして試験を行った。
【0023】
(比較例)
充電電流900mA、充電電圧4.2V、充電時間2時間の定電流定電圧充電を行った以外は実施例1と同様にして試験を行った。
【0024】
(表1)に、本発明の実施例と比較例についての充放電サイクル特性を示す。
【0025】
【表1】

Figure 0004085489
【0026】
(表1)から明らかなように、電池の交流インピーダンスの位相θが−5〜0deg.の範囲である1kHz、800Hz、1Hzおよび0.1Hzの周波数を用いた本発明の充電方法により充放電サイクル寿命特性は向上した。このことは、電池の交流インピーダンスと充電受け入れ性には相関関係があり、電池の交流インピーダンスによって最適な充電条件があることを示唆しているものと考えられる。
【0027】
従って、本発明のように、充電を周期的に充電電流を加える充電方法とし、その充電周期を電池の交流インピーダンスの位相θが−5〜0deg.となる任意の周波数とすることで充放電サイクル特性を向上させることができたものと考えられる。
【0028】
また、本発明の実施例2のように、充電深度が浅く、電池の充電受け入れ性が充分な領域を定電流充電とすること、すなわち、所定の設定電圧まで定電流で充電した後に、周期的に充電電流を加えて充電することにより、充放電サイクル寿命特性の向上と、さらには、充電時間の短縮をすることができる。
【0029】
なお、本発明の実施例では、充電電流を900mAとしたが、電池の種類、容量、および、充電時間によって調節ができることは明確である。
【0030】
また、本発明の実施例では4.2V充電仕様の電池について、本発明の充電方法の充電終了条件を任意に設定したが、電池の仕様(例えば、4.1V充電仕様など)によって任意に設定できることは明確である。
【0031】
さらには、充電時の電池の閉回路電圧を充電終了条件として設定し、この設定値を調節することで充電受け入れ性の低下した劣化電池を無理に充電することがなく安全性についても優れた充電方法であるといえる。
【0032】
また、本発明の実施例では負極炭素材として鱗片状黒鉛を用いたが、特に限定されることなく、黒鉛質材料や炭素質材料もしくは遷移金属酸化物、遷移金属硫化物、遷移金属窒化物もしくはリチウム合金などについても同様の効果が得られることは明確である。
【0033】
また、本発明では正極活物質としてLiCoO2を用いたが、他の正極活物質、例えばLiNiO2やLiMn24でも同様の効果が得られることは明確である。
【0034】
【発明の効果】
以上のように本発明は、リチウムイオン二次電池の充放電サイクル寿命特性を向上させることのできる充電方法を提供することができる。また、充電の周期を任意の値に固定することにより充電回路の簡略化ができる。
【0035】
さらには、充電時の電池の閉回路電圧を充電終了条件として設定し、この設定値を調節することで充電受け入れ性の低下した劣化電池を無理に充電することがなく安全性についても優た充電方法である。
【図面の簡単な説明】
【図1】本発明の実施例における非水電解液二次電池の縦断面図
【図2】本発明の実施例における充電方法を示す模式図
【符号の説明】
1 正極
2 正極リード板
3 負極
4 負極リード板
5 セパレータ
6 上部絶縁板
7 下部絶縁板
8 ケース
9 ガスケット
10 封口板
11 正極端子[0001]
BACKGROUND OF THE INVENTION
The present invention is a method charging of the lithium ion secondary battery, to a pulse charging method in particular adding periodically charging current during charging.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte secondary batteries have attracted attention as a power source with high output and high energy density, and many studies have been conducted.
[0003]
Conventionally, lithium secondary batteries have attracted attention and have been studied as non-aqueous electrolyte secondary batteries. Lithium secondary batteries use lithium-containing transition metal oxides such as LiCoO 2 and LiNiO 2 and chalcogen compounds such as MoS 2 as the positive electrode active material, and these have a layered structure and reversibly insert lithium ions. It can be detached. On the other hand, metallic lithium has been used as the negative electrode active material. However, when metallic lithium is used for the negative electrode active material, lithium is dissolved by repeating charging and discharging, and the precipitation reaction is repeated to form dendritic lithium on the lithium surface. The formation of dendritic lithium has a problem that the charge / discharge efficiency is lowered, or an internal short circuit occurs due to contact with the positive electrode.
[0004]
In order to solve such problems, attempts have been made to suppress dendritic lithium formation by controlling the alloying of lithium metal negative electrodes and the charging method. For example, as disclosed in JP-A-5-114422 and JP-A-7-263031, charging using a pulse current has been proposed.
[0005]
Furthermore, from the aspect of the electrode material, a graphite or carbonaceous carbon material capable of reversibly occluding and releasing lithium has been proposed as a negative electrode material. This type of battery is called a lithium ion secondary battery and is currently in practical use.
[0006]
As a charging method of such a lithium ion secondary battery, it has been proposed to perform charging by combining constant current control and constant voltage control as disclosed in Japanese Patent Laid-Open No. 5-111184.
[0007]
[Problems to be solved by the invention]
However, when the above lithium ion secondary battery is charged by combining constant current control and constant voltage control, the charge / discharge cycle life characteristics are insufficient, and the charge / discharge cycle life characteristics are improved by improving the charging method. As a result, the present invention has been found.
[0008]
That is, an object of the present invention is to provide a charging method for improving the charge / discharge cycle life of a lithium ion secondary battery.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention relates to a method for charging a lithium ion secondary battery, in which a charging current is periodically added, and the frequency at the time of charging is set to the AC impedance of the secondary battery. The phase θ is −5 to 0 deg. An arbitrary frequency that falls within the range is characterized. Further, in a method of charging a lithium ion secondary battery, a pulse charging method in which charging is performed at a constant current until the battery voltage reaches a set charging voltage at the time of charging, and a charging current is periodically added after reaching the set voltage. The frequency at the time of charging is such that the phase θ of the AC impedance of the secondary battery is −5 to 0 deg. It is an arbitrary frequency that falls within the range.
[0010]
Further, as a charge termination condition in the above charging method, the charge is terminated when the open circuit voltage of the lithium ion secondary battery to be charged reaches a set value. Furthermore, the charging is terminated when the closed circuit voltage of the lithium ion secondary battery to be charged reaches a set value. Furthermore, the charging is terminated when at least one of the open circuit voltage and the closed circuit voltage of the lithium ion secondary battery to be charged reaches the set voltage.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can employ the configurations specified in each claim as an embodiment. That is, as in claim 1, in the method of charging a lithium ion secondary battery, the charging method is to apply a charging current periodically, and the frequency at the time of charging is set to the phase θ of the AC impedance of the secondary battery. Is -5 to 0 deg. This is an arbitrary frequency that falls within the range. Furthermore, in the method for charging a lithium ion secondary battery as claimed in claim 2, charging is performed at a constant current until the battery voltage reaches a set charging voltage at the time of charging, and after reaching the set voltage, the charging is periodically performed. A charging method of applying a charging current to the battery, wherein the frequency at the time of charging is set to a phase θ of the AC impedance of the secondary battery of −5 to 0 deg. This is an arbitrary frequency that falls within the range.
[0012]
Further, as a charge termination condition in the above charging method, as described in claim 3, the charging is terminated when the open circuit voltage of the lithium ion secondary battery to be charged reaches a set value. Further, as described in claim 4, charging is terminated when the closed circuit voltage of the lithium ion secondary battery to be charged reaches a set value. More preferably, as described in claim 5, when at least one of the open circuit voltage and the closed circuit voltage of the lithium ion secondary battery to be charged reaches the respective set voltage, the charging is terminated. To do.
[0013]
In addition, as a battery that can be charged by the charging method of the present invention, a material capable of inserting and extracting lithium into the negative electrode material, such as a graphite material, a carbonaceous material, a transition metal oxide, or a transition metal sulfide A lithium ion secondary battery using a transition metal nitride or a lithium alloy is suitable. In this case, a transition metal oxide or a transition metal sulfide capable of reversibly intercalating and deintercalating lithium ions can be used as the positive electrode material.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
Example 1
FIG. 1 shows a longitudinal sectional view of a cylindrical battery used in the present invention. In the figure, 1 denotes a positive electrode, and LiCoO 2 as an active material, acetylene black as a conductive material, and polytetrafluoroethylene as a binder are mixed at a weight ratio of 100: 3: 7, and increased. A paste formed using a sticky agent is applied to both sides of an aluminum foil, dried and rolled, and then cut into predetermined dimensions (37 mm × 390 mm). Further, 2 aluminum lead plates are welded to the positive electrode 1.
[0016]
3 is a negative electrode, which is obtained by mixing scaly artificial graphite as a carbon material and styrene butadiene copolymer as a binder in a weight ratio of 100: 4, and using a thickener to make a paste. After coating, drying and rolling on both sides of the foil, the foil is cut into a predetermined size (39 mm × 465 mm). A nickel lead plate 4 is also welded to the negative electrode 3.
[0017]
5 is a separator made of a polyethylene microporous film, which is interposed between the positive electrode 1 and the negative electrode 3, and is entirely wound in a spiral shape to constitute an electrode plate group. Insulating plates 6 and 7 made of polypropylene are arranged on the upper and lower ends of the electrode plate group, respectively, and inserted into a case 8 that is nickel-plated on iron. The positive electrode lead 2 was welded to the sealing plate 10 provided with a safety valve, and the negative electrode lead 4 was welded to the bottom of the case 8.
[0018]
Furthermore, an electrolyte obtained by dissolving lithium hexafluorophosphate as an electrolyte in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3 so as to have a concentration of 1.5 mol / l was added, and gasket 9 was The battery of the Example in this invention was produced. In addition, 11 is a positive electrode terminal of a battery, and the case 8 also serves as the negative electrode terminal. The dimensions of the battery are a diameter of 17 mm and a height of 50 mm.
[0019]
The battery was used for charging according to the present invention. Hereinafter, the charging method of the present invention will be described in detail. FIG. 2 shows a charging waveform of the embodiment of the present invention. The rectangular wave of FIG. 2 was used and the charging current was set to 900 mA. The charging cycle was 3 kHz, 1 kHz, 800 Hz, 100 Hz, 10 Hz, 1 Hz, 0.1 Hz, and 0.02 Hz.
[0020]
Charging was performed until the open circuit voltage of the battery reached either 4.15V or the closed circuit voltage of 4.4V. Discharging was performed at a constant current of 900 mA and the final voltage was 3V. The charge / discharge test was performed in an environment of 20 ° C.
[0021]
The battery AC impedance measurement was performed with the battery charged to 100% of its nominal capacity.
[0022]
(Example 2)
After charging at a constant current of 900 mA until the battery voltage at the time of charging reached 4.2 V, charging was performed using the rectangular wave of FIG. The charging current was 900 mA, and the charging cycle was 3 kHz, 1 kHz, 800 Hz, 100 Hz, 10 Hz, 1 Hz, 0.1 Hz, and 0.02 Hz. Charging was performed until the open circuit voltage of the battery reached either 4.15V or the closed circuit voltage of 4.4V. Otherwise, the test was conducted in the same manner as in Example 1.
[0023]
(Comparative example)
The test was performed in the same manner as in Example 1 except that constant current and constant voltage charging with a charging current of 900 mA, a charging voltage of 4.2 V, and a charging time of 2 hours was performed.
[0024]
Table 1 shows the charge / discharge cycle characteristics of the examples and comparative examples of the present invention.
[0025]
[Table 1]
Figure 0004085489
[0026]
As apparent from Table 1, the phase θ of the battery AC impedance is −5 to 0 deg. The charge / discharge cycle life characteristics were improved by the charging method of the present invention using the frequencies of 1 kHz, 800 Hz, 1 Hz, and 0.1 Hz, which are ranges of This suggests that there is a correlation between the AC impedance of the battery and the charge acceptability, suggesting that there are optimum charging conditions depending on the AC impedance of the battery.
[0027]
Therefore, as in the present invention, charging is a charging method in which a charging current is periodically added, and the charging cycle is determined based on the phase θ of the AC impedance of the battery being −5 to 0 deg. It is considered that the charge / discharge cycle characteristics could be improved by setting an arbitrary frequency.
[0028]
In addition, as in the second embodiment of the present invention, an area where the charging depth is shallow and the battery has sufficient charge acceptability is set as constant current charging, that is, after charging with a constant current up to a predetermined set voltage, By charging with a charging current, the charge / discharge cycle life characteristics can be improved and the charging time can be shortened.
[0029]
In the embodiment of the present invention, the charging current is set to 900 mA, but it is clear that the charging current can be adjusted depending on the type, capacity, and charging time of the battery.
[0030]
In the embodiment of the present invention, for the battery of the 4.2V charging specification, the charging termination condition of the charging method of the present invention is arbitrarily set. However, it is arbitrarily set depending on the battery specification (for example, 4.1V charging specification). It is clear what you can do.
[0031]
Furthermore, the battery closed circuit voltage at the time of charging is set as the charging termination condition, and by adjusting this setting value, the deteriorated battery whose charge acceptance is lowered is not forcibly charged, and it has excellent safety. It can be said that it is a method.
[0032]
Further, in the examples of the present invention, scaly graphite was used as the negative electrode carbon material, but the graphite material, the carbonaceous material, the transition metal oxide, the transition metal sulfide, the transition metal nitride, or the like is not particularly limited. It is clear that similar effects can be obtained with lithium alloys and the like.
[0033]
In the present invention, LiCoO 2 is used as the positive electrode active material, but it is clear that the same effect can be obtained with other positive electrode active materials such as LiNiO 2 and LiMn 2 O 4 .
[0034]
【The invention's effect】
As described above, the present invention can provide a charging method capable of improving the charge / discharge cycle life characteristics of a lithium ion secondary battery. Further, the charging circuit can be simplified by fixing the charging cycle to an arbitrary value.
[0035]
In addition, the closed circuit voltage of the battery at the time of charging is set as a charge termination condition, and by adjusting this setting value, charging is performed with excellent safety without forcibly charging a deteriorated battery whose charge acceptance has deteriorated. Is the method.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a non-aqueous electrolyte secondary battery in an embodiment of the present invention. FIG. 2 is a schematic diagram showing a charging method in the embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode lead plate 3 Negative electrode 4 Negative electrode lead plate 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Gasket 10 Sealing plate 11 Positive electrode terminal

Claims (5)

リチウムイオン二次電池を充電する方法において、周期的に充電電流を加える充電方法であり、その充電時の周波数が、前記二次電池の交流インピーダンスの位相θが−5〜0deg.の範囲となる任意の周波数であることを特徴とするリチウムイオン二次電池の充電方法。  The method of charging a lithium ion secondary battery is a charging method in which a charging current is periodically added. The frequency during charging is such that the phase θ of the AC impedance of the secondary battery is −5 to 0 deg. A method for charging a lithium ion secondary battery, wherein the frequency is an arbitrary frequency in a range of リチウムイオン二次電池を充電する方法において、充電時に電池電圧が設定した充電電圧に達するまでは定電流で充電を行い、設定電圧に到達後に、周期的に充電電流を加える充電方法であり、その充電時の周波数が、前記二次電池の交流インピーダンスの位相θが−5〜0deg.の範囲となる任意の周波数であることを特徴とするリチウムイオン二次電池の充電方法。  In a method of charging a lithium ion secondary battery, charging is performed at a constant current until the battery voltage reaches a set charging voltage at the time of charging, and charging current is periodically added after reaching the set voltage. The frequency during charging is such that the phase [theta] of the AC impedance of the secondary battery is -5 to 0 deg. A method for charging a lithium ion secondary battery, wherein the frequency is an arbitrary frequency in a range of 充電されるリチウムイオン二次電池の開回路電圧が、設定値に達した時点で充電を終了することを特徴とする請求項1または2記載のリチウムイオン二次電池の充電方法。  3. The method for charging a lithium ion secondary battery according to claim 1, wherein the charging is terminated when the open circuit voltage of the lithium ion secondary battery to be charged reaches a set value. 充電されるリチウムイオン二次電池の閉回路電圧が、設定値に達した時点で充電を終了することを特徴とする請求項1または2記載のリチウムイオン二次電池の充電方法。  3. The method for charging a lithium ion secondary battery according to claim 1, wherein the charging is terminated when the closed circuit voltage of the lithium ion secondary battery to be charged reaches a set value. 充電されるリチウムイオン二次電池の開回路電圧もしくは閉回路電圧の少なくともどちらか一方が、それぞれの設定電圧に達した時点で充電を終了することを特徴とする請求項1または2記載のリチウムイオン二次電池の充電方法。  3. The lithium ion according to claim 1, wherein at least one of an open circuit voltage and a closed circuit voltage of the lithium ion secondary battery to be charged reaches the respective set voltage, and the charging is terminated. Rechargeable battery charging method.
JP30487398A 1998-10-27 1998-10-27 Charging method of lithium ion secondary battery Expired - Fee Related JP4085489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30487398A JP4085489B2 (en) 1998-10-27 1998-10-27 Charging method of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30487398A JP4085489B2 (en) 1998-10-27 1998-10-27 Charging method of lithium ion secondary battery

Publications (3)

Publication Number Publication Date
JP2000133320A JP2000133320A (en) 2000-05-12
JP2000133320A5 JP2000133320A5 (en) 2005-11-10
JP4085489B2 true JP4085489B2 (en) 2008-05-14

Family

ID=17938315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30487398A Expired - Fee Related JP4085489B2 (en) 1998-10-27 1998-10-27 Charging method of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4085489B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674556B2 (en) 2002-05-30 2010-03-09 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for charging the same
JP4583727B2 (en) * 2002-05-30 2010-11-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method
US7872444B2 (en) * 2003-12-11 2011-01-18 Symbol Technologies, Inc. Opportunistic power supply charge system for portable unit
JP5043777B2 (en) 2007-08-22 2012-10-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method
US8264207B2 (en) * 2007-10-16 2012-09-11 Ford Global Technologies, Llc Method and system for pulse charging an automotive battery
CN101777672A (en) * 2009-12-01 2010-07-14 俞会根 Working method of battery pack
KR101935364B1 (en) 2012-09-26 2019-01-07 삼성전자주식회사 apparatus and method for charging rechargeable battery

Also Published As

Publication number Publication date
JP2000133320A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP3206604B2 (en) Rechargeable lithium battery with increased reversible capacity
US6436573B1 (en) Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
JP4411690B2 (en) Lithium ion secondary battery
JP2005505117A (en) Lithium ion secondary battery or battery, and its protection circuit, electronic device, and charging device
WO1996041394A1 (en) Process for improving lithium ion cell
JP3396696B2 (en) Rechargeable battery
JP4085489B2 (en) Charging method of lithium ion secondary battery
JP3999890B2 (en) Lithium secondary battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JPH01204361A (en) Secondary battery
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4649696B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JPH0684515A (en) Nonaqueous electrolyte secondary cell
JP2000294229A (en) Nonaqueous electrolytic secondary battery
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JPH11154512A (en) Nonaqueous electrolyte secondary battery
JPH11154509A (en) Nonaqueous electrolyte secondary battery
JP5197904B2 (en) Non-aqueous electrolyte secondary battery pack charging method
JPH11126613A (en) Nonaqueous electrolyte secondary battery
JP3030143B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees