JP5197904B2 - Non-aqueous electrolyte secondary battery pack charging method - Google Patents

Non-aqueous electrolyte secondary battery pack charging method Download PDF

Info

Publication number
JP5197904B2
JP5197904B2 JP2001297500A JP2001297500A JP5197904B2 JP 5197904 B2 JP5197904 B2 JP 5197904B2 JP 2001297500 A JP2001297500 A JP 2001297500A JP 2001297500 A JP2001297500 A JP 2001297500A JP 5197904 B2 JP5197904 B2 JP 5197904B2
Authority
JP
Japan
Prior art keywords
charging
current
voltage
battery pack
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001297500A
Other languages
Japanese (ja)
Other versions
JP2003109671A (en
Inventor
敬 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001297500A priority Critical patent/JP5197904B2/en
Publication of JP2003109671A publication Critical patent/JP2003109671A/en
Application granted granted Critical
Publication of JP5197904B2 publication Critical patent/JP5197904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、非水電解液二次電池を複数個直列に接続した非水電解液二次電池パックの充電制御方法に関するものである。
【0002】
【従来の技術】
近年、非水電解液二次電池は高密度電池として注目されており、活発な研究が行われている。パーソナルコンピュータ等の情報機器やコードレスクリーナー等のコードレス機器の電源として用いられる場合は、単独の非水電解液二次電池で得られる電圧よりも高い電圧を要求されることから複数の単電池もしくは複数の単電池を並列に接続した電池組を直列に接続して構成した電池パックとして用いられている。
このような、電池パックに用いられる単電池としては、エネルギー密度の大きな電池として知られている非水電解液二次電池が用いられる。この非水電解液二次電池は、正極にリチウム含有コバルト化合物やリチウム含有ニッケル化合物、リチウム含有マンガン化合物などを正極活物質として用い、負極に炭素質物を負極活物質として用いて構成されている。このような非水電解液二次電池は、過充電状態では正極の分解、負極上へのリチウム金属の析出などが起こり電池の性能劣化をもたらし、結果としてサイクル特性の低下を引き起こすことになる。これを防止するために、充電中の電池電圧を検出して所定電圧に到達するまでは定電流で充電し、所定電圧到達後は所定電圧を保持するように電流を制御して充電が行われている。
【0003】
非水電解液二次電池が直列に接続された組電池を有する電池パックでは、組電池全体の電圧を制御するため、単電池での所定電圧を直列数倍して定めた組電池の充電最大電圧に対して前記のような充電制御行う。
【0004】
この定電流定電圧充電のシーケンスを、図4に示す。図4は、2個の電池(A単電池及びB単電池)を直列に接続して充電を行う場合の、電流電圧の印加の経過を示すものである。図中で電流として示したものが、充電電流の推移を示す線図である。定電流充電領域においては、充電電流は、一定の値に保たれて電池パックに印加され充電される。この領域の充電によって、それぞれの単電池は、「A単電池の電圧」あるいは「B単電池の電圧」で示すように順次充電電圧が上昇してゆく。そして、単電池の充電電圧が充電最大電圧に到達した時点以降が、定電圧充電領域であり、この領域では、充電電圧が一定値を維持するように制御された電流を印加する。
【0005】
ところで、組電池を構成する単電池に容量やインピーダンスのばらつきが存在すると、電池パックの所定電圧到達時において各単電池の電圧が異なり、過充電状態におかれる電池が発生して、電池特性の劣化をもたらし、電池パックのサイクル特性を低下させていた。特に、定電流充電から定電圧充電に切り替わる際に、特定の単電池の電圧が極大となり、過充電状態に置かれるので劣化が大きい。すなわち、図4において、定電流印加領域から定電圧印加領域に移行する時点(充電開始から1.76時間)において、単電池Bの充電電圧は単電池当たりの充電最大電圧を上回っており、この状態が過充電となっている。実際に生産される非水電解液二次電池は必ずばらつきを持つものであるため、このような現象によって、電池パックのサイクル特性を低下させる要因となっていた。
【0006】
こうした過充電を回避するために、構成単電池すべてに電圧検出装置を備えて、構成単電池のうちひとつでも所定電圧を超えると電圧をその時点で一定として、電流制御に移行する方法が提案されている。しかし、この方法では構成単電池すべての電圧を検出する装置と電圧検出装置からの出力により充電を制御する機構が必要となり電池パックの構成複雑化と価格の上昇が避けられない。さらに、もっとも早期に所定電圧に達した単電池によって充電制御が行われるために充電時間が長くなってしまうという問題もあった。
【0007】
【発明が解決しようとする課題】
本発明は、非水電解液二次電池が直列に接続された組電池を有する電池パックにおいて、構成単電池のばらつきにより単電池が過充電となることを抑制してサイクル特性を向上させ、なおかつ短時間で充電を可能とする非水電解液二次電池パックを提供しようとするものである。
【0008】
すなわち、本発明は、非水電解液二次電池単独もしくは複数の電池を並列につないだ組みを複数組直列接続してなる非水電解液二次電池パックを、所定の最大充電電圧までの定電流充電に引き続く、前記所定最大充電電圧での定電圧充電を行う場合における、任意の初期充電値で定電流充電を開始し、前記電池パックの充電電圧が最大充電電圧に到達するまでの最大充電電圧到達時刻がtである前記電池パックにおいて、電池の規格容量を1時間で定電流充電する電流値を1Cとした時の0.25Cから1.5Cの初期電流値Iと、前記0.25Cから1.5Cの各Iに対応する前記最大充電電圧到達時刻tとの関係がI(t)で表され、前記電池パックの充電開始から終了までの任意の時刻t’における充電電流が、I(t’)の80%以下であり、前記電池パックの充電開始から終了までの間の電流が、連続して減少するように制御することを特徴とする非水電解液二次電池パックの充電方法である。
【0009】
また、本発明において、前記電池パックが所定の最大充電電圧に到達した後は、前記最大充電電圧を維持するように充電電流を制御することが好ましい。
さらに、本発明の電池パックの充電方法において、充電開始時より電池パックの最大充電電圧到達時までの領域において、充電電流を直線的に減少させることが好ましい。
本発明において、定電流定電圧充電は、電池に初期電流値を印加し、一定期間この電流値を維持し、電池の充電電圧が充電最大電圧に到達した時点で、充電電圧が一定値を保つように制御された電流値を印加するものである。
上記本発明において、充電電流を、定電流定電圧充電におけるImaxの80%以下としたのは、これを越えた領域の電流で充電を行った場合、過充電を効果的に抑止することができないからである。
【0010】
本発明は、前記のような電流制御を行うことにより電池パックの所定の最大充電電圧到達時近辺において、電流を十分に絞り込みことができ、前記電池パックを構成する単電池の特性ばらつきに起因する構成単電池の充電電圧のばらつきを抑制し、電池パックのサイクル特性を向上させることができる。実際に前記電流制御方法を適用するためには、構成単電池の容量やインピーダンス等の特性ばらつきを考慮し、最大のばらつき幅に対しても有効であるように、電流を絞り込むことが好ましい。しかし、前記の電気的特性のばらつきに加えて、電池パック内の温度分布もまた実質的に同様の特性ばらつきを生む。そのため、ばらつきの極めて小さな単電池から電池パックを構成する場合においても、Imaxの80%とする必要があり、実際にばらつきのある単電池からなる電池パックにおいては、Imaxの80%以下としなければならない。充電電圧ばらつきの中でも、最大充電電圧に到達するときの充電電圧が最もサイクル劣化に影響を及ぼす。その詳細な機構は明らかではないが、最大充電電圧に到達する前後において電池内の正負極バランスが崩れて負極電位が極小値をとるためであると推定される。
【0011】
また、前記電池パックの所定の最大充電電圧到達時まで、充電電流を連続的に減少させて、前記電池パックを定電流定電圧充電したときにおける、充電電流Imaxと、定電流制御から定電圧制御に移行する時刻tの間の関係をImax=f(t)としたとき、任意の時刻tにおいて流れる充電電流をImaxの80%以下とし、かつ連続して電流が減少するように充電を制御すれば、あらかじめ定めた電流変化率で制御できるため簡便に効果を得ることができる。
実際の単電池特性は、ばらつきが統計的な分布を持つので、前記最大充電電圧到達時間も変動し、その分布は連続的である。この分布に対応するように、電流を連続的に減少するようにすれば、必要以上に電流を抑制して充電時間を延ばすことなく効率的充電を行い、かつ前述の効果を得ることができる。
また、電池パック全体の電圧では最大充電電圧に到達していなくても、構成単電池の中には単電池当たりの電圧が単電池当たり最大充電電圧を超えるものが存在することがあり、連続的に電流を減少させれば、前記のようなケースでも十分な効果が得られる。
【0012】
充電電流を連続的に減少させる場合、厳密な統計分布を考慮することなく、直線的に減少するように制御すれば実質的には十分な効果が得られ、制御回路を簡略化することができる。また、前記最大充電電圧到達後は、最大充電電圧を保持するように電流を制御して充電を継続することによりサイクル性を損なうことなく、大きな充放電容量を得ることができる。
【0013】
【発明の実施の形態】
以下に本発明の充電方法について、詳細に説明する。
本発明の充電方法は、充電対象となる電池パックについて、充電電流許容限界曲線もしくはこれに近似する関数を求め、次いで、この充電電流許容限界曲線もしくはこれに近似する関数で規定される電流値以下の充電電流で電池パックを充電するものである。以下その手順について順次説明する。
【0014】
本発明の第1の手順は、充電対象となる電池パックについて、充電電流許容限界曲線ないしこれに近似する関数を求める手順である。
電池パックを定電流定電圧充電し、本発明の電流上限範囲を決める。定電流定電圧充電とは、電池パックの電圧が最大充電電圧に達するまで、一定の電流で充電を行い、それ以後は前記最大充電電圧を維持するように電流を制御して充電を行う方法である。
本発明においては、任意の初期電流値を決めて前記定電流定電圧充電を行い定電流制御から定電圧制御に移行する時刻を求め、これを複数の初期電流値に対して行う。得られた初期電流値を0.8倍した値を前記時刻の関数として求める。前記関数が本発明の充電電流許容限界範囲である。
この手順を図面で示すと、図1に示すようになる。すなわち、この曲線は、図1に示すように、複数の条件の定電流定電圧充電曲線において、定電流充電領域から定電圧充電領域に移行する点を接続し、これによって曲線Dを得る。そして、この曲線Dの任意の時刻tにおける充電電流の80%の電流値をプロットし、曲線Eを得る。この曲線Eが充電電流許容限界曲線である。
図1においては、0.25C、0.5C、1C、及び1.5Cの初期電流値で定電流定電圧充電した例を示す。定電圧値は4.15Vとした。得られた初期電流値と定電流充電から定電圧充電への移行時刻を示したのが、図1の白抜き黒丸である。これを結んで示した実線が前記関数Imax(曲線D)となる。
前記最大充電電圧は、電池パックの正負極端子間電圧であり、単電池として用いる非水電解液二次電池の正極材料および負極材料に依存して決定される単電池の最大充電電圧を直列数倍したものである。
【0015】
本発明の第2の手順は、充電対象電池パックを制御された電流値で充電する過程である。すなわち、本発明においては、この充電電流許容限界曲線以下の電流値領域において充電することにより、電池パックを構成する単電池に対して、過充電の恐れのない適切な充電を行うことができる。
すなわち、本発明においては、図1の曲線E以下の領域において充電することによって所期の目的を達成するものである。
【0016】
前記充電開始時における電流は特に限定されるものではないが、電池パックの公称容量を2時間で充電しうる電流値(0.5C電流)以上であると、全充電時間が短くて済むため望ましい。さらに、公称容量を1/3時間で充電しうる電流値値(3C電流)以下であると、充電中における発熱等による劣化を避けることができて望ましい。
【0017】
また、上記充電電流許容限界範囲内に、充電電流を制御する手段としては、次のような方法が挙げられる。
前記電流低減制御法は、充電中における電池パック電圧を常時監視する装置を設け、電池パック電圧に応じて電流を減少させることもできる。
また、所定の最大充電電圧到達時まで、充電電流をあらかじめ定めた電流変化曲線に沿って、連続的に減少させることもできる。この方法によれば、あらかじめ定めた電流変化率で制御できるため電圧監視装置とその出力による制御を省いて簡便に効果を得ることができる。
実際の単電池特性は、ばらつきが統計的な分布を持つので、前記最大充電電圧到達時間も変動し、その分布は連続的である。この分布に対応するように、充電電流を連続的に減少するようにすれば、必要以上に電流を抑制して充電時間を延ばすことなく効率的充電を行い、かつ前述の効果を得ることができる。
充電電流を連続的に減少させる場合、厳密な統計分布を考慮することなく、直線的に減少するように制御すれば実質的には十分な効果が得られ、前記電流制御回路を簡略化することができる。また、前記最大充電電圧到達後は、最大充電電圧を保持するように電流を制御して充電を継続することによりサイクル性を損なうことなく、より大きな充放電容量を得ることができる。
充電電流を連続的に減少させる方法において、充電開始直後においては減少率を小さくとり、後に大きくすることで、電池パック電圧の低い領域で急速に充電を行い充電時間の総計を短縮することができる。また、こうした制御を行うことで、充電途中でユーザー等により外部から充電を打ち切られた場合にも、より大きな充電量が得られる利点も有する。
【0018】
前記本発明の充電シーケンスについて、図面により説明する。
本発明の充電シーケンスの1つは、図2に示すように、充電開始直後から直線的に電流値を減少させ、単電池が最大電圧に到達した後は、定電圧充電となるよう、電流値を制御することによって実現できる。この充電パターンによれば、もっとも簡便な制御装置で効果を得ることができるという特徴を有する充電方法が得られる。
【0019】
また、図3に示すように、充電開始直後は、充電電流は、漸減し、充電が進行するに従って次第に減少率が向上するように制御し、単電池の最大電圧に到達した後、定電圧充電となるように制御することもできる。この充電パターンによれば、充電開始直後は比較的速い速度で充電が進むため、充電時間が短縮できる。また、充電が中断した場合でも、比較的高率の充電結果が得られるという特徴を有する。
【0020】
以下、本発明の充電方法を適用するのに適した非水電解液二次電池パックを詳細に説明する。
本非水電解液二次電池パックは、非水電解液二次電池単独もしくは複数の非水電解液二次電池を並列に接続したものを複数個直列に接続した組電池と、前記組電池を一体化する容器もしくは結束具からなり、電圧や電流を監視・制御する装置を含むこともある。電圧や電流を監視・制御する装置は、前記電池パック外で実現されていても良い。
前記非水電解液二次電池は、正極・セパレータ・負極が向かい合った構成の電極群が非水有機電解液に浸漬された構造を持つものである。
【0021】
前記正極は種々の酸化物、例えばリチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウム含有ニッケル、コバルト酸化物、リチウムを含む、バナジウム酸化物や二硫化チタン、二硫化モリブデンなどのカルコゲン化合物を正極活物質としてバインダーを用いて薄板状に成形されたものである。前記正極は、導電材として黒鉛、カーボンブラック等を含有することが望ましい。前記正極活物質としては、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物が望ましく、高い容量と高出力に耐える非水電解液二次電池を構成することができる。
【0022】
前記セパレータとしては、例えば合成樹脂不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
【0023】
前記負極はリチウム等のアルカリ金属、もしくはリチウムを吸蔵・放出する炭素質材料がバインダーにより銅箔、ステンレス箔、ニッケル箔等の集電体に担持され薄板状に成形されたものである。
前記炭素質物は、石油や石炭などのコークスやピッチ、天然ガスや低級炭化水素などの低分子量有機化合物、ポリアクリロニトリル、フェノール樹脂等の合成高分子などを、焼成して炭化して炭素質材料としたもの、人造もしくは天然黒鉛等を用いることができる。
前記非水有機電解液としては、非水電解液二次電池用として公知の各種電解液を使用することができる。特に限定はされないが、溶媒としてはエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、γ−ブチロラクトン(BL)、アセトニトリル(AN)、酢酸エチル(EA)、トルエン、キシレンまたは酢酸メチル(MA)などを用いることができ、電解質としては過塩素酸リチウム、六フッ化リン酸リチウム、ホウフッ化リチウム、六フッ化砒素リチウム、トリフルオロメタンスルホン酸リチウム、ビストリフルオロメチルスルホニルイミドリチウムなどのリチウム塩を用いることができる。
【0024】
さらに、要すれば前記電極群をスパイラル状に捲回もしくは積層して各種形状の缶もしくはラミネートフィルム製袋等に入れ、電解液、端子、絶縁板等の部品を加えることで円筒型や角型、シート状等の電池を構成することもできる。
【0025】
前記組電池は、前記非水電解液二次電池単独もしくは複数個を並列に接続したものを、複数個直列に接続したものである。接続方法は特に限定されないが、ニッケル、アルミ等の金属リードを接触もしくは溶接することで行うことができる。
【0026】
【実施例】
以下、本発明の実施例を、図表を用いて詳細に説明する。
【0027】
(実施例1)
リチウムコバルト酸化物(LiCoO)粉末90重量%、アセチレンブラック2重量%、グラファイト3重量%、バインダーとしてポリフッ化ビニリデン5重量%をN−メチルピロリドンを溶媒としてスラリー化し、アルミニウム箔上に塗布、乾燥して正極を作成した。
3000℃焼成のメソフェーズピッチ系繊維状黒鉛粉末87重量%と、均粒径5μmの人造グラファイト10重量%、カルボキシメチルセルース1重量%、スチレン・ブタジエンゴム2重量%を、水を溶媒としてスラリー化し、銅箔上に塗布、乾燥して負極を作成した。
セパレータにはポリエチレン製多孔質フィルムを用いた。
前記正極、前記セパレータ、前記負極をそれぞれこの順序で積層したのち、スパイラル状に捲回して捲回コイルの外径が16.7mmの電極群を作成した。
【0028】
前記電極群をステンレス製の円筒型缶(直径18mm、高さ65mm)に入れ、さらに1Mの六フッ化リン酸リチウムを、エチレンカーボネートとエチルメチルカーボネートの混合溶媒(体積比率1:1)に溶かして調製した電解液を注入して開口部を封じて非水電解液二次電池とした。ここで作成した非水電解液二次電池をA単電池とする。
【0029】
前記A単電池は、0.2C相当の300mAで、単電池の最大充電電圧を4.15Vとして、4.15Vまで定電流で充電し、4.15V到達後は合計時間で10時間となるまで定電圧で充電を行った。その後、1500mAで3.0Vまで放電を行ったところ、放電容量が1500mAhであった。
前記と同様の手順で正極を作成した。ただし、単位面積当りの塗布量を5%増加させ、電極厚が前述と同じになるように充填密度を向上させて正極を調製した。他は前記と同じように円筒型の非水電解液二次電池を作成した。ここで作成した非水電解液二次電池をB単電池とする。前記B単電池は、0.2C相当の300mAで、単電池の最大充電電圧を4.15Vとして、4.15Vまで定電流で充電し、4.15V到達後は合計時間で10時間となるまで定電圧で充電を行った。その後、1500mAで3.0Vまで放電を行ったところ、放電容量が1490mAhであった。
【0030】
前記A単電池を5個、B単電池を1個を直列に接続して組電池を作成した。これに前記の電流制御装置を備えて電池パックとした。充電最大電圧は、単電池辺りの4.15Vを直列数である6を乗じて24.9Vとした。充電開始時における電流は1100mAとし、400mA/hの定率で直線的に電流を減少させ、24.9V到達後は24.9Vに電圧を保持して電流制御を行い、総計3時間の充電を行った。充電中における充電電流および各単電池の電圧を時間に対して表したものを図2に示す。前記条件で24.9V到達は2.15時間で、そのときの充電電流は267mA(充電電流許容限界の40%相当)であった。30分の休止時間をおいて、1500mAで18Vまで放電を行い、放電時間から放電容量を測定した。放電後30分の休止時間をおいて、前回と同様に充電を行った。以上の充放電操作を400回行って、放電容量の変化を測定した。その結果を図5に示す。
【0031】
(実施例2)
実施例1と同様にA単電池とB単電池を作成した。A単電池5個とB単電池1個を直列に接続して組電池を作成し、前記電流制御装置を備えて電池パックとした。充電最大電圧は実施例1と同様に24.9Vとした。充電開始時における電流は1000mAとし、図2に示したような曲線を描いて電流の減少を制御した。初期においては減少率が小さく、次第に減少率が二次曲線を描いて減少していくようした。24.9V到達後は24.9Vに電圧を保持して電流制御を行い、総計3時間の充電を行った。充電中における充電電流および各単電池の電圧を時間に対して表したものを図2に示す。前記条件で24.9V到達は1.92時間で、そのときの充電電流は240mA(充電電流許容限界の36%相当)であった。この電池パックを実施例1と同様に400回のサイクル試験を行って放電容量の変化を測定した。その結果を、図5に併せて示す。
【0032】
(比較例1)
実施例1と同様に、A単電池5個とB単電池を作成した。A単電池5個とB単電池1個を直列に接続して組電池を作成し、前記電流制御装置を備えて電池パックとした。充電最大電圧は実施例1と同様に24.9Vとした。充電開始から24.9V到達までは750mAの定電流で、24.9V到達後は24.9Vに保持するように電流を制御して、総計3時間の充電を行った。充電中における充電電流および各単電池の電圧を時間に対して表したものを図4に示す。
【0033】
図2〜図4より、電池パック最大充電電圧である24.9V到達時近辺におけるB単電池の電圧の極大が比較例1と比較して、実施例1および2での図2,3で抑制されていることが分かる。B単電池の最大電圧は比較例1では4.182V、実施例1では4.156V、実施例2では4.153Vであった。これらからばらつきを有する単電池からなる電池パックを充電する際に、本発明の方法を用いることにより単電池の最大充電電圧を抑制し、過充電を防止できることが分かる.
実施例1、2および比較例1のサイクル特性測定結果を示す図5の結果からも明らかなように、過充電を防止したために、実施例1および2では、比較例と比較して高いサイクル特性が得られている。
【0034】
【発明の効果】
以上詳述したように、本発明によれば特性にばらつきを有する単電池からなる非水電解液二次電池パックのサイクル寿命を向上させることができる。
【図面の簡単な説明】
【図1】本発明の充電電流許容限界を求める方法を示す図である。
【図2】実施例1の充電中における電流変化および単電池電圧変化を示す図である。
【図3】実施例2の充電中における電流変化および単電池電圧変化を示す図である。
【図4】比較の充電中における電流変化および単電池電圧変化を示す図である。
【図5】実施例1,2および比較例1の電池パックのサイクル特性を表わす図である。
[0001]
[Industrial application fields]
The present invention relates to a charge control method for a non-aqueous electrolyte secondary battery pack in which a plurality of non-aqueous electrolyte secondary batteries are connected in series.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte secondary batteries have attracted attention as high-density batteries, and active research has been conducted. When used as a power source for information devices such as personal computers and cordless devices such as cordless cleaners, a voltage higher than that obtained with a single non-aqueous electrolyte secondary battery is required. Is used as a battery pack configured by connecting in series a battery set in which the single cells are connected in parallel.
As such a unit cell used for the battery pack, a non-aqueous electrolyte secondary battery known as a battery having a high energy density is used. This non-aqueous electrolyte secondary battery is configured using a lithium-containing cobalt compound, a lithium-containing nickel compound, a lithium-containing manganese compound, or the like as a positive electrode active material for a positive electrode and a carbonaceous material as a negative electrode active material for a negative electrode. In such a non-aqueous electrolyte secondary battery, in the overcharged state, the positive electrode is decomposed, lithium metal is deposited on the negative electrode, and the like, resulting in deterioration of the battery performance, resulting in a decrease in cycle characteristics. To prevent this, the battery voltage during charging is detected and charged at a constant current until it reaches a predetermined voltage, and after reaching the predetermined voltage, charging is performed by controlling the current so that the predetermined voltage is maintained. ing.
[0003]
In a battery pack having an assembled battery in which non-aqueous electrolyte secondary batteries are connected in series, in order to control the voltage of the entire assembled battery, the maximum charging of the assembled battery determined by multiplying the predetermined voltage of the single battery in series The charging control as described above is performed on the voltage.
[0004]
FIG. 4 shows the constant current / constant voltage charging sequence. FIG. 4 shows the progress of application of current voltage when charging is performed by connecting two batteries (A cell and B cell) in series. What is shown as the current in the figure is a diagram showing the transition of the charging current. In the constant current charging region, the charging current is maintained at a constant value and applied to the battery pack for charging. As a result of charging in this region, the charging voltage of each unit cell increases in sequence as indicated by “A unit cell voltage” or “B unit cell voltage”. Then, the time after the point when the charging voltage of the unit cell reaches the maximum charging voltage is a constant voltage charging region, and in this region, a current controlled so that the charging voltage is maintained at a constant value is applied.
[0005]
By the way, if there are variations in capacity and impedance among the cells constituting the assembled battery, the voltage of each cell differs when the battery pack reaches a predetermined voltage, and a battery that is in an overcharged state is generated. Deterioration was caused, and the cycle characteristics of the battery pack were lowered. In particular, when switching from constant-current charging to constant-voltage charging, the voltage of a specific unit cell becomes maximum and is placed in an overcharged state, so that the deterioration is large. That is, in FIG. 4, at the time of transition from the constant current application region to the constant voltage application region (1.76 hours from the start of charging), the charging voltage of the unit cell B exceeds the maximum charging voltage per unit cell. The state is overcharged. Since non-aqueous electrolyte secondary batteries that are actually produced always have variations, this phenomenon has been a factor in reducing the cycle characteristics of the battery pack.
[0006]
In order to avoid such overcharge, a method has been proposed in which all the constituent cells are equipped with a voltage detection device, and even when one of the constituent cells exceeds a predetermined voltage, the voltage is constant at that time and the control proceeds to current control. ing. However, in this method, a device for detecting the voltage of all the constituent cells and a mechanism for controlling charging by the output from the voltage detection device are required, and the configuration of the battery pack is complicated and the price is inevitably increased. Furthermore, since the charging control is performed by the single battery that has reached the predetermined voltage earliest, there is a problem that the charging time becomes long.
[0007]
[Problems to be solved by the invention]
The present invention provides a battery pack having an assembled battery in which non-aqueous electrolyte secondary batteries are connected in series to improve the cycle characteristics by suppressing the unit cells from being overcharged due to variations in the constituent unit cells, and It is an object of the present invention to provide a non-aqueous electrolyte secondary battery pack that can be charged in a short time.
[0008]
That is, the present invention provides a non-aqueous electrolyte secondary battery pack in which a single non-aqueous electrolyte secondary battery or a plurality of batteries connected in parallel is connected in series to a predetermined maximum charging voltage. In the case of performing constant voltage charging at the predetermined maximum charging voltage following current charging, constant current charging is started at an arbitrary initial charging value, and the maximum charging until the charging voltage of the battery pack reaches the maximum charging voltage. In the battery pack in which the voltage arrival time is t, the initial current value I from 0.25C to 1.5C when the current value for constant current charging of the standard capacity of the battery in 1 hour is 1C, and the 0.25C The relationship between the maximum charging voltage arrival time t corresponding to each I of 1.5 C to 1.5 C is represented by I (t), and the charging current at any time t ′ from the start to the end of charging of the battery pack is expressed as I 80% or less of ( t ' ) And charging the non-aqueous electrolyte secondary battery pack, wherein the current from the start to the end of charging of the battery pack is controlled to decrease continuously.
[0009]
Moreover, in this invention, after the said battery pack reaches | attains predetermined | prescribed maximum charging voltage, it is preferable to control charging current so that the said maximum charging voltage may be maintained.
Furthermore, in the battery pack charging method of the present invention, it is preferable that the charging current is linearly reduced in the region from the start of charging until the maximum charging voltage of the battery pack is reached.
In the present invention, constant current / constant voltage charging applies an initial current value to the battery, maintains this current value for a certain period of time, and when the charging voltage of the battery reaches the maximum charging voltage, the charging voltage remains constant. Thus, the controlled current value is applied.
In the present invention, the charging current is set to 80% or less of Imax in constant current / constant voltage charging. When charging is performed at a current exceeding this range, overcharging cannot be effectively suppressed. Because.
[0010]
In the present invention, by performing the current control as described above, the current can be sufficiently narrowed in the vicinity of the time when the predetermined maximum charging voltage of the battery pack is reached, and this is caused by the variation in characteristics of the single cells constituting the battery pack. Variations in the charging voltage of the unit cell can be suppressed, and the cycle characteristics of the battery pack can be improved. In order to actually apply the current control method, it is preferable to narrow down the current so as to be effective for the maximum variation width in consideration of characteristic variations such as the capacity and impedance of the constituent cells. However, in addition to the above-described variation in electrical characteristics, the temperature distribution in the battery pack also produces substantially the same variation in characteristics. For this reason, even when a battery pack is composed of single cells with extremely small variations, it is necessary to make 80% of Imax. In a battery pack made of single cells with actual variations, it must be 80% or less of Imax. Don't be. Among the charging voltage variations, the charging voltage when reaching the maximum charging voltage has the greatest effect on cycle deterioration. Although the detailed mechanism is not clear, it is presumed that the positive and negative electrode balance in the battery is lost before and after reaching the maximum charging voltage, and the negative electrode potential takes a minimum value.
[0011]
Further, the charging current is continuously decreased until the battery pack reaches a predetermined maximum charging voltage, and the charging current Imax when the battery pack is charged at a constant current and a constant voltage, and a constant voltage control to a constant voltage control. When Imax = f (t), the charging current flowing at an arbitrary time t is set to 80% or less of Imax, and charging is controlled so that the current continuously decreases. In this case, since the control can be performed at a predetermined current change rate, an effect can be easily obtained.
Since the actual cell characteristics have a statistical distribution of variations, the maximum charge voltage arrival time also varies and the distribution is continuous. If the current is continuously decreased so as to correspond to this distribution, efficient charging can be performed without suppressing the current more than necessary and extending the charging time, and the above-described effects can be obtained.
In addition, even if the voltage of the entire battery pack does not reach the maximum charging voltage, some of the constituent cells may have a voltage per unit cell exceeding the maximum charging voltage per unit cell. If the current is further reduced, a sufficient effect can be obtained even in the above case.
[0012]
When the charging current is continuously reduced, if the control is performed so as to decrease linearly without considering a strict statistical distribution, a substantially sufficient effect can be obtained, and the control circuit can be simplified. . In addition, after reaching the maximum charging voltage, a large charge / discharge capacity can be obtained without impairing the cycle performance by controlling the current so as to maintain the maximum charging voltage and continuing the charging.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The charging method of the present invention will be described in detail below.
The charging method of the present invention obtains a charging current allowable limit curve or a function approximate thereto for a battery pack to be charged, and then the current value specified by the charging current allowable limit curve or a function approximated thereto. The battery pack is charged with a charging current of. The procedure will be sequentially described below.
[0014]
The first procedure of the present invention is a procedure for obtaining a charge current allowable limit curve or a function approximating this for a battery pack to be charged.
The battery pack is charged at a constant current and a constant voltage to determine the current upper limit range of the present invention. Constant current and constant voltage charging is a method in which charging is performed at a constant current until the voltage of the battery pack reaches the maximum charging voltage, and thereafter, charging is performed by controlling the current so as to maintain the maximum charging voltage. is there.
In the present invention, an arbitrary initial current value is determined and the constant current / constant voltage charging is performed to obtain a time for shifting from constant current control to constant voltage control, and this is performed for a plurality of initial current values. A value obtained by multiplying the obtained initial current value by 0.8 is obtained as a function of the time. The function is the charge current allowable limit range of the present invention.
This procedure is shown in the drawing as shown in FIG. That is, as shown in FIG. 1, the curve connects the points of transition from the constant current charge region to the constant voltage charge region in the constant current / constant voltage charge curve under a plurality of conditions, thereby obtaining the curve D. A curve E is obtained by plotting a current value of 80% of the charging current at an arbitrary time t on the curve D. This curve E is a charge current allowable limit curve.
FIG. 1 shows an example of constant current and constant voltage charging with initial current values of 0.25C, 0.5C, 1C, and 1.5C. The constant voltage value was 4.15V. A white circle in FIG. 1 shows the obtained initial current value and the transition time from constant current charging to constant voltage charging. A solid line obtained by connecting these is the function Imax (curve D).
The maximum charging voltage is the voltage between the positive and negative terminals of the battery pack, and the maximum charging voltage of the unit cell determined depending on the positive electrode material and the negative electrode material of the nonaqueous electrolyte secondary battery used as the unit cell is the number of series It is doubled.
[0015]
The second procedure of the present invention is a process of charging the battery pack to be charged with a controlled current value. In other words, in the present invention, by charging in the current value region below the charging current allowable limit curve, it is possible to appropriately charge the single cells constituting the battery pack without fear of overcharging.
That is, in the present invention, the intended purpose is achieved by charging in the area below the curve E in FIG.
[0016]
The current at the start of charging is not particularly limited, but it is desirable that the nominal capacity of the battery pack be equal to or higher than the current value (0.5 C current) that can be charged in 2 hours, because the total charging time can be shortened. . Furthermore, it is desirable that the nominal capacity be equal to or less than a current value (3C current) that can be charged in 1/3 hour, because deterioration due to heat generation during charging can be avoided.
[0017]
Further, as a means for controlling the charging current within the charging current allowable limit range, the following method may be mentioned.
In the current reduction control method, a device that constantly monitors the battery pack voltage during charging can be provided, and the current can be reduced according to the battery pack voltage.
Further, the charging current can be continuously decreased along a predetermined current change curve until a predetermined maximum charging voltage is reached. According to this method, since the control can be performed at a predetermined current change rate, the effect can be easily obtained by omitting the control by the voltage monitoring device and its output.
Since the actual cell characteristics have a statistical distribution of variations, the maximum charge voltage arrival time also varies and the distribution is continuous. If the charging current is continuously decreased so as to correspond to this distribution, the charging can be efficiently performed without suppressing the current more than necessary and extending the charging time, and the above-described effects can be obtained. .
When continuously reducing the charging current, it is possible to obtain a substantially sufficient effect if the control is performed so as to decrease linearly without considering a strict statistical distribution, and the current control circuit can be simplified. Can do. Further, after reaching the maximum charge voltage, a larger charge / discharge capacity can be obtained without losing cycle performance by controlling the current so as to maintain the maximum charge voltage and continuing the charge.
In the method of continuously reducing the charging current, the rate of decrease can be reduced immediately after the start of charging, and then increased later, allowing rapid charging in a low battery pack voltage region to shorten the total charging time. . In addition, by performing such control, there is an advantage that a larger charge amount can be obtained even when charging is stopped from the outside by a user or the like during charging.
[0018]
The charging sequence of the present invention will be described with reference to the drawings.
As shown in FIG. 2, one of the charging sequences of the present invention linearly decreases the current value immediately after the start of charging, and after the cell reaches the maximum voltage, the current value is set to constant voltage charging. It can be realized by controlling. According to this charging pattern, a charging method having a feature that an effect can be obtained with the simplest control device is obtained.
[0019]
In addition, as shown in FIG. 3, immediately after the start of charging, the charging current is gradually decreased and controlled so that the rate of decrease gradually increases as charging progresses. After reaching the maximum voltage of the unit cell, the constant voltage charging is performed. It can also be controlled so that According to this charging pattern, charging proceeds at a relatively high speed immediately after the start of charging, so that the charging time can be shortened. In addition, even when charging is interrupted, a relatively high rate of charging results can be obtained.
[0020]
Hereinafter, a non-aqueous electrolyte secondary battery pack suitable for applying the charging method of the present invention will be described in detail.
The non-aqueous electrolyte secondary battery pack includes a non-aqueous electrolyte secondary battery alone or a plurality of non-aqueous electrolyte secondary batteries connected in parallel and a plurality of series batteries connected in series. It consists of an integrated container or binding tool, and may include a device for monitoring and controlling voltage and current. The device for monitoring and controlling the voltage and current may be realized outside the battery pack.
The non-aqueous electrolyte secondary battery has a structure in which an electrode group having a configuration in which a positive electrode, a separator, and a negative electrode face each other is immersed in a non-aqueous organic electrolytic solution.
[0021]
The positive electrode includes various oxides such as lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, lithium-containing nickel, cobalt oxide, lithium, vanadium oxide, titanium disulfide, molybdenum disulfide. Such a chalcogen compound as a positive electrode active material is formed into a thin plate shape using a binder. The positive electrode preferably contains graphite, carbon black or the like as a conductive material. As the positive electrode active material, lithium cobalt composite oxide, lithium nickel composite oxide, and lithium manganese composite oxide are desirable, and a non-aqueous electrolyte secondary battery that can withstand high capacity and high output can be configured.
[0022]
As said separator, a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film etc. can be used, for example.
[0023]
The negative electrode is formed into a thin plate shape by supporting an alkali metal such as lithium or a carbonaceous material that absorbs and releases lithium on a current collector such as a copper foil, a stainless steel foil, or a nickel foil with a binder.
The carbonaceous material is a carbonaceous material obtained by baking and carbonizing low molecular weight organic compounds such as petroleum and coal, low molecular weight organic compounds such as natural gas and lower hydrocarbons, polyacrylonitrile, and phenol resins. It is possible to use artificial, natural graphite or the like.
As said non-aqueous organic electrolyte solution, various well-known electrolyte solutions can be used for non-aqueous electrolyte secondary batteries. Although there is no particular limitation, the solvent includes ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), γ-butyrolactone (BL), acetonitrile (AN ), Ethyl acetate (EA), toluene, xylene, or methyl acetate (MA). As the electrolyte, lithium perchlorate, lithium hexafluorophosphate, lithium borofluoride, lithium arsenic hexafluoride, trifluoro Lithium salts such as lithium methanesulfonate and lithium bistrifluoromethylsulfonylimide can be used.
[0024]
Furthermore, if necessary, the electrode group is spirally wound or laminated and placed in cans of various shapes or laminated film bags, etc., and by adding components such as electrolyte solution, terminals, insulating plates, etc. Alternatively, a sheet-like battery can be configured.
[0025]
The assembled battery is a non-aqueous electrolyte secondary battery or a plurality of the non-aqueous electrolyte secondary batteries connected in parallel. Although the connection method is not particularly limited, it can be performed by contacting or welding a metal lead such as nickel or aluminum.
[0026]
【Example】
Hereinafter, examples of the present invention will be described in detail with reference to the drawings.
[0027]
Example 1
90% by weight of lithium cobalt oxide (Li 2 CoO 2 ) powder, 2% by weight of acetylene black, 3% by weight of graphite, and 5% by weight of polyvinylidene fluoride as a binder were slurried using N-methylpyrrolidone as a solvent and applied onto an aluminum foil. And dried to produce a positive electrode.
A slurry of 87% by weight of mesophase pitch fibrous graphite powder baked at 3000 ° C, 10% by weight of artificial graphite with a uniform particle size of 5μm, 1% by weight of carboxymethylcellulose, and 2% by weight of styrene-butadiene rubber using water as a solvent. Then, it was applied on a copper foil and dried to prepare a negative electrode.
A polyethylene porous film was used as the separator.
The positive electrode, the separator, and the negative electrode were laminated in this order, and then wound in a spiral shape to form an electrode group having an outer diameter of the wound coil of 16.7 mm.
[0028]
The electrode group is placed in a stainless steel cylindrical can (diameter 18 mm, height 65 mm), and 1 M lithium hexafluorophosphate is further dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio 1: 1). The electrolyte prepared in this way was injected, the opening was sealed, and a non-aqueous electrolyte secondary battery was obtained. The non-aqueous electrolyte secondary battery created here is referred to as an A cell.
[0029]
The A cell is 300 mA equivalent to 0.2 C, the maximum charging voltage of the cell is 4.15 V, and is charged with a constant current up to 4.15 V. After reaching 4.15 V, the total time is 10 hours. Charging was performed at a constant voltage. Then, when discharge was performed to 3.0V at 1500 mA, the discharge capacity was 1500 mAh.
A positive electrode was prepared in the same procedure as described above. However, the coating amount per unit area was increased by 5%, and the packing density was improved so that the electrode thickness was the same as described above, to prepare a positive electrode. Other than the above, a cylindrical nonaqueous electrolyte secondary battery was prepared in the same manner as described above. The non-aqueous electrolyte secondary battery created here is a B cell. The B cell is 300 mA equivalent to 0.2 C, the maximum charging voltage of the cell is 4.15 V, and is charged with a constant current up to 4.15 V. After reaching 4.15 V, the total time is 10 hours. Charging was performed at a constant voltage. Then, when discharge was performed to 3.0V at 1500 mA, the discharge capacity was 1490 mAh.
[0030]
An assembled battery was prepared by connecting five A cells and one B cell in series. The battery pack was provided with the current control device. The maximum charging voltage was set to 24.9 V by multiplying 4.15 V per unit cell by 6 as the series number. The current at the start of charging is 1100 mA, the current is decreased linearly at a constant rate of 400 mA / h, and after reaching 24.9 V, the current is controlled while maintaining the voltage at 24.9 V, and charging is performed for a total of 3 hours. It was. FIG. 2 shows the charging current during charging and the voltage of each unit cell with respect to time. Under the above conditions, 24.9 V reached 2.15 hours, and the charging current at that time was 267 mA (corresponding to 40% of the allowable charging current limit). After a 30-minute rest period, discharging was performed at 1500 mA up to 18 V, and the discharge capacity was measured from the discharge time. Charging was performed in the same manner as the previous time after a pause of 30 minutes after discharging. The above charge / discharge operation was performed 400 times, and the change in discharge capacity was measured. The result is shown in FIG.
[0031]
(Example 2)
In the same manner as in Example 1, A cell and B cell were prepared. An assembled battery was prepared by connecting 5 A cells and 1 B cell in series, and a battery pack was provided with the current control device. The maximum charging voltage was 24.9 V as in Example 1. The current at the start of charging was 1000 mA, and the decrease in current was controlled by drawing a curve as shown in FIG. In the initial stage, the rate of decrease was small, and the rate of decrease gradually decreased with a quadratic curve. After reaching 24.9 V, the current was controlled while maintaining the voltage at 24.9 V, and charging was performed for a total of 3 hours. FIG. 2 shows the charging current during charging and the voltage of each unit cell with respect to time. Under the above conditions, reaching 24.9 V was 1.92 hours, and the charging current at that time was 240 mA (corresponding to 36% of the allowable charging current limit). This battery pack was subjected to a cycle test 400 times in the same manner as in Example 1 to measure the change in discharge capacity. The results are also shown in FIG.
[0032]
(Comparative Example 1)
In the same manner as in Example 1, five A cells and B cell were prepared. An assembled battery was prepared by connecting 5 A cells and 1 B cell in series, and a battery pack was provided with the current control device. The maximum charging voltage was 24.9 V as in Example 1. Charging was performed for a total of 3 hours by controlling the current so as to maintain a constant current of 750 mA from the start of charging until reaching 24.9 V, and maintaining 24.9 V after reaching 24.9 V. FIG. 4 shows the charging current during charging and the voltage of each cell with respect to time.
[0033]
2 to 4, the maximum voltage of the B cell in the vicinity of 24.9 V when the battery pack maximum charging voltage is reached is suppressed in FIGS. 2 and 3 in Examples 1 and 2 as compared with Comparative Example 1. You can see that. The maximum voltage of the B cell was 4.182 V in Comparative Example 1, 4.156 V in Example 1, and 4.153 V in Example 2. From these, it can be seen that, when charging a battery pack composed of single cells having variations, the maximum charging voltage of the single cells can be suppressed and overcharging can be prevented by using the method of the present invention.
As is clear from the results of FIG. 5 showing the cycle characteristic measurement results of Examples 1 and 2 and Comparative Example 1, since overcharge was prevented, Examples 1 and 2 had higher cycle characteristics than the comparative example. Is obtained.
[0034]
【Effect of the invention】
As described above in detail, according to the present invention, it is possible to improve the cycle life of the nonaqueous electrolyte secondary battery pack composed of single cells having variations in characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method of obtaining a charging current allowable limit according to the present invention.
2 is a graph showing changes in current and cell voltage during charging in Example 1. FIG.
3 is a graph showing changes in current and cell voltage during charging in Example 2. FIG.
FIG. 4 is a diagram showing a change in current and a change in cell voltage during comparative charging.
5 is a diagram illustrating cycle characteristics of battery packs of Examples 1 and 2 and Comparative Example 1. FIG.

Claims (3)

非水電解液二次電池単独もしくは複数の電池を並列につないだ組みを複数組直列接続してなる非水電解液二次電池パックを、所定の最大充電電圧までの定電流充電に引き続く、前記所定最大充電電圧での定電圧充電を行う場合における、任意の初期充電値で定電流充電を開始し、前記電池パックの充電電圧が最大充電電圧に到達するまでの最大充電電圧到達時刻がtである前記電池パックにおいて、電池の規格容量を1時間で定電流充電する電流値を1Cとした時の0.25Cから1.5Cの初期電流値Iと、前記0.25Cから1.5Cの各Iに対応する前記最大充電電圧到達時刻tとの関係がI(t)で表され、
前記電池パックの充電開始から終了までの任意の時刻t’における充電電流が、I(t’)の80%以下であり、
前記電池パックの充電開始から終了までの間の電流が、連続して減少するように制御することを特徴とする非水電解液二次電池パックの充電方法。
Non-aqueous electrolyte secondary battery pack or non-aqueous electrolyte secondary battery pack formed by connecting a plurality of batteries connected in parallel to each other in series, followed by constant current charging up to a predetermined maximum charging voltage, When constant voltage charging is performed at a predetermined maximum charging voltage, constant current charging is started at an arbitrary initial charging value, and the maximum charging voltage arrival time until the charging voltage of the battery pack reaches the maximum charging voltage is t. In the battery pack, an initial current value I of 0.25C to 1.5C when the current value for charging the standard capacity of the battery at a constant current in 1 hour is 1C, and each of the 0.25C to 1.5C A relationship with the maximum charging voltage arrival time t corresponding to I is represented by I (t),
The charging current at an arbitrary time t ′ from the start to the end of charging of the battery pack is 80% or less of I ( t ′ ),
A method for charging a non-aqueous electrolyte secondary battery pack, wherein the current between the start and end of charging of the battery pack is controlled to decrease continuously.
前記電池パックが所定の最大充電電圧に到達した後、前記最大充電電圧を維持するように充電電流を制御することを特徴とする請求項1に記載の非水電解液二次電池パックの充電方法。  2. The method of charging a non-aqueous electrolyte secondary battery pack according to claim 1, wherein after the battery pack reaches a predetermined maximum charging voltage, a charging current is controlled to maintain the maximum charging voltage. . 前記電池パックの充電方法において、充電開始時より電池パックの最大充電電圧到達時までの領域において、充電電流が直線的に減少するように制御することを特徴とする請求項1に記載の非水電解液二次電池パックの充電方法。  2. The non-aqueous battery according to claim 1, wherein in the charging method of the battery pack, the charging current is controlled to linearly decrease in a region from the start of charging to a time when the maximum charging voltage of the battery pack is reached. A method for charging an electrolyte secondary battery pack.
JP2001297500A 2001-09-27 2001-09-27 Non-aqueous electrolyte secondary battery pack charging method Expired - Fee Related JP5197904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297500A JP5197904B2 (en) 2001-09-27 2001-09-27 Non-aqueous electrolyte secondary battery pack charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297500A JP5197904B2 (en) 2001-09-27 2001-09-27 Non-aqueous electrolyte secondary battery pack charging method

Publications (2)

Publication Number Publication Date
JP2003109671A JP2003109671A (en) 2003-04-11
JP5197904B2 true JP5197904B2 (en) 2013-05-15

Family

ID=19118568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297500A Expired - Fee Related JP5197904B2 (en) 2001-09-27 2001-09-27 Non-aqueous electrolyte secondary battery pack charging method

Country Status (1)

Country Link
JP (1) JP5197904B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633690B2 (en) * 2006-08-24 2011-02-16 株式会社Nttファシリティーズ Voltage compensation device, voltage compensation system, and voltage compensation method
JP5662900B2 (en) * 2011-08-08 2015-02-04 日立建機株式会社 Electric construction machine
KR102487835B1 (en) * 2019-01-16 2023-01-12 주식회사 엘지에너지솔루션 Charging method for decreasing charging time

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508309B2 (en) * 1989-11-09 1996-06-19 日本電気株式会社 Battery charge control device
JPH1197074A (en) * 1997-09-19 1999-04-09 Zip Charge:Kk Charging method and charging device
JPH09149556A (en) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd Secondary battery charging method

Also Published As

Publication number Publication date
JP2003109671A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
TWI390790B (en) Lithium secondary cell with high charge and discharge rate capability
JP5810320B2 (en) Lithium-ion battery charging method and battery-equipped device
JP5089825B2 (en) Non-aqueous electrolyte secondary battery charging method and battery pack
US8610408B2 (en) Lithium ion secondary battery charging method and battery pack
JP6087489B2 (en) Assembled battery system
US8912762B2 (en) Charging method for non-aqueous electrolyte secondary battery by repeating a set of constant current charge and constant voltage charge and battery pack implementing the charging method
JP4949905B2 (en) Non-aqueous electrolyte secondary battery
JPWO2002041420A1 (en) Non-aqueous lithium secondary battery
JP5245191B2 (en) Non-aqueous electrolyte secondary battery
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JP6437407B2 (en) Battery pack and charge control method
WO2020044932A1 (en) Secondary battery charging system
JP4412767B2 (en) Storage method of lithium secondary battery
JP5122899B2 (en) Discharge control device
JPH07153495A (en) Secondary battery
JP5197904B2 (en) Non-aqueous electrolyte secondary battery pack charging method
JP4085489B2 (en) Charging method of lithium ion secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP2013131426A (en) Method for charging nonaqueous electrolyte secondary battery, and battery pack
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery
JP2004297974A (en) Charger
JP2005327516A (en) Charging method of nonaqueous electrolyte secondary battery
JP3752930B2 (en) Cylindrical lithium-ion battery
CN100397699C (en) A lithium ion secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees