JP4949905B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4949905B2
JP4949905B2 JP2007079642A JP2007079642A JP4949905B2 JP 4949905 B2 JP4949905 B2 JP 4949905B2 JP 2007079642 A JP2007079642 A JP 2007079642A JP 2007079642 A JP2007079642 A JP 2007079642A JP 4949905 B2 JP4949905 B2 JP 4949905B2
Authority
JP
Japan
Prior art keywords
carbonate
negative electrode
secondary battery
cyclic carbonate
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007079642A
Other languages
Japanese (ja)
Other versions
JP2007294433A (en
Inventor
圭司 最相
靖男 高野
英和 山本
栄信 野木
昭男 檜原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Sanyo Electric Co Ltd
Original Assignee
Mitsui Chemicals Inc
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Sanyo Electric Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP2007079642A priority Critical patent/JP4949905B2/en
Publication of JP2007294433A publication Critical patent/JP2007294433A/en
Application granted granted Critical
Publication of JP4949905B2 publication Critical patent/JP4949905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解液二次電池及びそれに用いる非水電解液に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte used therein.

近年、携帯用電気機器の小型化・軽量化は著しく進行しており、また多機能化に伴い、消費電力も増加している。このため、電源として使用されるリチウム二次電池にも軽量化及び高容量化の要望が強くなっている。   In recent years, portable electronic devices have been remarkably reduced in size and weight, and power consumption has increased with the increase in functionality. For this reason, there is a strong demand for lighter and higher capacity lithium secondary batteries used as power sources.

この要望に対して、近年、炭素負極に比べて単位質量及び単位体積あたりの充放電容量に優れた材料として、シリコン、ゲルマニウム、錫などの合金系負極が提案されている。   In response to this demand, in recent years, alloy-based negative electrodes such as silicon, germanium, and tin have been proposed as materials having excellent unit mass and charge / discharge capacity per unit volume as compared with carbon negative electrodes.

これらの材料を用いた負極の中でも、シリコンを活物質として使用した負極は、高い充放電容量と優れたサイクル特性を示す。しかしながら、これらの材料を用いた場合においても、より長期にわたる充放電サイクルや高温環境下での充放電サイクルにおいて、徐々に電解液との反応により劣化が進行する。   Among the negative electrodes using these materials, a negative electrode using silicon as an active material exhibits high charge / discharge capacity and excellent cycle characteristics. However, even when these materials are used, the deterioration gradually proceeds due to the reaction with the electrolytic solution in a longer charge / discharge cycle or a charge / discharge cycle under a high temperature environment.

特許文献1においては、黒鉛などの炭素材料を負極に用いたリチウム二次電池において、フルオロエチレンカーボネートを電解液に含有させることにより充放電サイクル特性を向上させたリチウム二次電池が開示されている。
特開2005−71678号公報
Patent Document 1 discloses a lithium secondary battery using a carbon material such as graphite as a negative electrode, the charge / discharge cycle characteristics of which are improved by containing fluoroethylene carbonate in the electrolyte. .
JP 2005-71678 A

本発明の目的は、シリコンを負極活物質として含む非水電解液二次電池において、サイクル特性と放電負荷特性に優れた非水電解液二次電池を提供することにある。   An object of the present invention is to provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics and discharge load characteristics in a nonaqueous electrolyte secondary battery containing silicon as a negative electrode active material.

本発明は、正極活物質を含む正極と、シリコンを負極活物質として含む負極と、溶質及び溶媒を含む非水電解液とを備える非水電解液二次電池であって、溶媒として、フッ素化鎖状カーボネート、フッ素化環状カーボネート、及び環状カーボネートからなる混合溶媒を用いることを特徴としている。   The present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode containing a positive electrode active material, a negative electrode containing silicon as a negative electrode active material, and a nonaqueous electrolyte solution containing a solute and a solvent, A mixed solvent comprising a chain carbonate, a fluorinated cyclic carbonate, and a cyclic carbonate is used.

本発明に従い、溶媒として、フッ素化鎖状カーボネート、フッ素化環状カーボネート、及び環状カーボネートからなる混合溶媒を用いることにより、優れたサイクル特性と放電負荷特性を有する非水電解液二次電池とすることができる。   According to the present invention, by using a mixed solvent comprising a fluorinated chain carbonate, a fluorinated cyclic carbonate, and a cyclic carbonate as a solvent, a non-aqueous electrolyte secondary battery having excellent cycle characteristics and discharge load characteristics is obtained. Can do.

本発明においては、フッ素化環状カーボネートとフッ素化鎖状カーボネートの混合割合(フッ素化環状カーボネート:フッ素化鎖状カーボネート)は、体積比で2:98〜20:80の範囲であることが好ましい。フッ素化環状カーボネートがこの範囲よりも少なくなると、良好なサイクル特性が得られない場合がある。また、フッ素化環状カーボネートの割合が上記範囲よりも多くなると、サイクル特性にさらなる改善の効果が認められない場合がある一方で、充電状態での高温保存時にガスが発生し、電池厚みや内部抵抗の増加を引き起こす場合がある。また、一般にフッ素化環状カーボネートはフッ素化鎖状カーボネートよりも価格が高いため実用上のメリットも少なくなる場合がある。   In the present invention, the mixing ratio of the fluorinated cyclic carbonate and the fluorinated chain carbonate (fluorinated cyclic carbonate: fluorinated chain carbonate) is preferably in the range of 2:98 to 20:80 by volume ratio. If the fluorinated cyclic carbonate is less than this range, good cycle characteristics may not be obtained. Further, when the ratio of the fluorinated cyclic carbonate is larger than the above range, the effect of further improvement in the cycle characteristics may not be recognized, but gas is generated during high-temperature storage in a charged state, and the battery thickness and internal resistance are increased. May cause an increase. In general, the fluorinated cyclic carbonate is more expensive than the fluorinated chain carbonate, and therefore there are cases where the practical merit is reduced.

本発明においては、フッ素化鎖状カーボネート及びフッ素化環状カーボネートの混合溶媒に、さらに環状カーボネートを含有させている。環状カーボネートを含有させることにより、電解質の解離度を向上させることができ、伝導度を大幅に上昇することができ、電池の放電負荷特性を大幅に改善させることができる。   In the present invention, a cyclic carbonate is further contained in a mixed solvent of a fluorinated chain carbonate and a fluorinated cyclic carbonate. By including the cyclic carbonate, the degree of dissociation of the electrolyte can be improved, the conductivity can be significantly increased, and the discharge load characteristics of the battery can be greatly improved.

環状カーボネートの混合溶媒中における含有量は、5〜20体積%の範囲内であることが好ましい。環状カーボネートの含有量が少なすぎると、電解液の伝導度を大幅に上昇させることができず、電池の放電負荷特性の改善が認められない場合がある。環状カーボネートの含有量が多すぎると、電解液の伝導度の向上はなされるものの、十分なサイクル特性を得ることができない場合がある。   The content of the cyclic carbonate in the mixed solvent is preferably in the range of 5 to 20% by volume. If the content of the cyclic carbonate is too small, the conductivity of the electrolytic solution cannot be significantly increased, and the improvement of the discharge load characteristics of the battery may not be observed. If the cyclic carbonate content is too high, the conductivity of the electrolytic solution may be improved, but sufficient cycle characteristics may not be obtained.

本発明におけるフッ素化鎖状カーボネートとしては、メチル2,2,2−トリフルオロエチルカーボネート、エチル2,2,2−トリフルオロエチルカーボネートなどが挙げられる。   Examples of the fluorinated chain carbonate in the present invention include methyl 2,2,2-trifluoroethyl carbonate, ethyl 2,2,2-trifluoroethyl carbonate, and the like.

本発明におけるフッ素化環状カーボネートとしては、フルオロエチレンカーボネートなどが挙げられる。   Examples of the fluorinated cyclic carbonate in the present invention include fluoroethylene carbonate.

本発明における環状カーボネートとしては、伝導度向上効果と電極との反応性の観点から、プロピレンカーボネートもしくはブチレンカーボネートが最も好ましい。   As the cyclic carbonate in the present invention, propylene carbonate or butylene carbonate is most preferable from the viewpoints of the conductivity enhancement effect and the reactivity with the electrode.

本発明の非水電解液は、上記本発明の非水電解液二次電池に用いることができる非水電解液であり、フッ素化鎖状カーボネート、フッ素化環状カーボネート、及び環状カーボネートからなる混合溶媒を用いることを特徴としている。   The non-aqueous electrolyte of the present invention is a non-aqueous electrolyte that can be used in the above-described non-aqueous electrolyte secondary battery of the present invention, and is a mixed solvent comprising a fluorinated chain carbonate, a fluorinated cyclic carbonate, and a cyclic carbonate. It is characterized by using.

本発明の非水電解液を用いることにより、シリコンを負極活物質として含む非水電解液二次電池において、サイクル特性を向上させることができる。   By using the non-aqueous electrolyte of the present invention, cycle characteristics can be improved in a non-aqueous electrolyte secondary battery containing silicon as a negative electrode active material.

本発明における非水電解液に含有される溶質としては、非水電解液二次電池に一般的に用いることができる溶質が挙げられ、例えば、LiPF、LiBFなどが挙げられる。好ましくは、LiBFとLiPFとをモル比(LiBF:LiPF)で、1:20〜10:1の範囲内で混合して用いるのが良く、より好ましくは5:95〜70:30、最も好ましくは20:80〜60:40の範囲で混合して用いられる。 Examples of the solute contained in the non-aqueous electrolyte in the present invention include solutes that can be generally used in non-aqueous electrolyte secondary batteries, and examples thereof include LiPF 6 and LiBF 4 . Preferably, LiBF 4 and LiPF 6 are mixed in a molar ratio (LiBF 4 : LiPF 6 ) within a range of 1:20 to 10: 1, and more preferably 5:95 to 70:30. Most preferably, the mixture is used in the range of 20:80 to 60:40.

本発明における負極は、シリコンを含む負極活物質を用いた負極であり、このような負極としては、銅箔などの金属箔などからなる負極集電体の上に、CVD法、スパッタリング法、蒸着法、溶射法、またはめっき法などにより、非晶質シリコン薄膜、非結晶シリコン薄膜などのシリコンを含む薄膜を堆積させて形成させたものを好ましく用いることができる。シリコンを含む薄膜としては、シリコンと、コバルト、鉄、ジルコニウムなどとの合金薄膜であってもよい。   The negative electrode in the present invention is a negative electrode using a negative electrode active material containing silicon, and as such a negative electrode, a CVD method, a sputtering method, and a vapor deposition method are used on a negative electrode current collector made of a metal foil such as a copper foil. A film formed by depositing a thin film containing silicon such as an amorphous silicon thin film or an amorphous silicon thin film by a method, a thermal spraying method, a plating method or the like can be preferably used. The thin film containing silicon may be an alloy thin film of silicon and cobalt, iron, zirconium, or the like.

上記負極において、薄膜は、その厚み方向に形成された切れ目によって柱状に分離されており該柱状部分の底部が負極集電体と密着していることが好ましい。このような電極構造をとることにより、柱状部分の周囲の空隙で、充放電サイクルに伴う活物質の膨張・収縮の体積変化を受け入れることができ、充放電反応により生じる応力を緩和して、良好な充放電サイクル特性を得ることができる。厚み方向の切れ目は、一般に充放電反応で形成される。   In the above negative electrode, the thin film is preferably separated into a columnar shape by a cut formed in the thickness direction, and the bottom of the columnar portion is preferably in close contact with the negative electrode current collector. By adopting such an electrode structure, it is possible to accept the volume change of expansion / contraction of the active material accompanying the charge / discharge cycle in the gap around the columnar part, and relieve the stress caused by the charge / discharge reaction, and it is good Charge / discharge cycle characteristics can be obtained. The cut in the thickness direction is generally formed by a charge / discharge reaction.

また、本発明の負極は、シリコンを含む活物質粒子から形成されたものであってもよい。このような活物質粒子とバインダーを含むスラリーを集電体上に塗布して、負極を形成することができる。このような活物質粒子としては、ケイ素粒子、ケイ素合金粒子などが挙げられる。   Moreover, the negative electrode of the present invention may be formed from active material particles containing silicon. A slurry containing such active material particles and a binder can be applied onto a current collector to form a negative electrode. Examples of such active material particles include silicon particles and silicon alloy particles.

本発明において用いられる正極活物質は、非水電解液二次電池に用いることができるものであれば特に限定されるものではなく、例えば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウムなどのリチウム遷移金属酸化物等を挙げることができる。これらの酸化物は単独で用いてもよいし、2種以上を混合して用いてもよい。   The positive electrode active material used in the present invention is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery. For example, lithium such as lithium cobaltate, lithium manganate, and lithium nickelate A transition metal oxide etc. can be mentioned. These oxides may be used alone or in combination of two or more.

本発明によれば、シリコンを負極活物質として用いた非水電解液二次電池において、充放電サイクル特性と放電負荷特性を向上させることができる。   According to the present invention, in a non-aqueous electrolyte secondary battery using silicon as a negative electrode active material, charge / discharge cycle characteristics and discharge load characteristics can be improved.

以下、本発明を実施例により詳細に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して実施することが可能なものである。   EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. is there.

(実施例1〜15及び比較例1〜4)
〔正極の作製〕
正極活物質としてのコバルト酸リチウムと、導電助剤としてケッチェンブラックと、結着剤としてのフッ素樹脂とを重量比で90:5:5の割合で混合し、これをN−メチル−2−ピロリドン(NMP)に溶解してペーストとした。
(Examples 1-15 and Comparative Examples 1-4)
[Production of positive electrode]
Lithium cobaltate as a positive electrode active material, ketjen black as a conductive additive, and fluororesin as a binder are mixed at a weight ratio of 90: 5: 5, and this is mixed with N-methyl-2- A paste was dissolved in pyrrolidone (NMP).

このペーストをドクターブレード法により、厚み20μmのアルミニウム箔の両面に均一に塗布した。次に、加熱した乾燥機中で、100〜150℃の温度で真空熱処理して、NMPを除去した後、厚みが0.16mmになるようにロールプレス機により圧延して正極を作製した。   This paste was uniformly applied to both surfaces of an aluminum foil having a thickness of 20 μm by a doctor blade method. Next, in a heated drier, vacuum heat treatment was performed at a temperature of 100 to 150 ° C. to remove NMP, and then a positive electrode was produced by rolling with a roll press so that the thickness became 0.16 mm.

〔負極の作製1:シリコン負極〕
活物質として粒径10μmのSi粉末と、結着剤としてイミド樹脂を重量比で90:10の割合で混合したものをNMPに溶解してペーストを作製した。このペーストをドクターブレード法により厚み18μm、表面粗さRa0.188μmの電解銅箔の両面上に塗布した。次に、加熱した乾燥機中で真空熱処理してNMPを除去した後、厚みが0.10mmとなるようにロールプレス機により圧延した。その後、Ar雰囲気中で400℃で加熱し、樹脂のイミド化を進行させ、負極を作製した。
[Preparation of negative electrode 1: silicon negative electrode]
A paste prepared by dissolving Si powder having a particle size of 10 μm as an active material and an imide resin as a binder in a weight ratio of 90:10 was dissolved in NMP. This paste was applied on both surfaces of an electrolytic copper foil having a thickness of 18 μm and a surface roughness Ra of 0.188 μm by a doctor blade method. Next, the NMP was removed by vacuum heat treatment in a heated drier, and then rolled with a roll press so that the thickness became 0.10 mm. Then, it heated at 400 degreeC in Ar atmosphere, the imidation of resin was advanced, and the negative electrode was produced.

〔負極の作製2:黒鉛負極〕
増粘剤であるカルボキシメチルセルロースを水に溶かした水溶液中に、負極活物質として一次粒子の形状が鱗片状である人造黒鉛と、結着剤としてのスチレン−ブタジエンゴムとを、活物質、結着剤及び増粘剤の重量比が97.5:1.0:1.5となるように加えた後混練して、負極合剤スラリーを作製した。
[Production of negative electrode 2: graphite negative electrode]
In an aqueous solution in which carboxymethyl cellulose, a thickener, is dissolved in water, artificial graphite having a primary particle shape as a negative electrode active material, and styrene-butadiene rubber as a binder, an active material, a binder The mixture was added so that the weight ratio of the agent and the thickener was 97.5: 1.0: 1.5, and then kneaded to prepare a negative electrode mixture slurry.

この負極合剤スラリーを、負極の作製1において用いた集電体の上に塗布した後、乾燥し、その後圧延ローラーを用いて負極合剤層密度が0.96g/cmになるまで圧延し、負極とした。 This negative electrode mixture slurry was applied onto the current collector used in the preparation of the negative electrode 1, dried, and then rolled using a rolling roller until the negative electrode mixture layer density was 0.96 g / cm 3. And a negative electrode.

〔電解液の作製〕
フルオロエチレンカーボネート(FEC)と、メチル2,2,2−トリフルオロエチルカーボネート(MFEC)と、プロピレンカーボネート(PC)と、ブチレンカーボネート(BC)と、メチルエチルカーボネート(MEC)とを、以下の表1に示す割合(体積比)で混合し混合溶媒を作製した。
(Preparation of electrolyte)
Fluoroethylene carbonate (FEC), methyl 2,2,2-trifluoroethyl carbonate (MFEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC) are shown in the table below. A mixed solvent was prepared by mixing at a ratio (volume ratio) shown in FIG.

上記のようにして得られた混合溶媒に、溶質として、LiPFとLiBFとを、以下の表1に示す濃度となるように溶解させて電解液とした。 LiPF 6 and LiBF 4 as solutes were dissolved in the mixed solvent obtained as described above so as to have concentrations shown in Table 1 below to obtain an electrolytic solution.

Figure 0004949905
Figure 0004949905

〔リチウム二次電池の作製〕
上記の方法で作製した正極及び負極を所定の大きさに切り出し、集電体である金属箔に集電タブを取付け、ポリオレフィン系微多孔膜からなる厚さ20μmのセパレータをこれらの電極の間に挟んで積層し、これを巻き取り、最外周をテープで止めて、渦巻状電極体とした後、偏平に押しつぶして渦巻状電極体とした。なお、比較例3及び4以外については、負極として、シリコン負極を用い、比較例3及び4については黒鉛負極を用いた。
[Production of lithium secondary battery]
The positive electrode and the negative electrode produced by the above method are cut into a predetermined size, a current collecting tab is attached to a metal foil as a current collector, and a separator having a thickness of 20 μm made of a polyolefin microporous film is interposed between these electrodes. After sandwiching and laminating, the outermost periphery was stopped with a tape to form a spiral electrode body, and then flattened to obtain a spiral electrode body. In addition to Comparative Examples 3 and 4, a silicon negative electrode was used as the negative electrode, and for Comparative Examples 3 and 4, a graphite negative electrode was used.

この渦巻状電極体を、PET(ポリエチレンテレフタート)及びアルミニウムを積層して作製したラミネート材からなる外装体中に挿入し、開口部から集電タブが外部に突き出る状態とした。   This spiral electrode body was inserted into an exterior body made of a laminate material obtained by laminating PET (polyethylene terephthalate) and aluminum, and the current collecting tab protruded from the opening.

次に、上記の外装体の開口部から、上記電解液5mlを注入し、その後、開口部を封止することにより、リチウム二次電池を作製した。作製した電池は、放電容量300mAhであった。   Next, 5 ml of the electrolyte solution was injected from the opening of the outer package, and then the opening was sealed to prepare a lithium secondary battery. The produced battery had a discharge capacity of 300 mAh.

〔放電負荷特性の測定〕
実施例1〜15及び比較例1〜2の上記リチウム二次電池について放電負荷特性を測定した。測定条件は、300mA(1.0C)の定電流で4.3Vまで充電した後、4.3Vの定電圧で1時間充電することで満充電状態とした電池を、0.2Cの定電流で電池電圧2.75Vまで放電することで0.2Cの放電容量の測定を行った。
[Measurement of discharge load characteristics]
The discharge load characteristics of the lithium secondary batteries of Examples 1 to 15 and Comparative Examples 1 and 2 were measured. The measurement condition is that a battery that has been fully charged by charging it to 4.3 V at a constant current of 300 mA (1.0 C) and then charging it at a constant voltage of 4.3 V for 1 hour is used at a constant current of 0.2 C. A discharge capacity of 0.2C was measured by discharging to a battery voltage of 2.75V.

その後、上記と同様の条件で満充電状態とした電池を、それぞれ1.0C、2.0Cの定電流で電池電圧2.75Vまで放電することで、1.0C、2.0C放電容量を測定した。   Thereafter, the batteries fully charged under the same conditions as described above were discharged at a constant current of 1.0 C and 2.0 C to a battery voltage of 2.75 V, respectively, thereby measuring 1.0 C and 2.0 C discharge capacities. did.

黒鉛負極を用いた比較例3及び4については、充電終止電圧を4.4Vとした。これは、充電状態の黒鉛負極の電位が、充電状態のシリコン負極の電位よりも低いため、シリコン負極の場合と同じ充電終止電圧にすると、充電終止状態における正極の電位が異なる。正極電位が異なると、これにより電池特性が変化するので、4.3V充電のシリコン負極電池と同じ正極電位となるように、黒鉛負極の電池においては充電終止電圧を4.4Vに設定した。   For Comparative Examples 3 and 4 using a graphite negative electrode, the end-of-charge voltage was set to 4.4V. This is because the potential of the graphite negative electrode in the charged state is lower than the potential of the silicon negative electrode in the charged state. Therefore, when the same charge end voltage is used as in the case of the silicon negative electrode, the potential of the positive electrode in the end of charge state is different. When the positive electrode potential differs, the battery characteristics change accordingly. Therefore, in the graphite negative electrode battery, the charge end voltage was set to 4.4 V so that the positive electrode potential was the same as that of the 4.3 V charged silicon negative electrode battery.

測定結果を表2に示す。   The measurement results are shown in Table 2.

Figure 0004949905
Figure 0004949905

表2に示す結果から明らかなように、フッ素化鎖状カーボネートとフッ素化環状カーボネートのみを用いた比較例1においては、特に高率放電である2.0C/0.2C放電容量比が、フッ素化環状カーボネートと、環状カーボネートと、鎖状カーボネートの混合溶媒からなる比較例2に比べて大きく低下している。しかしながら、フッ素化鎖状カーボネートとフッ素化環状カーボネートに環状カーボネートを添加した実施例1〜15では、環状カーボネート種によらず、2.0C/0.2C放電容量比の低下が小さくなっており、比較例2とほぼ同様の放電挙動を示している。   As is apparent from the results shown in Table 2, in Comparative Example 1 using only the fluorinated chain carbonate and the fluorinated cyclic carbonate, the 2.0C / 0.2C discharge capacity ratio, which is a high rate discharge, is particularly high. Compared with the comparative example 2 which consists of a mixed solvent of a chlorinated cyclic carbonate, a cyclic carbonate, and a chain carbonate, it is greatly reduced. However, in Examples 1 to 15 in which the cyclic carbonate is added to the fluorinated chain carbonate and the fluorinated cyclic carbonate, the decrease in the 2.0C / 0.2C discharge capacity ratio is small regardless of the cyclic carbonate species. The discharge behavior is almost the same as in Comparative Example 2.

黒鉛負極を用いた比較例3及び4においては、2.0C/0.2C放電容量比の低下が極端に大きくなっている。これは、黒鉛負極と電解液の界面近傍で、LiBFやMFECが分解されるためであると考えられる。 In Comparative Examples 3 and 4 using the graphite negative electrode, the decrease in the 2.0C / 0.2C discharge capacity ratio is extremely large. This is considered to be because LiBF 4 and MFEC are decomposed in the vicinity of the interface between the graphite negative electrode and the electrolytic solution.

〔サイクル特性の評価〕
上記各電池について、室温における充放電サイクル試験を行った。測定条件は、300mA(1.0C)の定電流で4.3Vまで充電した後、4.3Vの定電圧で1時間充電することで満充電状態とした電池を、1.0Cの定電流で電池電圧2.75Vまで放電する充放電サイクルを1サイクルとし、これを繰り返し行うことで充放電サイクル特性の評価を行った。黒鉛負極を用いた比較例3及び4については、充電終止電圧を4.4Vとした。
[Evaluation of cycle characteristics]
About each said battery, the charging / discharging cycle test in room temperature was done. The measurement condition is that a battery that has been fully charged by charging it to 4.3 V with a constant current of 300 mA (1.0 C) and then charging it with a constant voltage of 4.3 V for 1 hour is used with a constant current of 1.0 C. The charging / discharging cycle which discharges to battery voltage 2.75V was made into 1 cycle, and charging / discharging cycling characteristics were evaluated by performing this repeatedly. For Comparative Examples 3 and 4 using a graphite negative electrode, the end-of-charge voltage was set to 4.4V.

図2に、実施例1、4及び6と比較例1〜2の室温における充放電サイクル試験の結果を示す。   In FIG. 2, the result of the charging / discharging cycle test in Example 1, 4 and 6 and Comparative Examples 1-2 at room temperature is shown.

図2に示す結果から明らかなように、比較例1においては優れたサイクル特性が得られているが、比較例2においてはサイクル経過に伴い劣化が進行し、十分な充放電サイクル特性が得られていない。この原因として、シリコンを負極活物質として用いた電池においては、通常のカーボネート系溶媒からなる電解液を用いた場合には、サイクル経過に伴いシリコン負極の酸化が進行し、負極の表面積の増加及び界面抵抗の増加が発生するものと思われる。このため、負極中にリチウムが残存したまま放電されなくなり、劣化が進行すると思われる。また、表面積の増加により、電解液が不足し、反応が不均一化することもサイクル特性を劣化する要因となる。   As is clear from the results shown in FIG. 2, excellent cycle characteristics are obtained in Comparative Example 1, but in Comparative Example 2, deterioration progresses with the passage of cycles, and sufficient charge / discharge cycle characteristics are obtained. Not. As a cause of this, in a battery using silicon as a negative electrode active material, when an electrolytic solution made of a normal carbonate solvent is used, the oxidation of the silicon negative electrode proceeds with the progress of the cycle, and the surface area of the negative electrode increases. It is thought that an increase in interface resistance occurs. For this reason, it is considered that the lithium does not discharge with the lithium remaining in the negative electrode, and the deterioration proceeds. In addition, an increase in surface area causes a shortage of electrolyte and non-uniform reaction also causes deterioration of cycle characteristics.

これに対し、フッ素化鎖状カーボネートを溶媒として用いた場合には、シリコン負極表面の酸化反応が進行しないため、不可逆なLiの生成が抑制され、かつ充放電反応も均一に進むことから良好なサイクル特性を示すものと考えられる。   On the other hand, when fluorinated chain carbonate is used as a solvent, the oxidation reaction on the surface of the silicon negative electrode does not proceed, so that irreversible Li formation is suppressed and the charge / discharge reaction proceeds uniformly. It is considered to show cycle characteristics.

本発明に従い、フッ素化鎖状カーボネートとフッ素化環状カーボネートに、環状カーボネートを添加した実施例1、実施例4及び実施例6では、比較例1と同様の優れたサイクル特性が得られている。このことから、少量の環状カーボネートを添加することにより、負極活物質の劣化を進行させることなく、サイクル特性を改善できることがわかる。   In Example 1, Example 4 and Example 6 in which cyclic carbonate was added to fluorinated chain carbonate and fluorinated cyclic carbonate according to the present invention, excellent cycle characteristics similar to those of Comparative Example 1 were obtained. From this, it can be seen that by adding a small amount of cyclic carbonate, the cycle characteristics can be improved without causing deterioration of the negative electrode active material.

実施例1〜15及び比較例1〜4の各電池についての、100サイクル目の放電容量維持率を表3に示す。なお、表3に示す放電容量維持率は、以下のように算出した値である。   Table 3 shows the discharge capacity maintenance rates at the 100th cycle for the batteries of Examples 1 to 15 and Comparative Examples 1 to 4. In addition, the discharge capacity maintenance factor shown in Table 3 is a value calculated as follows.

100サイクル目の放電容量維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100
また、FEC:MFECの体積比も表3に示す。
100th cycle discharge capacity retention rate (%) = (100th cycle discharge capacity / first cycle discharge capacity) × 100
The volume ratio of FEC: MFEC is also shown in Table 3.

Figure 0004949905
Figure 0004949905

表3に示すように、本発明に従う実施例1〜15においては、優れたサイクル特性が得られている。LiPFとLiBFが同じ組成比で含有されている実施例4〜13において比較すると、実施例4〜10及び13は、FEC:MFECの体積比が10:90〜20:80の範囲であり、実施例11及び12に比べ良好なサイクル特性が得られている。従って、フッ素化環状カーボネートとフッ素化鎖状カーボネートの混合割合は、体積比で10:90〜20:80の範囲内が好ましいことがわかる。 As shown in Table 3, in Examples 1 to 15 according to the present invention, excellent cycle characteristics are obtained. When compared in Examples 4 to 13 where LiPF 6 and LiBF 4 are contained in the same composition ratio, Examples 4 to 10 and 13 have a volume ratio of FEC: MFEC in the range of 10:90 to 20:80. As compared with Examples 11 and 12, good cycle characteristics are obtained. Therefore, it can be seen that the mixing ratio of the fluorinated cyclic carbonate and the fluorinated chain carbonate is preferably in the range of 10:90 to 20:80 by volume ratio.

黒鉛負極を用いた比較例3及び4においては、放電容量維持率が極端に低くなっている。これは、上述のように、黒鉛負極と電解液の界面近傍で、LiBFやMFECが分解されたためと考えられる。 In Comparative Examples 3 and 4 using the graphite negative electrode, the discharge capacity retention rate is extremely low. This is probably because LiBF 4 and MFEC were decomposed in the vicinity of the interface between the graphite negative electrode and the electrolyte as described above.

図3は、実施例2〜9における溶媒中の環状カーボネート(BC及びPC)の含有量と、2.0C/0.2C放電容量比との関係を示す図である。図3から明らかなように、環状カーボネートとしては、プロピレンカーボネート(PC)に比べ、ブチレンカーボネート(BC)を用いた方が優れた負荷特性が得られることがわかる。特に、ブチレンカーボネートの含有量が10体積%のときに、負荷特性が最も良くなることがわかる。   FIG. 3 is a diagram showing the relationship between the content of cyclic carbonate (BC and PC) in the solvent in Examples 2 to 9 and the 2.0C / 0.2C discharge capacity ratio. As is clear from FIG. 3, it can be seen that, as the cyclic carbonate, better load characteristics can be obtained by using butylene carbonate (BC) than propylene carbonate (PC). In particular, it can be seen that when the content of butylene carbonate is 10% by volume, the load characteristics are the best.

〔電解液の伝導度の測定〕
FECを一定量の10体積%含有させ、PCとMFECの混合比を変化させた混合溶媒に、溶質としてLiPFとLiBFをそれぞれ0.5モル/リットルとなるように溶解させた電解液を調製し、これらの電解液の伝導度を測定した。測定結果を図1に示す。
[Measurement of conductivity of electrolyte]
An electrolytic solution in which LiPF 6 and LiBF 4 were dissolved as a solute in a mixed solvent containing 10% by volume of FEC and changing the mixing ratio of PC and MFEC to 0.5 mol / liter respectively. Prepared and measured the conductivity of these electrolytes. The measurement results are shown in FIG.

図1から明らかなように、PCを含有させることにより、電解液の伝導度が向上していることがわかる。PCを全く含まない電解液の伝導度は、一般的な電解液である1M(モル/リットル)LiPFを溶解したEC/DEC=3/7(体積比)の電解液に比べ、その伝導度は非常に低くなっている。本発明に従い、フッ素化鎖状カーボネート及びフッ素化環状カーボネートの混合溶媒に、PCを少量添加することにより、伝導度が大幅に上昇することがわかる。図1から、PCの含有量としては、5〜20体積%が好ましいことがわかる。 As can be seen from FIG. 1, the conductivity of the electrolytic solution is improved by containing PC. The conductivity of an electrolyte containing no PC is higher than that of an electrolyte of EC / DEC = 3/7 (volume ratio) in which 1 M (mol / liter) LiPF 6 which is a general electrolyte is dissolved. Is very low. It can be seen that according to the present invention, the conductivity is significantly increased by adding a small amount of PC to the mixed solvent of fluorinated chain carbonate and fluorinated cyclic carbonate. FIG. 1 shows that the content of PC is preferably 5 to 20% by volume.

フルオロエチレンカーボネート(FEC)、メチル2,2,2−トリフルオロエチルカーボネート(MFEC)、及びプロピレンカーボネート(PC)の混合溶媒において、PCの含有量を変化させたときの伝導度の変化を示す図。The figure which shows the change of conductivity when content of PC is changed in the mixed solvent of fluoroethylene carbonate (FEC), methyl 2,2,2-trifluoroethyl carbonate (MFEC), and propylene carbonate (PC). . 本発明に従う実施例のリチウム二次電池の室温充放電サイクル特性を示す図。The figure which shows the room temperature charging / discharging cycling characteristics of the lithium secondary battery of the Example according to this invention. 電解液の溶媒中における環状カーボネート含有量と、2.0C/0.2C放電容量比との関係を示す図。The figure which shows the relationship between cyclic carbonate content in the solvent of electrolyte solution, and 2.0C / 0.2C discharge capacity ratio.

Claims (8)

正極活物質を含む正極と、シリコンを負極活物質として含む負極と、溶質及び溶媒を含む非水電解液とを備える非水電解液二次電池であって、
前記溶媒として、フッ素化鎖状カーボネート、フッ素化環状カーボネート、及び環状カーボネートからなる混合溶媒を用いることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including silicon as a negative electrode active material, and a non-aqueous electrolyte including a solute and a solvent,
A non-aqueous electrolyte secondary battery using a mixed solvent comprising a fluorinated chain carbonate, a fluorinated cyclic carbonate, and a cyclic carbonate as the solvent.
前記フッ素化環状カーボネートと前記フッ素化鎖状カーボネートの混合割合(フッ素化環状カーボネート:フッ素化鎖状カーボネート)が、体積比で2:98〜20:80であることを特徴とする請求項1に記載の非水電解液二次電池。   The mixing ratio of the fluorinated cyclic carbonate and the fluorinated chain carbonate (fluorinated cyclic carbonate: fluorinated chain carbonate) is from 2:98 to 20:80 in a volume ratio. The nonaqueous electrolyte secondary battery as described. 前記フッ素化環状カーボネートと前記フッ素化鎖状カーボネートの混合割合(フッ素化環状カーボネート:フッ素化鎖状カーボネート)が、体積比で10:90〜20:80であることを特徴とする請求項1に記載の非水電解液二次電池。   The mixing ratio of the fluorinated cyclic carbonate and the fluorinated chain carbonate (fluorinated cyclic carbonate: fluorinated chain carbonate) is 10:90 to 20:80 in a volume ratio. The nonaqueous electrolyte secondary battery as described. 前記環状カーボネートの混合溶媒中における含有量が、5〜20体積%であることを特徴とする請求項1〜3のいずれか1項に記載の非水電解液二次電池。   4. The nonaqueous electrolyte secondary battery according to claim 1, wherein a content of the cyclic carbonate in the mixed solvent is 5 to 20% by volume. 前記フッ素化鎖状カーボネートが、メチル2,2,2−トリフルオロエチルカーボネート及び/またはエチル2,2,2−トリフルオロエチルカーボネートであることを特徴とする請求項1〜4のいずれか1項に記載の非水電解液二次電池。   5. The fluorinated chain carbonate is methyl 2,2,2-trifluoroethyl carbonate and / or ethyl 2,2,2-trifluoroethyl carbonate. A nonaqueous electrolyte secondary battery according to 1. 前記フッ素化環状カーボネートが、フルオロエチレンカーボネートであることを特徴とする請求項1〜5のいずれか1項に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the fluorinated cyclic carbonate is fluoroethylene carbonate. 前記環状カーボネートが、プロピレンカーボネート及び/またはブチレンカーボネートであることを特徴とする請求項1〜6のいずれか1項に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the cyclic carbonate is propylene carbonate and / or butylene carbonate. 正極活物質を含む正極と、シリコンを負極活物質として含む負極と、溶質及び溶媒を含む非水電解液とを備える非水電解液二次電池に用いる非水電解液であって、
フッ素化鎖状カーボネート、フッ素化環状カーボネート、及び環状カーボネートからなる混合溶媒を用いることを特徴とする非水電解液二次電池用非水電解液。
A non-aqueous electrolyte used for a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including silicon as a negative electrode active material, and a non-aqueous electrolyte including a solute and a solvent,
A non-aqueous electrolyte for a non-aqueous electrolyte secondary battery, wherein a mixed solvent comprising a fluorinated chain carbonate, a fluorinated cyclic carbonate, and a cyclic carbonate is used.
JP2007079642A 2006-03-31 2007-03-26 Non-aqueous electrolyte secondary battery Active JP4949905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079642A JP4949905B2 (en) 2006-03-31 2007-03-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006098733 2006-03-31
JP2006098733 2006-03-31
JP2007079642A JP4949905B2 (en) 2006-03-31 2007-03-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007294433A JP2007294433A (en) 2007-11-08
JP4949905B2 true JP4949905B2 (en) 2012-06-13

Family

ID=38764814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079642A Active JP4949905B2 (en) 2006-03-31 2007-03-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4949905B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123714A (en) * 2006-11-08 2008-05-29 Sony Corp Electrolytic solution and battery
WO2009025332A1 (en) 2007-08-22 2009-02-26 Japan Vilene Company, Ltd. Lithium ion secondary battery
CN101897073B (en) * 2007-12-17 2013-05-22 株式会社Lg化学 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2009302021A (en) * 2008-06-17 2009-12-24 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery using the same
US20110159382A1 (en) * 2009-05-08 2011-06-30 Toru Matsui Nonaqueous solvent, and nonaqueous electrolyte solution and nonaqueous secondary battery using the same
KR102206695B1 (en) 2011-12-28 2021-01-25 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP5447618B2 (en) 2012-08-28 2014-03-19 株式会社豊田自動織機 Negative electrode material for nonaqueous electrolyte secondary battery, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2014050877A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Nonaqueous electrolyte solution, electrochemical device, lithium ion secondary cell, and module
JP6098878B2 (en) 2013-04-17 2017-03-22 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN106133987B (en) * 2014-03-27 2019-07-09 大金工业株式会社 Electrolyte and electrochemical device
JP6863213B2 (en) * 2017-10-06 2021-04-21 トヨタ自動車株式会社 How to manufacture a secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116629A (en) * 1996-10-15 1998-05-06 Mitsui Chem Inc Non-aqueous electrolyte
JP4610213B2 (en) * 2003-06-19 2011-01-12 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP4288592B2 (en) * 2004-01-20 2009-07-01 ソニー株式会社 battery
JP2005317399A (en) * 2004-04-28 2005-11-10 Sony Corp Electrolyte, negative electrode, and battery

Also Published As

Publication number Publication date
JP2007294433A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4949905B2 (en) Non-aqueous electrolyte secondary battery
CN111384405B (en) Electrode assembly and lithium ion battery
WO2013018486A1 (en) Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2010267475A (en) Lithium ion secondary battery
JP2007123242A (en) Nonaqueous electrolyte secondary battery
JP4949904B2 (en) Non-aqueous electrolyte secondary battery
JP5813336B2 (en) Nonaqueous electrolyte secondary battery
JP6447621B2 (en) Nonaqueous electrolyte secondary battery
JP2007335360A (en) Lithium secondary cell
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2007184261A (en) Lithium-ion secondary battery
JP4297709B2 (en) Nonaqueous electrolyte secondary battery
JP6508562B2 (en) Storage element
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP2007149441A (en) Rolled power storage device
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5644732B2 (en) Nonaqueous electrolyte secondary battery
JP2015095427A (en) Lithium ion secondary battery
JP2015072768A (en) Nonaqueous electrolytic solution and lithium ion secondary battery
JP6863055B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH11283668A (en) Lithium ion battery
JP2003151622A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP5985272B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4949905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250