JP5644732B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5644732B2
JP5644732B2 JP2011226157A JP2011226157A JP5644732B2 JP 5644732 B2 JP5644732 B2 JP 5644732B2 JP 2011226157 A JP2011226157 A JP 2011226157A JP 2011226157 A JP2011226157 A JP 2011226157A JP 5644732 B2 JP5644732 B2 JP 5644732B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011226157A
Other languages
Japanese (ja)
Other versions
JP2013089320A (en
Inventor
和城 中野
和城 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011226157A priority Critical patent/JP5644732B2/en
Publication of JP2013089320A publication Critical patent/JP2013089320A/en
Application granted granted Critical
Publication of JP5644732B2 publication Critical patent/JP5644732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池等の非水電解質二次電池においては、過充電時の安全対策として、電池内圧が所定値以上になると電流を遮断する電流遮断機構が搭載されることがある(例えば、特許文献1の段落0094)。電流遮断機構を備えた非水電解質二次電池では、非水電界質に過充電時に酸化分解されてプロトンを発生する過充電防止剤が添加される。かかる構成では、過充電時には過充電防止剤が分解されてプロトンが発生し、このプロトンが負極で還元されて水素ガスが発生して内圧が上昇し、これを検知して電流が遮断される。   In a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, as a safety measure at the time of overcharge, a current interruption mechanism that interrupts current when the battery internal pressure exceeds a predetermined value may be mounted (for example, a patent Reference 1, paragraph 0094). In a nonaqueous electrolyte secondary battery having a current interruption mechanism, an overcharge inhibitor that is oxidized and decomposed to generate protons during overcharge is added to the nonaqueous electrolyte. In such a configuration, at the time of overcharging, the overcharge preventing agent is decomposed to generate protons, and the protons are reduced at the negative electrode to generate hydrogen gas to increase the internal pressure. This is detected and the current is cut off.

特許文献1には、従来技術の説明において、過充電防止剤として、ビフェニル類、アルキルベンゼン類、2個の芳香族基で置換されたアルキル化合物、フッ素原子置換芳香族化合物類、及び塩素原子置換ビフェニルが挙げられている(段落0009、0011、0014)。
特許文献1の請求項1には、過充電防止剤として、塩素原子置換ビフェニル、塩素原子置換ナフタレン、塩素原子置換フルオレン、及び塩素原子置換ジフェニルメタンからなる群から選ばれる少なくとも1種の塩素原子置換芳香族化合物が挙げられている。
Patent Document 1 discloses, as an overcharge inhibitor, in the description of the prior art, biphenyls, alkylbenzenes, alkyl compounds substituted with two aromatic groups, fluorine atom-substituted aromatic compounds, and chlorine atom-substituted biphenyls. (Paragraphs 0009, 0011, and 0014).
Claim 1 of Patent Document 1 includes at least one chlorine atom-substituted fragrance selected from the group consisting of chlorine atom-substituted biphenyl, chlorine atom-substituted naphthalene, chlorine atom-substituted fluorene, and chlorine atom-substituted diphenylmethane as an overcharge inhibitor. Group compounds are mentioned.

特開2004-087168号公報JP 2004-087168 A

電流遮断機構を備えた非水電解質二次電池において、電流遮断機構の作動圧を低く設定すると、正常範囲内での内圧変動あるいは外部からの衝撃等など、本来検知したい過充電以外の要因による内圧上昇を検知して、電流が遮断されてしまう恐れがある。かかる誤作動を防止するには、過充電時のガス発生量を高めて、電流遮断機構の作動圧を高めに設定することが好ましい。   In a non-aqueous electrolyte secondary battery equipped with a current interruption mechanism, if the operating pressure of the current interruption mechanism is set low, the internal pressure due to factors other than overcharge to be detected originally, such as internal pressure fluctuations within the normal range or external impacts There is a risk that the current will be cut off by detecting the rise. In order to prevent such malfunction, it is preferable to increase the amount of gas generated during overcharge and to set the operating pressure of the current interrupt mechanism higher.

過充電時のガス発生量を高める対策としては、過充電防止剤の分解反応及びプロトン生成反応の反応面積を増加させる、あるいは過充電防止剤の添加量を増加させることなどが挙げられる。   Measures for increasing the amount of gas generated during overcharging include increasing the reaction area of the decomposition reaction and proton generation reaction of the overcharge inhibitor, or increasing the amount of addition of the overcharge inhibitor.

プラグインハイブリッド車(PHV)あるいは電気自動車(EV)等の用途では、リチウムイオン二次電池に高容量が求められる。
しかしながら、上記対策を実施すると、電池容量が低下する傾向がある。
In applications such as plug-in hybrid vehicles (PHV) or electric vehicles (EV), high capacity is required for lithium ion secondary batteries.
However, when the above measures are implemented, the battery capacity tends to decrease.

リチウムイオン二次電池の電池容量を高めるためには、炭素等からなる負極活物質の比表面積は小さい方が好ましい。しかしながら、負極活物質の比表面積を減少させると、負極におけるプロトン還元性能が低下して、水素ガス発生量が低下する傾向がある。   In order to increase the battery capacity of the lithium ion secondary battery, it is preferable that the specific surface area of the negative electrode active material made of carbon or the like is small. However, when the specific surface area of the negative electrode active material is decreased, the proton reduction performance in the negative electrode is lowered, and the hydrogen gas generation amount tends to be reduced.

負極活物質の比表面積を増加すれば、プロトンが負極で還元されやすくなり、水素ガス発生量を増加させることができる。しかしながら、負極活物質の比表面積を増加させると、電池容量が低下する傾向がある。   If the specific surface area of the negative electrode active material is increased, protons are easily reduced at the negative electrode, and the amount of hydrogen gas generated can be increased. However, when the specific surface area of the negative electrode active material is increased, the battery capacity tends to decrease.

上記のように、従来の非水電解質二次電池では、電池容量と過充電時のガス発生量とは背反する特性であり、これらを両立することは難しい。   As described above, in the conventional nonaqueous electrolyte secondary battery, the battery capacity and the amount of gas generated at the time of overcharging are contradictory characteristics, and it is difficult to achieve both of them.

本発明は上記事情に鑑みてなされたものであり、電池容量等の電池性能を損なうことなく、過充電時のガス発生量を高めることが可能な非水電解質二次電池を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery that can increase the amount of gas generated during overcharge without impairing battery performance such as battery capacity. It is what.

本発明の非水電解質二次電池は、
正極と、負極活物質を含む負極と、過充電時に酸化分解されてプロトンを発生する添加剤が添加された非水電解質と、電池内圧が所定値以上になると電流を遮断する電流遮断機構とを備えた非水電解質二次電池であって、
前記負極活物質の粒子表面にプロトン還元作用を有する触媒が担持されたものである。
The non-aqueous electrolyte secondary battery of the present invention is
A positive electrode, a negative electrode including a negative electrode active material, a non-aqueous electrolyte to which an additive that is oxidatively decomposed and generates protons during overcharge is added, and a current blocking mechanism that blocks current when a battery internal pressure exceeds a predetermined value. A non-aqueous electrolyte secondary battery comprising:
A catalyst having a proton reducing action is supported on the particle surface of the negative electrode active material.

本発明によれば、電池容量等の電池性能を損なうことなく、過充電時のガス発生量を高めることが可能な非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery which can raise the gas generation amount at the time of overcharge can be provided, without impairing battery performance, such as battery capacity.

本発明に係る非水電解質二次電池の構成例を模式的に示す全体図である。1 is an overall view schematically showing a configuration example of a nonaqueous electrolyte secondary battery according to the present invention. 図1の非水電解質二次電池の部分断面図である。It is a fragmentary sectional view of the nonaqueous electrolyte secondary battery of FIG. 従来及び本発明の負極活物質における、負極活物質の粒子径・比表面積・イメージ図と電池容量と水素ガス発生量との関係を示す表である。It is a table | surface which shows the relationship between the particle diameter of a negative electrode active material, a specific surface area, an image figure, battery capacity, and hydrogen gas generation amount in the negative electrode active material of the past and this invention. [実施例]において、負極活物質の比表面積と電池容量との関係を示すグラフである。In [Example], it is a graph which shows the relationship between the specific surface area of a negative electrode active material, and battery capacity. [実施例]において、負極活物質の比表面積と容量維持率との関係を示すグラフである。In [Example], it is a graph which shows the relationship between the specific surface area of a negative electrode active material, and a capacity | capacitance maintenance factor. [実施例]において、負極活物質における触媒担持の有無と、負極活物質の比表面積と、ガス発生量との関係を示すグラフである。In [Example], it is a graph which shows the relationship between the presence or absence of catalyst loading in the negative electrode active material, the specific surface area of the negative electrode active material, and the amount of gas generated.

以下、本発明について詳述する。
本発明の非水電解質二次電池は、正極と、負極活物質を含む負極と、過充電時に酸化分解されてプロトンを発生する添加剤が添加された非水電解質と、電池内圧が所定値以上になると電流を遮断する電流遮断機構とを備え、負極活物質の粒子表面にプロトン還元作用を有する触媒が担持されたものである。
Hereinafter, the present invention will be described in detail.
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode containing a negative electrode active material, a non-aqueous electrolyte to which an additive that is oxidized and decomposed during overcharge to generate protons, and the internal pressure of the battery is equal to or higher than a predetermined value. Then, a current interrupting mechanism for interrupting the current is provided, and a catalyst having a proton reducing action is supported on the particle surface of the negative electrode active material.

以降、過充電時に酸化分解されてプロトンを発生する添加剤は、「過充電防止剤」と称す。   Hereinafter, an additive that is oxidatively decomposed to generate protons during overcharge is referred to as an “overcharge inhibitor”.

図1及び図2に、非水電解質二次電池の構成例を模式的に示す。図1は全体図、図2は部分断面図である。いずれも模式図である。   FIG. 1 and FIG. 2 schematically show a configuration example of a nonaqueous electrolyte secondary battery. 1 is an overall view, and FIG. 2 is a partial cross-sectional view. Both are schematic diagrams.

図1に示す非水電解質二次電池1は、外装体11内に、図2に示す積層体20と、過充電防止剤が添加された非水電解質(符号略)とが収容されたものである。
積層体20は、集電体上に粒子状の正極活物質が塗布された正極21と、集電体上に粒子状の負極活物質が塗布された負極22と、樹脂製セパレータ23とが積層されたものである。
A non-aqueous electrolyte secondary battery 1 shown in FIG. 1 is a battery in which a laminate 20 shown in FIG. 2 and a non-aqueous electrolyte (reference numeral omitted) to which an overcharge preventing agent is added are accommodated in an exterior body 11. is there.
The laminate 20 includes a positive electrode 21 in which a particulate positive electrode active material is applied on a current collector, a negative electrode 22 in which a particulate negative electrode active material is applied on a current collector, and a resin separator 23. It has been done.

非水電解質二次電池1には、外装体11内に、電池内圧が所定値以上になると電流を遮断する電流遮断機構13が設けられている。電流遮断機構13の設置箇所は、電流遮断作用に応じて設計される。   The nonaqueous electrolyte secondary battery 1 is provided with a current interruption mechanism 13 that interrupts current when the internal pressure of the battery becomes a predetermined value or more in the exterior body 11. The installation location of the current interruption mechanism 13 is designed according to the current interruption action.

電流遮断機構13を備えた非水電解質二次電池では、非水電解質に、過充電時に酸化分解されてプロトンを発生する過充電防止剤が添加される。かかる構成では、過充電時には非水電解質中の過充電防止剤が分解されてプロトンが発生し、このプロトンが負極で還元されて水素ガスが発生する。このガス発生によって電池内圧が上昇し、電流遮断機構13によって電流が遮断される。   In the nonaqueous electrolyte secondary battery provided with the current interruption mechanism 13, an overcharge inhibitor that is oxidized and decomposed during overcharge to generate protons is added to the nonaqueous electrolyte. In such a configuration, during overcharging, the overcharge inhibitor in the non-aqueous electrolyte is decomposed to generate protons, and the protons are reduced at the negative electrode to generate hydrogen gas. The internal pressure of the battery rises due to this gas generation, and the current is interrupted by the current interrupt mechanism 13.

電流遮断機構13としては公知の機構を採用することができる。
電流遮断機構13としては、電池内圧が上昇することによって変形して充電電流の接点を切る構造体、電池内圧をセンサで検知して充電を停止する外部回路、電池内圧による電池の変形をセンサで検知して充電を停止する外部回路、及び、電池内圧が上昇することによって変形して正極と負極とを短絡させる構造体などを例示することができる。
例えば、電池内圧が上昇することによって変形して充電電流の接点を切る構造体等は、シンプルな構造でかつ電流遮断効果が高いので好ましい。
A known mechanism can be adopted as the current interrupt mechanism 13.
The current interrupting mechanism 13 includes a structure that is deformed by increasing the battery internal pressure and cuts the contact point of the charging current, an external circuit that detects the battery internal pressure by the sensor and stops charging, and the battery deformation due to the battery internal pressure is detected by the sensor. Examples include an external circuit that detects and stops charging, and a structure that deforms when the battery internal pressure rises to short-circuit the positive electrode and the negative electrode.
For example, a structure that is deformed by cutting the contact point of the charging current by increasing the battery internal pressure is preferable because it has a simple structure and a high current blocking effect.

外装体11の外面に、外部接続用の2個の端子(プラス端子及びマイナス端子)12が設けられている。   Two terminals (a plus terminal and a minus terminal) 12 for external connection are provided on the outer surface of the exterior body 11.

非水電解質二次電池としては、リチウムイオン二次電池等が挙げられる。
以下、リチウムイオン二次電池を例として、非水電解質二次電池の主な構成要素について説明する。
Examples of the non-aqueous electrolyte secondary battery include a lithium ion secondary battery.
Hereinafter, the main components of the nonaqueous electrolyte secondary battery will be described by taking a lithium ion secondary battery as an example.

<正極>
正極は、公知の方法により、アルミニウム箔などの正極集電体に正極活物質を塗布して、製造することができる。
公知の正極活物質としては特に制限なく、例えば、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1−x)、及びLiNiCoMn(1−x−y)等のリチウム含有複合酸化物等が挙げられる(式中、0<x<1、0<y<1)。
<Positive electrode>
The positive electrode can be manufactured by applying a positive electrode active material to a positive electrode current collector such as an aluminum foil by a known method.
Known no particular limitation on the positive electrode active material, for example, LiCoO 2, LiMnO 2, LiMn 2 O 4, LiNiO 2, LiNi x Co (1-x) O 2, and LiNi x Co y Mn (1- x-y And lithium-containing composite oxides such as O 2 (where 0 <x <1, 0 <y <1).

例えば、N−メチル−2−ピロリドン等の分散剤を用い、上記の正極活物質と、炭素粉末等の導電剤と、ポリフッ化ビニリデン(PVDF)等の結着剤とを混合して、スラリーを得、このスラリーをアルミニウム箔等の集電体上に塗布し、乾燥し、プレス加工して、正極を得ることができる。
正極の目付は特に制限なく、1.5〜15mg/cmが好ましい。正極の目付が過小では均一な塗布が難しく、過大では集電体から剥離する恐れがある。
For example, using a dispersant such as N-methyl-2-pyrrolidone, the above positive electrode active material, a conductive agent such as carbon powder, and a binder such as polyvinylidene fluoride (PVDF) are mixed to form a slurry. The slurry can be applied onto a current collector such as an aluminum foil, dried, and pressed to obtain a positive electrode.
The basis weight of the positive electrode is not particularly limited and is preferably 1.5 to 15 mg / cm 2 . If the basis weight of the positive electrode is too small, uniform application is difficult, and if it is too large, there is a risk of peeling from the current collector.

<負極>
負極は、公知の方法により、銅箔などの負極集電体に負極活物質を塗布して、製造することができる。
負極活物質としては特に制限なく、Li/Li+基準で2.0V以下にリチウム吸蔵能力を持つものが好ましく用いられる。負極活物質としては、黒鉛等の炭素、金属リチウム、リチウム合金、リチウムイオンのド−プ・脱ド−プが可能な遷移金属酸化物/遷移金属窒化物/遷移金属硫化物、及び、これらの組合わせ等が挙げられる。
<Negative electrode>
The negative electrode can be produced by applying a negative electrode active material to a negative electrode current collector such as a copper foil by a known method.
The negative electrode active material is not particularly limited, and a material having a lithium storage capacity of 2.0 V or less on the basis of Li / Li + is preferably used. As the negative electrode active material, carbon such as graphite, metallic lithium, lithium alloy, transition metal oxide / transition metal nitride / transition metal sulfide capable of doping / dedoping lithium ions, and these A combination etc. are mentioned.

例えば、水等の分散剤を用い、上記の負極活物質と、変性スチレン−ブタジエン共重合体ラテックス等の結着剤と、必要に応じてカルボキシメチルセルロースNa塩(CMC)等の増粘剤とを混合して、スラリーを得、このスラリーを銅箔等の負極集電体上に塗布し、乾燥し、プレス加工して、負極を得ることができる。
負極の目付は特に制限なく、1.5〜15mg/cmが好ましい。負極の目付が過小では均一な塗布が難しく、過大では集電体から剥離する恐れがある。
For example, using a dispersant such as water, the negative electrode active material described above, a binder such as a modified styrene-butadiene copolymer latex, and a thickener such as carboxymethyl cellulose Na salt (CMC) as necessary. Mixing is performed to obtain a slurry, and this slurry is applied onto a negative electrode current collector such as a copper foil, dried, and pressed to obtain a negative electrode.
The basis weight of the negative electrode is not particularly limited and is preferably 1.5 to 15 mg / cm 2 . If the basis weight of the negative electrode is too small, uniform application is difficult, and if it is too large, there is a risk of peeling from the current collector.

リチウムイオン二次電池において、負極活物質には、リチウムの吸蔵及び放出が可能な炭素材料が広く使用されている。特に黒鉛等の高結晶性炭素は、放電電位が平坦であり、真密度が高く、かつ充填性が良いなどの特性を有していることから、市販のリチウムイオン二次電池の多くの負極活物質として使用されている。したがって、負極活物質としては黒鉛等が特に好ましい。   In a lithium ion secondary battery, a carbon material capable of inserting and extracting lithium is widely used as a negative electrode active material. In particular, highly crystalline carbon such as graphite has characteristics such as a flat discharge potential, high true density, and good fillability. Therefore, many negative electrode actives of commercially available lithium ion secondary batteries are used. It is used as a substance. Accordingly, graphite and the like are particularly preferable as the negative electrode active material.

本発明の非水電解質二次電池において、負極活物質の粒子表面にプロトン還元作用を有する少なくとも1種の触媒が担持されている。
触媒としては、プロトン還元作用があるものであればよく、Pt、Ru、Rh、Pd、Au、及びAgからなる群より選ばれた少なくとも1種、これらを含有する金属化合物、及びこれらの組合わせ等が好ましい。
In the nonaqueous electrolyte secondary battery of the present invention, at least one type of catalyst having a proton reducing action is supported on the surface of the negative electrode active material particles.
Any catalyst may be used as long as it has a proton reducing action. At least one selected from the group consisting of Pt, Ru, Rh, Pd, Au, and Ag, a metal compound containing these, and a combination thereof Etc. are preferred.

負極活物質の粒子表面に触媒を担持させる方法は特に制限されない。
例えば、Pt触媒を用いる場合、HPtCl(ヘキサクロロ白金酸)の水溶液と黒鉛等の負極活物質とを混合し、これを加熱還元することで、負極活物質の粒子表面にPt触媒を担持させることができる。
触媒の担持量は特に制限されず、負極活物質に対して、上限で30〜40質量%まで担持させることができる。触媒の担持量は、負極活物質に対して例えば2〜10質量%が好ましい。
The method for supporting the catalyst on the particle surface of the negative electrode active material is not particularly limited.
For example, when a Pt catalyst is used, an aqueous solution of H 2 PtCl 6 (hexachloroplatinic acid) and a negative electrode active material such as graphite are mixed, and this is heated and reduced to support the Pt catalyst on the particle surface of the negative electrode active material. Can be made.
The amount of the catalyst supported is not particularly limited, and can be supported up to 30 to 40% by mass with respect to the negative electrode active material. The supported amount of the catalyst is preferably 2 to 10% by mass with respect to the negative electrode active material.

「発明が解決しようとする課題」の項において説明したように、従来技術においては以下の課題がある。
過充電時のガス発生量を高めるために、過充電防止剤の分解反応及びプロトン生成反応の反応面積を増加させたり、過充電防止剤の添加量を増加させると、電池容量が低下する傾向がある。
電池容量を高めるためには負極活物質の比表面積は小さい方が好ましいが、負極活物質の粒子径を大きくして負極活物質の比表面積を減少させると、負極におけるプロトンの還元性能が低下して、水素ガス発生量が低下する傾向がある。
負極活物質の粒子径を小さくして比表面積を増加すれば、水素ガス発生量を増加させることができるが、電池容量が低下する傾向がある。
As described in the section “Problems to be Solved by the Invention”, the prior art has the following problems.
In order to increase the amount of gas generated during overcharge, if the reaction area of the decomposition reaction and proton generation reaction of the overcharge inhibitor is increased or the amount of addition of the overcharge inhibitor is increased, the battery capacity tends to decrease. is there.
In order to increase the battery capacity, it is preferable that the specific surface area of the negative electrode active material is small. However, if the specific surface area of the negative electrode active material is decreased by increasing the particle size of the negative electrode active material, the proton reduction performance in the negative electrode is reduced. Therefore, the hydrogen gas generation amount tends to decrease.
If the specific surface area is increased by reducing the particle size of the negative electrode active material, the amount of hydrogen gas generated can be increased, but the battery capacity tends to decrease.

本発明では、負極活物質の粒子表面にプロトン還元作用を有する触媒が担持させることで、負極活物質の粒子径を小さくして負極活物質の比表面積を大きくしなくても、負極におけるプロトンの還元性能を高め、水素ガス発生量を増加させることができる。
本発明では、負極活物質の比表面積を大きくしなくてもよいので、電池容量を低減することなく、水素ガス発生量増加の効果が得られる。
In the present invention, a catalyst having a proton reducing action is supported on the particle surface of the negative electrode active material, thereby reducing the particle size of the negative electrode active material and increasing the specific surface area of the negative electrode active material. Reduction performance can be improved and the amount of hydrogen gas generation can be increased.
In the present invention, since it is not necessary to increase the specific surface area of the negative electrode active material, the effect of increasing the amount of hydrogen gas generated can be obtained without reducing the battery capacity.

触媒担持の有無にかかわらず、一般に、負極活物質の比表面積が小さくなる程、充放電を繰り返した際のリチウム析出耐性が低下して、容量維持率が低下する傾向がある(図5を参照)。また、負極活物質の比表面積が大きくなる程、黒鉛等からなる負極活物質における不可逆容量が増加して、電池容量が低下する傾向がある(図4を参照)。   Regardless of whether or not the catalyst is supported, generally, the smaller the specific surface area of the negative electrode active material, the lower the lithium deposition resistance when charging and discharging are repeated, and the capacity retention rate tends to decrease (see FIG. 5). ). Further, as the specific surface area of the negative electrode active material increases, the irreversible capacity of the negative electrode active material made of graphite or the like increases and the battery capacity tends to decrease (see FIG. 4).

従来、プラグインハイブリッド車(PHV)あるいは電気自動車(EV)に搭載されるリチウムイオン二次電池等においては、一般に、黒鉛等の負極活物質の比表面積は、2.5〜5.0m/gの範囲内で用いられている。
本発明において、負極活物質の比表面積は、2.0〜3.5m/gであることが好ましい。かかる範囲であれば、電池容量と充放電を繰り返した際の容量維持率がいずれも良好な非水電解質二次電池を提供できる。
本発明では、負極活物質の表面に触媒を担持させているので、過充電時のみならず、通常の使用時でも、負極における還元作用が効果的に働く。したがって、負極活物質の比表面積を従来よりも低めに設定しても、良好な特性が得られる。
Conventionally, in a lithium ion secondary battery or the like mounted on a plug-in hybrid vehicle (PHV) or an electric vehicle (EV), the specific surface area of a negative electrode active material such as graphite is generally 2.5 to 5.0 m 2 / It is used within the range of g.
In the present invention, the specific surface area of the negative electrode active material is preferably 2.0 to 3.5 m 2 / g. Within such a range, it is possible to provide a nonaqueous electrolyte secondary battery in which both the battery capacity and the capacity retention rate upon repeated charge / discharge are good.
In the present invention, since the catalyst is supported on the surface of the negative electrode active material, the reducing action at the negative electrode works effectively not only during overcharge but also during normal use. Therefore, even if the specific surface area of the negative electrode active material is set lower than before, good characteristics can be obtained.

図3に従来及び本発明の負極活物質における、負極活物質の粒子径・比表面積・イメージ図と、電池容量と、水素ガス発生量との相対関係を示す表を示す。表中の「大」・「小」、「多」・「少」は、相対的な関係を示している。図中、符号31は負極活物質の粒子、符号32は触媒を示している。   FIG. 3 shows a particle size, specific surface area, and image diagram of the negative electrode active material, and a table showing the relative relationship between the battery capacity and the amount of hydrogen gas generation in the conventional and the negative electrode active materials of the present invention. “Large”, “small”, “many”, and “small” in the table indicate relative relationships. In the drawing, reference numeral 31 denotes particles of the negative electrode active material, and reference numeral 32 denotes a catalyst.

図中、「従来1」は、負極活物質の径が相対的に小さく、比表面積が相対的に大きく、3.5m/g以上であり、触媒担持なしのものである。この負極活物質を用いたリチウムイオン二次電池では、水素ガス発生量は相対的に多いが、電池容量は相対的に小さい。
「従来2」は、負極活物質の径が相対的に大きく、比表面積が相対的に小さく、2.0〜3.5m/gであり、触媒担持なしのものである。この負極活物質を用いたリチウムイオン二次電池では、電池容量は相対的に大きいが、水素ガス発生量は相対的に少ない。
「本発明」は、負極活物質の径が相対的に大きく、比表面積が相対的に小さく、2.0〜3.5m/gであり、触媒担持ありのものである。この負極活物質を用いたリチウムイオン二次電池では、電池容量は相対的に大きく、かつ、水素ガス発生量は相対的に多い。つまり、「本発明」では、「従来1」と「従来2」の欠点がいずれもカバーされ、良好な特性を有するものとなっている。
In the figure, “Conventional 1” is one in which the diameter of the negative electrode active material is relatively small, the specific surface area is relatively large, 3.5 m 2 / g or more, and no catalyst is supported. In the lithium ion secondary battery using this negative electrode active material, the amount of hydrogen gas generated is relatively large, but the battery capacity is relatively small.
Conventional 2” has a negative electrode active material having a relatively large diameter, a relatively small specific surface area, 2.0 to 3.5 m 2 / g, and no catalyst supported. In the lithium ion secondary battery using this negative electrode active material, the battery capacity is relatively large, but the hydrogen gas generation amount is relatively small.
In the present invention, the negative electrode active material has a relatively large diameter, a relatively small specific surface area, 2.0 to 3.5 m 2 / g, and a catalyst supported. In a lithium ion secondary battery using this negative electrode active material, the battery capacity is relatively large and the amount of hydrogen gas generated is relatively large. In other words, the “present invention” covers both the disadvantages of “Conventional 1” and “Conventional 2” and has good characteristics.

負極活物質における触媒担持の有無と、負極活物質の比表面積と、水素ガス発生量との関係の例については、図6を参照されたい。   Refer to FIG. 6 for an example of the relationship between the presence or absence of catalyst loading in the negative electrode active material, the specific surface area of the negative electrode active material, and the amount of hydrogen gas generated.

<非水電解質>
非水電解質としては公知のものが使用でき、液状、ゲル状もしくは固体状の非水電解質が使用できる。
例えば、プロピレンカーボネ−トあるいはエチレンカーボネ−ト等の高誘電率カーボネート溶媒と、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート等の低粘度カーボネート溶媒との混合溶媒に、リチウム含有電解質を溶解した非水電界液が好ましく用いられる。
<Nonaqueous electrolyte>
As the non-aqueous electrolyte, known ones can be used, and liquid, gel-like or solid non-aqueous electrolytes can be used.
For example, a lithium-containing electrolyte is dissolved in a mixed solvent of a high dielectric constant carbonate solvent such as propylene carbonate or ethylene carbonate and a low viscosity carbonate solvent such as diethyl carbonate, methyl ethyl carbonate, or dimethyl carbonate. A water electrolysis solution is preferably used.

混合溶媒としては例えば、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート(EMC)の混合溶媒が好ましく用いられる。
リチウム含有電解質としては例えば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF{C(2k+1)(6−n)(n=1〜5の整数、k=1〜8の整数)等のリチウム塩、及びこれらの組合わせが挙げられる。
As the mixed solvent, for example, a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) is preferably used.
Examples of the lithium-containing electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiPF n {C k F (2k + 1) )} (6-n) ( n = 1~5 integer, k = 1 to 8 integer) lithium salts such as, and combinations thereof.

過充電時に分解されてプロトンを発生する過充電防止剤としては公知のものが使用でき、例えば、「背景技術」の項で挙げた特許文献1に記載の過充電防止剤などを1種又は複数種使用できる。   As the overcharge inhibitor that decomposes during overcharge and generates protons, known ones can be used. For example, one or more of the overcharge inhibitors described in Patent Document 1 listed in the “Background Art” section can be used. Seeds can be used.

特許文献1には、従来技術の説明において、過充電防止剤として、ビフェニル類、アルキルベンゼン類、2個の芳香族基で置換されたアルキル化合物、フッ素原子置換芳香族化合物類、及び塩素原子置換ビフェニルが挙げられている(段落0009、0011、0014)。
特許文献1の請求項1には、過充電防止剤として、塩素原子置換ビフェニル、塩素原子置換ナフタレン、塩素原子置換フルオレン、及び塩素原子置換ジフェニルメタンからなる群から選ばれる少なくとも1種の塩素原子置換芳香族化合物が挙げられている。
Patent Document 1 discloses, as an overcharge inhibitor, in the description of the prior art, biphenyls, alkylbenzenes, alkyl compounds substituted with two aromatic groups, fluorine atom-substituted aromatic compounds, and chlorine atom-substituted biphenyls. (Paragraphs 0009, 0011, and 0014).
Claim 1 of Patent Document 1 includes at least one chlorine atom-substituted fragrance selected from the group consisting of chlorine atom-substituted biphenyl, chlorine atom-substituted naphthalene, chlorine atom-substituted fluorene, and chlorine atom-substituted diphenylmethane as an overcharge inhibitor. Group compounds are mentioned.

<セパレータ>
セパレータは、正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜であればよく、多孔質高分子フィルムが好ましく使用される。
セパレータとしては例えば、PP(ポリプロピレン)製多孔質フィルム、PE(ポリエチレン)製多孔質フィルム、あるいは、PP(ポリプロピレン)−PE(ポリエチレン)の積層型多孔質フィルム等のポリオレフィン製多孔質フィルムが好ましく用いられる。
<Separator>
The separator may be a film that electrically insulates the positive electrode and the negative electrode and is permeable to lithium ions, and a porous polymer film is preferably used.
As the separator, for example, a porous film made of polyolefin such as a porous film made of PP (polypropylene), a porous film made of PE (polyethylene), or a laminated porous film of PP (polypropylene) -PE (polyethylene) is preferably used. It is done.

<外装体>
外装体としては公知のものが使用できる。
二次電池の型としては、円筒型、コイン型、角型、あるいはフィルム型(ラミネート型)等があり、所望の型に合わせて外装体を選定することができる。
<Exterior body>
A well-known thing can be used as an exterior body.
As a type of the secondary battery, there are a cylindrical type, a coin type, a square type, a film type (laminate type), and the like, and an exterior body can be selected according to a desired type.

本発明によれば、電池容量等の電池性能を損なうことなく、過充電時のガス発生量を高めることが可能な非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery which can raise the gas generation amount at the time of overcharge can be provided, without impairing battery performance, such as battery capacity.

本発明に係る実施例及び比較例について説明する。   Examples and comparative examples according to the present invention will be described.

[予備実験]
<正極活物質>
正極活物質として、下記式で表される3元系のリチウム複合酸化物を用いた。
LiMn1/3Co1/3Ni1/3
[Preliminary experiment]
<Positive electrode active material>
As the positive electrode active material, a ternary lithium composite oxide represented by the following formula was used.
LiMn 1/3 Co 1/3 Ni 1/3 O 2

<正極の製造>
分散剤としてN−メチル−2−ピロリドン((株)和光純薬工業社製)を用い、上記の正極活物質と、導電剤であるアセチレンブラック(電気化学工業(株)社製HS−100)と、結着剤であるPVDF((株)クレハ社製KFポリマー♯1120)とを、90/6/4(質量比)で混合して、スラリーを得た。
上記スラリーを集電体であるアルミニウム箔上にドクターブレード法で塗布し、150℃で30分間乾燥し、プレス機械を用いてプレス加工して、正極を得た。正極は、目付15mg/cm、厚み70μmとした。
<Production of positive electrode>
Using N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersant, the above positive electrode active material and acetylene black as a conductive agent (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) And PVDF (KF polymer # 1120 manufactured by Kureha Co., Ltd.) as a binder were mixed at 90/6/4 (mass ratio) to obtain a slurry.
The slurry was applied onto an aluminum foil as a current collector by a doctor blade method, dried at 150 ° C. for 30 minutes, and pressed using a press machine to obtain a positive electrode. The positive electrode had a basis weight of 15 mg / cm 2 and a thickness of 70 μm.

<負極>
負極活物質として、比表面積の異なる下記の黒鉛(いずれも触媒担持なし)を用いた。
比表面積1.5m/gの黒鉛、
比表面積2.0m/gの黒鉛、
比表面積3.0m/gの黒鉛、
比表面積4.0m/gの黒鉛。
<Negative electrode>
As the negative electrode active material, the following graphites having different specific surface areas (all without catalyst support) were used.
Graphite with a specific surface area of 1.5 m 2 / g,
Graphite with a specific surface area of 2.0 m 2 / g,
Graphite with a specific surface area of 3.0 m 2 / g,
Graphite with a specific surface area of 4.0 m 2 / g.

分散剤として水を用い、上記の負極活物質と、結着剤である変性スチレン−ブタジエン共重合体ラテックス(SBR)と、増粘剤であるカルボキシメチルセルロースNa塩(CMC)とを98/1/1(質量比)で混合して、スラリーを得た。
上記スラリーを集電体である銅箔上にドクターブレード法で塗布し、150℃で30分間乾燥し、プレス機械を用いてプレス加工して、負極を得た。負極は、目付8mg/cm、厚み70μmとした。
Using water as a dispersant, the negative electrode active material, a modified styrene-butadiene copolymer latex (SBR) as a binder, and a carboxymethyl cellulose Na salt (CMC) as a thickener are 98/1 / 1 (mass ratio) was mixed to obtain a slurry.
The slurry was applied onto a copper foil as a current collector by a doctor blade method, dried at 150 ° C. for 30 minutes, and pressed using a press machine to obtain a negative electrode. The negative electrode had a basis weight of 8 mg / cm 2 and a thickness of 70 μm.

<セパレータ>
PE(ポリエチレン)製多孔質フィルムからなる市販のセパレータを用意した。
<Separator>
A commercially available separator made of a PE (polyethylene) porous film was prepared.

<非水電解質>
エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート=3/3/4(体積比)の混合溶液を溶媒とし、電解質としてリチウム塩であるLiPFを1mol/Lの濃度で溶解し、さらに過充電防止剤としてシクロヘキシルベンゼン(CHB)を2質量%溶解して、非水電界液を調製した。
<Nonaqueous electrolyte>
A mixed solution of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate = 3/3/4 (volume ratio) is used as a solvent, and LiPF 6 which is a lithium salt as an electrolyte is dissolved at a concentration of 1 mol / L. Furthermore, 2 mass% of cyclohexylbenzene (CHB) was dissolved as an overcharge inhibitor to prepare a non-aqueous electric field solution.

<リチウムイオン二次電池の製造>
上記の正極と負極とセパレータと非水電解液とフィルム外装体を用い、公知方法により、フィルム型(ラミネート型)のリチウムイオン二次電池を製造した。
<Manufacture of lithium ion secondary batteries>
A film-type (laminate-type) lithium ion secondary battery was manufactured by a known method using the positive electrode, the negative electrode, the separator, the non-aqueous electrolyte, and the film outer package.

<充放電試験>
予備実験において得られた各リチウムイオン二次電池において、充放電試験を実施した。
25℃で、充電電圧4.1V(vs.Li/Li+)、放電電圧3.0V(vs.Li/Li+)、及び、電流密度1Cの条件で、1サイクルの充放電を行った。このときのCCCV容量を電池容量として求めた。
また、−30℃で、SOC60%、4Cの条件で充電し、その後放電する充放電を10000サイクル実施した。このときの容量維持率を求めた。
<Charge / discharge test>
A charge / discharge test was performed on each lithium ion secondary battery obtained in the preliminary experiment.
At 25 ° C., one cycle of charge / discharge was performed under the conditions of a charge voltage of 4.1 V (vs. Li / Li +), a discharge voltage of 3.0 V (vs. Li / Li +), and a current density of 1 C. The CCCV capacity at this time was determined as the battery capacity.
In addition, 10,000 cycles of charging / discharging were performed at −30 ° C. under the conditions of SOC 60%, 4C, and then discharging. The capacity retention rate at this time was determined.

負極活物質の比表面積と電池容量との関係、及び、負極活物質の比表面積と容量維持率との関係をそれぞれ図4、図5に示す。これらの図は、負極活物質の比表面積が4.0m/gのデータを100%としたときのものである。 4 and 5 show the relationship between the specific surface area of the negative electrode active material and the battery capacity, and the relationship between the specific surface area of the negative electrode active material and the capacity retention rate, respectively. These figures are obtained when the data of the specific surface area of the negative electrode active material being 4.0 m 2 / g is 100%.

触媒を担持させない場合、負極活物質の比表面積が増加すると、電池容量が低下する傾向にあることが示された。電池容量を考慮すれば、負極活物質の比表面積は3.5m/g以下が好ましいことが示された。
触媒を担持させない場合、負極活物質の比表面積が低下すると、容量維持率(Li析出耐性)が低下する傾向にあることが示された。容量維持率を考慮すれば、負極活物質の比表面積は2.0m/g以上が好ましいことが示された。
好ましい負極活物質の比表面積は、負極活物質への触媒担持の有無にかかわらず、同様である。
It was shown that when the catalyst is not supported, the battery capacity tends to decrease as the specific surface area of the negative electrode active material increases. Considering the battery capacity, it was shown that the specific surface area of the negative electrode active material is preferably 3.5 m 2 / g or less.
It was shown that when the catalyst is not supported, the capacity retention rate (Li precipitation resistance) tends to decrease as the specific surface area of the negative electrode active material decreases. Considering the capacity retention rate, it was shown that the specific surface area of the negative electrode active material is preferably 2.0 m 2 / g or more.
The specific surface area of the preferred negative electrode active material is the same regardless of whether or not the catalyst is supported on the negative electrode active material.

(実施例1)
負極活物質として、比表面積が2m/gの黒鉛にPt触媒を担持させたものを用いた。
PtCl(ヘキサクロロ白金酸)の水溶液と黒鉛とを90:10(固形分質量比)で混合し、これを120℃15時間で加熱還元することで、負極活物質の粒子表面にPt触媒を担持させた。Pt触媒の担持量は黒鉛に対して、10質量%であった。これを負極活物質とし、上記予備実験と同様にして、リチウムイオン二次電池を製造した。
Example 1
As the negative electrode active material, a graphite having a specific surface area of 2 m 2 / g and carrying a Pt catalyst was used.
An aqueous solution of H 2 PtCl 6 (hexachloroplatinic acid) and graphite were mixed at 90:10 (solid content mass ratio), and this was heated and reduced at 120 ° C. for 15 hours, so that a Pt catalyst was formed on the particle surface of the negative electrode active material. Was supported. The amount of Pt catalyst supported was 10% by mass with respect to graphite. Using this as a negative electrode active material, a lithium ion secondary battery was produced in the same manner as in the preliminary experiment.

<過充電試験>
予備実験と実施例1で得られたリチウムイオン二次電池について、過充電試験を実施した。
25℃で、SOC150%、4Cの条件で1回過充電したときのガス発生量を、浮力法(アルキメデス法)で求めた。過充電前後にそれぞれ、フィルム型(ラミネート型)のリチウムイオン二次電池を水中に浸漬させて、浮力から体積を求め、過充電前後の体積変化分をガス発生量として求めた。このガス発生量は、水素ガス発生量とみなせる。
<Overcharge test>
An overcharge test was performed on the lithium ion secondary battery obtained in the preliminary experiment and Example 1.
The amount of gas generated when the battery was once overcharged under the conditions of SOC 150%, 4C at 25 ° C. was determined by the buoyancy method (Archimedes method). Before and after overcharging, a film type (laminate type) lithium ion secondary battery was immersed in water, the volume was determined from buoyancy, and the volume change before and after overcharging was determined as the amount of gas generated. This gas generation amount can be regarded as the hydrogen gas generation amount.

予備実験において、負極活物質として比表面積4.0m/gの黒鉛(触媒担持なし)を用いて得られたリチウムイオン二次電池を比較例1とした。
予備実験において、負極活物質として比表面積2.0m/gの黒鉛(触媒担持なし)を用いて得られたリチウムイオン二次電池を比較例2とした。
In a preliminary experiment, a lithium ion secondary battery obtained using graphite having a specific surface area of 4.0 m 2 / g (no catalyst supported) as a negative electrode active material was used as Comparative Example 1.
In a preliminary experiment, a lithium ion secondary battery obtained using graphite (no catalyst support) having a specific surface area of 2.0 m 2 / g as a negative electrode active material was used as Comparative Example 2.

結果を図6に示す。
図6は、比較例1におけるガス発生量を100%としたときのデータである。
図示するように、黒鉛に触媒を担持させた実施例1では、比表面積が同じで触媒なしの黒鉛を用いた比較例2よりも、水素ガス発生量を大幅に増加させることができた。また、黒鉛に触媒を担持させた実施例1では、比表面積が大きく触媒担持なしの黒鉛を用いた比較例1よりも、水素ガス発生量を増加させることができた。これらの結果から、負極活物質の表面に触媒を担持させることにより、負極活物質の比表面積を大きくしなくても、水素ガス発生量を増加できることが示された。
The results are shown in FIG.
FIG. 6 is data when the gas generation amount in Comparative Example 1 is 100%.
As shown in the figure, in Example 1 in which a catalyst was supported on graphite, the amount of hydrogen gas generated could be significantly increased compared to Comparative Example 2 using graphite having the same specific surface area and no catalyst. Further, in Example 1 in which the catalyst was supported on graphite, the amount of hydrogen gas generated could be increased compared to Comparative Example 1 in which graphite having a large specific surface area and no catalyst was supported. From these results, it was shown that by supporting the catalyst on the surface of the negative electrode active material, the amount of hydrogen gas generated can be increased without increasing the specific surface area of the negative electrode active material.

本発明の非水電解質二次電池は、プラグインハイブリッド車(PHV)あるいは電気自動車(EV)に搭載されるリチウムイオン二次電池等に好ましく適用できる。   The nonaqueous electrolyte secondary battery of the present invention can be preferably applied to a lithium ion secondary battery mounted on a plug-in hybrid vehicle (PHV) or an electric vehicle (EV).

1 非水電解質二次電池
11 外装体
12 端子
13 電流遮断機構
20 積層体
21 正極
22 負極
23 樹脂製セパレータ
31 負極活物質
32 触媒
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 11 Exterior body 12 Terminal 13 Current interruption | blocking mechanism 20 Laminated body 21 Positive electrode 22 Negative electrode 23 Resin separator 31 Negative electrode active material 32 Catalyst

Claims (6)

正極と、負極活物質を含む負極と、過充電時に酸化分解されてプロトンを発生する過充電防止剤が添加された非水電解質と、電池内圧が所定値以上になると電流を遮断する電流遮断機構とを備えた非水電解質二次電池であって、
前記過充電防止剤が塩素原子置換芳香族化合物及び/又はフッ素原子置換芳香族化合物であり、
前記負極活物質の粒子表面にプロトン還元作用を有する触媒が担持された非水電解質二次電池。
A positive electrode, a negative electrode containing a negative electrode active material, a non-aqueous electrolyte to which an overcharge inhibitor that is oxidatively decomposed and generates protons during overcharge, and a current interruption mechanism that cuts off current when the battery internal pressure exceeds a predetermined value A non-aqueous electrolyte secondary battery comprising:
The overcharge inhibitor is a chlorine atom-substituted aromatic compound and / or a fluorine atom-substituted aromatic compound ,
A non-aqueous electrolyte secondary battery in which a catalyst having a proton reducing action is supported on the surface of particles of the negative electrode active material.
前記過充電防止剤が、塩素原子置換ビフェニル、塩素原子置換ナフタレン、塩素原子置換フルオレン、及び塩素原子置換ジフェニルメタンからなる群から選ばれた少なくとも1種の塩素原子置換芳香族化合物である請求項1に記載の非水電解質二次電池。

2. The overcharge inhibitor is at least one chlorine atom-substituted aromatic compound selected from the group consisting of chlorine atom-substituted biphenyl, chlorine atom-substituted naphthalene, chlorine atom-substituted fluorene, and chlorine atom-substituted diphenylmethane. The nonaqueous electrolyte secondary battery as described.

前記負極活物質の比表面積が2.0〜3.5m/gである請求項1又は2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 , wherein the negative electrode active material has a specific surface area of 2.0 to 3.5 m 2 / g. 前記触媒がPt、Ru、Rh、Pd、Au、及びAgからなる群より選ばれた少なくとも1種を含む請求項1〜3のいずれかに記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 , wherein the catalyst includes at least one selected from the group consisting of Pt, Ru, Rh, Pd, Au, and Ag. 前記負極活物質が黒鉛である請求項1〜4のいずれかに記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 , wherein the negative electrode active material is graphite. リチウムイオン二次電池である請求項1〜5のいずれかに記載の非水電解質二次電池。 It is a lithium ion secondary battery, The nonaqueous electrolyte secondary battery in any one of Claims 1-5 .
JP2011226157A 2011-10-13 2011-10-13 Nonaqueous electrolyte secondary battery Active JP5644732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226157A JP5644732B2 (en) 2011-10-13 2011-10-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226157A JP5644732B2 (en) 2011-10-13 2011-10-13 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013089320A JP2013089320A (en) 2013-05-13
JP5644732B2 true JP5644732B2 (en) 2014-12-24

Family

ID=48533054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226157A Active JP5644732B2 (en) 2011-10-13 2011-10-13 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5644732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494372A (en) * 2017-09-13 2019-03-19 丰田自动车株式会社 The manufacturing method of the cathode of lithium ion secondary battery, lithium ion secondary battery and lithium ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022316B2 (en) * 2018-02-05 2022-02-18 トヨタ自動車株式会社 Sealed battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178815B2 (en) * 1998-07-03 2001-06-25 株式会社日立製作所 Lithium secondary battery
JP3113652B1 (en) * 1999-06-30 2000-12-04 三洋電機株式会社 Lithium secondary battery
JP2005166684A (en) * 2005-02-07 2005-06-23 Ube Ind Ltd Non-aqueous secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494372A (en) * 2017-09-13 2019-03-19 丰田自动车株式会社 The manufacturing method of the cathode of lithium ion secondary battery, lithium ion secondary battery and lithium ion secondary battery
CN109494372B (en) * 2017-09-13 2021-08-31 丰田自动车株式会社 Negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery

Also Published As

Publication number Publication date
JP2013089320A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
US10673046B2 (en) Separator for lithium metal based batteries
KR101917265B1 (en) Nonaqueous electrolyte secondary battery
CN108232099B (en) Lithium ion secondary battery
US11114696B2 (en) Electrolyte system for lithium-chalcogen batteries
CN105990599B (en) Nonaqueous electrolyte secondary battery
JP4240078B2 (en) Lithium secondary battery
JP2013138014A (en) Nonaqueous electrolyte battery and battery system
US20190288273A1 (en) Electrolyte systems for silicon-containing electrodes
KR20150133128A (en) Non-aqueous electrolyte secondary battery
WO2015001411A1 (en) Non-aqueous electrolyte secondary battery
CN111354980B (en) Manufacturing method of lithium ion battery and lithium ion battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
US10637048B2 (en) Silicon anode materials
US10340525B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP5776663B2 (en) Non-aqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5790772B2 (en) Nonaqueous electrolyte secondary battery
JP2014035963A (en) Positive electrode material, lithium ion power storage device, and method of manufacturing the same
KR101424865B1 (en) Method of manufacturing positive electrode active material and electrode, and electrode
JP7301266B2 (en) Non-aqueous electrolyte secondary battery
JP2011103181A (en) Lithium secondary battery
JP2013109931A (en) Electrode for nonaqueous electrolytic secondary battery use, and nonaqueous electrolytic secondary battery
JP5644732B2 (en) Nonaqueous electrolyte secondary battery
EP4270548A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R151 Written notification of patent or utility model registration

Ref document number: 5644732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151