JPH11154512A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11154512A
JPH11154512A JP9336663A JP33666397A JPH11154512A JP H11154512 A JPH11154512 A JP H11154512A JP 9336663 A JP9336663 A JP 9336663A JP 33666397 A JP33666397 A JP 33666397A JP H11154512 A JPH11154512 A JP H11154512A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte secondary
secondary battery
composite oxide
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9336663A
Other languages
Japanese (ja)
Inventor
Toshio Tsubata
敏男 津端
Fumishige Nishikawa
文茂 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9336663A priority Critical patent/JPH11154512A/en
Publication of JPH11154512A publication Critical patent/JPH11154512A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery that can improve its reliability during high temperature storage by using a composite oxide, as a positive electrode active material, in which the content of sulfur is not more than 4000 ppm and which includes lithium and manganese. SOLUTION: In a nonaqueous electrolyte secondary battery that includes a negative electrode active material capable of occluding and effusing lithium ions, a lithium ion conductive nonaqueous electrolyte and a positive electrode active material formed from a lithium containing metal oxide capable of occluding and effusing lithium ions, this nonaqueous electrolyte secondary battery is characterized by such features that the lithium containing metal oxide is a composite oxide including spinel group lithium and manganese that is expressed by a general formula, Li[Lix Mn2-x ]O4 , where the value x is in the range of 0<=x<=0.18 and the content of sulfur contained in the composite oxide is not more than 4000 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムとマンガ
ンの複合酸化物を正極活物質として利用した非水電解質
二次電池の保存特性の改善に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of storage characteristics of a non-aqueous electrolyte secondary battery using a composite oxide of lithium and manganese as a positive electrode active material.

【0002】[0002]

【従来の技術】近年の電子技術の発展により、驚くべき
速度で機器の小型、軽量化が進められている。このた
め、移動体通信機器やポータブルコンピュータなどのモ
バイル機器が広く普及し始めていて、これらモバイル機
器の電源として高エネルギー密度の二次電池が要望され
ている。中でも、非水電解質二次電池は従来のニカド電
池やニッケル水素電池以上の高電圧であることから、重
量および体積あたりのエネルギー密度が向上する。した
がって、機器の更なる小型化、軽量化が期待できる電源
であるとして渇望されている。しかしながら、リチウム
金属およびリチウム合金を負極材料として用いた非水電
解質二次電池では、充放電を繰り返した時に負極上にリ
チウムの樹枝状突起が形成されサイクル性能が低下した
り、高温下での信頼性に問題があるなどの理由によりな
かなか実用化されなかった。
2. Description of the Related Art With the recent development of electronic technology, devices have been reduced in size and weight at a surprising speed. For this reason, mobile devices such as mobile communication devices and portable computers have begun to spread widely, and secondary batteries having a high energy density have been demanded as power sources for these mobile devices. Above all, the non-aqueous electrolyte secondary battery has a higher voltage than conventional nickel-cadmium batteries and nickel-metal hydride batteries, so that the energy density per weight and volume is improved. Therefore, there is a strong demand for a power source that can be expected to further reduce the size and weight of the device. However, in non-aqueous electrolyte secondary batteries using lithium metal and lithium alloy as the negative electrode material, when charge and discharge are repeated, lithium dendrites are formed on the negative electrode, resulting in poor cycle performance and reliability at high temperatures. It was not easily put into practical use due to problems such as the nature of the product.

【0003】これらの問題点を解決する手段として、負
極活物質としてリチウムを吸蔵放出可能な炭素材料、正
極活物質として層状構造を有するリチウムと遷移金属と
の複合酸化物を用いた非水電解質二次電池(特許第19
89293号明細書)が発明され、充電状態で4V以上
の電圧を有することから、モバイル機器の電源として広
く普及するようになってきている。しかし、現在の非水
電解質二次電池はコバルトを大量に含有していることか
ら高価であり、電源としての低価格化に限界があった。
このためコバルトをニッケルやマンガンで置き換える試
みが活発である。特に、遷移金属の中でも価格の安いマ
ンガンはコバルトを置き換えられるものとして最も期待
されている。
As means for solving these problems, a carbon material capable of inserting and extracting lithium as a negative electrode active material and a nonaqueous electrolyte using a composite oxide of lithium and a transition metal having a layered structure as a positive electrode active material are used. Battery (Patent No. 19
No. 89293), which has a voltage of 4 V or more in a charged state, and is widely used as a power source for mobile devices. However, current non-aqueous electrolyte secondary batteries are expensive because they contain a large amount of cobalt, and there has been a limit in reducing the price as a power source.
For this reason, attempts to replace cobalt with nickel or manganese are active. In particular, manganese, which is inexpensive among transition metals, is most expected to replace cobalt.

【0004】化学量論組成のリチウムマンガン酸化物は
サイクル性能が悪く、これを改善する方法として、例え
ば特開平5−205744号公報に示されるようにマン
ガンの一部をリチウムで置換することが提案されてい
る。このようにマンガンの一部をリチウムで置換したリ
チウムマンガン酸化物は、Mn原料とLi原料を所望の
割合で混合し、700〜750℃以下の比較的低温で熱
処理しないと得ることができない。これは、800〜9
50℃程度の高温で熱処理を行うと、所望のLi/Mn
比で、かつ、スピネル単一相のリチウムマンガン酸化物
が得られないためである。このようにして得られたリチ
ウムマンガン酸化物を利用した非水電解質二次電池は、
高温保存時に内部インピーダンスが増加する、保存後に
容量が大きく低下する、容器が膨れるなど、特に高温貯
蔵時の信頼性に欠けるために、携帯機器用の電源として
不十分であった。
[0004] Lithium manganese oxide having a stoichiometric composition has poor cycle performance, and as a method for improving this, it has been proposed to replace part of manganese with lithium as disclosed in, for example, JP-A-5-205744. Have been. Such a lithium manganese oxide in which a part of manganese is replaced by lithium cannot be obtained unless a Mn raw material and a Li raw material are mixed at a desired ratio and heat-treated at a relatively low temperature of 700 to 750 ° C or lower. This is 800-9
When heat treatment is performed at a high temperature of about 50 ° C., desired Li / Mn
This is because a lithium manganese oxide having a ratio of spinel and a single phase cannot be obtained. The non-aqueous electrolyte secondary battery using the lithium manganese oxide thus obtained is
Since the internal impedance increases during storage at high temperatures, the capacity greatly decreases after storage, and the container swells, it lacks reliability particularly during storage at high temperatures, and is insufficient as a power source for portable devices.

【0005】[0005]

【発明が解決しようとする課題】マンガンの一部をリチ
ウムで置き換えたリチウムマンガン酸化物は室温付近で
の内部インピーダンスの増加を防止することには一定の
効果があるが、まだ十分ではない。さらに、保存時の温
度が高いというより厳しい状況下では、その内部インピ
ーダンスが増加して電池の容量が低下する、保存時に膨
れるという問題点を有している。本発明の課題は、特定
の方法により製造されたリチウムとマンガンを含む複合
酸化物を使用することで、高温貯蔵時の信頼性が向上し
た非水電解質二次電池を提供することにある。
Lithium manganese oxide in which part of manganese has been replaced by lithium has a certain effect in preventing an increase in internal impedance near room temperature, but is not yet sufficient. Furthermore, in a more severe situation where the temperature during storage is high, there is a problem that the internal impedance increases and the capacity of the battery decreases, and the battery swells during storage. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having improved reliability during high-temperature storage by using a composite oxide containing lithium and manganese manufactured by a specific method.

【0006】[0006]

【課題を解決するための手段】スピネル系のリチウムと
マンガンとの複合酸化物の熱処理条件やマンガンの一部
をリチウムで置換する方法、そして高温貯蔵時の信頼性
を低下させる原因を鋭意検討した結果、硫黄の含有量を
低減させたリチウムとマンガンを含む複合酸化物が非水
電解質二次電池の正極材料として特に好適であることを
見いだし、本発明に至った。
Means for Solving the Problems The heat treatment conditions of the spinel-based composite oxide of lithium and manganese, the method of substituting a part of manganese with lithium, and the cause of lowering the reliability during high-temperature storage were investigated. As a result, they have found that a composite oxide containing lithium and manganese with a reduced sulfur content is particularly suitable as a positive electrode material for a non-aqueous electrolyte secondary battery, and have reached the present invention.

【0007】本発明は、(1)リチウムイオンを吸蔵放
出することが可能な負極活物質と、リチウムイオン伝導
性の非水電解液、及びリチウムイオンを吸蔵放出するこ
とが可能なリチウム含有金属酸化物からなる正極活物質
を備えた非水電解質二次電池において、前記リチウム含
有金属酸化物が一般式Li〔Lix Mn2-x 〕O4 (た
だし、O≦x≦0.18の範囲である)で示されるスピ
ネル系のリチウムとマンガンを含む複合酸化物であり、
該複合酸化物に含まれる硫黄が4000ppm以下であ
ることを特徴とした非水電解質二次電池、(2)一般式
Li〔Lix Mn2-x 〕O4 (ただし、O≦x≦0.1
8の範囲である)で示されるスピネル系のリチウムとマ
ンガンの複合酸化物が、O≦x≦0.18の範囲で第1
の熱処理をした後に洗浄処理を行い、次いで第2の熱処
理を行うことを特徴とした前記(1)の非水電解質二次
電池に関する。
The present invention provides (1) a negative electrode active material capable of inserting and extracting lithium ions, a non-aqueous electrolyte having lithium ion conductivity, and a lithium-containing metal oxide capable of inserting and extracting lithium ions. In a non-aqueous electrolyte secondary battery provided with a positive electrode active material made of a material, the lithium-containing metal oxide has a general formula Li [Li x Mn 2-x ] O 4 (where O ≦ x ≦ 0.18 A) is a spinel-based composite oxide containing lithium and manganese,
A non-aqueous electrolyte secondary battery characterized in that sulfur contained in the composite oxide is 4000 ppm or less; (2) a general formula Li [Li x Mn 2-x ] O 4 (where O ≦ x ≦ 0. 1
8) in the range of O ≦ x ≦ 0.18.
The nonaqueous electrolyte secondary battery according to the above (1), wherein a cleaning treatment is performed after the heat treatment described above, and then a second heat treatment is performed.

【0008】以下、本発明について具体的に説明する。
本発明に用いられるリチウムマンガン酸化物のマンガン
原料は、EMD(Electolytic Manga
nese Dioxide)が好ましい。リチウム原料
は、例としてLi2 CO3 、LiOH、LiCl、Li
NO3 、Li2SO4 、CH3 COOLiを挙げること
ができるが、Li2 CO3 が好ましい。また、Mnの一
部を遷移金属で置換する場合には、置換する遷移金属の
酸化物をEMDと所望のMn/M比になるように混合す
ることができる。
Hereinafter, the present invention will be described specifically.
The manganese raw material of the lithium manganese oxide used in the present invention is EMD (Electrolytic Manga).
(nice Dioxide) is preferred. Lithium raw materials include, for example, Li 2 CO 3 , LiOH, LiCl, Li
NO 3 , Li 2 SO 4 and CH 3 COOLi can be mentioned, but Li 2 CO 3 is preferable. When a part of Mn is substituted with a transition metal, an oxide of the transition metal to be substituted can be mixed with EMD so as to have a desired Mn / M ratio.

【0009】本発明に用いられるリチウムとマンガンを
含む複合酸化物は、次のようにして作成される。平均粒
径が5〜25μmになるように粉砕したEMDとLi2
CO3 をあらかじめ所望のLi/Mn比、好ましくは所
望よりもLiが少ない状態、さらに好ましくはLi/M
n比が0.5〜0.55となるように混合して、第1の
熱処理を行う。第1の熱処理温度は、好ましくは800
〜950℃であり、さらに好ましくは850〜900℃
である。800℃未満の熱処理温度では、次に行う洗浄
によっても、EMDが含有している硫酸根が残留するた
めに好ましくない。また、950℃以上の温度になる
と、スピネル以外の副相が多くなり好ましくない。Li
/Mn比についても、高温で熱処理されるために、Li
/Mn比が大きいとLi2 MnO3 などの副相が現れや
すくなるので、所望するLi/Mn比よりもLiが少な
い状態で熱処理することが好ましい。また、Li/Mn
比が0.5未満になるとMn2 3 、Mn3 4 などの
副相が現れるので、やはり好ましくない。
[0009] The composite oxide containing lithium and manganese used in the present invention is prepared as follows. EMD and Li 2 pulverized to an average particle size of 5 to 25 μm
CO 3 is preliminarily prepared in a desired Li / Mn ratio, preferably in a state where Li is less than desired, more preferably Li / M
The first heat treatment is performed by mixing so that the n ratio becomes 0.5 to 0.55. The first heat treatment temperature is preferably 800
950 ° C., more preferably 850-900 ° C.
It is. If the heat treatment temperature is lower than 800 ° C., the sulfate groups contained in EMD remain undesirably even in the subsequent cleaning. On the other hand, when the temperature is 950 ° C. or higher, the amount of sub-phases other than spinel increases, which is not preferable. Li
/ Mn ratio is also high because of heat treatment at high temperature.
When the / Mn ratio is large, a sub-phase such as Li 2 MnO 3 is likely to appear, and therefore, it is preferable to perform the heat treatment in a state where Li is smaller than a desired Li / Mn ratio. Also, Li / Mn
If the ratio is less than 0.5, sub-phases such as Mn 2 O 3 and Mn 3 O 4 appear, which is also not preferable.

【0010】得られたリチウムとマンガンを含む複合酸
化物は、第1の熱処理の後で、洗浄される。第1の熱処
理によってEMDに含有される硫酸根が、水溶性のLi
2 SO4 に変化する。したがって、洗浄によってLi2
SO4 を除去することが可能であり、該複合酸化物に含
有される硫黄の量を低減することが可能になる。洗浄後
の該複合酸化物と、Li2 CO3 などのLi原料を、最
終的な所望量のLi/Mn比になるように混合して、第
2の熱処理を行う。第2の熱処理は、550〜750℃
の比較的低温で行うことが好ましい。550℃以下及び
750℃以上では最終的に得られるリチウムとマンガン
を含有した複合酸化物がスピネル単一相ではなくなるた
めに好ましくない。また、洗浄後のリチウムとマンガン
を含む複合酸化物が既に最終的な所望量のLi/Mn比
を有している場合には、LiCOなどのLi原料を
混合することなく、第2の熱処理を行う。
[0010] The obtained composite oxide containing lithium and manganese is washed after the first heat treatment. The sulfate group contained in EMD by the first heat treatment is converted to water-soluble Li
Changes to 2 SO 4 . Therefore, Li 2
SO 4 can be removed, and the amount of sulfur contained in the composite oxide can be reduced. The washed composite oxide and a Li material such as Li 2 CO 3 are mixed so as to have a final desired Li / Mn ratio, and a second heat treatment is performed. The second heat treatment is performed at 550 to 750 ° C.
It is preferable to carry out at a relatively low temperature. If the temperature is 550 ° C. or lower and 750 ° C. or higher, the finally obtained composite oxide containing lithium and manganese is not a single spinel phase, which is not preferable. Further, when the composite oxide containing lithium and manganese after washing already has a final desired amount of Li / Mn ratio, the second raw material such as Li 2 CO 3 is mixed without mixing the Li raw material such as Li 2 CO 3 . Is performed.

【0011】本発明におけるリチウムとマンガンを含有
した複合酸化物を得るためには、最終的な熱処理を行っ
た後に洗浄をおこない、Li2 SO4 に起因する硫黄を
除去することも可能であるが、この場合には洗浄するこ
とでLi2 SO4 だけでなく、結晶構造から微少量のリ
チウムおよびマンガンも溶出してしまうために、所望の
Li/Mn比の複合酸化物を得ることが難しく、最終的
には電池の容量がばらつく原因になる。さらに、洗浄後
に乾燥工程が必要になり、製造費用が増大することか
ら、コバルトからマンガンに変更しても電源の低価格化
を図ることが難しい。
In order to obtain a composite oxide containing lithium and manganese according to the present invention, it is possible to remove the sulfur originating from Li 2 SO 4 by performing a final heat treatment and then washing. In this case, not only Li 2 SO 4 but also a small amount of lithium and manganese are eluted from the crystal structure by washing, so that it is difficult to obtain a composite oxide having a desired Li / Mn ratio, Eventually, the battery capacity will vary. Further, since a drying step is required after the cleaning and the manufacturing cost is increased, it is difficult to reduce the price of the power supply even when changing from cobalt to manganese.

【0012】また、熱処理の最終段階で洗浄すると、B
ET比表面積が約2倍に増加してしまい、熱処理の間に
洗浄した場合に比較して、保存特性が低下する。一方、
第1の熱処理後に洗浄することでLi2 SO4 を除去
し、次いで所望量のLi量になるようにLi塩を添加し
てから第2の熱処理を行うと、BET比表面積の増加を
抑制することが可能である。したがって、熱処理と熱処
理の間に洗浄処理を行うことがもっとも望ましい。本発
明に用いられる負極材料としては、リチウムをイオン状
態で吸蔵放出できれば特に限定されないが、例としてコ
ークス、天然黒鉛、人造黒鉛、難黒鉛化炭素などの炭素
材料、SiSnO等の金属酸化物、LiCoN2 等の金
属窒化物を挙げることができるが、好ましくは炭素材料
である。
Further, when cleaning is performed at the final stage of the heat treatment, B
The ET specific surface area is increased about twice, and storage characteristics are reduced as compared with the case where the ET is washed during the heat treatment. on the other hand,
When the Li 2 SO 4 is removed by washing after the first heat treatment, and then a Li salt is added so as to have a desired Li amount and then the second heat treatment is performed, the increase in the BET specific surface area is suppressed. It is possible. Therefore, it is most desirable to perform a cleaning process between heat treatments. The negative electrode material used in the present invention is not particularly limited as long as it can occlude and release lithium in an ion state. Examples thereof include carbon materials such as coke, natural graphite, artificial graphite, and non-graphitizable carbon; metal oxides such as SiSnO; Although a metal nitride such as 2 can be used, a carbon material is preferable.

【0013】本発明において、活物質を電極化する時に
は、必要に応じて導電剤を添加し、結着剤で集電材に固
定することができる。導電剤の例として、天然黒鉛、人
造黒鉛、カーボンブラック、ケッチェンブラック、アセ
チレンブラックを挙げることができるが、黒鉛もしくは
黒鉛とアセチレンブラックの併用が好ましい。その添加
量としては特に限定されないが、1〜20重量%が好ま
しく、更に好ましくは3〜10重量%である。1重量%
以下である導電性が均一にならず、20重量%以上にな
ると単位体積あたりの容量が低下する。また、結着剤に
は、通常、ポリ4フッ化エチレン、ポリフッ化ビニリデ
ン、エチレン−プロピレン−ジエンターポリマー、カル
ボキシメチルセルロース、スチレンブタジエンゴム、フ
ッ素ゴム等が単独もしくは混合されて用いられるが、特
に限定されない。これらの添加量としては1〜20重量
%が好ましく、更に好ましくは1〜10重量%である。
1重量%以下では結着力が弱く、20重量%以上ではL
iイオンの移動を阻害し、電池としての性能が低下す
る。
In the present invention, when the active material is formed into an electrode, a conductive agent can be added as necessary, and the active material can be fixed to the current collector with a binder. Examples of the conductive agent include natural graphite, artificial graphite, carbon black, Ketjen black, and acetylene black, and graphite or a combination of graphite and acetylene black is preferred. Although the addition amount is not particularly limited, it is preferably 1 to 20% by weight, more preferably 3 to 10% by weight. 1% by weight
The following conductivity is not uniform, and when it is 20% by weight or more, the capacity per unit volume decreases. As the binder, polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene terpolymer, carboxymethylcellulose, styrene-butadiene rubber, fluororubber and the like are usually used alone or in a mixture, but there is no particular limitation. Not done. The amount of these additives is preferably 1 to 20% by weight, more preferably 1 to 10% by weight.
At 1% by weight or less, the binding strength is weak, and at 20% by weight or more, L
The movement of i-ions is hindered, and the performance as a battery is reduced.

【0014】電解液としては、リチウム塩を電解質とし
て、これを種々の有機溶媒に溶解させた混合物が用いら
れる。電解質としては、特に限定されないが、LiCl
4、LiBF4 、LiPF6 、LiAsF6 、LiC
3 SO3 などの単独もしくは混合物を使用することが
できる。また有機溶媒としても、特に限定されないが、
例示すれば、プロピレンカーボネート、エチレンカーボ
ネート、γ−ブチロラクトン、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート、
1,2−ジメトキシエタン、テトラヒドロフラン等の単
独もしくは2種類以上の混合溶媒を使用することができ
る。
As the electrolytic solution, a mixture in which a lithium salt is used as an electrolyte and dissolved in various organic solvents is used. The electrolyte is not particularly limited.
O 4, LiBF 4, LiPF 6 , LiAsF 6, LiC
A single or a mixture such as F 3 SO 3 can be used. Also, the organic solvent is not particularly limited,
For example, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate,
Diethyl carbonate, methyl ethyl carbonate,
A single solvent such as 1,2-dimethoxyethane and tetrahydrofuran or a mixture of two or more solvents can be used.

【0015】[0015]

【実施例】以下、本発明を具体的実施例を用いて詳細に
説明するが、本発明はこれら実施例に限定されるもので
はない。 (実施例1)出発原料として平均粒径20μmのEMD
と、Li2 CO3 とをLi/Mn=0.55(原子比)
の組成比で混合し、空気中900℃で20時間熱処理し
たのちに室温付近まで冷却した。得られた酸化物と精製
水を重量比で1:50になるように混合し、12時間攪
拌した後でろ過した。この間、精製水の温度は90℃に
保たれた。次いで、ろ過された酸化物とLi2 CO
3 を、Li/Mn=0.61(原子比)の組成比になる
ように混合し、再度、空気中650℃で20時間熱処理
することによってリチウムマンガン酸化物を得た。化学
分析を行なった結果、得られたリチウムマンガン酸化物
は一般式Li〔Li0.11Mn1.89〕O4 であり、硫黄を
100ppm含有し、BET比表面積は0.4m2 /g
であった。また、飽和水分量は1200ppmであっ
た。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to these examples. Example 1 EMD having an average particle size of 20 μm as a starting material
And Li 2 CO 3 with Li / Mn = 0.55 (atomic ratio)
, And heat-treated in air at 900 ° C. for 20 hours, and then cooled to around room temperature. The obtained oxide and purified water were mixed at a weight ratio of 1:50, stirred for 12 hours, and then filtered. During this time, the temperature of the purified water was kept at 90 ° C. Then, the filtered oxide and Li 2 CO
3 was mixed so as to have a composition ratio of Li / Mn = 0.61 (atomic ratio), and again heat-treated in air at 650 ° C. for 20 hours to obtain a lithium manganese oxide. As a result of a chemical analysis, the obtained lithium manganese oxide was represented by the general formula Li [Li 0.11 Mn 1.89 ] O 4 , contained 100 ppm of sulfur, and had a BET specific surface area of 0.4 m 2 / g.
Met. The saturated water content was 1200 ppm.

【0016】本発明における具体的な電池作成について
説明する。上記リチウムマンガン酸化物100に対して
導電剤としてアセチレンブラック3重量部と鱗状天然黒
鉛3重量部を混合した後に、総重量に対して3重量部の
割合でポリフッ化ビニリデンを混合し、Nメチルピロリ
ドン(NMP)添加して湿式混合を行ないペーストとし
た。次いでこのペーストを正極集電体となる厚さ20μ
mのアルミニウム箔の両面に均一に塗布し、乾燥させた
後にローラープレス機によって加圧成形することで帯状
の正極を作成した。
A description will now be given of a specific battery production in the present invention. After mixing 3 parts by weight of acetylene black and 3 parts by weight of scale-like natural graphite as a conductive agent with respect to the lithium manganese oxide 100, polyvinylidene fluoride was mixed at a ratio of 3 parts by weight with respect to the total weight, and N-methylpyrrolidone was added. (NMP) was added to perform wet mixing to obtain a paste. Next, this paste is coated with a 20 μm thick positive electrode current collector.
m was uniformly applied to both sides of an aluminum foil, dried, and then pressure-formed by a roller press to form a belt-shaped positive electrode.

【0017】次に3000℃で黒鉛化したメソカーボン
ファイバー95重量%と鱗状天然黒鉛5重量%の混合物
に対して、カルボキシメチルセルロース1重量部とスチ
レンブタジエンゴム2重量部、溶剤として精製水を添加
して湿式混合を行ないペーストとした。このペーストを
負極集電体となる厚さ12μmの銅箔の両面に均一に塗
布し、乾燥させた後にローラープレス機によって加圧成
形することで帯状の負極を作成した。さらに、上記正極
と上記負極の間にセパレーターとして25μm厚みのポ
リエチレン微多孔膜を挟んでロール状に巻くことで捲廻
体とした。
Next, 1 part by weight of carboxymethylcellulose, 2 parts by weight of styrene-butadiene rubber, and purified water as a solvent were added to a mixture of 95% by weight of mesocarbon fiber graphitized at 3000 ° C. and 5% by weight of scale-like natural graphite. To obtain a paste. This paste was uniformly applied to both sides of a copper foil having a thickness of 12 μm as a negative electrode current collector, dried, and then pressed and formed by a roller press to form a strip-shaped negative electrode. Furthermore, a 25-μm-thick polyethylene microporous membrane was sandwiched between the positive electrode and the negative electrode as a separator to form a roll.

【0018】ニッケルメッキを施した鉄製の角型缶の底
部に絶縁性のフィルムを挿入し、前記捲廻体を押しつぶ
して挿入した。次いで捲廻体より取り出した負極タブを
防爆ディスクを有した閉塞蓋体に、正極タブを閉塞蓋体
の正極ピンに各々溶接した。次いで閉塞蓋体と角型缶の
合わせ目をレーザーで溶接した。閉塞蓋体に開いている
直径1mmの小穴を通じて、電池缶の中にエチレンカー
ボネートとジエチルカーボネートの混合溶媒に1モル/
リットルの濃度でLiPF6 を溶解した電解液を注液し
て、小穴を溶接で塞ぐことで、8.6mm厚みで、34
mm×48mmの角型非水電解質二次電池を作成した。
An insulating film was inserted into the bottom of a nickel-plated iron square can, and the wound body was crushed and inserted. Next, the negative electrode tab taken out from the wound body was welded to a closing lid having an explosion-proof disc, and the positive electrode tab was welded to the positive electrode pin of the closing lid. Next, the joint between the closing lid and the square can was welded by laser. Through a small hole having a diameter of 1 mm opened in the closing lid, 1 mol / mol of a mixed solvent of ethylene carbonate and diethyl carbonate was introduced into the battery can.
An electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 liter was injected, and the small hole was closed by welding to obtain an 8.6 mm thick, 34
A square non-aqueous electrolyte secondary battery having a size of 48 mm × 48 mm was prepared.

【0019】(実施例2)出発原料として平均粒径10
μmのEMDとLi2 CO3 とをLi/Mn=0.51
(原子比)の組成比で混合し、空気中850℃で20時
間熱処理し、室温付近まで降温してとりだした。得られ
た酸化物と精製水を重量比で1:20になるように混合
し、24時間攪拌した後でろ過した。この間、精製水の
温度は室温に保たれた。ろ過することで得られた粉体を
再度混合し、空気中650℃で20時間熱処理すること
によってリチウムマンガン酸化物を得た。化学分析を行
なった結果、得られたリチウムマンガン酸化物は一般式
Li〔Li0.07Mn1.93〕O4 であり、硫黄を850p
pm含有し、BET比表面積は0.8m2 /gで、飽和
水分量は2700ppmであった。得られたリチウムマ
ンガン酸化物を用いて実施例1と同様の方法で非水電解
質二次電池を作成した。
Example 2 The starting material had an average particle size of 10
μm EMD and Li 2 CO 3 with Li / Mn = 0.51
(Atomic ratio), heat-treated in air at 850 ° C. for 20 hours, and cooled down to around room temperature. The obtained oxide and purified water were mixed at a weight ratio of 1:20, stirred for 24 hours, and then filtered. During this time, the temperature of the purified water was kept at room temperature. The powder obtained by filtration was mixed again, and heat-treated at 650 ° C. for 20 hours in the air to obtain a lithium manganese oxide. As a result of chemical analysis, the obtained lithium manganese oxide was represented by the general formula Li [Li 0.07 Mn 1.93 ] O 4 , and sulfur was 850 p
pm, the BET specific surface area was 0.8 m 2 / g, and the saturated water content was 2700 ppm. Using the obtained lithium manganese oxide, a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1.

【0020】(実施例3,4,5)出発原料として平均
粒径10μmのEMDとLi2 CO3 とをLi/Mn=
0.52(原子比)の組成比で混合し、空気中850℃
で20時間熱処理し、室温付近まで降温してとりだし
た。得られた酸化物と精製水を重量比で1:20になる
ように混合し、攪拌時間を1時間、5時間、12時間と
して攪拌し、その後各々をろ過した。この間、精製水の
温度は室温に保たれた。ろ過することで得られた粉体を
再度混合し、空気中650℃で20時間熱処理すること
によってリチウムマンガン酸化物を得た。化学分析を行
なった結果、得られたリチウムマンガン酸化物は一般式
Li〔Li0.07Mn1.93〕O4 であり、硫黄含有量は、
攪拌時間を1時間としたものは3800ppm、5時間
としたものは2900ppm、12時間としたものは1
500ppmであった。また、BET比表面積は0.8
2 /gであった。得られたリチウムマンガン酸化物を
用いて実施例1と同様の方法で非水電解質二次電池を作
成した。
Examples 3, 4 and 5 As starting materials, EMD having an average particle size of 10 μm and Li 2 CO 3 were mixed with Li / Mn =
Mix at a composition ratio of 0.52 (atomic ratio) and 850 ° C in air
At room temperature for 20 hours, and the temperature was lowered to around room temperature. The obtained oxide and purified water were mixed at a weight ratio of 1:20, stirred for 1 hour, 5 hours, and 12 hours, and then each was filtered. During this time, the temperature of the purified water was kept at room temperature. The powder obtained by filtration was mixed again, and heat-treated at 650 ° C. for 20 hours in the air to obtain a lithium manganese oxide. As a result of the chemical analysis, the obtained lithium manganese oxide was represented by the general formula Li [Li 0.07 Mn 1.93 ] O 4 , and the sulfur content was:
3800 ppm when the stirring time was 1 hour, 2900 ppm when the stirring time was 5 hours, and 1 when the stirring time was 12 hours.
It was 500 ppm. The BET specific surface area is 0.8
m 2 / g. Using the obtained lithium manganese oxide, a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1.

【0021】(比較例1)実施例2において、リチウム
マンガン酸化物の湯洗浄をおこなわなかったこと以外
は、実施例2と同様にして非水電解質二次電池を作成し
た。
(Comparative Example 1) A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 2 except that the lithium manganese oxide was not washed with hot water.

【0022】(比較例2)出発原料として20μmのE
MDとLi2 CO3 とをLi/Mn=0.61となるよ
うに混合し、650℃で20時間熱処理を行うことでリ
チウムマンガン酸化物を得た。化学分析の結果、得られ
たリチウムマンガン酸化物は一般式Li〔Li0.13Mn
1.87〕O4 であり、硫黄を4500ppm含有し、BE
T比表面積は1.8m2 /gであり、飽和水分量は80
00ppmであった。このリチウムマンガン酸化物を用
いて、上記実施例1と同様にして非水電解質二次電池を
作成した。
Comparative Example 2 E of 20 μm as a starting material
MD and Li 2 CO 3 were mixed so that Li / Mn = 0.61, and heat-treated at 650 ° C. for 20 hours to obtain a lithium manganese oxide. As a result of the chemical analysis, the obtained lithium manganese oxide was represented by the general formula Li [Li 0.13 Mn
1.87 ] O 4 , containing 4500 ppm of sulfur, BE
The T specific surface area is 1.8 m 2 / g and the saturated water content is 80
It was 00 ppm. Using this lithium manganese oxide, a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1.

【0023】(試験結果)上記実施例及び比較例で作成
した電池はいずれも電池内部の安定化を目的に24時間
のエージング期間を経過した後に、充電電圧を4.2V
に設定して5時間で充電を行なった。ついで400mA
の一定電流で3.0Vまで放電を行ない、更なる安定化
のために、4.2V充電、3.0V放電の充放電サイク
ルを10サイクル行なった後に、試験電池とした。この
ときの最終放電電気量を、各試験電池の基準容量(X)
とした。
(Test Results) The batteries prepared in the above Examples and Comparative Examples each had a charging voltage of 4.2 V after a 24-hour aging period for the purpose of stabilizing the inside of the batteries.
And charging was performed in 5 hours. Then 400mA
The battery was discharged at a constant current of 3.0 V to 3.0 V. For further stabilization, 10 charge / discharge cycles of 4.2 V charge and 3.0 V discharge were performed, and then a test battery was obtained. The final amount of electricity discharged at this time is calculated as the reference capacity (X) of each test battery.
And

【0024】充電保存試験には、充電電圧を4.2Vに
設定して3時間で充電した後で、缶の厚みを測定してか
ら、電池を85℃に設定された恒温槽にいれて120時
間後に取り出した。取り出した電池は室温付近まで自然
冷却された後に、缶の厚みを測定されて、3.0Vまで
放電し、次いで4.2V充電、3.0V放電を行なっ
た。後者の放電量を試験電池の回復放電容量(Y)とし
た。これらに基づいて、各電池の保存後の容量回復率を
次式に従って算出した。 (Y/X)×100 放電保存試験では、基準容量の測定後に缶の厚みを測定
して、充電せずに85℃に調整された恒温槽に入れて、
120時間後に取り出した。電池を室温付近まで冷却し
た後に、缶の厚みを測定した。そして4.2V充電、
3.0V放電を行なった。この時の放電容量を回復放電
容量(Z)とし、次式に従い容量回復率を算出した。 (Z/X)×100 表1は試験結果の一覧である。
In the charge storage test, the battery was charged in 3 hours with the charging voltage set to 4.2 V, the thickness of the can was measured, and then the battery was placed in a thermostat set at 85 ° C. for 120 hours. Removed after hours. The battery taken out was naturally cooled to around room temperature, the thickness of the can was measured, the battery was discharged to 3.0 V, and then the battery was charged at 4.2 V and discharged at 3.0 V. The latter discharge amount was defined as the recovery discharge capacity (Y) of the test battery. Based on these, the capacity recovery rate of each battery after storage was calculated according to the following equation. (Y / X) × 100 In the discharge preservation test, the thickness of the can was measured after measuring the reference capacity, and was put in a thermostat adjusted to 85 ° C. without charging,
Removed after 120 hours. After the battery was cooled to around room temperature, the thickness of the can was measured. And 4.2V charging,
A 3.0 V discharge was performed. The discharge capacity at this time was defined as the recovery discharge capacity (Z), and the capacity recovery rate was calculated according to the following equation. (Z / X) × 100 Table 1 is a list of test results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、洗浄処理を行い、硫黄
の含有量を4000ppm以下にした電池は、回復率は
向上し、缶の膨れも小さい。詳細は不明であるが、この
理由として、リチウムマンガン酸化物に含有される硫黄
が減少した結果、Li2 SO4 /H2 Oとして電池系内
に持ち込まれる水が減少した結果、電解質であるLi
6 の分解が制御された結果であると考えられる。
As shown in Table 1, the cleaning treatment was performed,
The recovery rate of the battery with the content of
Improved and the blister of the can is small. Details are unknown, but this
The reason is that sulfur contained in lithium manganese oxide
Decrease, LiTwoSOFour/ HTwoO in battery system
As a result of the reduction of water brought into the tank, the electrolyte Li P
F6 Is thought to be a controlled result.

【0027】[0027]

【発明の効果】以上説明してきたように、焼成と焼成の
間に水でリチウムマンガン酸化物を洗浄し、硫黄の含有
量が4000ppm以下としたスピネル系のリチウムマ
ンガン酸化物を正極として用いた非水電解質二次電池で
は、80℃程度の高温で保存されても電池の不可逆な容
量低下が激減し、容器の膨張も小さくなる。従って、リ
チウムマンガン酸化物を実用化するための大きな問題が
解決される。その結果、安価な材料のリチウムマンガン
酸化物を使用して、高価なリチウムコバルト酸化物を使
用した場合と遜色のない非水電解質二次電池を提供でき
る。高性能な非水電解質二次電池が安価で供給できるよ
うになりその工業的価値は非常に大きい。
As described above, a lithium manganese oxide is washed with water between firings, and a spinel lithium manganese oxide having a sulfur content of 4000 ppm or less is used as a positive electrode. In a water electrolyte secondary battery, even when stored at a high temperature of about 80 ° C., the irreversible capacity decrease of the battery is drastically reduced, and the expansion of the container is also reduced. Therefore, a major problem for putting lithium manganese oxide into practical use is solved. As a result, it is possible to provide a non-aqueous electrolyte secondary battery using lithium manganese oxide, which is an inexpensive material, which is comparable to the case using expensive lithium cobalt oxide. High-performance non-aqueous electrolyte secondary batteries can be supplied at low cost, and their industrial value is very large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出することが可
能な負極活物質と、リチウムイオン伝導性の非水電解
液、及びリチウムイオンを吸蔵放出することが可能なリ
チウム含有金属酸化物からなる正極活物質を備えた非水
電解質二次電池において、前記リチウム含有金属酸化物
が一般式 Li〔Lix Mn2-x 〕O4 (ただし、O≦x≦0.1
8の範囲である) で示されるスピネル系のリチウムとマンガンを含む複合
酸化物であり、該複合酸化物中に含まれる硫黄が400
0ppm以下であることを特徴とした非水電解質二次電
池。
1. A negative electrode active material capable of inserting and extracting lithium ions, a non-aqueous electrolyte having lithium ion conductivity, and a positive electrode active material comprising a lithium-containing metal oxide capable of inserting and extracting lithium ions. In a non-aqueous electrolyte secondary battery provided with a substance, the lithium-containing metal oxide has a general formula Li [Li x Mn 2-x ] O 4 (where O ≦ x ≦ 0.1
8) a spinel-based composite oxide containing lithium and manganese represented by the formula: wherein the sulfur contained in the composite oxide is 400
A non-aqueous electrolyte secondary battery characterized by being at most 0 ppm.
【請求項2】 一般式Li〔Lix Mn2-x 〕O4 (た
だし、O≦x≦0.18の範囲である)で示されるスピ
ネル系のリチウムとマンガンの複合酸化物が、O≦x≦
0.18の範囲で第1の熱処理をした後に洗浄処理を行
い、次いで第2の熱処理を行うことを特徴とした、請求
項1記載の非水電解質二次電池。
2. A spinel-based composite oxide of lithium and manganese represented by the general formula Li [Li x Mn 2-x ] O 4 (where O ≦ x ≦ 0.18), wherein O ≦ x ≦
The non-aqueous electrolyte secondary battery according to claim 1, wherein the first heat treatment is performed within a range of 0.18, the cleaning treatment is performed, and then the second heat treatment is performed.
JP9336663A 1997-11-21 1997-11-21 Nonaqueous electrolyte secondary battery Withdrawn JPH11154512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9336663A JPH11154512A (en) 1997-11-21 1997-11-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9336663A JPH11154512A (en) 1997-11-21 1997-11-21 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11154512A true JPH11154512A (en) 1999-06-08

Family

ID=18301516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9336663A Withdrawn JPH11154512A (en) 1997-11-21 1997-11-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11154512A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202962A (en) * 1999-06-24 2001-07-27 Mitsubishi Chemicals Corp Cathode material and cathode for lithium secondary battery, and lithium secondary battery
WO2004064180A1 (en) * 2003-01-08 2004-07-29 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
CN100413125C (en) * 2003-01-06 2008-08-20 日矿马铁利亚股份有限公司 Material for positive electrode of lithium secondary battery and process for producing the same
WO2010038424A1 (en) * 2008-10-01 2010-04-08 戸田工業株式会社 Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2011029199A (en) * 1999-06-24 2011-02-10 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2012090749A1 (en) * 2010-12-28 2012-07-05 三井金属鉱業株式会社 Method of manufacturing a positive electrode active material for lithium secondary batteries

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029199A (en) * 1999-06-24 2011-02-10 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2001202962A (en) * 1999-06-24 2001-07-27 Mitsubishi Chemicals Corp Cathode material and cathode for lithium secondary battery, and lithium secondary battery
CN100413125C (en) * 2003-01-06 2008-08-20 日矿马铁利亚股份有限公司 Material for positive electrode of lithium secondary battery and process for producing the same
WO2004064180A1 (en) * 2003-01-08 2004-07-29 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
US20110223483A1 (en) * 2008-10-01 2011-09-15 Kazumichi Koga Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP2010108926A (en) * 2008-10-01 2010-05-13 Toda Kogyo Corp Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
EP2333878A1 (en) * 2008-10-01 2011-06-15 Toda Kogyo Corporation Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN102171862A (en) * 2008-10-01 2011-08-31 户田工业株式会社 Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
WO2010038424A1 (en) * 2008-10-01 2010-04-08 戸田工業株式会社 Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
EP2333878A4 (en) * 2008-10-01 2013-06-26 Toda Kogyo Corp Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US10056612B2 (en) 2008-10-01 2018-08-21 Toda Kogyo Corporation Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
WO2012090749A1 (en) * 2010-12-28 2012-07-05 三井金属鉱業株式会社 Method of manufacturing a positive electrode active material for lithium secondary batteries
CN103299455A (en) * 2010-12-28 2013-09-11 三井金属矿业株式会社 Method of manufacturing a positive electrode active material for lithium secondary batteries
JP2013239445A (en) * 2010-12-28 2013-11-28 Mitsui Mining & Smelting Co Ltd Method of producing positive electrode active material for lithium secondary battery
JP5596790B2 (en) * 2010-12-28 2014-09-24 三井金属鉱業株式会社 Method for producing positive electrode active material for lithium secondary battery
JP2015122332A (en) * 2010-12-28 2015-07-02 三井金属鉱業株式会社 Method of producing positive electrode active material for lithium secondary battery
US10442699B2 (en) 2010-12-28 2019-10-15 Mitsui Mining & Smelting Co., Ltd. Method of manufacturing a positive electrode active material for lithium secondary batteries

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US7666551B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery using the same
JP3813001B2 (en) Non-aqueous secondary battery
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2007200865A (en) Nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP2000195513A (en) Nonaqueous electrolyte secondary battery
JPH07235291A (en) Secondary battery
JP2002015776A (en) Nonaqueous electrolyte secondary cell
JPH10321227A (en) Nonaqueous electrolyte secondary battery
CN115411346A (en) Lithium ion battery and electrochemical device comprising same
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JPH07153495A (en) Secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2000348722A (en) Nonaqueous electrolyte battery
JPH11154512A (en) Nonaqueous electrolyte secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2002175836A (en) Nonaqueous electrolyte battery
JP3111927B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH10302766A (en) Lithium ion secondary battery
JP3856517B2 (en) Method for producing lithium manganese oxide
JP7412883B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JPH10302795A (en) Non-aqueous electrolytic secondary battery
JP3503239B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201