JP4078715B2 - Highly reliable via hole formation method - Google Patents

Highly reliable via hole formation method Download PDF

Info

Publication number
JP4078715B2
JP4078715B2 JP16927098A JP16927098A JP4078715B2 JP 4078715 B2 JP4078715 B2 JP 4078715B2 JP 16927098 A JP16927098 A JP 16927098A JP 16927098 A JP16927098 A JP 16927098A JP 4078715 B2 JP4078715 B2 JP 4078715B2
Authority
JP
Japan
Prior art keywords
copper foil
via hole
copper
layer
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16927098A
Other languages
Japanese (ja)
Other versions
JPH11346045A (en
Inventor
杜夫 岳
信之 池口
恭夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP16927098A priority Critical patent/JP4078715B2/en
Priority to US09/321,556 priority patent/US6280641B1/en
Priority to EP99304260A priority patent/EP0964610B1/en
Priority to DE69934050T priority patent/DE69934050T2/en
Priority to TW088109124A priority patent/TW424244B/en
Priority to KR1019990020202A priority patent/KR100630481B1/en
Publication of JPH11346045A publication Critical patent/JPH11346045A/en
Application granted granted Critical
Publication of JP4078715B2 publication Critical patent/JP4078715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線板のビア孔形成方法に関する。特にビア孔となる、表層の下の、ビア孔底部銅箔の表層の一部を、銅箔が貫通しないように除去して得られたビア孔に金属メッキ、又は導電塗料で、表層とビア孔部銅箔層とを導通することを特徴とする接続信頼性に優れたプリント配線板のビア孔形成方法に関する。得られたプリント配線板は、主として小型の半導体プラスチックパッケージ用として使用される。
【0002】
【従来の技術】
従来、半導体プラスチックパッケージ等に用いられる高密度の多層プリント配線板は、ビア孔をドリル或いは炭酸ガスレーザーであけていた。ドリルであける場合、内層の銅箔厚みが薄い、又は多層板の厚みばらつきが大きいと、内層銅箔の途中でビア孔を止めることが困難であり、時としてその下の銅箔層に到達して不良の原因となっていた。炭酸ガスレーザーで孔あけする場合、ビア孔の下面の銅箔表面には1μm程度の樹脂層が残り、銅メッキ前にデスミア処理を施す必要があった。この場合、デスミア処理が不十分だと、銅メッキ後の表層とその下の銅箔の導通性が良くなく、導通不良が発生していた。加えて、デスミア処理には、一般のスルーホール等のデスミア処理時間に比べて2〜3倍の時間を要し、作業性が悪い等の問題点があった。
【0003】
【発明が解決しようとする課題】
本発明は、以上の問題点を解決した、デスミア処理の必要のない小径のビア孔を高速で、形成する方法の提供を目的とする。
【0004】
【課題を解決するための手段】
両面に銅箔を有する両面銅張板及び多層板の表面の銅箔の、少なくとも炭酸ガスレーザーを照射する面に、融点900℃以上で、且つ結合エネルギー300kJ/mol以上の金属化合物、カーボン粉又は金属粉の1種或いは2種以上と水溶性樹脂よりなる塗膜或いはシートを配置し、この上から20〜60mJ/パルスのエネルギーから選ばれたエネルギーを有する炭酸ガスレーザーのパルス発振で、少なくとも表層の銅箔に孔をあけ、その後20〜35mJ/パルスのエネルギーで、その下のビア孔底部、又は両面板の対向した外層銅箔の表層の一部を、銅箔が貫通しない形で加工し、ビア底部の銅箔内部の新しい面が露出したビア孔を形成する。
その後、薬液にて銅箔表面を処理する。薬液で処理する場合、両面銅張板を用いたビア孔形成では、ビア孔部の銅箔が溶解してなくならないように注意して実施する。
炭酸ガスレーザーを銅箔に直接照射してビア孔をあけると、表面銅箔孔あけ部には銅箔のバリが発生する。機械研磨では取れにくいため、薬液でエッチングする。銅箔の両表面を平面的にエッチングし、もとの銅箔の一部の厚さをエッチング除去することにより、同時に孔部に張り出した銅箔バリをもエッチング除去する。このような処理を実施すると、銅箔が薄くなるため、その後の金属メッキでメッキアップして得られた表裏銅箔の細線の回路形成において、ショートやパターン切れ等の不良の発生もなく、高密度のプリント配線板を作成することができた。また、デスミア処理を施す必要もなく、作業性に優れ、金属メッキ、又は導電塗料で最外層とその真下の銅箔とを接続する場合、接続面積も大きく、ビア孔の接続信頼性に優れたものが得られた。
【0005】
【発明の実施の形態】
本発明は、少なくとも2層以上の銅の層を有する両面銅張板及び多層板の表層に、金属メッキを施す前にデスミア処理を施す必要の無いビア孔の形成方法に関する。
表面にビア孔を形成する方法としては、融点900℃以上で且つ結合エネルギーが300mJ/パルスの金属化合物粉、カーボン粉又は金属粉の1種、或いは2種以上を3〜97容積%含む樹脂組成物を銅箔表面に塗布して塗膜とするか、又はシート形状として配置し、この上から直接高出力の20〜60mJ/パルスの炭酸ガスレーザーから選ばれたエネルギーを照射して表面の銅箔に孔をあけ、その後、20〜35mJ/パルスから選ばれたエネルギーで、その下のビア孔底部の銅箔、又は両面板の対向した反対側の外層銅箔表層の一部を、銅箔が貫通しない形で加工し、銅箔の内部の新しい面が露出したビア孔を形成する。
その後、薬液による銅箔表面処理を行う。機械的研磨の場合、一般の研磨機械が使用可能であるが、孔部にバリが発生する場合、研磨を数回行うことが必要であり、また板の寸法変化率が大きくなる等のこともある。本発明では、薬液で表層をエッチングすると同時に、バリをも溶解除去する方法で銅箔表面処理を行う。銅箔の両表面を平面的にエッチング除去することにより銅箔は薄くなり、その後の金属メッキでメッキアップして得られた表裏銅箔の細線の回路形成において、ショート、パターン切れ等の不良の発生もなく、高密度のプリント配線板が作成できる。又、デスミア処理を施す必要もないため、作業性に優れている。ビア孔底部の銅箔表面の樹脂層がなくなり、ビア孔部に金属メッキを施すか、又は導電性塗料を埋め込んで、ビア孔部の最外層とその真下の銅箔とを接続する場合、接続面積も大きく、ビア孔の接続信頼性に優れたプリント配線板を得ることができた。エッチング用薬液としては、一般に公知のものが使用できる。例えば、特開平02-22887、同02-22896、同02-25089、同02-25090、同02-59337、同02-60189、同02-166789、同03-25995、同03-60183、同03-94491、同04-199592、同04-263488号公報で開示された薬品が用いられる。これらの薬品で金属表面を溶解除去する(SUEP法と呼ぶ)。エッチング速度は、一般には0.02〜1.0μm/秒で行う。
【0006】
本発明で使用される、少なくとも2層以上の銅の層を有する両面板、多層板は、好適にはガラス布を基材とし、熱硬化性樹脂組成物に染料又は顔料を配合して黒色とし、且つ、無機絶縁性充填剤を該樹脂組成物中に10〜60重量%混合して、均質とした構成の両面銅張積層板が用いられる。
又、多層板としては、好適には、内層板にガラス布基材の上記両面銅張積層板を加工して使用される。必要により表面に金属酸化銅処理を施し、上下に無機或いは有機布基材プリプレグ、樹脂シート、樹脂付き銅箔、又は塗料による塗膜を配置し、必要により銅箔を置き、加熱、加圧、好ましくは真空下に積層成形する。
以上の銅張板のほかに、ポリイミドフィルム、ポリエステルフィルム、ポリパラバン酸フィルム等の、一般に公知の高耐熱のフィルムの両面板、或いは多層板も使用し得る。
【0007】
基材としては、一般に公知の無機、有機の織布、不織布が使用できる。具体的には、無機基材としては、E、S、D、Mガラス等の繊維の織布、不織布が挙げられる。有機繊維としては、液晶ポリエステル、全芳香族ポリアミド等の繊維の織布、不織布が挙げられる。
【0008】
本発明で使用される熱硬化性樹脂組成物の樹脂としては、一般に公知の熱硬化性樹脂が使用される。具体的には、エポキシ樹脂、多官能性シアン酸エステル樹脂、 多官能性マレイミドーシアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポリフェニレンエーテル樹脂等が挙げられ、これらの1種或いは2種類以上が組み合わせて使用される。出力の高い炭酸ガスレーザー照射による加工により形成されるスルーホール形状を考慮すると、ガラス転移温度が150℃以上の熱硬化性樹脂組成物が好ましく、耐湿性、耐マイグレーション性、吸湿後の電気的特性等の点から多官能性シアン酸エステル樹脂組成物が好適である。
【0009】
本発明の熱硬化性樹脂分である多官能性シアン酸エステル化合物とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類などである。
【0010】
これらのほかに特公昭41-1928、同43-18468、同44-4791、同45-11712、同46-41112、同47-26853及び特開昭51-63149号公報等に記載の多官能性シアン酸エステル化合物類も用いら得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。一般には可溶な有機溶剤に溶解させて使用する。
【0011】
エポキシ樹脂としては、一般に公知のものが使用できる。具体的には、液状或いは固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。これらは1種或いは2種類以上が組み合わせて使用され得る。
【0012】
ポリイミド樹脂としては、一般に公知のものが使用され得る。具体的には、多官能性マレイミド類とポリアミン類との反応物、特公昭57-005406号公報に記載の末端三重結合のポリイミド類が挙げられる。
【0013】
これらの熱硬化性樹脂は、単独でも使用されるが、特性のバランスを考え、適宜組み合わせて使用するのが良い。
【0014】
本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ブタジエン-スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、ポリエチレン-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。また、その他、公知の有機の充填剤、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は硬化剤、触媒が適宜配合される。
【0015】
本発明の熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため使用した熱硬化性樹脂に対して公知の熱硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量部に対して0.005〜10重量部、好ましくは0.01〜5重量部である。
【0016】
無機の絶縁性充填剤としては、一般に公知のものが使用できる。具体的には、天然シリカ、焼成シリカ、アモルファスシリカ等のシリカ類;ホワイトカーボン、チタンホワイト、アエロジル、クレー、タルク、ウオラストナイト、天然マイカ、合成マイカ、カオリン、マグネシア、アルミナ、パーライト等が挙げられる。添加量は、10〜60重量%、好適には15〜55重量%である。
【0017】
また、炭酸ガスレーザーの照射で、光が分散しないように樹脂に黒色の染料又は顔料を添加することが好ましい。粒子径は、均一分散させるためには1μm以下が好ましい。染料、顔料の種類は、一般に公知の絶縁性のものが使用され得る。添加量は、0.1〜10重量%が好適である。さらには、繊維の表面を黒色に染めたガラス繊維等も使用し得る。
【0018】
最外層の銅箔には、一般に公知のものが使用できる。好適には厚さ3〜18μmの電解銅箔等が使用される。また内層銅箔には、好適には12〜70μmの電解銅箔が使用される。
【0019】
好適に使用されるガラス布基材補強銅張積層板は、まず上記ガラス布基材に熱硬化性樹脂組成物をガラス含有量30〜80重量%となるように含浸、乾燥させてBステージとし、プリプレグを作成する。次に、このプリプレグを所定枚数用い、上下に銅箔を配置して、加熱、加圧下に積層成形し、両面銅張積層板とする。この銅張積層板の断面は、ガラス以外の樹脂と無機充填剤が均質に分散していて、レーザー孔あけした場合、孔が均一にあく。また、黒色であるために、レーザー光が分散しにくく、孔壁は凹凸が少なく、均質である。
【0020】
両面銅張積層板、或いは多層板の表層の炭酸ガスレーザーを照射する銅箔面上に、融点900℃以上で、且つ原子の結合エネルギーが300kJ/mol以上の金属化合物粉、カーボン粉又は金属粉を3〜97容積%含む樹脂組成物の塗膜或いはシートを配置し、直接炭酸ガスレーザーを照射して、孔あけを行う。
【0021】
本発明で使用する補助材料の1つである、融点900℃以上で、且つ結合エネルギーが300kJ/mol 以上の金属化合物とは、一般に公知のものが使用できる。例えば酸化物としてのチタニア類;マグネシア類;鉄酸化物類;亜鉛酸化物類;コバルト酸化物類;スズ酸化物類等我挙げられ、非酸化物としては、炭化ケイ素、炭化タングステン、窒化硼素、窒化ケイ素、窒化チタン、硫酸バリウム等我挙げられる。その他、カーボンも使用できる。これらは1種或いは2種以上が組み合わせて使用される。さらには、一般に公知の金属粉が使用される。しかしながら、水、溶剤に溶解した場合に、発熱、発火するものは使用しない。これらは、平均粒子径が、5μm以下、好適には1μm以下のものが使用される。
【0022】
補助材料の水溶性樹脂としては、混練して銅箔表面に塗布、乾燥した場合、或いはシートとした場合、銅箔から剥離欠落しないものを選択する。特に、環境の点からも水溶性の樹脂、例えばポリビニルアルコール、ポリビニルアルコールのケン化物、ポリエステル、澱粉等の、一般に公知のものが好適に使用される。
【0023】
金属化合物粉、カーボン粉または金属粉と水溶性樹脂よりなる組成物を作成する方法は、特に限定しないが、ニーダー等で無溶剤で高温にて練り、シート状に押し出す方法、水に溶解する樹脂組成物を用い、これに上記粉体を加え、均一に撹拌、混合して、これを用い、塗料として銅箔表面に塗布、乾燥して膜を作る方法、フィルムに塗布してシート状にする方法、ガラス基材等に含浸、乾燥して得られるシート等が挙げられる。
【0024】
炭酸ガスレーザーは、赤外線波長域にある9.3〜10.6μmの波長が一般に使用される。出力は20〜60mJ/パルスで、まず、少なくとも表面の1層目の銅箔を加工して孔をあけ、ついで出力を20〜35mJ/パルスに落として、最後の1ショットで、ビア孔底部とする銅箔の表層を、銅箔を突き抜けないように加工するのが好ましい。一般には、ガラス布基材銅張積層板等の絶縁層厚み100μm当たり1〜10ショットで加工する。
【0025】
ビア孔のメッキには、一般に公知の銅メッキ等が使用し得る。又、ビア孔の中に導電塗料を入れ、上下銅箔層の導通を取るようにする。導電塗料としては、一般に公知のものが使用し得る。具体的には、銅ペースト、銀ペースト、はんだペースト、その他のはんだ類である。
【0026】
【実施例】
以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。
実施例1
2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-マレイミドフェニル)メタン100部を150℃に溶融させ、攪拌しながら4時間反応させ、プレポリマーを得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解した。これにビスフェノールA型エポキシ樹脂(商品名:エピコート1001、油化シェルエポキシ<株>製)400部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN-220F、住友化学工業<株>製)600部を加え、均一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4部を加え、溶解混合し、これに無機絶縁性充填剤(商品名:BST#200、平均粒径0.4μmとしたもの、日本タルク<株>製)500部、及び黒色顔料8部を加え、均一攪拌混合してワニスAを得た。このワニスを厚さ100μmのガラス織布に含浸し150℃で乾燥して、ゲル化時間(at170℃)120秒、ガラス布の含有量が57重量%のプリプレグ(プリプレグB)を作成した。厚さ18μmの電解銅箔を、上記プリプレグB1枚の上下に配置し、200℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形し、絶縁層厚み100μmの両面銅張積層板Bを得た。
一方、平均粒径0.86μmの酸化銅粉800部を、部分ケン化した水溶性ポリビニルアルコール粉体を水に溶解したワニスに加え、均一に撹拌混合した(ワニスC)。これを厚さ25μmのポリエチレンテレフタレートフィルムの上に、厚さ50μm塗布し、110℃で30分間乾燥して、酸化銅粉含有量20容積%のフィルム付きシートを形成した。これを両面銅張積層板Bの上に置き、その上から、間隔400μmで、孔径100μmの孔を900個直接炭酸ガスレーザーで、出力40mJ/パルスで1パルス(ショット)かけ、その後、出力を30mJ/パルスに落として、2パルスで下面外層の銅箔の表層部を加工除去した。全部で70ブロックのビア孔(計63,000孔)をあけた。その後、裏面をエッチングレジストで被覆し、表面を全面SUEP法にて処理し、孔周辺の銅箔バリを溶解除去すると同時に、表面の銅箔も7μmまで溶解した。エッチングレジストを除去後、今度は表面を全面エッチングレジストで覆い、裏面の銅箔をSUEP法にて7μmまで溶解除去し、エッチングレジストを除去後に、この板に銅メッキを15μm(総厚み:22μm)施した。このビア孔の箇所に径250μmのランドを形成し、ビア孔底部の銅箔をボールパッドとし、これを表裏交互に、計900孔つないで、ヒートサイクル試験を行なった。又、回路(ライン/スペース=50/50μmを200個)を形成し、この上に、ソルダーボール用ランド等を形成し、少なくとも半導体チップ、ボンディング用パッド、ハンダボールパッドを除いてメッキレジストで被覆し、ニッケル、金メッキを施し、プリント配線板を作成した。このプリント配線板の評価結果を表1に示す。
【0027】
実施例2
エポキシ樹脂(商品名:エピコート5045)1400部、エポキシ樹脂(商品名:ESCN220F)600部、ジシアンジアミド70部、2-エチル-4-メチルイミダゾール2部をメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解し、さらに実施例1の絶縁性無機充填剤を500部加え、強制攪拌して均一分散し、ワニスDを得た。これを厚さ50μmのガラス織布に含浸、乾燥して、ゲル化時間150秒、ガラス布含有量35wt%のプリプレグ(プリプレグE)を作成した。このプリプレグEを1枚使用し、両面に18μmの電解銅箔を置き、190℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形して両面銅張積層板Fを作成した。絶縁層の厚みは100μmであった。この上下に回路を形成し、酸化銅処理を施した後、上下にプリプレグEを配置し、その両外側に12μmの電解銅箔を置き、同様に積層成形して、両面銅箔付き4層板Fとした。
一方、平均粒子径0.7μmの銅粉を、ポリビニルアルコール溶液に溶解し、銅粉が70容積%のワニスGとした。これを上記の両面銅張4層板Fの上に、厚さ40μmとなるように塗布し、110℃で30分間乾燥して塗膜とした(図1(1))。この上から、炭酸ガスレーザーの出力40mJ/パルスにて2パルス(ショット)で銅箔に径100μmの孔をあけ(図1(2))、その後、30mJ/パルスにて2パルスで同様に加工し、後は実施例1と同様にしてビア孔が形成された多層プリント配線板を作成した(図1、図2(3)、(4)、(5))。評価結果を表1に示す。
【0028】
比較例1
実施例1の両面銅張積層板、実施例2の両面銅張多層板を用い、表面に補助材料を使用せずに炭酸ガスレーザーで同様に孔あけを行なったが、孔はあかなかった。
【0029】
比較例2
実施例2において(図3(1))、ドリル径100μmのメカニカルドリルを用い、表層からすぐ真下の銅箔まで孔を同様に63,000孔あけた。この孔の全部の断面を確認したが、図3(2)に示すような孔が13%存在した。他は内層銅箔を突き抜けて止まっていた。SUEP処理を行なわずに、デスミア処理を1回実施してから、同様にしてプリント配線板を作成した。評価結果を表1に示す。
【0030】
比較例3
実施例2の両面銅張多層板を用い、この表面の銅箔を実施例1と同様に、400μm間隔で63,000孔、径100μmでエッチングしてあけ、炭酸ガスエネルギー18mJ/パルスにて3パルスであけた。SUEP処理を行なわずに、公知のデスミア処理を2回繰り返して施し、同様に銅メッキを15μm付着させ、表裏に回路形成し、同様に加工してプリント配線板を作成した。評価結果を表1に示す。
【0031】
比較例4
実施例2において、炭酸ガスレーザーの出力40mJ/パルスで4パルスにて両面銅張多層板に同様にしてビア孔をあけた(図4(1)(2)。これは内層の銅箔の中央を突き破っており(図4(3))、これにSUEP処理をかけ、同様にメッキを施し(図5(4))、プリント板を作成した。評価結果を表1に示す。
【0032】

Figure 0004078715
【0033】
<測定方法>
1)ビア孔底部
断面を観察した。
2)ビア孔あけ時間
炭酸ガスレーザー及びメカニカルドリルで孔あけを行なった場合の、63,000孔/枚孔をあけるのに要した時間を示した。
3)回路パターン切れ及びショート
実施例、比較例で、ライン/スペース=50/50μm のパターンを拡大鏡で200パターン目視にて観察し、パターン切れ、及びショートしているパターンの合計を分子に示した。
4)ガラス転移温度
DMA法にて測定した。
5)ビア孔ヒートサイクル試験
ビア孔を表裏交互に900孔つなぎ1サイクルが、260℃・ハンダ・浸せき30秒→ 室温・5分 で、200サイクル実施し、抵抗値の変化の最大値を示した。
【0034】
【発明の効果】
プリント配線板の表層にある1層目の銅箔と、ビア孔部にある銅箔間を電導導通するためのマイクロビア孔を炭酸ガスレーザーであけるに際し、ビア孔底部の銅面の表層一部を除去し、且つ、銅箔を貫通しない形でビア孔を形成し、金属メッキ又は導電塗料で最外層とビア部の銅層とを導通する構造のビア孔が形成されたプリント配線板とすることにより、デスミア処理の必要もなく、最外層とビア部に露出した銅層との接続信頼性に優れたものを得ることができた。また、加工速度はドリルであけるのに比べて格段に速く、生産性についても大幅に改善できるものである。銅箔孔あけ部に張りだした銅箔バリ及び銅箔の表面を厚さ方向に一部平面的に同時に薬液でエッチング除去することにより、銅箔が薄くなるため、その後の金属メッキでメッキアップして得られた表裏銅箔の細線の回路形成において、ショートやパターン切れ等の不良の発生もなく、高密度のプリント配線板を作成することができた。
【図面の簡単な説明】
【図1】 実施例2の炭酸ガスレーザーによるビア孔あけ[(1)、(2)(3)]の工程図である。
【図2】 実施例2のSUEPによるバリ除去(4)及び銅メッキ(5)の工程図である。
【図3】 比較例2の炭酸ガスレーザーによる同様の工程図である。
【図4】 比較例4の炭酸ガスレーザーによるビア孔あけ[(1)、(2)、(3)]の工程図である。
【図5】 比較例4の銅メッキ(4)の工程図である。
【符号の説明】
a 金属粉含有樹脂シート
b 銅箔
c ガラス布基材熱硬化性樹脂層
d 40mJ/パルスの炭酸ガスレーザー
e 発生したバリ
f 30mJ/パルスの炭酸ガスレーザー
g ビア孔底部の銅箔表層
h ビア孔銅メッキ部
i メカニカルドリル
j 4層目(下側外層銅箔)ヘ突き抜けた孔
k 高出力の炭酸ガスレーザーで内層銅箔を突き抜けた箇所[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a via hole in a printed wiring board. In particular, a part of the surface layer of the copper foil at the bottom of the via hole, which becomes a via hole, is removed so that the copper foil does not penetrate, and the via hole obtained by metal plating or conductive paint is used for the surface layer and the via. The present invention relates to a method for forming a via hole in a printed wiring board having excellent connection reliability, wherein the hole copper foil layer is electrically connected. The obtained printed wiring board is mainly used for a small semiconductor plastic package.
[0002]
[Prior art]
Conventionally, a high-density multilayer printed wiring board used for a semiconductor plastic package or the like has a via hole drilled or a carbon dioxide laser. When drilling, if the copper foil thickness of the inner layer is thin or the thickness variation of the multilayer board is large, it is difficult to stop the via hole in the middle of the inner copper foil, sometimes reaching the copper foil layer below it It was a cause of failure. When drilling with a carbon dioxide laser, a resin layer of about 1 μm remained on the copper foil surface on the lower surface of the via hole, and it was necessary to perform desmear treatment before copper plating. In this case, if the desmear treatment is insufficient, the electrical conductivity between the surface layer after copper plating and the copper foil therebelow is not good, resulting in poor conduction. In addition, the desmear process has a problem that it takes two to three times as long as the general desmear process time for a through hole or the like and the workability is poor.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for forming a small-sized via hole at a high speed that does not require desmearing and solves the above-described problems.
[0004]
[Means for Solving the Problems]
Copper foil of the double-sided copper clad laminate and multilayer plate surface with a copper foil on both surfaces, the surface is irradiated at least carbon dioxide laser, with melting point 900 ° C. or higher, and bond energy 300 kJ / mol or more metal compounds, carbon powder Alternatively, a coating film or sheet made of one or more metal powders and a water-soluble resin is arranged, and a pulse oscillation of a carbon dioxide laser having an energy selected from the energy of 20 to 60 mJ / pulse is provided at least. A hole is made in the copper foil on the surface layer, and then, at the energy of 20 to 35 mJ / pulse, the bottom of the via hole below or a part of the surface layer of the opposite outer layer copper foil on the double-sided plate is processed so that the copper foil does not penetrate. Then, a via hole in which a new surface inside the copper foil at the bottom of the via is exposed is formed.
After that, to process the copper foil surface in the drug solution. When processing with a chemical solution, in forming a via hole using a double-sided copper-clad plate, care is taken so that the copper foil in the via hole is not dissolved.
When a via hole is formed by directly irradiating the copper foil with a carbon dioxide laser, burrs of the copper foil are generated at the surface copper foil perforated portion. Since it is difficult to take in the mechanical polishing, it etched with a chemical solution. Both surfaces of the copper foil are planarly etched, and a part of the thickness of the original copper foil is removed by etching, thereby simultaneously removing the copper foil burrs protruding from the holes. When such a treatment is carried out, the copper foil becomes thin. Therefore, in the formation of a thin line circuit of the front and back copper foil obtained by plating up with subsequent metal plating, there is no occurrence of defects such as short-circuiting or pattern breakage. A printed wiring board with high density could be created. In addition, there is no need to apply desmear treatment, it is excellent in workability, and when connecting the outermost layer and the copper foil directly below it with metal plating or conductive paint, the connection area is large and the connection reliability of the via hole is excellent Things were obtained.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method for forming a via hole that does not require desmear treatment on a surface layer of a double-sided copper-clad plate and a multilayer plate having at least two copper layers before metal plating.
As a method for forming a via hole in the surface, the metal compound powder and the binding energy in melting point 900 ° C. or higher 300 mJ / pulse, one of the carbon powder or metal powder, or a resin containing two or more 3 to 97 volume% The composition is applied to the surface of the copper foil to form a coating, or arranged as a sheet shape, and directly irradiated with energy selected from a high output 20 to 60 mJ / pulse carbon dioxide laser from above. A hole is made in the copper foil, and then the copper foil at the bottom of the via hole underneath, or a part of the outer layer copper foil on the opposite side of the double-sided plate, is encapsulated with energy selected from 20 to 35 mJ / pulse. The foil is processed so that it does not penetrate, and a via hole in which a new surface inside the copper foil is exposed is formed.
After that, performing a copper foil surface treatment with chemical liquid. In the case of mechanical polishing, a general polishing machine can be used. However, if burrs occur in the hole, it is necessary to perform polishing several times, and the dimensional change rate of the plate may increase. Oh Ru. In the present invention, simultaneously with the etching of the surface layer with chemical, it intends row copper foil surface treatment method of dissolving and removing even the burrs. By removing both surfaces of the copper foil by planar etching, the copper foil becomes thin, and in the formation of thin wire circuits on the front and back copper foils obtained by plating up with subsequent metal plating, defects such as shorts and pattern breaks There is no occurrence, and a high-density printed wiring board can be created. Moreover, since it is not necessary to perform a desmear process, it is excellent in workability. When there is no resin layer on the copper foil surface at the bottom of the via hole and the via hole is plated with metal or embedded with conductive paint, the outermost layer of the via hole is connected to the copper foil directly below it. A printed wiring board having a large area and excellent via hole connection reliability could be obtained. As the chemical for etching, generally known chemicals can be used. For example, JP 02-22887, 02-22896, 02-25089, 02-25090, 02-59337, 02-60189, 02-166789, 03-25995, 03-60183, 03 -94491, 04-199592, 04-263488, and the chemicals disclosed in JP-A-04-263488 are used. These chemicals dissolve and remove the metal surface (referred to as the SUEP method). The etching rate is generally 0.02 to 1.0 μm / sec.
[0006]
The double-sided board and multilayer board having at least two or more copper layers used in the present invention are preferably made of glass cloth as a base material and blackened by adding a dye or pigment to the thermosetting resin composition. In addition, a double-sided copper-clad laminate having a homogeneous structure in which 10 to 60% by weight of an inorganic insulating filler is mixed in the resin composition is used.
Moreover, as a multilayer board, the said double-sided copper clad laminated board of a glass cloth base material is processed into an inner-layer board, and it is used suitably. Apply metal copper oxide treatment to the surface as necessary, place inorganic or organic cloth base material prepreg, resin sheet, copper foil with resin, or paint film with paint on top and bottom, place copper foil if necessary, heat, pressurize, Preferably, lamination molding is performed under vacuum.
In addition to the copper-clad plate described above, a double-sided plate or a multilayer plate of a generally known high heat-resistant film such as a polyimide film, a polyester film, or a polyparabanic acid film can be used.
[0007]
As the substrate, generally known inorganic and organic woven fabrics and nonwoven fabrics can be used. Specifically, examples of the inorganic base material include woven fabrics and nonwoven fabrics of fibers such as E, S, D, and M glass. Examples of organic fibers include woven fabrics and nonwoven fabrics of fibers such as liquid crystal polyester and wholly aromatic polyamide.
[0008]
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used. Specific examples include epoxy resins, polyfunctional cyanate ester resins, polyfunctional maleimide-cyanate ester resins, polyfunctional maleimide resins, unsaturated group-containing polyphenylene ether resins, and the like. More than one type is used in combination. Considering the shape of the through-hole formed by processing with high-power carbon dioxide laser irradiation, a thermosetting resin composition with a glass transition temperature of 150 ° C or higher is preferable, moisture resistance, migration resistance, and electrical characteristics after moisture absorption In view of the above, a polyfunctional cyanate ester resin composition is preferred.
[0009]
The polyfunctional cyanate ester compound which is the thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reaction of novolac with cyanogen halide.
[0010]
In addition to these, the polyfunctionality described in JP-B Nos. 41-1928, 43-18468, 44-4791, 45-11712, 46-41112, 47-26853 and JP-A-51-63149 Cyanate ester compounds can also be used. In addition, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these polyfunctional cyanate ester compounds is used. This prepolymer polymerizes the above-mentioned polyfunctional cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. Can be obtained. This prepolymer also includes a partially unreacted monomer, which is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the application of the present invention. Generally, it is used after being dissolved in a soluble organic solvent.
[0011]
As the epoxy resin, generally known epoxy resins can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. And polyglycidyl compounds obtained by reaction of polyols, hydroxyl group-containing silicon resins and epohalohydrin, and the like. These may be used alone or in combination of two or more.
[0012]
As the polyimide resin, generally known resins can be used. Specific examples include reaction products of polyfunctional maleimides and polyamines and terminal triple bond polyimides described in JP-B-57-005406.
[0013]
These thermosetting resins may be used alone, but may be used in appropriate combination in consideration of balance of characteristics.
[0014]
In the thermosetting resin composition of the present invention, various additives can be blended as desired within a range where the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer. Low molecular weight liquid to high molecular weight elastic rubbers such as polymers, polyisoprene, butyl rubber, fluororubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin Styrene-isoprene rubber, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymers; high molecular weight prepolymers such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide Are oligomers; polyurethane and the like are exemplified and used as appropriate. In addition, various additions of known organic fillers, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic agents, etc. Agents are used in appropriate combinations as desired. If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst.
[0015]
Although the thermosetting resin composition of the present invention itself is cured by heating, the curing rate is slow and the workability, economy and the like are inferior, so that a known thermosetting catalyst can be used for the thermosetting resin used. . The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the thermosetting resin.
[0016]
As the inorganic insulating filler, generally known ones can be used. Specifically, silicas such as natural silica, calcined silica and amorphous silica; white carbon, titanium white, aerosil, clay, talc, wollastonite, natural mica, synthetic mica, kaolin, magnesia, alumina, perlite, etc. It is done. The addition amount is 10 to 60% by weight, preferably 15 to 55% by weight.
[0017]
Further, it is preferable to add a black dye or pigment to the resin so that light is not dispersed by irradiation with a carbon dioxide laser. The particle diameter is preferably 1 μm or less for uniform dispersion. As the kind of dye and pigment, generally known insulating ones can be used. The addition amount is preferably 0.1 to 10% by weight. Furthermore, the glass fiber etc. which dyed the surface of the fiber black can also be used.
[0018]
Generally known copper foil can be used for the outermost copper foil. Preferably, an electrolytic copper foil having a thickness of 3 to 18 μm is used. Moreover, 12-70 micrometers electrolytic copper foil is used suitably for inner layer copper foil.
[0019]
The glass cloth base reinforced copper clad laminate preferably used is firstly impregnated with the thermosetting resin composition to the glass cloth base so that the glass content becomes 30 to 80% by weight and dried to form a B stage. Create a prepreg. Next, a predetermined number of the prepregs are used, copper foils are arranged on the upper and lower sides, and are laminated and formed under heating and pressure to obtain a double-sided copper-clad laminate. In the cross section of the copper clad laminate, the resin other than glass and the inorganic filler are uniformly dispersed, and the holes are evenly formed when laser drilling is performed. Further, since it is black, the laser beam is difficult to disperse, and the hole wall is uniform with few irregularities.
[0020]
Double-sided copper-clad laminate, or on the copper foil surface to be irradiated with a carbon dioxide laser of the surface layer of the multilayer board, with melting point 900 ° C. or higher, and the binding energy of atoms is 300 kJ / mol or more metal compounds powder, carbon powder or metal A resin coating film or sheet containing 3 to 97% by volume of powder is placed, and a carbon dioxide laser is directly irradiated to make a hole.
[0021]
As the auxiliary material used in the present invention, generally known compounds can be used as the metal compound having a melting point of 900 ° C. or higher and a binding energy of 300 kJ / mol or higher. For example, titanias as oxides; magnesias; iron oxides; zinc oxides; cobalt oxides; tin oxides, etc. Non-oxides include silicon carbide, tungsten carbide, boron nitride, Examples include silicon nitride, titanium nitride, and barium sulfate. In addition, carbon can be used. These may be used alone or in combination of two or more. Furthermore, generally known metal powder is used. However, those that generate heat or ignite when dissolved in water or solvents are not used. Those having an average particle diameter of 5 μm or less, preferably 1 μm or less are used.
[0022]
The water-soluble resin of the auxiliary material was mixed kneaded applied to a copper foil surface, when dried, or when a sheet, you select the one which does not peel missing from copper foil. In particular, water-soluble resin in terms of the environment, such as polyvinyl alcohol, polyvinyl alcohol saponified, polyesters, such as starch, generally known is preferably used.
[0023]
How to create a metal compound powder, carbon powder or metal powder and consisting of water-soluble resin composition is not particularly limited, kneading at high temperature without a solvent in a kneader or the like, how to extrude into sheets, dissolved in water Using the resin composition, add the above powder to this, stir and mix uniformly, and use this to apply to the surface of the copper foil as a paint and dry to form a film. And a sheet obtained by impregnating and drying a glass substrate and the like.
[0024]
A carbon dioxide laser generally has a wavelength of 9.3 to 10.6 μm in the infrared wavelength region. The output is 20-60 mJ / pulse. First, at least the first layer copper foil on the surface is processed to make a hole, and then the output is dropped to 20-35 mJ / pulse. The surface layer of the copper foil to be processed is preferably processed so as not to penetrate the copper foil. In general, it is processed at 1 to 10 shots per 100 μm thickness of an insulating layer such as a glass cloth base copper clad laminate.
[0025]
For plating the via hole, generally known copper plating or the like can be used. Also, a conductive paint is put into the via hole so that the upper and lower copper foil layers are electrically connected. As the conductive paint, generally known ones can be used. Specifically, a copper paste, a silver paste, a solder paste, and other solders.
[0026]
【Example】
The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” represents parts by weight.
Example 1
900 parts of 2,2-bis (4-cyanatophenyl) propane and 100 parts of bis (4-maleimidophenyl) methane were melted at 150 ° C. and reacted for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. 400 parts of bisphenol A type epoxy resin (trade name: Epicoat 1001, manufactured by Yuka Shell Epoxy Co., Ltd.) and 600 parts of cresol novolac type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) In addition, it was uniformly dissolved and mixed. Further, 0.4 part of zinc octylate as a catalyst was added, dissolved and mixed, and this was mixed with an inorganic insulating filler (trade name: BST # 200, with an average particle diameter of 0.4 μm, manufactured by Nippon Talc Co., Ltd.), and 8 parts of a black pigment was added and uniformly stirred and mixed to obtain varnish A. This varnish was impregnated into a glass woven cloth having a thickness of 100 μm and dried at 150 ° C. to prepare a prepreg (prepreg B) having a gel time (at 170 ° C.) of 120 seconds and a glass cloth content of 57% by weight. An electrolytic copper foil with a thickness of 18μm is placed on the top and bottom of the prepreg B1 and laminated for 2 hours under a vacuum of 200 ° C, 20kgf / cm 2 , 30mmHg, and a double-sided copper-clad laminate B with an insulating layer thickness of 100μm Got.
On the other hand, 800 parts of copper oxide powder having an average particle size of 0.86 μm was added to a varnish obtained by dissolving a partially saponified water-soluble polyvinyl alcohol powder in water, and the mixture was uniformly stirred and mixed (varnish C). This was coated on a polyethylene terephthalate film having a thickness of 25 μm, a thickness of 50 μm, and dried at 110 ° C. for 30 minutes to form a sheet with a film having a copper oxide powder content of 20% by volume. Place this on the double-sided copper-clad laminate B, and apply 900 pulses of holes with a spacing of 400μm and a diameter of 100μm directly with a carbon dioxide laser, one pulse (shot) at an output of 40mJ / pulse, and then output. The surface layer portion of the copper foil on the lower outer layer was processed and removed with 2 pulses at a drop of 30 mJ / pulse. A total of 70 blocks of via holes (63,000 holes in total) were drilled. Thereafter, the back surface was coated with an etching resist, the entire surface was treated by the SUEP method, and the copper foil burrs around the holes were dissolved and removed, and at the same time, the copper foil on the surface was dissolved to 7 μm. After removing the etching resist, this time, the entire surface is covered with the etching resist, and the copper foil on the back surface is dissolved and removed to 7 μm by the SUEP method. After removing the etching resist, the copper plating is 15 μm on this plate (total thickness: 22 μm) gave. A land having a diameter of 250 μm was formed at the location of the via hole, and a copper foil at the bottom of the via hole was used as a ball pad. In addition, a circuit (200 lines / space = 50 / 50μm) is formed, and solder ball lands, etc. are formed thereon, and at least the semiconductor chip, bonding pads, and solder ball pads are covered with a plating resist. Then, nickel and gold plating were applied to produce a printed wiring board. The evaluation results of this printed wiring board are shown in Table 1.
[0027]
Example 2
1400 parts of epoxy resin (trade name: Epicoat 5045), 600 parts of epoxy resin (trade name: ESCN220F), 70 parts of dicyandiamide, 2 parts of 2-ethyl-4-methylimidazole are dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, and 500 parts of the insulating inorganic filler of Example 1 was added, and the mixture was forcibly stirred and uniformly dispersed to obtain varnish D. This was impregnated into a 50 μm thick glass woven cloth and dried to prepare a prepreg (prepreg E) having a gel time of 150 seconds and a glass cloth content of 35 wt%. One prepreg E was used, an electrolytic copper foil of 18 μm was placed on both sides, and laminate molding was performed for 2 hours under a vacuum of 190 ° C., 20 kgf / cm 2 , 30 mmHg or less to prepare a double-sided copper clad laminate F. The thickness of the insulating layer was 100 μm. After forming a circuit above and below and performing copper oxide treatment, prepreg E is placed on the top and bottom, 12 μm electrolytic copper foil is placed on both sides, and laminated in the same manner, and a four-layer board with double-sided copper foil F.
On the other hand, copper powder having an average particle size of 0.7 μm was dissolved in a polyvinyl alcohol solution to obtain varnish G having 70% by volume of copper powder. This was applied onto the double-sided copper-clad four-layer board F so as to have a thickness of 40 μm, and dried at 110 ° C. for 30 minutes to form a coating film (FIG. 1 (1)). From this, a hole of 100μm in diameter is made in the copper foil with 2 pulses (shot) at a carbon dioxide laser output of 40mJ / pulse (Fig. 1 (2)), and then similarly processed with 2 pulses at 30mJ / pulse. Thereafter, a multilayer printed wiring board in which via holes were formed was produced in the same manner as in Example 1 (FIGS. 1, 2 (3), (4), and (5)). The evaluation results are shown in Table 1.
[0028]
Comparative Example 1
Double-sided copper-clad laminate of Example 1, have use a double-sided copper-clad multilayer plate of Example 2, was carried out similarly drilled with carbon dioxide gas laser without the use of auxiliary materials on the front surface, the hole is not red It was.
[0029]
Comparative Example 2
In Example 2 (FIG. 3 (1)), using a mechanical drill with a drill diameter of 100 μm, 63,000 holes were similarly drilled from the surface layer to the copper foil immediately below. The entire cross section of the hole was confirmed, and 13% of the holes as shown in FIG. The others stopped through the inner layer copper foil. After performing the desmear process once without performing the SUEP process, a printed wiring board was produced in the same manner. The evaluation results are shown in Table 1.
[0030]
Comparative Example 3
Using the double-sided copper-clad multilayer board of Example 2, the copper foil on this surface was etched by opening 63,000 holes with a diameter of 100 μm at 400 μm intervals, and 3 pulses with carbon dioxide energy of 18 mJ / pulse. Opened. Without performing the SUEP process, a known desmear process was repeated twice, similarly, 15 μm of copper plating was applied, circuits were formed on the front and back, and processed in the same manner to produce a printed wiring board. The evaluation results are shown in Table 1.
[0031]
Comparative Example 4
In Example 2, via holes were similarly drilled in the double-sided copper-clad multilayer board at 4 pulses with a carbon dioxide laser output of 40 mJ / pulse (FIGS. 4 (1) and (2). This is the center of the inner copper foil. (Fig. 4 (3)), this was subjected to SUEP treatment, similarly plated (Fig. 5 (4)), and a printed board was produced.
[0032]
Figure 0004078715
[0033]
<Measurement method>
1) The bottom section of the via hole was observed.
2) Via drilling time Shown is the time required to drill 63,000 holes / plate when drilling with a carbon dioxide laser and mechanical drill.
3) Circuit pattern cuts and shorts In the examples and comparative examples, the line / space = 50/50 μm pattern was observed with 200 magnifiers with a magnifying glass, and the total of the pattern cuts and shorted patterns is shown in the molecule. It was.
4) Measured by the glass transition temperature DMA method.
5) Via hole heat cycle test Two via holes were alternately connected on the front and back, and one cycle was performed 200 cycles at 260 ° C, solder, immersion 30 seconds → room temperature, 5 minutes, and showed the maximum resistance change. .
[0034]
【The invention's effect】
When a micro via hole for conducting electrical conduction between the copper foil in the surface layer of the printed wiring board and the copper foil in the via hole is made with a carbon dioxide laser, a part of the copper layer on the bottom of the via hole And a via hole is formed so as not to penetrate the copper foil, and a via hole having a structure in which the outermost layer and the copper layer of the via portion are electrically conductive is formed by metal plating or conductive paint. As a result, there was no need for desmear treatment, and it was possible to obtain an excellent connection reliability between the outermost layer and the copper layer exposed in the via portion. In addition, the machining speed is much faster than drilling, and productivity can be greatly improved. The copper foil is thinned by etching away the copper foil burrs and the surface of the copper foil that has been pierced in the copper foil perforated part in the thickness direction simultaneously with a chemical solution in the thickness direction. In the formation of thin wire circuits of the front and back copper foils obtained in this way, it was possible to produce a high-density printed wiring board without occurrence of defects such as short-circuiting or pattern breakage.
[Brief description of the drawings]
FIG. 1 is a process diagram of via drilling [(1), (2), (3)] using a carbon dioxide laser in Example 2.
FIG. 2 is a process diagram of deburring (4) and copper plating (5) by SUEP in Example 2.
3 is a similar process diagram using a carbon dioxide laser in Comparative Example 2. FIG.
4 is a process diagram of via drilling [(1), (2), (3)] by a carbon dioxide gas laser of Comparative Example 4. FIG.
FIG. 5 is a process diagram of copper plating (4) of Comparative Example 4;
[Explanation of symbols]
a metal powder-containing resin sheet b copper foil c glass cloth base thermosetting resin layer d 40 mJ / pulse carbon dioxide laser e generated burr f 30 mJ / pulse carbon dioxide laser g copper foil surface layer h at the bottom of the via hole h via hole Copper plated part i Mechanical drill j Hole penetrated into the 4th layer (lower outer copper foil) k Place penetrated through the inner copper foil with high-power carbon dioxide laser

Claims (1)

プリント配線板の表層にある1層目の銅箔と、ビア部にある銅箔間を電導導通するためのマイクロビア孔を炭酸ガスレーザーであけるに際し、少なくとも2層以上の銅の層を有する銅張板の表層銅箔の上に、融点900℃以上で、且つ結合エネルギー300kJ/mol以上の金属化合物粉、カーボン粉又は金属粉の1種或いは2種以上を3〜97容積%含む水溶性樹脂組成物を塗膜又はシート形状で配置し、炭酸ガスレーザーを出力20〜60mJ/パルスで照射し、ビア孔の少なくとも1層目の銅箔層を除去し、その後、20〜35mJ/パルスの出力で、ビア孔の底部となる銅箔表層の一部を加工除去して銅箔を貫通しない形でビア孔を形成した後、ビア孔部に張りだした銅箔バリの除去及び銅箔の一部を厚さ方向に平面的な除去をエッチング処理で同時に実施し、かつ金属メッキ又は導電塗料で最外層とビア孔部の銅箔層とを電導導通することを特徴とするビア孔の形成方法。Copper having at least two or more copper layers when a micro-via hole for conducting conduction between the first copper foil on the surface of the printed wiring board and the copper foil in the via portion is formed with a carbon dioxide gas laser. on the surface layer copper foil-clad board, in melting point 900 ° C. or higher, and bond energy 300 kJ / mol or more metal compounds powder, water-soluble, including one carbon powder or a metal powder or two or more of 3 to 97 volume% The resin composition is arranged in the form of a coating film or sheet, and a carbon dioxide laser is irradiated at an output of 20 to 60 mJ / pulse to remove at least the first copper foil layer of the via hole, and then 20 to 35 mJ / pulse. At the output, a part of the copper foil surface layer which becomes the bottom of the via hole is processed and removed to form a via hole without penetrating the copper foil, and then the copper foil burrs protruding from the via hole and the copper foil are removed. of a part in the thickness direction planar removed performed simultaneously with the etching process, and the metal main Method of forming a via hole, which comprises conducting conduction between copper foil layer of the outermost layer and the via hole in the key or the conductive paint.
JP16927098A 1998-06-02 1998-06-02 Highly reliable via hole formation method Expired - Fee Related JP4078715B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16927098A JP4078715B2 (en) 1998-06-02 1998-06-02 Highly reliable via hole formation method
US09/321,556 US6280641B1 (en) 1998-06-02 1999-05-28 Printed wiring board having highly reliably via hole and process for forming via hole
EP99304260A EP0964610B1 (en) 1998-06-02 1999-06-01 Printed wiring board and process for forming it
DE69934050T DE69934050T2 (en) 1998-06-02 1999-06-01 Printed circuit board and method of making the same
TW088109124A TW424244B (en) 1998-06-02 1999-06-02 Printed wiring board having highly reliably via hole and process for forming via hole
KR1019990020202A KR100630481B1 (en) 1998-06-02 1999-06-02 Printed wiring borard having highly reliably via hole and process for forming via hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16927098A JP4078715B2 (en) 1998-06-02 1998-06-02 Highly reliable via hole formation method

Publications (2)

Publication Number Publication Date
JPH11346045A JPH11346045A (en) 1999-12-14
JP4078715B2 true JP4078715B2 (en) 2008-04-23

Family

ID=15883403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16927098A Expired - Fee Related JP4078715B2 (en) 1998-06-02 1998-06-02 Highly reliable via hole formation method

Country Status (1)

Country Link
JP (1) JP4078715B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854834B2 (en) * 2000-04-25 2012-01-18 三菱瓦斯化学株式会社 Method for forming holes in copper-clad plate using carbon dioxide laser
JP3986743B2 (en) * 2000-10-03 2007-10-03 株式会社日立製作所 WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTROLESS COPPER PLATING LIQUID USED FOR THE SAME
JP2002313914A (en) 2001-04-18 2002-10-25 Sony Corp Method for forming wiring, method for arranging element using it and method for manufacturing image display device
JP6501627B2 (en) * 2015-06-03 2019-04-17 住友重機械工業株式会社 Laser processing equipment
EP3296054B1 (en) * 2016-09-19 2020-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a micro-machined workpiece by means of laser ablation

Also Published As

Publication number Publication date
JPH11346045A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
KR100630481B1 (en) Printed wiring borard having highly reliably via hole and process for forming via hole
KR100630482B1 (en) Printed wiring board for semiconductor plastic package
JP4348785B2 (en) High elastic modulus glass cloth base thermosetting resin copper clad laminate
JP4103188B2 (en) Highly reliable via hole formation method
JP4078715B2 (en) Highly reliable via hole formation method
JPH11346059A (en) Printed circuit board with reliable via hole
JP4078713B2 (en) Backup sheet for drilling through holes with laser
JPH11330310A (en) Laser boring copper-plated laminate
JP4727013B2 (en) Manufacturing method of multilayer printed wiring board having through hole by carbon dioxide laser processing
JP4854834B2 (en) Method for forming holes in copper-clad plate using carbon dioxide laser
JP2001007535A (en) Manufacture of multilayer printed wiring board with through-hole of high reliability
JP2001028475A (en) Manufacture of polybenzazole fabric base-material printed wiring board
JP2001156460A (en) Build-up multilayer printed wiring board
JP2001111233A (en) Flip-chip mounting high-density multilayer printed interconnection board
JP2000061679A (en) Method for forming through hole by laser beam
JP4479033B2 (en) Double-sided copper foil with protective film and printed wiring board using the same
JP2003290958A (en) Method for forming through-hole to multilayered both- side copper clad plate by laser
JP2001111235A (en) Method of manufacturing flip-chip mounting high-density multilayer printed interconnection board
JP4826033B2 (en) Backup sheet for through-hole formation by carbon dioxide laser
JP2001111186A (en) Polybenzazol fiber cloth substrate printed wiring board
JP2005183792A (en) Method for manufacturing printed-wiring board for flip-chip mounting
JPH11320174A (en) Auxiliary material for carbon dioxide gas laser boring
JPH11340605A (en) Forming method of penetrating hole for through-hole
JP4826031B2 (en) Formation method of through-hole by carbon dioxide laser
JP4022972B2 (en) Semiconductor plastic package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees