JP4077867B1 - 光アイソレータの放熱構造 - Google Patents

光アイソレータの放熱構造 Download PDF

Info

Publication number
JP4077867B1
JP4077867B1 JP2007530535A JP2007530535A JP4077867B1 JP 4077867 B1 JP4077867 B1 JP 4077867B1 JP 2007530535 A JP2007530535 A JP 2007530535A JP 2007530535 A JP2007530535 A JP 2007530535A JP 4077867 B1 JP4077867 B1 JP 4077867B1
Authority
JP
Japan
Prior art keywords
heat
heat conductive
crystal film
optical isolator
heat conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007530535A
Other languages
English (en)
Other versions
JPWO2008023450A1 (ja
Inventor
雄三 越智
昭二 久保村
雅之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkosha KK
Original Assignee
Shinkosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkosha KK filed Critical Shinkosha KK
Application granted granted Critical
Publication of JP4077867B1 publication Critical patent/JP4077867B1/ja
Publication of JPWO2008023450A1 publication Critical patent/JPWO2008023450A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/60Temperature independent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S372/00Coherent light generators
    • Y10S372/703Optical isolater

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

放熱フィンを外熱伝導カバー体内から外部に延ばして磁性ガーネット結晶膜における光吸収に伴う温度上昇を抑制する光アイソレータの放熱構造である。光アイソレータの放熱構造は、外熱伝導カバー体(3)内に磁性ガーネット結晶膜(12)、第1及び第2の熱伝導板(6,7,8,9)及び磁石(18)を配置し、第2の熱伝導板に放熱フィン(10,11)を設け、磁性ガーネット結晶膜の両面に第1の熱伝導板(6,7)を装着し、第1の熱伝導板の外側面に第2の熱伝導板(8,9)を並べ、放熱フィンをアイソレータホルダ2のガイド開口部(2a,2b)を通過させ、外熱伝導カバー体の引き出し開口部(3c)から外熱伝導カバー体の外部に導き、外部溝(4d,5d)に接触させる。
【選択図】図1

Description

この発明は、光アイソレータに用いられているファラデー回転子における光吸収に伴う温度上昇を抑制するための光アイソレータの放熱構造に関するものである。
近年、高出力のレーザーを用いる分析医療その他の技術分野において、光アイソレータのような偏光制御モジュールは、高パワーの光が入射されても十分対応できることが要請されている。その理由は、偏光を回転させる機能を備えたファラデー回転子にガーネット結晶を用いている光アイソレータにおいて、特に、近赤外波長域が730nm〜800nmや1000nm〜1200nmのような大きなパワーを有する光が入射された場合、上記ガーネット結晶の光吸収に伴って発生する熱が上昇し、ファラデー回転子の光学特性が高温によって劣化するなどの問題を起こすからである。
この問題を解決するために特開平7−281129号公報に記載の高パワー用光アイソレータ、特開2005−25138号公報に記載の短波長高パワー用光アイソレータ及び特開2005−43853号公報に記載の光アイソレータが提案されている。
例えば特開2005−25138号公報に記載の短波長高パワー用光アイソレータ(以下「従来例1」という。)における放熱構造について説明する。
この放熱構造において、筒状のマグネット及びリング状の放熱板はケース内にそれぞれの外周面が上記ケース内周面に接するように収納されている。ファラデー回転子は、上記マグネットの内部に配置されている。このファラデー回転子の片側面又は両側面は上記放熱板の片面に固定されていると共に、この放熱板の上記片面は上記マグネットの側面に固定されている。そしてこの短波長高パワー用光アイソレータは、高パワーの入射光がファラデー回転子に入射されると、ファラデー回転子がその光信号透過部分で光吸収により発熱され、発生した熱は放熱板を介してマグネットへ放熱される。このために、上記短波長高パワー用光アイソレータの上記ファラデー回転子は、その放熱効率の向上と温度上昇の抑制が図られる。
特開2005−43853号公報に記載の光アイソレータ(以下「従来例2」という。)における放熱構造について説明する。
この放熱構造において、ファラデー回転子は筒状の外装ホルダ内に設けてある筒状のマグネットの内部に配置されている。このファラデー回転子の両側面にはサファイア結晶からなる伝熱材が接触されている。熱伝導性を有する充填材は上記マグネットの内周面と上記ファラデー回転子及び伝熱材の外周面の空隙部に充填されている。そしてこの光アイソレータは、高パワーの入射光がファラデー回転子に入射されると、ファラデー回転子の光信号透過部分で光吸収により発熱され、発生した熱は上記伝熱材から充填材を介してマグネットへ伝導され、さらにマグネットの外周面からこれに接触している外装ホルダの内周面へ放熱される。
上記従来例1及び上記従来例2は次のような課題がある。
すなわち、上記従来例1の放熱板はマグネットに直接接触されている。また従来例2の充填材はマグネットに直接接触されている。このために、上記従来例1及び上記従来例2の各ファラデー回転子の光信号透過部分で光吸収により発生した熱はマグネットに伝導され、特にこの熱が高い場合には、この高温がマグネットによる磁場を減少させ、光アイソレータの機能が損なわれる可能性がある。また光アイソレータ内で発生した熱は光アイソレータ内で放熱処理されるために、素子が熱の影響を受け、安定した光学特性を得るための改良を必要としていた。
この発明の目的は、光アイソレータの機能を損なうことなくファラデー素子の温度上昇の抑制を図ると共に、安定した光学特性を得ることにある。
この発明の光アイソレータの放熱構造は、内部に光アイソレータの本体を構成している素子である磁気光学結晶膜、偏光子及び磁石をそれぞれ配置してあるアイソレータホルダと、上記アイソレータホルダを被覆している外熱伝導カバー体と、上記アイソレータホルダ内に設けてある第1及び第2の熱伝導部と、上記第2の熱伝導部の一部である屈曲可能な放熱フィンとを具備している。上記アイソレータホルダは、上記外熱伝導カバー体に向けて開口している放熱フィン用のガイド開口部を形成してある。上記外熱伝導カバー体は、下記ガイド開口部側に開口している放熱フィン用の引き出し開口部を形成してある。上記第1の熱伝導部は、上記磁気光学結晶膜の少なくとも片面側に設けてある。上記第2の熱伝導部は、上記第1の熱伝導部を挟んで上記磁気光学結晶膜とは反対側に位置しかつ、上記第1の熱伝導部に隣接して設け、光路上に穴を開けてある。上記放熱フィンは、上記磁石内から間隙を空けてその側方に延伸し、上記ガイド開口部から引き出し開口部を経て上記外熱伝導カバー体の外部に導き出されていると共に外端部が上記外部に接触している。
この発明の光アイソレータの放熱構造は、放熱効率を良くするために上記第1の熱伝導部が磁気光学結晶膜の両面にこれを挟むように配置される。
この発明の光アイソレータの放熱構造は、放熱効率をより一層良くするために、磁気光学結晶膜と、その両側に配置されている第1の熱伝導部とからなるユニットの2組が互いに隣接されており、両ユニット間及び各ユニットの外側にそれぞれ第2の熱伝導部が設けられており、また両ユニット間に設けられている第2の熱伝導部は複数であり、さらに両ユニット間及び各ユニットの外側にそれぞれ複数の第2の熱伝導部が設けられている。
この発明の光アイソレータの放熱構造は、磁気光学結晶膜から生じる熱を第1の熱伝導部から第2の熱伝導部へ熱伝導させて、さらに第2の熱伝導部の放熱フィンへ熱伝導させ、放熱フィンが外熱伝導カバー体の外部へ放熱させるために、磁気光学結晶膜から発生する熱を外部へ効率的に放熱することができ、その結果、温度上昇が抑制され、安定した光学特性を有する光アイソレータが実現される。
図1は、この発明に係る光アイソレータの放熱構造を示す正面図であって、外熱伝導カバー体を切欠して内部を示す図である。
図2は、この発明に係る光アイソレータの放熱構造を分解した状態を縮小して示す正面図である。
図3は、この発明に係る光アイソレータの放熱構造を示す平面図である。
図4は、この発明に係る光アイソレータの放熱構造を分解した状態を縮小して示す平面図である。
図5は、図1のV−V線断面図である。
図6は、図1のVI−VI線拡大断面図である。
図7は、図4のVII−VII線拡大断面図である。
図8は、この発明に係る光アイソレータの放熱構造における素子保持ケースを示す正面図である。
図9は、図8のIX−IX線断面図である。
図10は、この発明に係る光アイソレータの放熱構造におけるアイソレータホルダを示す断面図である。
図11は、この発明に係る光アイソレータの放熱構造におけるスペーサを示す斜視図である。
図12は、図2のXII−XII線拡大断面図である。
図13は、図2のXIII−XIII線拡大断面図である。
図14は、第2の熱伝導板の取付け状態を示す一部切欠拡大正面図である。
図15は、図14の左側面図である。
図16は、この発明に係る光アイソレータの放熱構造を示す一部切欠正面図であって、放熱フィンの外端部を押え板で固定している状態を示す図である。
図17は、この発明に係る光アイソレータの放熱構造の他の形態を示す正面図であって、外熱伝導カバー体を切欠して内部を示す図である。
図18は、図17に示している外熱伝導カバー体の第1の外熱伝導カバー部を示す側面図である。
図19は、図17に示している外熱伝導カバー体の第2の外熱伝導カバー部を示す側面図である。
図20A、図20B、図20C及び図20Dは、この発明に係る光アイソレータの放熱構造の主要部を構成している素子の組合せパターンをそれぞれ示す構成図である。
図21A、図21B、図21C及び図21Dは、この発明に係る光アイソレータの放熱構造の主要部を構成している素子の他の組合せパターンをそれぞれ示す構成図である。
図22は、図21Aに示す組合せパターンを用いている光アイソレータの放熱構造の組み立て工程を示す図であって、素子を素子保持ケースに組み込んだ工程を示す一部切欠正面図である。
図23A及び図23Bは、図21Aに示す組合せパターンを用いている光アイソレータの放熱構造の組み立て工程を示す一部切欠正面図であり、図23Aは放熱フィンを折り曲げて素子保持ケースの外周にスペーサ及び磁石を組み込んだ工程を、図23Bは外熱伝導カバー体の外部溝に放熱フィンの各先端部を折り曲げて接触させている工程をそれぞれ示す図である。
図24は、図21Cに示す組合せパターンを用いている光アイソレータの放熱構造の組み立て工程を示す図であって、素子を素子保持ケースに組み込んだ工程を示す一部切欠正面図である。
図25は、図21Cに示す組合せパターンを用いている光アイソレータの放熱構造の組み立て工程を示す図であって、放熱フィンを折り曲げて素子保持ケースの外周にスペーサ及び磁石を組み込んだ工程を示す一部切欠正面図である。
図26は、この発明に係る光アイソレータの放熱構造に使用するスペーサの他の形態を示す斜視図である。
この発明の光アイソレータの放熱構造について図面を参照して説明する。
図1〜図4に示すように、光アイソレータSは、内部に素子保持ケース1を配置してあるアイソレータホルダ2、このアイソレータホルダを被覆している外熱伝導カバー体3、第1の熱伝導部6,7、第2の熱伝導部8,9及び各第2の熱伝導部から伸びている放熱フィン10,11を具備している。
素子保持ケース1は、図1、図5〜図9に示すように上端が開口されている断面溝状であって、その一端部(図8左端部)が蓋部1aとなっている。図1及び図5に示すように、光アイソレータSの構成素子となっている磁気光学結晶膜である磁性ガーネット結晶膜12、第1の熱伝導部である第1の熱伝導板6,7、第2の熱伝導部である第2の熱伝導板8,9、第1及び第2のレンズ13,14、偏光子である第1及び第2の複屈折結晶板15,16は、素子保持ケース1内に収納され保持されている。
光アイソレータSに入射するビームにおけるビームパワー密度は100W/cm以上に設定されている。光アイソレータSにおける各構成素子は、順方向のビームの光路に沿って配置されており、図1では、左側から右側に向けて第1のレンズ13、第1の複屈折結晶板15、一方の第2の熱伝導板8、一方の第1の熱伝導板6、磁性ガーネット結晶膜12、他方の第1の熱伝導板7、他方の第2の熱伝導板9、第2の複屈折結晶板16及び第2のレンズ14の順に配列されている。各構成素子6,7,8,9,12,13,14,15,16は、素子保持ケース1内の両端部に配置している透光性部材からなるストッパ17によって安定的に保持されている。
図1に示すように、磁性ガーネット結晶膜12は、素子保持ケース1の外側の中間部分に位置され、筒状の磁石18によって周りを囲まれている。
アイソレータホルダ2は、図1及び図5〜図7に示すように熱伝導率の低い部材、例えばステンレスなどによってパイプ状に形成されている。アイソレータホルダ2は、図4及び図10に示すようにその上部の2箇所に放熱フィン用のガイド開口部2a,2bが開けられている。各ガイド開口部2a,2bの形状は図4に示す例では円形である。磁石18は、図1及び図6に示すように、アイソレータホルダ2内の中間部分に収納されている。磁石18の両側にはスペーサ19が配置されている。両スペーサ19は図11に示すようにリング状に形成され、上部に開口溝19aが設けられている。開口溝19aは割り溝となっており、各スペーサ19の全長に渡って形成されている。割り溝19aはスペーサ19の外周面から中心に向けて切り込まれている。スペーサ19の外観は、割り溝19aによって側面C形となっている。割り溝19aの幅は後述する放熱フィン10,11が通過可能の大きさである。両スペーサ19はアイソレータホルダ2内における磁石18の位置保持の安定化に寄与している。
アイソレータホルダ2は、図1及び図7に示すように外熱伝導カバー体3のホルダ収納空間3aに収納されている。
アイソレータホルダ2の収納状態に関して説明すると、アイソレータホルダ2の外周面と外熱伝導カバー体3の内周面との間に空隙部20が開けられている。そして図1に示すように、アイソレータホルダ2の側面側についても、外熱伝導カバー体3との間であってアイソレータホルダの各側面の上下の2箇所の接触部分を除いて空隙部21が開けられている。
空隙部20,21は、外熱伝導カバー体3の熱がアイソレータホルダ2に伝導することを抑制する機能を果たしている。
外熱伝導カバー体3は、図1〜図5に示すように、第1の外熱伝導カバー部4と第2の外熱伝導カバー部5とを組み合わせたものである。第1の外熱伝導カバー部4と第2の外熱伝導カバー部5とはいずれもキャップ状に形成されている。第1及び第2の外熱伝導カバー部4,5には例えば銅、カーボン、アルミニウム、表面にアルマイト処理をしたものなどの熱伝導部材が用いられており、本例では銅が使用されている。
図2及び図4の左側に位置している第1の外熱伝導カバー部4は、図右端部の内周縁部に係合穴部4a(図12)を設けている。また図2及び図4の右側に位置している第2の外熱伝導カバー部5は、図左端部に係合穴部4aに差込み可能であるパイプ状の係合突部5a(図13)を設けてある。第1の外熱伝導カバー部4と第2の外熱伝導カバー部5とは、第1の外熱伝導カバー部の係合穴部4a内に第2の外熱伝導カバー部の係合突部5aを嵌め込むことによって、互いに結合される。この結合によって、図1及び図5に示すように外熱伝導カバー体3が組み立てられ、アイソレータホルダ2全体を覆うホルダ収納空間3aが上記外熱伝導カバー体の内部に形成される。
図2、図4及び図5に示すように、第1の外熱伝導カバー部4と第2の外熱伝導カバー部5はボルト22によって結合される。雌ねじ付きのボルト挿入孔4bは、第1の外熱伝導カバー部4の両側に図5左右方向に貫通されている。ボルト挿入孔5bは、両ボルト挿入孔4bに対向して第2の外熱伝導カバー部5の両側に図5左右方向に貫通されている。ボルト22は第2の外熱伝導カバー部5のボルト挿入孔5bから挿入され、ボルトの雄ねじ22aが第1の外熱伝導カバー部4のボルト挿入孔4bの雌ねじと噛み合って、第1の外熱伝導カバー部と第2の外熱伝導カバー部とを結合させる。
図1及び図5に示すように、ビーム案内孔3bは外熱伝導カバー体3の両側中央部分に貫通されており、両ビーム案内孔は外熱伝導カバー体内部のホルダ収納空間3aに達している。
図1及び図3に示すように、放熱フィン用の引き出し開口部3cは外熱伝導カバー体3の上部中央部分に形成されている。引き出し開口部3cの形状は図3に示す例では長方形である。引き出し開口部3cは、図2、図4、図12及び図13に示す第1の外熱伝導カバー部4の上部に形成してある平面コ字形の切込み穴部4cと、第2の外熱伝導カバー部5の上部であって本体と係合突部5aに切り込んである切込み穴部5cとからなる。
図1及び図4に示すように、外部溝4d,5dは第1の外熱伝導カバー部4及び第2の外熱伝導カバー部5のそれぞれの上部に形成されている浅い帯状の溝である。外部溝4d,5dは引き出し開口部3cの端部に連続して形成され、この引き出し開口部とは反対側に延びている。
図1、図5及び図14に示すように、第1の熱伝導板6,7は磁性ガーネット結晶膜12を挟んでサンドイッチ状態に配置されている。第1の熱伝導板6,7は磁性ガーネット結晶膜12の側面にそれぞれ装着されている。
第1の熱伝導板6,7はいずれも下記の熱伝導部材(1)〜(9)から適宜選択される。
(1)ガドリニウム・ガリウム・ガーネット(GGG)
(2)酸化チタン(TiO
(3)サファイア(Al
(4)ポリタイプSIC(3C−SiC)
(5)ポリタイプSIC(4H−SiC)
(6)ポリタイプSIC(6H−SiC)
(7)六方晶窒化アルミニウム(hex.AIN)
(8)六方晶窒化ガリウム(hex.GaN)
(9)ダイヤモンド(C)
一方の第1の熱伝導板6の熱伝導部材として、(1)ガドリニウム・ガリウム・ガーネット(以下「GGG」という。)を選択した場合には、他方の第1の熱伝導板7の熱伝導部材としては、上記(2)酸化チタン(TiO)〜(9)ダイヤモンド(C)の中からいずれかを選択するのが望ましい。
また一方の第1の熱伝導板6の熱伝導部材として、上記(2)酸化チタン(TiO)〜(9)ダイヤモンド(C)の中からいずれかを選択した場合には、他方の第1の熱伝導板7の熱伝導部材も、上記(1)GGG〜(9)ダイヤモンド(C)の中からいずれかを選択するのが望ましい。
上記それぞれの選択は、図1に示す放熱構造では、磁性ガーネット結晶膜12を挟む第1の熱伝導板6,7がいずれもGGG基板を使用した場合と比較して、熱伝導率はかなり高められ、放熱効率が向上する利点がある。
図示の例では第1の熱伝導板6,7の双方にサファイアを使用している。
第1の熱伝導板6,7は、それぞれ磁性ガーネット結晶膜12との境界面に光吸収のない状態で光学接着、圧着などの装着手段によって貼り付けられる。
磁性ガーネット結晶膜12と各第1の熱伝導板6,7とは、筒状の磁石18内に配置されている(図1及び図6)。磁性ガーネット結晶膜12はファラデー素子である。
第2の熱伝導部8,9及び放熱フィン10,11について説明する。
図14及び図15に示すように、第2の熱伝導板8,9は第1の熱伝導板6,7の外側に設けられている。第2の熱伝導板8,9の熱伝導部材として、銅、銀、金、カーボン、アルミニウムなどから選択される。第2の熱伝導板8,9は、図示の例では銅からなり、第1の熱伝導板6,7の片側に装着されている。そして第2の熱伝導板8,9は、その中央部に穴部8a,9aを開けてあり、上部に放熱フィン10,11が延伸されている。穴部8a,9aはビームの通路である光路上に位置している。
各放熱フィン10,11は、第2の熱伝導板8,9の一部としてこれと一体に成形され、かつ屈曲可能である。各放熱フィン10,11はその材質が第2の熱伝導板8,9と同様に図示の例では銅であるために、熱伝導性が良く、加工がしやすくかつ任意の形状に折り曲げかつ変形形状の維持が可能である。各放熱フィン10,11は、図14及び図15に示すように、磁石18内から磁石の内周面に接触することなく、間隙23を開けて外側に水平に折り曲げられており、磁石の側方において磁石側面から離れた位置から次第にさらに離れるように斜め上方に伸びている。各放熱フィン10,11の外端部10a,11aはアイソレータホルダ2を被覆している外熱伝導カバー体3の外面に接続されている(図1)。各放熱フィン10,11の外端部10a,11aは、図1、図6及び図7に示すように、第1の外熱伝導カバー部4及び第2の外熱伝導カバー部5のそれぞれの外部溝4d,5dの各底面上に接触されている。外端部10a,11aは、熱伝導性の接着剤、溶接などの接触補強手段によって上記底面への接触が強化されている。
放熱フィン10,11と、第1の熱伝導板6,7、第2の熱伝導板8,9、磁石18、スペーサ19、アイソレータホルダ2及び外熱伝導カバー体3との関係について説明する。
図1及び図8に示すように各放熱フィン10,11と一体である第2の熱伝導板8,9は、第1の熱伝導板6,7にそれぞれ接触している。
なお、第1の熱伝導板6,7は磁性ガーネット結晶膜12に接触されている。
各放熱フィン10,11は磁石18に接触することなく、この磁石内から屈曲して側方に延伸されている(図14)。各放熱フィン10,11は、図1及び図7に示すように各スペーサ19に接触することなく割り溝19aを通過し上方へ延伸され、さらにアイソレータホルダ2の各ガイド開口部2a,2bを貫通してアイソレータホルダに接触せずに、その外周面から上方に向けて延伸されている(図2)。上方へ延伸されている各放熱フィン10,11の上部は、図1及び図3に示すように外熱伝導カバー体3の内部からこれに接触することなく、引き出し開口部3cを通って外熱伝導カバー体3の外方に引き出されている。各放熱フィン10,11の外端部10a,11aは水平に折り曲げられ、外部溝4d,5dの底面に接触されている。
各放熱フィン10,11は磁石18、スペーサ19及びアイソレータホルダ2のいずれにも接触することなく、外熱伝導カバー体3の外部へ引き出されている。このために、磁性ガーネット結晶膜12にて発生した熱は、第1の熱伝導板6,7及び第2の熱伝導板8,9を経て放熱フィン10,11に熱伝導されるものの、磁石18及びアイソレータホルダ2に伝導されず、直接外熱伝導カバー体3の外部溝4d,5dに達する。
このように、磁性ガーネット結晶膜12にて発生した熱は、簡単な構成によってかつ確実に外熱伝導カバー体3の外へ放熱することができる。
図1に示すように、光アイソレータSにおいて、順方向のビームは第1のレンズ13から入射した入射光は、第1の複屈折結晶板15を経て第2の熱伝導板8の穴部8aを通過して、第1の熱伝導板6、磁性ガーネット結晶膜12、第1の熱伝導板7及び第2の熱伝導板9の穴部9aを通過する。磁性ガーネット結晶膜12は、通過する光を吸収することによって発熱する。磁性ガーネット結晶膜12にて発生した熱は、第1の熱伝導板6,7を経て第2の熱伝導板8,9へ放散され、さらに熱が放熱フィン10,11を介して外熱伝導カバー体3の外部へ導かれ、しかも各放熱フィンが冷却素子としての機能が発揮されるから、効率の良い放熱が可能となる。磁性ガーネット結晶膜12で発生した熱は、第1段階では第1の熱伝導板6,7に伝えられ、第2段階では第2の熱伝導板8,9から放熱フィン10,11へ導かれ、最終的には外熱伝導カバー体3の外部溝4d,5dへ導かれる。熱伝導経路を構成する素子は、実質的に第1の熱伝導板6,7と第2の熱伝導板8,9(第2の熱伝導板の一部を形成している放熱フィン10,11を含む。)である。外熱伝導カバー体3の外部への放熱は、熱伝導経路の単純化によって、スムーズに行われる。
図1に示す放熱構造において、磁性ガーネット結晶膜12から発生する熱は第1の熱伝導板6,7及び第2の熱伝導板8,9を介して外熱伝導カバー体3の外部へ放熱されるために、熱容量と放熱面積を大きく確保することができる。図1に示す例において、磁石18への熱の影響を回避する構造であるために、熱による磁石18の機能低下の防止が図られ、放熱を効率的・効果的に行える。
磁性ガーネット結晶膜12で発生した熱は、これに接触していないが接近している磁石18に及ぶものの、直接的には第1の熱伝導板6,7を経て第2の熱伝導板8,9へ、さらに放熱フィン10,11によって外熱伝導カバー体3の外部へ導かれる。そして、導かれた熱は、各放熱フィン10,11がアイソレータホルダ2や、第1及び第2の外熱伝導カバー部4,5の外部溝4d,5d以外の本体部分に接触していないので、効率的かつ確実な外部放熱がされることになる。この結果、光アイソレータは温度上昇が抑制され、光学特性の劣化など熱による影響が抑制される。発熱体である磁性ガーネット結晶膜12から外熱伝導カバー体3の外部溝4d,5dに至る熱伝導経路中には、第1の熱伝導板6,7と第2の熱伝導板8,9(その一部としての放熱フィン10,11を含む。)以外の部材が存在していないので、熱伝導経路が短くかつ単純化され、熱応答性が高い。
アイソレータホルダ2は外熱伝導カバー体3のホルダ収納空間3a内に空隙部20,21を置いて収納されると共に、両側面の上下に2箇所で外熱伝導カバー体に2点支持され、さらに材質として例えば熱伝導率が低いステンレスを用いる。このことから、光アイソレータSは、熱による光学特性の影響を少なくすることができる。
放熱フィン10,11は屈曲可能であるから、光アイソレータSの組み立ての過程で、必要な箇所を必要な方向に折り曲げることができる。放熱フィン10,11は、例えば図8に示すように素子保持ケース1から立ち上がっている状態にあっても、一時的に折り曲げることにより組み立ての障害とならない。また放熱フィン10,11は、図2に示すようにアイソレータホルダ2から立ち上がっている状態にあっても、第1の外熱伝導カバー部4と第2の外熱伝導カバー部5とを結合させる過程で、容易に折り曲げることができるから、組み立ての障害とならず、外端部10a,11aの外部溝4d,5dへの位置決めや接触操作が容易となる。
素子保持ケース1はガイド開口部2a,2b側(図1上側)が開口されている限り、図1に示すように全長に渡って形成している溝形のものに限られない。素子保持ケース1は各構成素子6,7,8,9,12,13,14,15,16を保持できれば、内部形状が溝形であっても良い。また図示する素子保持ケース1は、全長に渡って開けられている開口を蓋で覆い、この蓋に放熱フィン10,11が通過可能の開口部を設けるものであっても良い。各構成素子6,7,8,9,12,13,14,15,16の全ては素子保持ケース1内に納められているので、組み立て時の取り扱いが容易となるが、必ずしも全ての素子を収納する必要はない。
図2に示す例では、外熱伝導カバー体3はキャップ状の第1の外熱伝導カバー部4と第2の外熱伝導カバー部5とを嵌め込み式に組み合わせられているために、光アイソレータSの組み立てが簡易となる。外熱伝導カバー体3は複数の部材からなるものである必要はなく、単一の管体で構成したものであっても良い。また外部溝4d,5dはこの発明に不可欠な構成ではないが、外部溝を設ければ、放熱フィン10,11の外端部10a,11aの位置決めがしやすくなると共に、納まりが良くなる利点がある。
第1の熱伝導板6,7の材質としてダイヤモンドを選択して、そのダイヤモンド薄膜を磁性ガーネット結晶膜12の両側面に蒸着などの方法によって形成しても良い。
第1の熱伝導板6,7において、ダイヤモンド薄膜を使用するものにあっては、第1の熱伝導板としてGGGなどの結晶材料などを使用しているものと比較して、薄型化及び構造の簡素化が可能となり、また熱上昇が抑制され、安定した光学特性が得られる。
放熱フィン10,11の幅は、第2の熱伝導板8,9と同一幅であっても良い。
各放熱フィン10,11の外端部10a,11aと外部溝4d,5dの底面との接触補強手段は、上述した熱伝導性の接着剤、溶接などに限られない。
各放熱フィン10,11の外端部10a,11aは図1に示すように外熱伝導カバー体3の上面から突出されていることを利用して、例えば図16に示すように板材24によって各外端部を押圧するようにしても良い。
図16に示す例では、板材である押え板24は外熱伝導カバー体3の上面から突出している各放熱フィン10,11の外端部10a,11aの上面を押圧している。押え板24はボルト25によって外熱伝導カバー体3に固定されている。ボルト25は四角形の外熱伝導カバー体3の四隅に開けてあるボルトねじ孔3dにねじ込まれている。押え板24は外熱伝導カバー体3の上面全面を覆っている。
押え板24を用いることによって、簡単な構成によって各放熱フィン10,11の外端部10a,11aを外部溝4d,5dの底面に確実かつ強固に接触させることができる。
図17〜図19に示す光アイソレータS1において、放熱経路を短縮するために、外熱伝導カバー体103の第1の外熱伝導カバー部104及び第2の外熱伝導カバー部105の中心から上面に至る距離dは、図1に示す外熱伝導カバー体3の第1の外熱伝導カバー部4及び第2の外熱伝導カバー部5のそれより短く設定されている。
光アイソレータS1の構成は、距離dを短くした点を除いて、光アイソレータSとは同一であるので、構成部分を示す符号を光アイソレータSのそれと一致させて対応関係を明確にしている。
図1に示す放熱構造において、各放熱フィン10,11はアイソレータホルダ2との接触を回避させることによって、磁性ガーネット結晶膜12で発生した熱をアイソレータホルダ2へ伝わりにくくしているが、さらに熱伝導率の関係を以下に設定するのが望ましい。
第1の熱伝導板6,7の熱伝導率は、磁性ガーネット結晶膜12の熱伝導率以上であって、第2の熱伝導板8,9の熱伝導率以下であり、この第2の熱伝導板8,9(放熱フィン10,11を含む。)の熱伝導率は外熱伝導カバー体3の熱伝導率以下である。
熱伝導部材の配置順として、発熱体である磁性ガーネット結晶膜12からの熱を熱伝導率が次第に高くなるように熱伝導部材を並べ、低い方から高い方へ熱伝導させることによって熱抵抗を少なくする。
図1に示す放熱構造において、磁性ガーネット結晶膜12の熱はこの磁性ガーネット結晶膜の熱伝導率と同じ又は大きい第1の熱伝導板6,7に放熱され、第1の熱伝導板からこの第1の熱伝導板の熱伝導率と同じ又は大きい第2の熱伝導板8,9に放熱され、第2の熱伝導板の一部である各放熱フィン10,11に熱伝導され、各放熱フィンからこの放熱フィンの熱伝導率と同じ又は大きい外熱伝導カバー体3の外部溝4d,5dに放熱される。
磁性ガーネット結晶膜12を中心として放熱素子を構成している第1の熱伝導板6,7、第2の熱伝導板8,9及び放熱フィン10,11を備えている放熱手段に関して、上記各放熱素子の組合せパターンを図20A、図20B、図20C及び図20Dに示す。
図20Aに示す組合せパターンについて説明する。
この組合せパターンは、回転角45度の磁性ガーネット結晶膜12が第1の熱伝導板7の片側面に成膜されているものである。この組合せパターンにおいて、一方の第1の熱伝導板7は上述するように磁性ガーネット結晶膜に対して一体化されているが、他方の第1の熱伝導板6は独立されており、組み立て時に磁性ガーネット結晶膜に第1の熱伝導板6が接触される。
第1の熱伝導板6はサファイア放熱板が使用され、第1の熱伝導板7はGGG基板が使用され、磁性ガーネット結晶膜12はGGG基板付きのガーネットである。放熱フィン10,11はフレキシブル放熱フィンである。
図20Bに示す組合せパターンについて説明する。
この組合せパターンは、第1の熱伝導板6及び第1の熱伝導板7は磁性ガーネット結晶膜12に対してそれぞれ独立されている。第1の熱伝導板6及び第1の熱伝導板7は、磁性ガーネット結晶膜に対して、これに対向する面を組み立て時に接触又は接合させることにより、この磁性ガーネット結晶膜と一体化される。第1の熱伝導板6,7はサファイア放熱板が使用され、放熱フィン10,11はフレキシブル放熱フィンである。
この組合せパターン及び上記図20Aに示すパターンは図1に示す放熱構造の主要部のパターンの具体例である。
図20Cに示す組合せパターンについて説明する。
この組合せパターンは、磁性ガーネット結晶膜121,122と、第1の熱伝導板61,62,71,72と、3枚の第2の熱伝導板8,9,26とが組み合されているものである。磁性ガーネット結晶膜として、2枚の回転角22.5度の磁性ガーネット結晶膜121,122が使用されている。
すなわち、一方の磁性ガーネット結晶膜121は第1の熱伝導板71の片側面に成膜され、第1の熱伝導板71と一体化されている。第1の熱伝導板61は磁性ガーネット結晶膜121に対して独立されているが、組み立て時に磁性ガーネット結晶膜の側面に接触されている。同様に、他方の磁性ガーネット結晶膜122は第1の熱伝導板72の片側面に成膜され、第1の熱伝導板72と一体化されているが、第1の熱伝導板62から独立され、組み立て時に第1の熱伝導板62に接触される。
第1の熱伝導板61は第2の熱伝導板8に、第1の熱伝導板62は第2の熱伝導板9にそれぞれ接触されている。第2の熱伝導板26は、第1の熱伝導板71と第1の熱伝導板72との間に配置されている。第2の熱伝導板26はその両側面で第1の熱伝導板71,72の対向面とそれぞれ接触され、これらの第1の熱伝導板の放熱材料を兼用している。第2の熱伝導板26から放熱フィン27が上方に延伸されている。
第1の熱伝導板61,62はサファイア放熱板が使用され、第1の熱伝導板71,72はGGG基板が使用されて、磁性ガーネット結晶膜121,122はGGG基板付きのガーネットである。放熱フィン10,11,27はフレキシブル放熱フィンである。
なお、放熱フィン10,11,27の先端部分は図面上省略されている。
図20Dに示す組合せパターンについて説明する。
この組合せパターンは、上記図20Cに示す組合せパターンと下記の相違点を除いて、同一構成であるので、詳細な説明を省略する。
この相違点は、この組合せパターンにおける第1の熱伝導板71,72の各片側面に磁性ガーネット結晶膜121,122が成膜されていない点である。
すなわち、一方の磁性ガーネット結晶膜121に対して第1の熱伝導板61,71が独立されている。組み立て時に第1の熱伝導板61,71は磁性ガーネット結晶膜121と一体化される。他方の磁性ガーネット結晶膜122に対して第1の熱伝導板62,72が独立されている。組み立て時に第1の熱伝導板62,72は磁性ガーネット結晶膜122と一体化される。
この組合せパターン及び上記図20Cに示す組合せパターンは図1に示す放熱構造を基礎にしたパターンの応用例である。
各放熱素子の組合せパターンの他の例を図21A、図21B、図21C及び図21Dに示す。
図示する各組合せパターンの特徴は、4枚以上の第2の熱伝導板を用いて磁性ガーネット結晶膜から生じる熱を効果的に放熱することにある。
図21Aに示す組合せパターンについて説明する。
この組合せパターンの特徴は、対向している第1の熱伝導板71と第1の熱伝導板72との間に2枚の第2の熱伝導板26,28が配置されていることにある。この組合せパターンにおけるその他の構成は上記図20Cに示す組合せパターンのそれと共通している。
この組合せパターンでは、第2の熱伝導板26,28のうち、一方の第2の熱伝導板28は第1の熱伝導板71に、他方の第2の熱伝導板26は第1の熱伝導板72にそれぞれ接触されている。第2の熱伝導板26,28がそれぞれ放熱材料として独立されており、第1の熱伝導板71,72からの熱を吸収可能である。
各第2の熱伝導板26,28から放熱フィン27,29が上方に延伸されている。放熱フィン27,29の先端部分は図面上省略されている。
この組合せパターンにおいて、2枚の第2の熱伝導板26,28は放熱材料として用いられており、第1の熱伝導板71,72からの熱を吸収可能としているので、高い放熱効率が得られる。
図21Bの組合せパターンについて説明する。
この組合せパターンの特徴は、対向している第1の熱伝導板71と第1の熱伝導板72との間に2枚の第2の熱伝導板26,28が配置されていることにある。この組合せパターンの他の構成は上記図20Dに示す組合せパターンのそれと共通している。
この組合せパターンにおいて、第2の熱伝導板26,28のうち、一方の第2の熱伝導板28は第1の熱伝導板71に、他方の第2の熱伝導板26は第1の熱伝導板72にそれぞれ接触されている。第2の熱伝導板26,28がそれぞれ放熱材料として、第1の熱伝導板71,72からの熱を吸収可能である。
各第2の熱伝導板26,28から放熱フィン27,29が上方に延伸されている。放熱フィン27,29の先端部分は図面上省略されている。
この組合せパターンでは、2枚の第2の熱伝導板26,28は放熱材料として用いられ、第1の熱伝導板71,72からの熱を吸収可能としているので、高い放熱効率が得られる。
図21Cに示す組合せパターンについて説明する。
この組合せパターンは上記図21Aに示す組合せパターンの応用例である。
この組合せパターンの特徴は、第2の熱伝導板8,9のそれぞれの外側に放熱材料である第2の熱伝導板30,32が配置されていることにある。この組合せパターンの他の構成は図21Aに示す組合せパターンのそれと共通している。
この組合せパターンでは、第2の熱伝導板30,32のうち、一方の第2の熱伝導板30は第1の熱伝導板61側に配置されかつ隣接している第2の熱伝導板8に接触されている。他方の第2の熱伝導板32は第1の熱伝導板62側に配置されかつ隣接している第2の熱伝導板9に接触されている。
図21Cの左側に位置している2枚の第2の熱伝導板8,30は第1の熱伝導板61からの熱を吸収可能としている。また図21Cの右側に位置している2枚の第2の熱伝導板9,32は第1の熱伝導板62からの熱を吸収可能としている。
第2の熱伝導板30,32から放熱フィン31,33が上方に延伸されている。
なお、放熱フィン31,33の先端部分は図面上省略されている。
この組合せパターンではそれぞれ左側の2枚の第2の熱伝導板8,30、右側の2枚の第2の熱伝導板9,32及び中央の2枚の第2の熱伝導板26,28は放熱材料として用いられているので、放熱効率がより一層高められる。
図21Dに示す組合せパターンについて説明する。
この組合せパターンは上記図21Bに示す組合せパターンの応用例である。
この組合せパターンは、上記図21Cに示す組合せパターンとは下記の相違点を除いて、同一構成であるので、詳細な説明を省略する。
この相違点は、この組合せパターンにおける第1の熱伝導板71,72は、それぞれの片側面に磁性ガーネット結晶膜121,122が成膜されていない(換言すれば、磁性ガーネット結晶膜121,122と一体化されてない)点である。
この組合せパターンでは、第2の熱伝導板30,32のうち、一方の第2の熱伝導板30は第1の熱伝導板61側に配置されかつ隣接している第2の熱伝導板8と接触されている。他方の第2の熱伝導板32は第1の熱伝導板62側に配置されかつ隣接している第2の熱伝導板9と接触されている。
図21Dの左側に位置している2枚の第2の熱伝導板8,30は第1の熱伝導板61からの熱を吸収可能とし、また図21Dの右側に位置している2枚の第2の熱伝導板9,32は第1の熱伝導板62からの熱を吸収可能としている。
各第2の熱伝導板30,32には放熱フィン31,33が上方に延伸されている。
この組合せパターンによる放熱効率についても、上記図21Cに示す組合せパターンと同様である。
図21A、図21B、図21C及び図21Dに示す各組合せパターンにおいて、磁性ガーネット結晶膜121と、これを挟んで位置している第1の熱伝導板61,71は1ユニットを形成し、同様に磁性ガーネット結晶膜122と、これを挟んで位置している第1の熱伝導板62,72は1ユニットを形成し、そして両ユニットの間に複数枚(図では2枚)の第2の熱伝導板26,28が配置されている。このことにより、上記各組合せパターンは高い放熱効率をもたらす。
上記図21C及び図21Dに示す各組合せパターンにあっては、外側の放熱材料として、複数枚(図では2枚)の第2の熱伝導板8,30と、複数枚(図では2枚)の第2の熱伝導板9,32が配置されているために、より一層高い放熱効果が得られる。
図21Aに示す組合せパターンを用いている光アイソレータの組み立て工程について図22、図23A及び図23Bを参照して説明する。
なお、この組み立て工程を説明する際に用いる符号に関して、図示されている素子保持ケース、アイソレータホルダ、外熱伝導カバー体、外部溝、磁石、スペーサ及び割り溝は、図1に示す素子保持ケース1、アイソレータホルダ2、外熱伝導カバー体3、外部溝4d,5d、磁石18、スペーサ19及び割り溝19aと実質的に同一構成であるので、図1に付した符号をそのまま使用して対応関係を明確にしている。
また光アイソレータの構成素子に関して、図1の例では、左側から右側に向けて第1のレンズ13、第1の複屈折結晶板15、一方の第2の熱伝導板8、一方の第1の熱伝導板6、磁性ガーネット結晶膜12、他方の第1の熱伝導板7、他方の第2の熱伝導板9、第2の複屈折結晶板16及び第2のレンズ14の順に配列されている。
図22に示す例では、第1のレンズ13及び第2のレンズ14に代えて偏光子34,35を用いている。このために、説明上、偏光子34は第1の複屈折結晶板に、上記第1の複屈折結晶板15は第2の複屈折結晶板151に、第2の複屈折結晶板16は第3の複屈折結晶板161に、さらに偏光子35は第4の複屈折結晶板に置き換えられる。
組み立て工程において、まず、図22に示すように素子保持ケース1内に、入射側(図左側)から出射側に向けて第1の複屈折結晶板34、第2の複屈折結晶板151、第2の熱伝導板8、第1の熱伝導板61、磁性ガーネット結晶膜121を一体化している第1の熱伝導板71、第2の熱伝導板28,26、磁性ガーネット結晶膜122を右側面に一体化している第1の熱伝導板72、第1の熱伝導板62、第2の熱伝導板9、第3の複屈折結晶板161及び第4の複屈折結晶板35を順次組み込んで行く。
もちろん、これらの素子の組み込み手順は上例に限らず適宜である。
組み込んだ後、上記各素子はストッパ17によって素子保持ケース1内に固定される。
組み込んだ段階では、第2の熱伝導板8,9,26,28は放熱フィン10,11,27,29が真上に起立されているので、これらをその下端側を中心として図22の鎖線に示すように外側に折り曲げる。すなわち、図22左側に位置している第2の熱伝導板8と、中央の左側の第2の熱伝導板28をその下端を中心として図反時計方向に折り曲げ、鎖線に示すように放熱フィン10,29を山形状に折り曲げる。また図22右側に位置している第2の熱伝導板9と、中央の右側の第2の熱伝導板26をその下端を中心として図時計方向に折り曲げて、鎖線に示すように放熱フィン11,27側を素子保持ケース1に平行状態に設定する。
次いで、図23Aに示すように、素子保持ケース1の外周に磁石18及びスペーサ19を取り付ける。磁石18を取り付ける際、第2の熱伝導板8,28及び第2の熱伝導板9,26は重ねられた状態で素子保持ケース1に平行状態に折り曲げられているので、磁石の差し入れに障害がない。そして図23Aに示すように、右側の第2の熱伝導板9,26を磁石18の端部に接触しない位置を起点として持ち上げて、図右側に伸びている放熱フィン11,27を上側に折り曲げる。
その後、図23Bに示すように、右側の第2の熱伝導板9,26を下方にばね力に抗して押圧した状態を維持したまま、アイソレータホルダ2を図右側(出射側)から左側に向けて素子保持ケース1に差し入れ、図左側の放熱フィン10,29の先端部側を、右側の放熱フィン11,27の先端部側をそれぞれアイソレータホルダの外側に引っ張りながら外側に引出す。
引出した後、外熱伝導カバー体3をアイソレータホルダ2の外側に被せて、図23B鎖線に示すように放熱フィン10,29及び放熱フィン11,27の各先端部を折り曲げ外部溝4d,5dに接触させる。
図21Cに示す組合せパターンを用いている光アイソレータの組み立て工程を図24及び図25を参照して説明する。
なお、この組み立て工程を説明する際に用いる符号に関して、図示されている素子保持ケース、磁石、スペーサ及び割り溝は、図1に示す素子保持ケース1、磁石18、スペーサ19及び割り溝19aと実質的に同一構成であるので、図1に付した符号をそのまま使用している。
また光アイソレータの構成素子に関して、図1の例では、左側から右側に向けて第1のレンズ13、第1の複屈折結晶板15、一方の第2の熱伝導板8、一方の第1の熱伝導板6、磁性ガーネット結晶膜12、他方の第1の熱伝導板7、他方の第2の熱伝導板9、第2の複屈折結晶板16及び第2のレンズ14の順に配列されている。
図24に示す例では、第1のレンズ13及び第2のレンズ14に代えて偏光子34,35を用いている。このために、説明上、偏光子34は第1の複屈折結晶板に、上記第1の複屈折結晶板15は第2の複屈折結晶板151に、第2の複屈折結晶板16は第3の複屈折結晶板161に、さらに偏光子35は第4の複屈折結晶板に置き換えられる。
組み立て工程において、まず、図24に示すように素子保持ケース1内に、入射側(図左側)から出射側に向けて第1の複屈折結晶板34、第2の複屈折結晶板151、第2の熱伝導板30,8、第1の熱伝導板61、磁性ガーネット結晶膜121を一体化している第1の熱伝導板71、第2の熱伝導板28,26、磁性ガーネット結晶膜122を一体化している第1の熱伝導板72、第1の熱伝導板62、第2の熱伝導板9,32、第3の複屈折結晶板161及び第4の複屈折結晶板35を順次組み込んで行く。
もちろん、これらの素子の組み込み手順は上例に限らず適宜である。
組み込んだ後、上記素子は、ストッパ17によって素子保持ケース1内に固定される。
組み込んだ段階では、第2の熱伝導板8,9,26,28,30,32は放熱フィン10,11,27,29,31,33が真上に起立されているので、これらをその下端側を中心として外側に折り曲げる。すなわち、図24左側に位置している第2の熱伝導板8,30と、中央の左側の第2の熱伝導板28をその下端を中心として図反時計方向に折り曲げる。折り曲げ操作は、素子保持ケース1に平行状態になった段階で停止する。また図24右側に位置している第2の熱伝導板9,32と、中央の右側の第2の熱伝導板26をその下端を中心として図時計方向に折り曲げる。折り曲げ操作は、素子保持ケース1に平行状態になった段階で停止する。
次いで、図25に示すように、素子保持ケース1の外周に磁石18及びスペーサ19を取り付ける。磁石18を取り付ける際、第2の熱伝導板8,28,30及び第2の熱伝導板9,26,32は重ねられた状態で素子保持ケース1に平行状態に折り曲げられているので、磁石の差し入れに障害がない。そして図25両側の第2の熱伝導板8,28,30及び第2の熱伝導板9,26,32を磁石18の端部に接触しない位置を起点として持ち上げる。
その後、図示していないが、図23Bに示す組み立て工程で説明したと同様の方法で組み立て、最終段階において、図示しない外熱伝導カバー体をアイソレータホルダ(図示せず。)の外側に被せて、図25鎖線に示すように重なりあっている図左側に位置している放熱フィン10,29,31及び右側に位置している放熱フィン11,27,33の各先端部を水平に折り曲げ外熱伝導カバー体の外部溝の底面に接触させる。
スペーサの開口溝は図11に示す例では各スペーサ19の全長に渡って形成されている割り溝となっているが、図26に示すスペーサ119において、部分的に切り欠けられた切り欠き119a内を放熱フィンが通過できるようにしても良い。
この発明の光アイソレータの放熱構造によれば、高パワーの光に対応することができるから、高出力のレーザーを用いる分析医療その他の光学技術の分野に有用である。

Claims (12)

  1. 内部に光アイソレータの本体を構成している素子である磁気光学結晶膜、偏光子及び磁石をそれぞれ配置してあるアイソレータホルダと、上記アイソレータホルダを被覆している外熱伝導カバー体と、上記アイソレータホルダ内に設けてある第1及び第2の熱伝導部と、上記第2の熱伝導部の一部である屈曲可能な放熱フィンとを具備しており、
    上記アイソレータホルダは、上記外熱伝導カバー体に向けて開口している放熱フィン用のガイド開口部を形成してあり、
    上記外熱伝導カバー体は、上記ガイド開口部側に開口している放熱フィン用の引き出し開口部を形成してあり、
    上記第1の熱伝導部は、上記磁気光学結晶膜の少なくとも片面側に設けてあり、
    上記第2の熱伝導部は、上記第1の熱伝導部を挟んで上記磁気光学結晶膜とは反対側に位置しかつ、上記第1の熱伝導部に隣接して設け、光路上に穴を開けてあり、
    上記放熱フィンは、上記磁石内から間隙を空けてその側方に延伸し、上記ガイド開口部から引き出し開口部を経て上記外熱伝導カバー体の外部に導き出されていると共に外端部が上記外部に接触している
    ことを特徴とする光アイソレータの放熱構造。
  2. 第1の熱伝導部は磁気光学結晶膜を中心としてその両側に配置されていることを特徴とする請求項1記載の光アイソレータの放熱構造。
  3. 磁気光学結晶膜と、その両側に配置されている第1の熱伝導部とからなるユニットの2組が互いに隣接されており、両ユニット間及び各ユニットの外側にそれぞれ第2の熱伝導部が設けられていることを特徴とする請求項1記載の光アイソレータの放熱構造。
  4. 磁気光学結晶膜と、その両側に配置されている第1の熱伝導部とからなるユニットの2組が互いに隣接されており、両ユニット間及び各ユニットの外側にそれぞれ第2の熱伝導部が設けられており、両ユニット間に設けられている第2の熱伝導部は複数であることを特徴とする請求項1記載の光アイソレータの放熱構造。
  5. 磁気光学結晶膜と、その両側に配置されていている第1の熱伝導部とからなるユニットの2組が互いに隣接されており、両ユニット間及び各ユニットの外側にそれぞれ複数の第2の熱伝導部が設けられていることを特徴とする請求項1記載の光アイソレータの放熱構造。
  6. 第2の熱伝導部は熱伝導板からなり、放熱フィンは上記第2の熱伝導部から延伸されていることを特徴とする請求項1乃至請求項5のいずれかに記載の光アイソレータの放熱構造。
  7. アイソレータホルダは、外熱伝導カバー体内のホルダ収納空間に空隙部をもって収納されていることを特徴とする請求項1乃至請求項6のいずれかに記載の光アイソレータの放熱構造。
  8. アイソレータホルダ内には、ガイド開口部側が開口され、磁気光学結晶膜、第1の熱伝導部、第2の熱伝導部及び偏光子を保持している素子保持ケースを設けてあることを特徴とする請求項1乃至請求項7のいずれかに記載の光アイソレータの放熱構造。
  9. アイソレータホルダ内には、ガイド開口部側が開口され、磁気光学結晶膜、第1の熱伝導部、第2の熱伝導部及び偏光子を保持している素子保持ケースを設けてあり、上記素子保持ケースの外周であって磁石の両側にリング状のスペーサを配置してあり、両スペーサには上記ガイド開口部側に開口しかつ放熱フィンが通過可能である開口溝を形成してあることを特徴とする請求項1乃至請求項7のいずれかに記載の光アイソレータの放熱構造。
  10. 外熱伝導カバー体の外部に引き出し開口部に連続して外部溝を形成し、この外部溝の底面に放熱フィンの外端部が接触されていることを特徴とする請求項1乃至請求項9のいずれかに記載の光アイソレータの放熱構造。
  11. 第1の熱伝導部の熱伝導率は、磁性ガーネット結晶膜の熱伝導率以上であって、第2の熱伝導部の熱伝導率以下であり、上記第2の熱伝導部の熱伝導率は外熱伝導カバー体の熱伝導率以下であることを特徴とする請求項1乃至請求項10のいずれかに記載の光アイソレータの放熱構造。
  12. 外熱伝導カバー体はいずれもキャップ状の第1の外熱伝導カバー部と第2の外熱伝導カバー部とからなり、互いに対向する第1及び第2の外熱伝導カバー部の開口部側端部に引き出し開口部を形成するための切込み穴部をそれぞれ切り込んであることを特徴とする請求項1乃至請求項11のいずれかに記載の光アイソレータの放熱構造。
JP2007530535A 2006-08-25 2006-12-20 光アイソレータの放熱構造 Active JP4077867B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006228742 2006-08-25
JP2006228742 2006-08-25
PCT/JP2006/325991 WO2008023450A1 (fr) 2006-08-25 2006-12-20 Structure dissipatrice de chaleur pour isolateur optique

Publications (2)

Publication Number Publication Date
JP4077867B1 true JP4077867B1 (ja) 2008-04-23
JPWO2008023450A1 JPWO2008023450A1 (ja) 2010-01-07

Family

ID=39106544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007530535A Active JP4077867B1 (ja) 2006-08-25 2006-12-20 光アイソレータの放熱構造

Country Status (5)

Country Link
US (1) US7791886B2 (ja)
EP (1) EP2056156B1 (ja)
JP (1) JP4077867B1 (ja)
DE (1) DE602006017273D1 (ja)
WO (1) WO2008023450A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218286A (ja) * 2012-03-14 2013-10-24 Gigaphoton Inc ファラデーローテータ、光アイソレータ、レーザ装置、および極端紫外光生成装置
US9933637B2 (en) 2015-03-27 2018-04-03 Shinkosha Co., Ltd. Heat-dissipating structure for optical isolator

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715664B1 (en) * 2007-10-29 2010-05-11 Agiltron, Inc. High power optical isolator
TW201007901A (en) * 2008-08-01 2010-02-16 Yu-Wei Wang Base plate structure of high heat conduction
WO2011158615A1 (ja) * 2010-06-18 2011-12-22 シャープ株式会社 電子機器の放熱構造
US20140218795A1 (en) * 2013-02-05 2014-08-07 Electro-Optics Technology, Inc. Power scalable multi-pass faraday rotator
CN104619146B (zh) * 2013-11-01 2017-12-01 联想(北京)有限公司 一种散热装置及电子设备
US20150124318A1 (en) * 2013-11-05 2015-05-07 Electro-Optics Technology, Inc. High magnetic field-type multi-pass faraday rotator
US10718963B1 (en) 2016-11-16 2020-07-21 Electro-Optics Technology, Inc. High power faraday isolators and rotators using potassium terbium fluoride crystals
CN110927881B (zh) * 2018-09-19 2021-06-18 苏州旭创科技有限公司 一种带隔离器光插件及具有其的光模块
CN109932779B (zh) * 2019-02-28 2024-01-16 徐俊 一种带隔离器的一体化光组件结构及其加工方法
JP6860264B2 (ja) * 2019-06-28 2021-04-14 株式会社Smmプレシジョン ファラデー回転子及びその製造方法並びに光アイソレータ、光伝送装置
JP7296271B2 (ja) * 2019-08-09 2023-06-22 株式会社エンプラス 光アイソレーター部材および光アイソレーター
CN112946823B (zh) * 2021-02-01 2023-03-24 华北水利水电大学 降低光反射的无源光器件的结构件
CN116528535B (zh) * 2023-07-03 2023-10-03 武汉嘉晨电子技术有限公司 一种电连接件装配结构、配电盒及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523718A (en) * 1968-04-17 1970-08-11 Us Army Low temperature optical isolator for laser systems
US3697151A (en) * 1970-08-14 1972-10-10 United Aircraft Corp Cryogenically cooled faraday rotator element
JPH0553081A (ja) * 1991-08-23 1993-03-05 Fuji Elelctrochem Co Ltd 光アイソレータ
US5363391A (en) * 1992-04-24 1994-11-08 Hughes Aircraft Company Conductive face-cooled laser crystal
US5715080A (en) * 1992-09-11 1998-02-03 Scerbak; David G. Compact uniform field Faraday isolator
JP3472339B2 (ja) 1994-04-06 2003-12-02 Fdk株式会社 高パワー用光アイソレータ
US5978135A (en) * 1999-05-03 1999-11-02 Lucent Technologies Inc. Article comprising a variable optical attenuator
JP2004361757A (ja) 2003-06-06 2004-12-24 Nec Tokin Corp 光アイソレータ
JP2005025138A (ja) 2003-07-04 2005-01-27 Namiki Precision Jewel Co Ltd 短波長高パワー用光アイソレータ
JP2005043853A (ja) * 2003-07-07 2005-02-17 Namiki Precision Jewel Co Ltd 光学部品及びこの光学部品を備える光アイソレータ
JP2005037753A (ja) * 2003-07-17 2005-02-10 Namiki Precision Jewel Co Ltd 短波長高パワー用光アイソレータ
JP2006030442A (ja) * 2004-07-14 2006-02-02 Shinkosha:Kk 光アイソレータの放熱構造
JP2006126582A (ja) * 2004-10-29 2006-05-18 Nec Tokin Corp 光アイソレータ
JP4399731B2 (ja) * 2004-11-08 2010-01-20 住友金属鉱山株式会社 高出力レーザー用ファラデー回転子
JP4600660B2 (ja) * 2005-02-07 2010-12-15 住友金属鉱山株式会社 高出力レーザー用ファラデー回転子
JP2007065289A (ja) * 2005-08-31 2007-03-15 Shinkosha:Kk 光アイソレータの放熱構造
US7515780B2 (en) * 2006-10-25 2009-04-07 Alcatel-Lucent Usa Inc. System and method for fabricating an optical isolator
JP5166119B2 (ja) * 2008-05-22 2013-03-21 ミヤチテクノス株式会社 ファラデー回転子、光アイソレータおよびレーザ加工装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218286A (ja) * 2012-03-14 2013-10-24 Gigaphoton Inc ファラデーローテータ、光アイソレータ、レーザ装置、および極端紫外光生成装置
US9933637B2 (en) 2015-03-27 2018-04-03 Shinkosha Co., Ltd. Heat-dissipating structure for optical isolator

Also Published As

Publication number Publication date
DE602006017273D1 (de) 2010-11-11
EP2056156A1 (en) 2009-05-06
JPWO2008023450A1 (ja) 2010-01-07
US20090091890A1 (en) 2009-04-09
EP2056156A4 (en) 2009-09-16
US7791886B2 (en) 2010-09-07
WO2008023450A1 (fr) 2008-02-28
EP2056156B1 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4077867B1 (ja) 光アイソレータの放熱構造
US8515219B2 (en) Optical device
EP2722945A1 (en) Laser module
JP2009081092A (ja) 光源装置
JP2012516032A (ja) 光リサイクル装置を有する光源、及び対応する光リサイクル装置
JP2007065289A (ja) 光アイソレータの放熱構造
JP2005043853A (ja) 光学部品及びこの光学部品を備える光アイソレータ
JP2008134595A (ja) 短波長光用ファラデー回転子及びそのファラデー回転子を備えた光アイソレータ
JP2018117088A (ja) 反射部材付基板及びその製造方法
JP2021090078A (ja) 光半導体素子収納用パッケージおよび光半導体装置
JP2006030442A (ja) 光アイソレータの放熱構造
CN114153092B (zh) 背光模组及显示装置
JP4868311B2 (ja) 短波長光用ファラデー回転子及びそのファラデー回転子を備えた光アイソレータ
JP2006292799A (ja) ファラデー回転子の製造方法及び該回転子が組込まれた光アイソレータ
TWI295383B (en) Lens, laser-arrangement and method for the production of a laser-arrangement
JP2008028273A (ja) 半導体レーザ装置
JP6860264B2 (ja) ファラデー回転子及びその製造方法並びに光アイソレータ、光伝送装置
JP5901258B2 (ja) 光モジュール、光送受信器及び光送受信器製造方法
JP2007199153A (ja) 反射型液晶表示装置
JP6093915B1 (ja) 光アイソレータの放熱構造
JP2005025138A (ja) 短波長高パワー用光アイソレータ
JP2013149667A (ja) 光モジュールおよび光送信器
JP3403832B2 (ja) 発光素子
JP2003338654A (ja) 半導体レーザモジュール
JP5457977B2 (ja) ファラデーアイソレータおよびそれを備えるレーザ装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080201

R150 Certificate of patent or registration of utility model

Ref document number: 4077867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250