JP4076793B2 - 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒 - Google Patents
可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒 Download PDFInfo
- Publication number
- JP4076793B2 JP4076793B2 JP2002167300A JP2002167300A JP4076793B2 JP 4076793 B2 JP4076793 B2 JP 4076793B2 JP 2002167300 A JP2002167300 A JP 2002167300A JP 2002167300 A JP2002167300 A JP 2002167300A JP 4076793 B2 JP4076793 B2 JP 4076793B2
- Authority
- JP
- Japan
- Prior art keywords
- visible light
- photocatalyst
- doped
- srtio
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 27
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 25
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 25
- 239000001257 hydrogen Substances 0.000 title claims description 25
- 229910002370 SrTiO3 Inorganic materials 0.000 title 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 63
- 229910002367 SrTiO Inorganic materials 0.000 claims description 44
- 239000003054 catalyst Substances 0.000 claims description 38
- 230000000694 effects Effects 0.000 claims description 37
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 33
- 229910052697 platinum Inorganic materials 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 14
- 230000001699 photocatalysis Effects 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 238000006303 photolysis reaction Methods 0.000 description 8
- 229910052703 rhodium Inorganic materials 0.000 description 8
- 229910052741 iridium Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 230000015843 photosynthesis, light reaction Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- -1 that is Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Description
【発明の属する技術分野】
本発明は、基本的にRhおよび/またはIrをドープしたSrTiO3からなる可視光領域の光に活性を有する光触媒、特にメタノール水溶液から可視光下に水素を発生させる水分解光用光触媒に関する。
【0002】
【従来の技術】
光で触媒反応を行う技術としては、光触媒能を有する固体化合物に光を照射し、生成した励起電子やホールで反応物を酸化、あるいは還元して目的物を得る方法が既に知られている。
中でも、水の光分解反応は光エネルギー変換の観点から興味が持たれている。また、水の光分解反応に活性を示す光触媒は、光吸収、電荷分離、表面での水の酸化還元反応といった機能を備えた高度な光機能材料と見ることができる。
工藤、加藤等は、タンタル酸アルカリ、アルカリ土類等が、水の完全光分解反応に高い活性を示す光触媒であることを多くの先行文献を挙げて説明している〔例えば、Catal.Lett.,58(1999).153-155、Chem.Phys.Lett.,331〔5/6〕373-377(2000),J.Phys.Chem.B,105〔19〕,4285-4292(2001)、表面,Vol.36,No.12(1998),625-645(文献A類という)〕。前記文献A類においては、水を水素または/および酸素に分解する反応を進めるのに有用な光触媒材料について解説しており、水の発生した電子の還元による水素生成反応、または発生したホールの酸化による酸素生成反応および水の完全光分解反応用光触媒についての多くの示唆をしている。
また、白金、NiOなどの助触媒またはプロモータを担持した光触媒などについても言及している。
【0003】
しかしながら、ここで解説されているものは、非金属としては酸素を含むものが主である。また、多くの固体光触媒は価電子帯と伝導帯の間にある禁制帯の幅、即ち、バンドギャップエネルギ−が、3eVよりも大きいため、3eV未満の低いエネルギーの可視光で作動させることができない。一方、バンドギャップエネルギーが小さく、可視光で電子、ホールを生ずることのできる従来の固体光触媒のほとんどは水の光分解反応等の反応条件下で不安定である。例えばCdS、Cu−ZnS等のバンドギャップは2.4eVであるが酸化的な光腐食作用を受けるため、触媒反応が限定されている。
地表に到達する太陽光のほとんどはエネルギーの小さい可視光であり、太陽光で効率的に多様な触媒反応を進行させるためには可視光で作動しかつ安定な光触媒が必要不可欠である。
【0004】
この様な中で、光触媒の研究に携わっている多くの研究者が、可視光、それもより長波長の可視光に活性を持つ光触媒、特に前記水の分解に活性を持つ光触媒の開発に努力している。しかしながら、犠牲薬を必用としない、実用性のある水の可視光による分解を可能にする光触媒を提供するところまで至っていない。
前記可視光に活性を有する光触媒の開発では、先ず、より長波長の可視光において活性を示す光半導体の開発が重要であり、これに更に微量の活性化元素と組み合わせて、より長波長域への活性特性の改善、及び安定性の改善を図ることである。また、水の完全分解(全分解)の触媒とはいかなくても少なくとも一方の効率的な分解が可能な光触媒が見出せれば、これらのライブラリーを構成し、多くの触媒の中から前記完全分解の触媒系、たとえばZスキーム型触媒系の構築への可能性を提供する点で重要である。
【0005】
前記したように地表で利用できる太陽光のほとんどは可視光であるので、可視光で励起電子とホールを生成でき、かつ少なくとも還元反応が高効率で進行する光触媒を提供することの多くの提案がなされている。
前記従来の光触媒のほとんどは金属酸化物、すなわち非金属元素として酸素を含むものである。金属酸化物は、伝導帯及び価電子帯のエネルギー的な位置関係は酸素の価電子、O2p軌道のエネルギーによって大きく支配されるため、バンドギャップエネルギ−は3eVより大きく、可視光で光触媒機能を発現させることができない。そこで、価電子帯がO2pより高い準位にあるN2pで構成することによって可視光で水を分解できる触媒材料が作れるのではないかと考え、オキシナイトライド化合物からなる光触媒の検討が堂免、原らによって既になされている〔マテリアルインテグレーションVol.14,No.2(2001)、文献B〕。
また、価電子帯S3pもO2pより高い準位にあることに着目してオキシサルファイド化合物からなる光触媒の検討も堂免、原らによって既になされている〔日本化学会79回大会における講演予稿集、Vol.79th、No.1、pp366;オキシサルファイドによる水の可視光分解の検討、文献C〕。
また、O2p以外の価電子帯形成元素としてBi3+やAg+も候補としてあがっていることが工藤らによって提案されている。BiVO4やAgNbO3は可視光照射下で水溶液から酸素生成に活性を示す光触媒である〔J.Am.Chem.Soc.,121(49),11459-11467 (1999),マテリアルステージ,No.5, 21-26 (2002)〕。
【0006】
これに対して、微量の活性化元素または化合物と組み合わせて、より長波長域への活性特性の改善、及び安定性の改善を図る検討もなされている。例えば、SrTiO3に関しては、Lehnらは、貴金属助触媒と組み合わせて、例えばRh/SrTiO3につて水の完全光分解に光活性を示すことを証明している。
特開2000−189806には、光触媒の可視光活性を改善するために、Pt、Ru、Rh、Ir、Niなどの金属または金属酸化物を担持させることが開示されている。しかしながら、これらは担持させるものであるから、バンドギャップエネルギーを可視光域まで改善するものではない。
【0007】
これに対して、Cr3+とSb5+またはTa5+を共ドープしたSrTiO3やTiO2が,可視光照射下でそれぞれメタノール水溶液からの水素生成と硝酸銀水溶液からの酸素生成に活性を示すことが知られている〔J. Phys. Chem., 106(19), 5029-5034 (2002), マテリアルステージ,No.5,21-26(2002)〕。
【0008】
また、InあるいはInとZnの酸化物からなる層構造の化合物が可視光下におけるメタノール水溶液からの水素の発生の活性などについても検討されている〔A.Kudo and I.Mikami,Chem.Lett.,1027(1998)、文献D〕。また、ZnSに種々の金属元素をドープして可視光における活性を改善する試みも多々行われている〔Catal.Lett.,58〔4〕,241-243(1999),Chem.Commun.,1371-1372(2000);文献E類〕。しかしながら、SrTiO3系触媒の可視光でのメタノール水溶液からの水素の発生の活性を有するものはあまり存在しない。
【0009】
【発明が解決しようとする課題】
本願発明の課題は、前記可視光活性を持つ光触媒の豊富化を実現するために、少なくとも水の光分解によるH2の生成において効率の良い新規な触媒を提案することである。特に前記した提案技術の少ない酸化物系の、例えばSrTiO3触媒系の可視光下で、少なくとも水からH2を生成させる活性の可能性のある光触媒を提供することである。
そこで、可視光活性を持ち、かつ、水の光分解反応に安定性が期待できる触媒を開発すべく、種々の金属をSrTiO3系触媒にドープして、前記光触媒活性の特性を試みる中で、Rhおよび/またはIrをドープしたSrTiO3がメタノール水溶液から可視光下に水素を発生させる活性を持つことを見出し、前記課題を解決することができた。
【0010】
【課題を解決するための手段】
本発明第1は、Rhおよび/またはIrをドープしたSrTiO3からなることを特徴とする可視光活性を有する光触媒、特に、メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の前記Rhおよび/またはIrをドープしたSrTiO3からなる光触媒である。
本発明の第2は、白金触媒を担持させたことを特徴とする改善した可視光活性を有する前記Rhおよび/またはIrをドープしたSrTiO3からなる光触媒、特に、メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の前記白金触媒を担持させたRhおよび/またはIrをドープしたSrTiO3からなる光触媒である。
【0011】
本発明の第3は、より改善した可視光活性を持つRhを0.1mol%〜3.0mol%ドープしたSrTiO3からなることを特徴とする前記光触媒、特に、メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の前記より改善した可視光活性を持つRhを0.1mol%〜3.0mol%ドープしたSrTiO3からなる光触媒である。
本発明の第4は、一層改善した可視光活性を持つ白金触媒を担持させたことを特徴とするRhを0.1mol%〜3.0mol%ドープしたSrTiO3からなる光触媒、特に、メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の前記一層改善した可視光活性を持つ白金触媒を担持させたRhを0.1mol%〜3.0mol%ドープしたSrTiO3からなる光触媒である。
【0012】
本発明の第5は、より改善した可視光活性を持つIrを0.05mol%〜0.5mol%ドープしたSrTiO3からなることを特徴とする前記光触媒、特に、メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の前記より改善した可視光活性を持つIrを0.05mol%〜0.5mol%ドープしたSrTiO3からなる光触媒である。また、
本発明の第6は、一層改善した可視光活性を持つ白金触媒を担持させたことを特徴とするIrを0.05mol%〜0.5mol%ドープしたSrTiO3からなる光触媒、特に、メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の前記一層改善した可視光活性を持つ白金触媒を担持させたIrを0.05mol%〜0.5mol%ドープしたSrTiO3からなる光触媒である。
【0013】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.RhまたはIrドープSrTiO3系触媒の調製;
固相法による調製。
原料のSrCO3(関東化学、99.9%)、TiO2(ルチル)(添川理化学、99.9%)および金属酸化物Rh2O3(和光純薬製、95%)またはIrO2(添川理化学、85.5%)をアルミナ乳鉢上で混ぜた後、アルミナるつぼに入れて電気炉で焼成した。
原料に用いたSrCO3は500℃(773K)で1時間焼いたものを量論比よりも1%過剰で使用した。
乳鉢上で原料を混ぜる際、より均一に混ざるようにメタノールを数回加えた。焼成条件は主に1000℃(1273K)で1時間仮焼後、電気炉から取り出して再びアルミナ乳鉢上で混ぜ合わせてからアルミナるつぼに入れ、1150℃(1423K)で10時間焼成した。
【0014】
B.調製されたRhまたはIrドープSrTiO3系触媒の特性;
拡散反射スペクトル特性;日本分光社製のUbest V570で測定。
図1に、RhまたはIrドープSrTiO3系触媒の拡散反射スペクトルを示す。
RhをドープしたSrTiO3の拡散反射スペクトルを測定したところ、可視光領域に強い吸収を示した。吸収端からエネルギーギャップは、Rhを1%ドープしたもので1.6eVと見積もられた。
IrをドープしたSrTiO3の拡散反射スペクトルを測定したところ、可視光領域に強い吸収を示した。吸収端からエネルギーギャップは、Ir0.3%ドープしたもので2.4eVと見積もられた。
【0015】
C.RhまたはIr(X%)ドープSrTiO3光触媒の水素生成速度に対するドープ量依存性
(1)SrTi1−xRhxO3(x=0.001、0.005、0.01、0.03)について、犠牲試薬存在下、可視光照射下での光触媒活性を調べた。その結果、酸素生成反応および水素生成反応に活性を示した。水素生成反応に対しては、Rh1%ドープ(x=0.01)のもので最も高い活性が得られた。
(2)SrTi1−xIrxO3(x=0.0005、0.001、0.003、0.005)について、犠牲薬の存在下、可視光照射下での光触媒活性を調べた。その結果、Rhドープ同様、酸素生成反応および水素生成反応に活性を示した。水素生成反応においてはRhをドープしたものよりは活性が低かったが、酸素生成反応においては高かった。水素生成反応に対するIrの最適ドープ量は0.3%(x=0.003)だった。
これらをまとめた特性を表1に示す。
【0016】
【表1】
【0017】
【実施例】
以下、実施例により本発明を具体的に説明するが、この例示により本発明が限定的に解釈されるものではない。
実施例1
<Rh1%ドープSrTiO3光触媒による可視光照射下でのメタノール水溶液からのH2生成反応>
Rh1%ドープSrTiO3光触媒による犠牲試薬存在下、可視光照射下での水素生成反応は、光照射数時間後に1時間あたりの活性が最も高くなり(90μmol/1時間)、徐々に失活した。一旦光照射を止め、系内を排気(脱気)して再び光を照射するという行程を2操作行ったところ、光照射後1時間の活性はそれぞれ104μmol/1時間、117μmol/1時間となった。
図2に結果を示す。
【0018】
白金を0.5重量%担持させたRhを0、0.1、0.5、1.0および3.0%ドープしたSrTiO3光触媒を0.3gをメタノール水溶液に分散し、λ>440nmの可視光照射下でのH2生成反応の結果を図3に示す。
【0019】
実施例2
白金を0.5重量%担持させたIrを0、0.05、0.1、0.3および0.5%ドープしたSrTiO3光触媒を0.3gをメタノール水溶液に分散し、λ>440nmの可視光照射下でのH2生成反応の結果を図4に示す。
【0020】
【発明の効果】
以上述べたように、本発明のRhおよび/またはIrをドープしたSrTiO3のエネルギーギャップは1.6eVまたは2.4eVと顕著な光活性を示す触媒を提供できたという優れた効果がもたらされる。
【図面の簡単な説明】
【図1】 RhまたはIrドープSrTiO3系触媒の拡散反射スペクトルを示す
【図2】 Rh1%ドープSrTiO3光触媒を3gメタノール水溶液に分散し、λ>440nmの可視光照射下でのH2生成反応の結果を示す
【図3】 白金を0.5重量%担持させたRhを0、0.1、0.5、1.0および3.0%ドープしたSrTiO3光触媒を0.3gをメタノール水溶液に分散し、λ>440nmの可視光照射下でのH2生成反応の結果を示す
【図4】 白金を0.5重量%担持させたIrを0、0.05、0.1、0.3および0.5%ドープしたSrTiO3光触媒を0.3gをメタノール水溶液に分散し、λ>440nmの可視光照射下でのH2生成反応の結果を示す
Claims (12)
- Rhおよび/またはIrをドープしたSrTiO3からなることを特徴とする可視光活性を有する光触媒。
- メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の請求項1に記載のRhおよび/またはIrをドープしたSrTiO3からなる光触媒。
- 白金触媒を担持させたことを特徴とする請求項1に記載の可視光活性を有する光触媒。
- メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の請求項3に記載の白金触媒を担持させたRhおよび/またはIrをドープしたSrTiO3からなる光触媒。
- Rhを0.1mol%〜3.0mol%ドープしたSrTiO3からなることを特徴とする請求項1に記載の光触媒。
- メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の請求項5に記載のRhを0.1mol%〜3.0mol%ドープしたSrTiO3からなる光触媒。
- 白金触媒を担持させたことを特徴とする請求項5記載のRhを0.1mol%〜3.0mol%ドープしたSrTiO3からなる光触媒。
- メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の請求項5に記載のRhを0.1mol%〜3.0mol%ドープしたSrTiO3からなる光触媒。
- Irを0.05mol%〜0.5mol%ドープしたSrTiO3からなることを特徴とする請求項1に記載の可視光活性を有する光触媒。
- メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の請求項9に記載のIrを0.05mol%〜0.5mol%ドープしたSrTiO3からなる光触媒。
- 白金触媒を担持させたことを特徴とする請求項9に記載の可視光活性を有する光触媒。
- メタノール水溶液から可視光下に水素を発生させる可視光活性光水分解触媒用の請求項11に記載の白金触媒を担持させたIrを0.05mol%〜0.5mol%ドープした光触媒。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002167300A JP4076793B2 (ja) | 2002-06-07 | 2002-06-07 | 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002167300A JP4076793B2 (ja) | 2002-06-07 | 2002-06-07 | 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004008963A JP2004008963A (ja) | 2004-01-15 |
JP4076793B2 true JP4076793B2 (ja) | 2008-04-16 |
Family
ID=30434596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002167300A Expired - Fee Related JP4076793B2 (ja) | 2002-06-07 | 2002-06-07 | 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4076793B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5888415B2 (ja) | 2012-05-29 | 2016-03-22 | Toto株式会社 | 可視光応答型光触媒粒子およびその製造方法 |
JP6225786B2 (ja) | 2013-05-29 | 2017-11-08 | Toto株式会社 | 金属酸化物粒子の製造方法 |
KR102173150B1 (ko) * | 2013-06-18 | 2020-11-02 | 서강대학교 산학협력단 | 광촉매를 이용한 메탄올로부터의 수소 제조방법 |
WO2014204200A1 (ko) * | 2013-06-18 | 2014-12-24 | 서강대학교산학협력단 | 광촉매를 구비한 수소 연료 변환기 및 광촉매를 이용한 메탄올로부터의 수소 제조방법 |
JP6215170B2 (ja) * | 2014-09-30 | 2017-10-18 | 富士フイルム株式会社 | ペロブスカイト型酸化物とその製造方法 |
JP6403600B2 (ja) * | 2015-02-16 | 2018-10-10 | 国立研究開発法人物質・材料研究機構 | 光触媒含有混合粉末、その製造方法及び水素発生方法 |
CN109569594B (zh) * | 2018-11-29 | 2021-06-22 | 全球能源互联网研究院有限公司 | 一种钛酸盐担载贵金属基析氧电催化剂及其制备方法 |
KR102232201B1 (ko) * | 2020-10-27 | 2021-03-26 | 서강대학교산학협력단 | 광촉매를 이용한 메탄올로부터의 포름알데히드 또는 포름산의 제조방법 |
CN114618537B (zh) * | 2022-04-10 | 2023-05-26 | 贵州大学 | 一种红磷/钛酸锶异质结光催化剂及制备方法及应用 |
-
2002
- 2002-06-07 JP JP2002167300A patent/JP4076793B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004008963A (ja) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Oxysulfide semiconductors for photocatalytic overall water splitting with visible light | |
Kudo et al. | Strategies for the development of visible-light-driven photocatalysts for water splitting | |
JP4107807B2 (ja) | 水の可視光分解用オキシサルファイド光触媒 | |
Ishii et al. | H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation | |
Luo et al. | Hierarchical Heterogeneity at the CeO x–TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures | |
Kim et al. | An undoped, single-phase oxide photocatalyst working under visible light | |
Zou et al. | Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) photocatalysts | |
JP5344731B2 (ja) | 可視光応答性の半導体素子および光電極、並びにそれを用いた光エネルギー変換システム | |
JP6370371B2 (ja) | 二酸化炭素の光触媒還元のための共触媒組成物を有するnatao3:la2o3触媒 | |
JP4997454B2 (ja) | 半導体電極とそれを用いたエネルギ変換システム | |
Chen et al. | Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide | |
JP4076793B2 (ja) | 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒 | |
Kikkawa et al. | Development of Rh-Doped Ga2O3 Photocatalysts for Reduction of CO2 by H2O as an Electron Donor at a More than 300 nm Wavelength | |
JP4070516B2 (ja) | 水から水素生成のための可視光応答性硫化物光触媒 | |
JP2015131300A (ja) | 光水分解反応用光触媒および光水分解反応用光触媒の製造方法 | |
JP2004275946A (ja) | ペロブスカイト型複合酸化物可視光応答性光触媒とそれを用いた水素の製造方法及び有害化学物質分解方法 | |
Hakki et al. | Understanding the chemistry of photocatalytic processes | |
JP2006088019A (ja) | 硝酸イオン存在下の酸化的雰囲気においてIr酸化物系助触媒を担持させた光触媒およびその製造方法 | |
Chen et al. | The photodegradation of acetone over VOx/MgF2 catalysts | |
Kudo et al. | A Career in Catalysis: Kazunari Domen | |
JP2003236389A (ja) | 可視光照射による水の分解用フッ化窒化チタンを含む光触媒 | |
JP4112162B2 (ja) | d10電子状態の金属イオンを含む酸化物を用いた光触媒 | |
Fudo et al. | AuO x Surface Oxide Layer as a Hole-Transferring Cocatalyst for Water Oxidation over Au Nanoparticle-Decorated TiO2 Photocatalysts | |
JPH0889800A (ja) | 光触媒 | |
JP4312471B2 (ja) | 可視光照射下で硫黄化合物を含む水溶液から水素を発生させるためのAgGaS2からなる光触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031031 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040129 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140208 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees | ||
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |