JP4076063B2 - 表面電位検出装置 - Google Patents

表面電位検出装置 Download PDF

Info

Publication number
JP4076063B2
JP4076063B2 JP2002112648A JP2002112648A JP4076063B2 JP 4076063 B2 JP4076063 B2 JP 4076063B2 JP 2002112648 A JP2002112648 A JP 2002112648A JP 2002112648 A JP2002112648 A JP 2002112648A JP 4076063 B2 JP4076063 B2 JP 4076063B2
Authority
JP
Japan
Prior art keywords
voltage
potential
circuit
detection
surface potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002112648A
Other languages
English (en)
Other versions
JP2003307534A (ja
Inventor
高志 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002112648A priority Critical patent/JP4076063B2/ja
Publication of JP2003307534A publication Critical patent/JP2003307534A/ja
Application granted granted Critical
Publication of JP4076063B2 publication Critical patent/JP4076063B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面電位を非接触方式で検出する表面電位検出装置に関する。
【0002】
【従来の技術】
例えば、複写機やレーザビームプリンタ等において、被測定体である感光ドラムの表面電位を検出する手段として、高圧フィードバック型の表面電位検出装置が知られている。この高圧フィードバック型の表面電位検出装置は、特公平3−6467号公報等に開示されているように、検出電極と感光ドラムとの間の電界を、音叉で機械的に断続することにより、感光ドラムの表面電位に対応した交流信号を得る。そして、この交流信号をプリアンプで増幅するとともに、アイソレータを介して、検波回路に導き、機械的断続に同期した信号で、検波する。検波回路から出力された同期検波出力信号は、積分回路によって直流化される。積分回路によって得られた直流信号は、高電圧発生部に入力される。
【0003】
高電圧発生部は、1次側回路から絶縁された高電圧を生成するための高圧トランスや、その他種々の高耐圧部品を含み、入力された直流信号に基づき、感光ドラム表面の電位と同じになるようなコモングランド電位を生成し、このコモングランド電位を積分回路にフィードバックする。このコモングランド電位は、1次側回路、接地電位、あるいは、フレーム接地電位に対してフローティングな関係にある。コモングランド電位は、減衰器やバッファ等を用いて処理され、表面電位検出信号として出力される。
【0004】
この方式の最大の利点は、検出電極と、感光ドラムの表面との間の距離が変化しても、距離依存性が非常に少ない高精度な表面電位検出信号が得られることである。
【0005】
ところで、最近、4本(シアン、マゼンタ、イエロー、ブラック)の感光ドラムを用いた、高速なタンデムタイプの複写機やレーザビームプリンタ等の画像形成装置が提案され、実用に供されている。これらの画像形成装置では、表面電位検出装置で検出された感光ドラムの表面電位に基づいて、帯電器に所定の制御信号を与え、感光ドラムの表面電位が一定になるような制御をする。したがって、これら4本の感光ドラムの表面電位の制御を適確に行うためには、4本の感光ドラムの表面電位を同時、かつ、連続的に検出し、この検出された表面電位に基づいて制御信号を生成する必要がある。そこで、従来は、4つの感光ドラムのそれぞれに対して、1つの表面電位検出装置を備える構成を採っていた。したがって、4つの感光ドラムを備える画像形成装置では、4つの表面電位検出装置が必要であった。
【0006】
ところが、表面電位検出装置の高電圧発生部は、形状、質量、消費電力が大きい部品である高圧トランスや、一般に高価な部品である高耐圧部品を含む。このため、1つの画像形成装置に対して4つの表面電位検出装置を用いる場合には、高電圧発生部が4つ必要となり、4つの表面電位検出装置全体として、形状大型化、重量増加、消費電力の増加及びコストアップが著しくなるという問題があった。
【0007】
【発明が解決しようとする課題】
本発明の課題は、形状大型化、重量増加、消費電力の増大、及び、コストアップを抑え得る表面電位検出装置を提供することである。
【0008】
本発明のもう1つの課題は、複数の被測定体の電位を同時、かつ、連続的に検出し得る表面電位検出装置を提供することである。
【0009】
本発明の更にもう1つの課題は、高精度に表面電位を検出し得る表面電位検出装置を提供することである。
【0010】
【課題を解決するための手段】
上述した課題を解決するため、本発明に係る表面電位検出装置は、高圧発生回路と、複数の電位センサと、1つの電圧制御部とを含む。
【0011】
前記高圧発生回路は、入力側から電気絶縁された出力側に、高電圧を出力する。複数の電位センサのそれぞれは、互いに独立し、センサ部と、電位検出回路と、電圧変換回路とを含んでいる。
【0012】
前記複数の電位センサのそれぞれは、センサ部と、電位検出回路と、電圧変換回路とを含み、互いに独立している。前記センサ部は、被測定体の電位に対応する検出信号を生成する。前記電位検出回路は、前記被測定体の電位に対応するコモングランド電位と、前記センサ部から供給された前記検出信号とを用いて電圧信号を生成する。前記電圧変換回路は、前記高圧発生回路から共通に供給された前記高電圧を、前記電圧信号により制御して、前記コモングランド電位を生成する。コモングランド電位は、電位検出回路にフィードバックされるとともに、表面電位検出信号として出力される。
【0013】
電圧制御部は、電圧変換回路に供給された高電圧を検出し、高電圧が一定となるように高圧発生回路をフィードバック制御する。
【0014】
上述した本発明に係る表面電位検出装置によれば、次のような作用及び効果が得られる。
(a)高圧発生回路は、入力側から電気絶縁された出力側に、高電圧を出力する。したがって、高圧発生回路を用いて、接地電位、あるいは、フレーム接地電位に対して絶縁された高電圧を生成することができる。
(b)複数の電位センサを含み、複数の電位センサのそれぞれは、互いに独立している。このため、複数の被測定体の電位を同時、かつ、連続的に検出することができる。例えば、高速なタンデムタイプの複写機やレーザビームプリンタ等の画像形成装置において、4つの電位センサを4本(シアン、マゼンタ、イエロー、ブラック)の感光ドラムに対応させ、その表面電位を、個別的に検出できる。また、搬送されるフィルムの帯電を検出する場合のように、極めて多数の電位センサを、分散配置して備える場合も、フィルムの異なる箇所において、その表面電位を個別的に検出することができる。
【0015】
(c)複数の電位センサのそれぞれにおいて、センサ部は、被測定体の電位に対応する検出信号を生成する。電位検出回路は、被測定体の電位に対応するコモングランド電位と、センサ部から供給された検出信号とを用いて電圧信号を生成する。電圧変換回路は、高圧発生回路から共通に供給された高電圧を、電圧信号を用いて制御し、コモングランド電位を生成する。そして、このコモングランド電位を表面電位検出信号として出力する。
このように、被測定体の電位とほぼ等しい電位をコモングランド電位として用いることにより、高圧フィードバック型の表面電位検出装置が構成され、センサ部と被測定体との間の距離に殆ど依存しない、高精度な表面電位の検出が可能となる。
【0016】
(d)高圧発生回路が接地電位、あるいは、フレーム接地電位に対して絶縁された高電圧を生成するので、電圧変換回路は、絶縁機能を有する必要がなく、供給された高電圧を所望の電圧値に変換して出力するだけでよい。したがって、電圧変換回路は、トランスを含まない簡単な構成の回路、例えば、チョッパ回路で構成することができるので、低コスト化を図ることができる。
また、高圧トランスが高電圧を生成するので、電圧変換回路は、昇圧をする必要がなく、供給された高電圧を所望の電圧値に変換して出力するだけでよい。したがって、電圧変換回路は、簡単な構成の降圧回路、例えば、ドロッパ回路とすることができるので、低コスト化を図ることができる。
【0017】
(e)電圧変換回路のそれぞれは、高圧発生回路から共通に高電圧が供給されるので、複数の被測定体を測定する場合であっても、高圧発生回路は1つでよい。このため、形状大型化、重量増加、消費電力の増加及びコストアップを抑えることができる。
例えば被測定体である4本の感光ドラムに対して、4つの高圧発生回路を備える必要があった従来技術と比較して、形状、重量、消費電力、及び、コストが著しく低減される。
また、高圧発生回路を共通に用いることにより、絶縁された高電圧を発生させるための回路を簡素化することが可能となる。このため、これらの回路に用いられる耐高圧部品、例えば、スイッチング用トランジスタを減らすことができ、コストが著しく低減される。
【0018】
(f)一般に、高圧フィードバック型の表面電位検出装置においては、高圧発生回路は高圧トランスを含んでおり、高圧トランスの2次コイルに、多数巻きのコイルを用いることにより、高電圧を生成する。このため、高圧トランスの2次コイルの出力端子、すなわち、電圧変換回路に高電圧を供給する出力端子の出力インピーダンスが非常に高くなるのが普通である。
【0019】
したがって、電圧制御部を含んでいない高圧フィードバック型の表面電位検出装置においては、1つの高圧トランスから共通に供給された高電圧を用いて、複数の電圧変換回路のそれぞれがコモングランド電位を生成する構成を採用した場合、いずれかの電圧変換回路に流れる電流を急変させると、電圧変換回路に供給される高電圧が急変する。
そして、この電圧変換回路に供給される高電圧の急変の影響により、電流を急変させていない電圧変換回路にリップル電流が流れ、電流を急変させていない電圧変換回路にリップル電圧が生じ、高精度な電位検出ができなくなるおそれがある。
【0020】
この問題を回避する手段として、本発明に係る表面電位検出装置は、電圧制御部を含む。電圧制御部は、電圧変換回路に供給された高電圧を検出し、高電圧が一定となるように高圧発生回路をフィードバック制御する。
【0021】
したがって、、複数の電圧変換回路のいずれかに、大きな負荷電流が供給された場合でも、電圧制御部の上述した機能により、電圧変換回路に供給される高電圧を一定値に保つことが可能となる。すなわち、電圧変換回路に高電圧を供給する出力端子の出力インピーダンスを非常に低くすることができるので、複数の電圧変換回路のそれぞれが、他の電圧変換回路の影響を受けることがなくなり、高精度に表面電位を検出することが可能となる。
【0022】
(g)高圧発生回路に高圧トランスを含んでいる構成において、高圧トランスは、1つであり、2次コイルに高電圧を生成する。電圧制御部は、2次コイルから電圧変換回路に供給される高電圧を制御する。このため、電位センサの数に拘らず、電圧制御部の数が1つで済むので、表面電位検出装置の形状大型化、重量増加、消費電力の増加及びコストアップを抑えることができる。
(h)上記利点(a)〜(g)は、検出箇所が増えれば増える程、顕著になる。
【0023】
【発明の実施の形態】
図1は本発明に係る表面電位検出装置を用いて、タンデム配置された4本の感光ドラムの表面電位を検出する場合の構成を概略的に示す図である。図において、被測定体である4本の感光ドラムC、M、Y、Kは、タンデムに配置されている。感光ドラムCはシアン用であり、表面電位Vc=−500Vである。感光ドラムMはマゼンタ用であり、表面電位Vm=−200Vである。感光ドラムYはイエロー用であり、表面電位Vy=−900Vである。感光ドラムKはブラック用であり、表面電位Vk=−600Vである。但し、これらの表面電位は、一例であり、これに限定するものではない。
【0024】
図示された表面電位検出装置1は、1つの高圧発生回路53と、1つの電圧制御部60と、複数の電位センサ10、20、30、40とを含む。図示実施例は、タンデム配置された4本の感光ドラムC〜Kの表面電位を検出する場合を示しているので、電位センサ10〜40は4個であるが、その個数は被測定体の個数に応じて増減される。電位センサ10〜40のそれぞれは、感光ドラムC〜Kのそれぞれ毎に個別に備えられ、感光ドラムC〜Kの表面から、例えば、2.5mmの距離をおいて、固定して配置されている。
【0025】
高圧発生回路53は、高圧トランス50を含む。高圧トランス50の1次コイル51は、接地電位、あるいは、フレーム接地電位GNDに接続され、電源端子Vinから約24Vの電圧が供給される。2次コイル52は、1つであり、1次コイル51から絶縁された高電圧Vhを生成する。2次コイル52に生成される高電圧Vhは、例えば、−1200Vである。この高圧トランス50は、1つであって、4個の電位センサ10〜40に接続され、共用されている。
【0026】
複数の電位センサ10〜40のそれぞれは、互いに独立している。電位センサ10〜40は、センサ部110、210、310、410と、電位検出回路120、220、320、420と、電圧変換回路130、230、330、430と、出力回路140、240、340、440とを含む。
【0027】
センサ部110〜410は、4本の感光ドラムC〜Kに対向して配置され、感光ドラムC〜Kの電位Vc〜Vkに対応する検出信号S11、S21、S31、S41を生成する。検出信号S11〜S41は、同軸ケーブル等を介して、電位検出回路120〜420に送られる。
【0028】
電位検出回路120〜420は、感光ドラムC〜Kの電位Vc〜Vkに対応するコモングランド電位Vcom1、Vcom2、Vcom3、Vcom4と、センサ部110〜410から供給された検出信号S11〜S41とを用いて電圧信号S12、S22、S32、S42を生成する。
【0029】
電圧変換回路130〜430は、2次コイル52から共通に供給された高電圧Vhを、電圧信号S12〜S42により制御して、コモングランド電位Vcom1〜Vcom4を生成する。
【0030】
コモングランド電位Vcom1〜Vcom4は、電位検出回路120〜420にフィードバックされるとともに、出力回路140〜440を介して表面電位検出信号Vout1、Vout2、Vout3、Vout4として出力される。この出力回路140〜440は、コモングランド電位Vcom1〜Vcom4を減圧して出力する回路であり、省略することも可能である。
【0031】
電圧制御部60は、電圧変換回路130〜430に供給された高電圧Vhを検出し、高電圧Vhが一定となるように高圧発生回路53をフィードバック制御する。
【0032】
上述した本実施例に係る表面電位検出装置によれば、次のような作用及び効果が得られる。
(a)高圧発生回路53は、1つの高圧トランス52を含み、高圧トランス50が、1つの2次コイル52に1次コイル51から絶縁された高電圧Vhを生成する。この構成によれば、2次コイル52に、接地電位、あるいは、フレーム接地電位GNDに対して絶縁された高電圧Vhを生成することができる。
(b)複数の電位センサ10〜40を含み、それぞれが互いに独立している。このため、複数の被測定体の電位を同時、かつ、連続的に検出することができる。例えば、高速なタンデムタイプの複写機やレーザビームプリンタ等の画像形成装置において、4つの電位センサ10〜40を4本(シアン、マゼンタ、イエロー、ブラック)の感光ドラムに対応させ、その表面電位を、個別的に検出できる。また、搬送されるフィルムの帯電を検出する場合のように、極めて多数の電位センサ10〜40を、分散配置して備える場合も、フィルムの異なる箇所において、その表面電位を個別的に検出することができる。
【0033】
(c)センサ部110〜410は、被測定体の電位に対応する検出信号S11〜S41を生成する。電位検出回路120〜420は、被測定体の電位に対応するコモングランド電位Vcom1〜Vcom4と、センサ部110〜410から供給された検出信号S11〜S41とを用いて電圧信号S12〜S42を生成する。電圧変換回路130〜430は、2次コイル52から共通に供給された高電圧Vhを、電圧信号S12〜S42を用いて制御して、コモングランド電位Vcom1〜Vcom4を生成する。そして、このコモングランド電位Vcom1〜Vcom4を表面電位検出信号Vout1〜Vout4として出力する。
上述したように、被測定体の電位とほぼ等しい電位をコモングランド電位Vcom1〜Vcom4として用いることにより、高圧フィードバック型の表面電位検出装置が構成されるので、センサ部110〜410と被測定体との間の距離に殆ど依存しない、高精度な表面電位の検出が可能となる。
しかも、コモングランド電位Vcom1〜Vcom4が電位検出回路120〜420にフィードバックされるので、電位検出回路120〜420は、コモングランド電位Vcom1〜Vcom4を用いた処理を行うことができる。
【0034】
(d)高圧トランス50が接地電位、あるいは、フレーム接地電位GNDに対して絶縁された高電圧Vhを生成するので、電圧変換回路130〜430は、絶縁機能を有する必要がなく、供給された高電圧Vhを所望の電圧値に変換して出力するだけでよい。したがって、電圧変換回路130〜430は、トランスを含まない簡単な構成の回路、例えば、チョッパ回路で構成することができるので、低コスト化を図ることができる。
また、高圧トランス50が高電圧Vhを生成するので、電圧変換回路130〜430は、昇圧をする必要がなく、供給された高電圧Vhを所望の電圧値に変換して出力するだけでよい。したがって、電圧変換回路130〜430は、簡単な構成の降圧回路、例えば、ドロッパ回路とすることができるので、低コスト化を図ることができる。
【0035】
(e)電圧変換回路130〜430のそれぞれは、高圧トランス50に備えられた1つの2次コイル52から共通に高電圧Vhが供給されるので、複数の被測定体を測定する場合であっても、高圧トランス50は1つでよい。このため、形状大型化、重量増加、消費電力の増加及びコストアップを抑えることができる。
例えば被測定体である4本の感光ドラムに対して、4つの高圧トランスを備える必要があった従来技術と比較して、形状、重量、消費電力、及び、コストが著しく低減される。
さらに、高圧トランス50を共通に用いることにより、絶縁された高電圧Vhを発生させるための回路を簡素化することが可能となる。このため、これらの回路に用いられる耐高圧部品、例えば、スイッチング用トランジスタを減らすことができ、コストが著しく低減される。
【0036】
(f)一般に、高圧フィードバック型の表面電位検出装置においては、高圧トランス50の2次コイル52に、多数巻きのコイルを用いることにより、高電圧Vhを生成している。このため、高圧トランス50の2次コイル52の出力端子、すなわち、電圧変換回路130〜430に高電圧Vhを供給する出力端子の出力インピーダンスが非常に高くなる。
したがって、電圧制御部60を含んでいない構成において、1つの高圧トランス50から共通に供給された高電圧Vhを用いて、複数の電圧変換回路130〜430のそれぞれがコモングランド電位Vcom1〜Vcom4を生成する構成を採用した場合、いずれかの電圧変換回路130〜430に流れる電流を急変させると、電圧変換回路130〜430に供給される高電圧Vhが急変する。
【0037】
そして、この電圧変換回路130〜430に供給される高電圧Vhの急変の影響により、電流を急変させていない電圧変換回路130〜430にリップル電流が流れ、電流を急変させていない電圧変換回路130〜430にリップル電圧が生じ、高精度な電位検出ができなくなるおそれがある。
【0038】
例えば、感光ドラムの特性検査のために、複数の感光ドラムのいずれかの電位を急変させた場合には、電位を急変させた感光ドラムに接続された電圧変換回路130〜430を流れる電流が急変する。このため、電圧制御部60を含んでいない場合、電圧変換回路130〜430を流れる電流の急変に対応して、電圧変換回路130〜430に供給される高電圧Vhが急変する。このため、電圧変換回路130〜430に供給される高電圧Vhの急変の影響により、電位を急変させていない感光ドラムに接続された電圧変換回路130〜430にリップル電圧が生じ、高精度な電位検出ができなくなるおそれがある。
【0039】
この問題点を回避する手段として、本実施例に係る表面電位検出装置は、電圧制御部60を含む。電圧制御部60は、電圧変換回路130〜430に供給された高電圧Vhを検出し、高電圧Vhが一定となるように高圧発生回路53をフィードバック制御する。
【0040】
この構成によれば、複数の電圧変換回路130〜430のいずれかに、大きな負荷電流が供給された場合でも、電圧制御部60の上記機能により、電圧変換回路130〜430に供給される高電圧Vhを一定値に保つことが可能となる。すなわち、電圧変換回路130〜430に高電圧Vhを供給する出力端子の出力インピーダンスを非常に低くすることができるので、複数の電圧変換回路130〜430のそれぞれが、他の電圧変換回路130〜430の影響を受けることがなくなり、高精度な電位検出が可能となる。
【0041】
例えば、本実施例に係る表面電位検出装置は、電圧制御部60を含むので、電圧変換回路130〜430を流れる電流の急変に対応して、電圧変換回路130〜430に供給される高電圧Vhが急変しようとした場合でも、電圧制御部60が電圧変換回路130〜430に供給される高電圧Vhが一定値になるような制御を行うので、電圧変換回路130〜430に供給される高電圧Vhの急変が防止される。このため、高精度に表面電位を検出することが可能となる。
【0042】
(g)複数の電位センサ10〜40のそれぞれは、互いに独立し、センサ部110〜410と、電位検出回路120〜420と、電圧変換回路130〜430とを含んでおり、複数の電位センサ10〜40のそれぞれに含まれる電位検出回路120〜420は、互いに独立している。この電位検出回路120〜420の応答速度は、電位検出回路120〜420に含まれる回路要素、例えば、積分回路により決定される。
【0043】
そこで、電位検出回路120〜420の回路要素の回路定数を変更することにより、電位検出回路120〜420の応答速度を上げ、電圧変換回路130〜430に生じるリップル電圧を抑制することも考えられる。しかし、この場合には、電位検出精度に与える影響を考慮しながら、全ての電位検出回路120〜420について個別に設計しなければならないので、設計が非常に困難になる。また、電位検出回路120〜420の回路定数の変更に伴い、特性の劣化を生じるおそれもある。
【0044】
本実施例に係る表面電位検出装置において、電圧制御部60は、電位検出回路120〜420ではなく、電圧変換回路130〜430に供給される高電圧Vhを制御するので、電位検出精度に与える影響を考慮する必要がなく、回路定数の変更も伴わない。このため、設計が容易であり、また、特性の劣化を生じるおそれもない。
【0045】
(h)高圧トランス50は、1つであり、2次コイル52に高電圧Vhを生成する。電圧制御部60は、2次コイル52から電圧変換回路130〜430に供給される高電圧Vhを制御する。このため、電位センサ10〜40の数に拘らず、電圧制御部60の数が1つで済むので、表面電位検出装置の形状大型化、重量増加、消費電力の増加及びコストアップを抑えることができる。
【0046】
(i)上記利点(a)〜(h)は、検出箇所が増えれば増える程、顕著になる。
【0047】
次に、図2乃至図6を用いて、図1に示した表面電位検出装置の構成を更に具体的に説明する。図2は、図1に示した表面電位検出装置のセンサ部及び電位検出回路について、更に具体的に示すブロック図である。図において、センサ部110〜410のそれぞれは、検出電極111と、チョッパ112と、プリアンプ113とを含む。電位検出回路120〜420のそれぞれは、増幅回路121と、検波回路122と、積分回路123と、駆動回路125と、DC/DCコンバータ34(図4、図5参照)とを含む。
【0048】
図3は、図1に示した表面電位検出装置の高圧発生回路及び電圧制御部を含む部分について、更に具体的に示す回路図である。図において、高圧発生回路53は、高圧トランス50と、トランジスタQ2と、コンデンサC3、C7,C8と、ダイオードD4、D5,D6、ZD2と、抵抗R23,R24とを含む。
【0049】
高圧発生回路53において、高圧トランス50の1次コイル51は、電圧制御部60のトランジスタQ3の主電極回路と、トランジスタQ2の主電極回路と直列に接続されている。この直列回路は、接地電位、あるいはフレーム接地電位GNDに接続され、電源端子Vinから約24Vの電圧が供給される。
【0050】
高圧発生回路53は、トランジスタQ2のスイッチング動作によって、一次コイル51を励磁する。トランジスタQ2のベースには、抵抗R24を介して、一次コイル51に誘導結合された補助巻線Nb2から帰還信号が供給される。トランジスタQ2は上述した帰還信号により、自励発振動作を継続する。
【0051】
2次コイル52には、発振動作に伴って高圧の交流電圧が生じる。この高電圧は、例えば、コンデンサC7、C8、ダイオードD5、D6を介して整流され、直流の高電圧Vhにされる。この高電圧Vhは、電圧変換回路130〜430に供給される。
【0052】
電圧制御部60は、検出部610、620と、制御部とを含む。本実施例において、検出部610は、オペアンプIC8と、抵抗R31、R32とを含む。検出部620は、オペアンプIC9と、ダイオードZD3とを含む。制御部は、トランジスタQ3からなる。また、制御部は、FET、バイポーラトランジスタ、サイリスタ、トライアックまたはIGBT等の3端子素子、或いはその他の制御極付半導体素子で構成してもよい。
【0053】
検出部610は、電圧変換回路130〜430に供給される高電圧Vhを検出する。検出した高電圧Vhは、減圧して出力することが好ましい。本実施例において、検出部610は、高電圧Vh=−1200Vを1/200程度に減圧して、出力する。
【0054】
検出部620は、検出部610が検出した高電圧Vhと基準電圧との偏差をトランジスタQ3のベースに供給する。本実施例において、検出部620は、ダイオードZD3のツェナー電圧を基準電圧として用いている。具体的には、本実施例において、基準電圧(ダイオードZD3のツェナー電圧)は、6Vである。
【0055】
制御部において、トランジスタQ3は、検出部610、620が検出した偏差に基づき、高電圧Vhが一定となるように高圧発生回路53をフィードバック制御する。具体的には、トランジスタQ3は、検出部610、620が検出した偏差がベースに供給され、検出部610、620が検出した偏差を減らすように、電源端子Vinから高圧トランス50の1次コイル51に供給される電力を制御する。
【0056】
図4は図1に示した表面電位検出装置のセンサ部及び電位検出回路を含む部分について、更に具体的に示す回路図である。図1に示した4個の電位センサ10〜40のそれぞれは、同様の構成になるので、ここでは、電位センサ10について、代表的に説明する。
【0057】
電位センサ10のセンサ部110は、検出電極111と、チョッパ112と、プリアンプ113とを含む。
【0058】
チョッパ112は、感光ドラムCと、検出電極111との間の電界を周期的にチョッピングする。その具体的構造は既に知られている。例えば、チョッパ112は、音叉161の自由端側に圧電振動子162、163、及び金属片114を取付けて構成される。このチョッパ112は、金属片114が感光ドラムC(図2参照)の表面と検出電極111との間に配置されるように備えられる。
【0059】
圧電振動子162は、所定の周波数の駆動信号が与えられ、音叉161を所定の周波数で励振する。音叉161の励振により、金属片114が振動すると、感光ドラムCと検出電極111との間の静電容量が、無励振時の静電容量Coを中心に、略正弦波状に増減し、それに対応して、交流信号が出力される。また、音叉161の励振は、圧電振動子163によって検出される。
【0060】
プリアンプ113は、検出電極111から出力された交流信号のインピーダンスを、ローインピーダンスに変換する回路である。更に具体的には、プリアンプ113は、FET(電界効果トランジスタ)で構成された増幅素子Q0、ゲート抵抗R1及びソース抵抗R2を含み、増幅素子Q0を構成するFETのソースが、抵抗R2を通して、コモングランド電位Vcom1に接続されている。コモングランド電位Vcom1は、フレーム接地電位GNDから浮いて(フローティング)いる。
【0061】
検出電極111に現れた交流信号は、増幅素子Q0のゲートに加えられ、増幅素子Q0が動作すると、増幅素子Q0の入力側で見たハイインピーダンス信号が、ローインピーダンス信号にインピーダンス変換され、増幅素子Q0のドレインDに検出信号S11が現れる。プリアンプ113から出力された検出信号S11は、増幅回路121に供給される。
【0062】
駆動回路125は、オペアンプIC5、抵抗R18、R17、R16及びコンデンサC12を含み、圧電振動子162に駆動信号を与え、圧電振動子163から出力された信号を検出する。オペアンプIC5は、この圧電振動子163から出力された信号により、正帰還がかけられ、次の駆動信号を圧電振動子162に印加する。この動作の繰り返しにより、音叉161が特定の周波数(例えば680Hz)で振動を継続する。
【0063】
増幅回路121は、オペアンプIC6、抵抗R87、R89、コンデンサC10を含み、検出信号S11を増幅する。増幅回路121によって増幅された信号は、検波回路122に供給される。
【0064】
検波回路122は、スイッチ素子を構成するFET(電界効果トランジスタ)Q5及び抵抗R9を含む。検波回路122は、駆動回路125から、FETQ5のゲートに供給される駆動信号に基づき、増幅回路121から供給される信号を同期検波する。
【0065】
平滑回路126は、、コンデンサC11と、抵抗R11とを含む。検波回路122で同期検波された信号は、平滑回路126で平滑された後、積分回路123に供給される。
【0066】
積分回路123はオペアンプIC2、コンデンサC6、抵抗R12を含み、平滑回路126を介して検波回路122から供給された信号と、コモングランド電位Vcom1とを用いて直流の電圧信号S12を生成する。
【0067】
電圧変換回路130は、抵抗R30と,トランジスタQ9とを含み、ドロッパ回路を構成する。具体的には、トランジスタQ9のコレクタは、フレーム接地電位GNDに接続される。トランジスタQ9のエミッタは、積分回路123から電圧信号S12が供給される。トランジスタQ9のベースは、コモングランド電位Vcom1に接続され、抵抗R30を介して高電圧Vhが供給される。例えば、R30は、9MΩ程度であることが好ましい。
【0068】
この電圧変換回路130は、高圧トランス50から共通に供給された高電圧Vhを、電圧信号S12により制御して、コモングランド電位Vcom1を生成する。コモングランド電位Vcom1は、積分回路123にフィードバックされる。これにより、コモングランド電位Vcom1が、感光ドラムCの電位Vcとほぼ等しくなるような帰還制御が加わる。
【0069】
出力回路140はオペアンプIC7、抵抗R41、R42を含み、入力されたコモングランド電位Vcom1を減圧し、表面電位検出信号Vout1として出力する。例えば、出力回路140は、コモングランド電位Vcom1を1/200程度に減圧して出力することが好ましい。
【0070】
図5は図4に示したDC/DCコンバータについて、更に具体的に示す回路図である。図において、DC/DCコンバータ34は、1次回路36と、2次回路35と、変換トランスT1とを含む。
【0071】
変換トランスT1は、1つの入力コイルNp1と、複数の出力コイルNs1、Ns2、Ns3、Ns4と、補助巻線Nb1とを含む。出力コイルNs1〜Ns4のそれぞれは、センタータップを含み、入力コイルNp1から絶縁されている。出力コイルNs1〜Ns4のセンタータップは、コモングランド電位Vcom1〜Vcom4のそれぞれに接続されている。
【0072】
DC/DCコンバータ34は、電源端子Vinから変換トランスT1の入力コイルNp1に供給された電圧をスイッチング素子Q1によってスイッチングする。補助巻線Nb1は、抵抗R22を介してトランジスタQ1のベースに帰還信号を供給する。変換トランスT1の出力コイルNs1〜Ns4には、スイッチング動作に伴って交流電圧が生じ、この交流電圧はダイオードD1、D2によって整流され、コンデンサC4、C5によって平滑される。そして、出力コイルNs1の一端側には、コモングランド電位Vcom1を基準として、正の電位を有する直流電圧+Vccが生成され、出力コイルNs1の他端側には、コモングランド電位Vcom1を基準として、負の電位を有する直流電圧−Vccが生成される。この直流電圧+Vcc及び−Vccは、電位センサ10に含まれるオペアンプ等に供給される。
【0073】
次に、図6乃至図11を用いて、本発明に係る表面電位検出装置と比較される表面電位検出装置の動作を説明する。本発明に係る表面電位検出装置と比較される表面電位検出装置は、図1乃至図5に示した本実施例に係る表面電位検出装置から電圧制御部60を除いた構成を有する。
【0074】
図6乃至図11は、感光ドラムC〜Kの電位Vc〜Vkを急変させたときの特性を示すものであり、このような電位Vc〜Vkの急変は、例えば、表面電位検出装置の検査時において行われる。
【0075】
図6、図8、図10は、感光ドラムC〜Kの電位Vc〜Vk、及び、電圧変換回路に供給される高電圧Vhを示す特性図、図7、図9、図11は、表面電位検出信号Vout1〜Vout4を示す特性図である。ここで、図8、図10においては、電圧変換回路に供給される高電圧Vhを示す特性図を省略する。
【0076】
まず、図6において、図6(a)〜(d)に示すように、感光ドラムC、M、Yの電位Vc、Vm、Vyを急変させたとき、図6(e)に示すように、電圧変換回路130〜430に供給される高電圧Vhは、例えば、−1200Vから−1100Vに急変する。
【0077】
本発明に係る表面電位検出装置と比較される表面電位検出装置は、この高電圧Vhの急変により、図7(d)に示すように、表面電位検出信号Vout4にリップル電圧が生じるので、表面電位を高精度に検出できなくなる。
【0078】
図7に示したリップル電圧は、感光ドラムC〜Kを緩やかに変化させたときには、生じない。また、このリップル電圧は、感光ドラムC〜Kの電位には、あまり依存せず、最大値が数十〜数百mVになる。また、リップル電圧の時間幅(例えば、本実施例においては20ms)は、積分回路123等の回路定数に依存するものである。
【0079】
また、図8(a)〜(d)に示すように、感光ドラムM、Yの電位Vm、Vyを急変させたとき、図9(a)、(d)に示すように、表面電位検出信号Vout1、Vout4にリップル電圧が生じ、表面電位を高精度に検出できなくなる。
【0080】
更に、図10(a)〜(d)に示すように、感光ドラムYの電位Vyを急変させたとき、図11(a)、(b)、(d)に示すように、表面電位検出信号Vout1、Vout2、Vout4にリップル電圧が生じ、表面電位を高精度に検出できなくなる。
【0081】
次に、図12乃至図13を用いて、本発明に係る表面電位検出装置の動作を説明する。図12は、感光ドラムC〜Kの電位Vc〜Vk、及び、電圧変換回路に供給される高電圧Vhを示す特性図、図13は、表面電位検出信号Vout1〜Vout4を示す特性図である。
【0082】
図12において、本発明に係る表面電位検出装置は、図12(a)〜(d)に示すように、感光ドラムC、M、Yの電位Vc、Vm、Vyを急変させたときでも、図12(e)に示すように、電圧変換回路130〜430に供給される高電圧Vhが、例えば、−1200Vに保たれる。
【0083】
このため、図13(d)に示すように、表面電位検出信号Vout4にリップル電圧が生じないので、表面電位を高精度に検出できる。
【0084】
また、本発明に係る表面電位検出装置は、図12と同様に、電位Vc〜Vkのうちの1つ、又は2つを急変させた場合でも、電圧変換回路130〜430に供給される高電圧Vhが、例えば、−1200Vに保たれる。このため、図13と同様に、表面電位検出信号Vout1〜Vout4にリップル電圧が生じないので、表面電位を高精度に検出できる。
【0085】
【発明の効果】
以上述べたように、本発明によれば、次のような効果を得ることができる。
(a)形状大型化、重量増加、消費電力の増大、及び、コストアップを抑え得る表面電位検出装置を提供することができる。
(b)複数の被測定体の電位を同時、かつ、連続的に検出し得る表面電位検出装置を提供することができる。
(c)高精度に表面電位を検出し得る表面電位検出装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る表面電位検出装置の構成を概略的に示す図である。
【図2】図1に示した表面電位検出装置のセンサ部及び電位検出回路について、更に具体的に示すブロック図である。
【図3】図1に示した表面電位検出装置の高圧発生回路及び電圧制御部を含む部分について、更に具体的に示す回路図である。
【図4】図1に示した表面電位検出装置のセンサ部及び電位検出回路を含む部分について、更に具体的に示す回路図である。
【図5】図4に示したDC/DCコンバータについて、更に具体的に示す回路図である。
【図6】本発明に係る表面電位検出装置と比較される表面電位検出装置の感光ドラムの電位、及び、電圧変換回路に供給される高電圧を示す特性図である。
【図7】本発明に係る表面電位検出装置と比較される表面電位検出装置の表面電位検出信号を示す特性図である。
【図8】本発明に係る表面電位検出装置と比較される表面電位検出装置の感光ドラムの電位、及び、電圧変換回路に供給される高電圧を示す別の特性図である。
【図9】本発明に係る表面電位検出装置と比較される表面電位検出装置の表面電位検出信号を示す別の特性図である。
【図10】本発明に係る表面電位検出装置と比較される表面電位検出装置の感光ドラムの電位、及び、電圧変換回路に供給される高電圧を示す更に別の特性図である。
【図11】本発明に係る表面電位検出装置と比較される表面電位検出装置の表面電位検出信号を示す更に別の特性図である。
【図12】本発明に係る表面電位検出装置の感光ドラムの電位、及び、電圧変換回路に供給される高電圧を示す特性図である。
【図13】本発明に係る表面電位検出装置の表面電位検出信号を示す特性図である。
【符号の説明】
60 電圧制御部
50 高圧トランス
51 1次コイル
52 2次コイル
10、20、30、40 電位センサ
110、210、310、410 センサ部
120、220、320、420 電位検出回路
130、230、330、430 電圧変換回路
C、M、Y、K 感光ドラム
Vh 高電圧

Claims (3)

  1. 単一の高圧発生回路と、複数の電位センサと、1つの電圧制御部とを含む表面電位検出装置であって、
    前記高圧発生回路は、
    1つの高圧トランスと、整流回路とを含み、
    前記高圧トランスの1次コイルを継続的に自励発振動作させることによって前記1次コイルから絶縁された2次コイルに高圧の交流電圧を発生させ、
    この高圧の交流電圧を前記整流回路で整流することによって直流の高電圧を生成し、前記複数の電位センサに共通に出力する回路であり、
    前記電圧制御部は、前記直流の高電圧を検出し、前記直流の高電圧が一定となるように前記高圧発生回路をフィードバック制御し、
    前記複数の電位センサのそれぞれは、センサ部と、電位検出回路と、電圧変換回路とを含み、互いに独立しており、
    前記センサ部は、被測定体の電位に対応する検出信号を生成し、
    前記電位検出回路は、前記被測定体の電位に対応するコモングランド電位と、前記センサ部から供給された前記検出信号とを用いて電圧信号を生成し、
    前記電圧変換回路は、前直流の高電圧を、前記電圧信号により制御して、前記コモングランド電位を生成し前記電位検出回路にフィードバックし、
    前記電位センサの前記コモングランド電位のそれぞれは、表面電位検出信号として、同時かつ連続的に出力され
    表面電位検出装置。
  2. 請求項に記載された表面電位検出装置であって、
    前記電圧制御部は、検出部と、制御部とを含み、
    前記検出部は、前記電圧変換回路に供給された前記直流の高電圧を検出し、
    前記制御部は、前記検出部から供給される検出信号と、基準信号との偏差を減らすように、前記1次コイルに供給される電力を制御する
    表面電位検出装置。
  3. 請求項1又は2の何れかに記載された表面電位検出装置であって、
    前記電位検出回路のそれぞれは、検波回路と、積分回路とを含み、
    前記検波回路は、前記センサ部から供給された前記検出信号を検波して出力し、
    前記積分回路は、前記コモングランド電位と、前記検波回路から供給された信号とを用いて電圧信号を生成する
    表面電位検出装置。
JP2002112648A 2002-04-15 2002-04-15 表面電位検出装置 Expired - Lifetime JP4076063B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112648A JP4076063B2 (ja) 2002-04-15 2002-04-15 表面電位検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112648A JP4076063B2 (ja) 2002-04-15 2002-04-15 表面電位検出装置

Publications (2)

Publication Number Publication Date
JP2003307534A JP2003307534A (ja) 2003-10-31
JP4076063B2 true JP4076063B2 (ja) 2008-04-16

Family

ID=29395084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112648A Expired - Lifetime JP4076063B2 (ja) 2002-04-15 2002-04-15 表面電位検出装置

Country Status (1)

Country Link
JP (1) JP4076063B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899559B2 (ja) * 2017-03-27 2021-07-07 学校法人法政大学 非接触表面電位測定装置、測定治具、及び非接触表面電位測定方法

Also Published As

Publication number Publication date
JP2003307534A (ja) 2003-10-31

Similar Documents

Publication Publication Date Title
JP4111348B2 (ja) 除電装置
JP4607752B2 (ja) 可変容量回路、電圧測定装置および電力測定装置
JP4607753B2 (ja) 電圧測定装置および電力測定装置
JP2010286347A (ja) 電圧検出装置
EP0427412A2 (en) Current measuring method and apparatus therefor
EP3296753A1 (en) Current detecting apparatus
JP2002162429A (ja) 表面電位検出方法、表面電位検出装置及び表面電位センサ
JP4076063B2 (ja) 表面電位検出装置
JP2816175B2 (ja) 直流電流測定装置
JP5069997B2 (ja) 地磁気センサ装置
JP5083485B2 (ja) 表面電位検出装置
JP2019012002A (ja) 電流検出装置および測定装置
JP4868106B2 (ja) 表面電位検出装置
JPH06242166A (ja) 表面電位センサ
JP5106816B2 (ja) 電圧測定装置および電力測定装置
JP4607744B2 (ja) 電圧測定装置および電力測定装置
JP2002318255A (ja) 表面電位検出装置
JP2003259642A (ja) 無接点電源装置
JP2001242208A (ja) 表面電位検出装置
JP4318155B2 (ja) 表面電位検出装置
JPH03179270A (ja) 電流・電圧検出器
JP5177437B2 (ja) 電子線走査用電源装置
JP2000121711A (ja) 磁界発生用電流供給装置、磁気センサ装置および電流センサ装置
JPH10246607A (ja) 変位検出装置
JP2003090852A (ja) プローブ、及び表面電位検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4076063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

EXPY Cancellation because of completion of term