JP4073075B2 - Silicon steel sheet with low high-frequency iron loss W1 / 10k - Google Patents

Silicon steel sheet with low high-frequency iron loss W1 / 10k Download PDF

Info

Publication number
JP4073075B2
JP4073075B2 JP07862098A JP7862098A JP4073075B2 JP 4073075 B2 JP4073075 B2 JP 4073075B2 JP 07862098 A JP07862098 A JP 07862098A JP 7862098 A JP7862098 A JP 7862098A JP 4073075 B2 JP4073075 B2 JP 4073075B2
Authority
JP
Japan
Prior art keywords
concentration
steel sheet
thickness
iron loss
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07862098A
Other languages
Japanese (ja)
Other versions
JPH11256289A (en
Inventor
操 浪川
芳一 高田
勝司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP07862098A priority Critical patent/JP4073075B2/en
Priority to PCT/JP1999/001063 priority patent/WO1999046417A1/en
Priority to US09/423,509 priority patent/US6527876B2/en
Priority to EP99939203A priority patent/EP0987341A4/en
Priority to KR1019997009343A priority patent/KR100334860B1/en
Publication of JPH11256289A publication Critical patent/JPH11256289A/en
Application granted granted Critical
Publication of JP4073075B2 publication Critical patent/JP4073075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、トランス、リアクトル、モータなどの鉄心用として好適である高周波鉄損の低い珪素鋼板に関する。
【0002】
【従来の技術】
一般に珪素鋼板の鉄損は励磁周波数が高くなると急激に上昇することが知られている。一方、近年、珪素鋼板が広く用いられているトランス、リアクトル、モータなどの駆動周波数は、鉄心の小型化や高効率化をはかるために、年々高周波化してきている。
【0003】
この駆動周波数の高周波化に伴い、珪素鋼板の鉄損によるこれら鉄心の温度上昇や効率の低下が間題となるケースがとみに増加してきている。このような理由から珪素鋼板の高周波鉄損を低減することが必要とされるようになってきている。
【0004】
従来、珪素鋼板の高周波鉄損を低減する手法としては、Si含有量を高めて固有抵抗を高くすることで高周波鉄損を低減する方法と、板厚を薄くして渦電流損失を抑えることで高周波鉄損を低減する方法がとられている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術のうち、Si含有量を高める方法は、珪素鋼板の加工性を著しく低下させるため、珪素鋼板そのものの生産性の低下を招くことに加え、鉄心の加工コストの上昇も招くという問題点がある。
【0006】
また板厚を薄くする方法も、薄くするほど鋼板そのものの製造コストが増加し、なおかつ鉄心の積層枚数が増えることから鉄心の製作コストの上昇を招くという間題点がある。
【0007】
本発明はかかる事情に鑑みてなされたものであって、トランス、リアクトル、モータなどの鉄心用として好適である高周波鉄損の低い珪素鋼板を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは上述した課題を解決すく鋭意研究を重ねた結果、珪素鋼板において鋼板の表層Si濃度と、そのSi濃度を有する領域の板厚方向深さを特定の範囲に規定することにより、珪素鋼板の鉄損、特に高周波鉄損を著しく低くすることができることを見出した。
【0009】
本発明は、このような知見に基づいて完成されたものであって、第1に、C≦0.02wt.%、0.05wt.%≦Mn≦0.5wt.%、P≦0.01wt.%、S≦0.02wt.%、0.001wt.%≦sol.Al≦0.06wt.%、N≦0.01wt.%であり、表層から板厚中心部に向かってSi濃度が連続的に低くなるSi濃度勾配が形成され、表層のSi濃度が8wt.%以下であり、Si濃度が5〜8wt.%の部分が、鋼板の上下両面表層に存在し(ただし、表層のSi濃度が6.5wt.%の場合を除く)、その部分の厚みが、片面につき鋼板の表層から板厚深さ方向に板厚の10%以上であって、かつ板厚中心付近のSi濃度が2.2〜3.5wt.%(ただし、3%の場合を除く)であることを特徴とする高周波鉄損W 1 /10 k の低い珪素鋼板を提供するものである。
【0010】
第2に、上記第1の珪素鋼板において、前記Si濃度が5〜8wt.%の部分の厚みが、片面につき鋼板の表層から板厚深さ方向に実質的に板厚の15〜25%であることを特徴とする高周波鉄損W 1 /10 k の低い珪素鋼板を提供するものである。
【0011】
第3に、C≦0.02wt.%、0.05wt.%≦Mn≦0.5wt.%、P≦0.01wt.%、S≦0.02wt.%、0.001wt.%≦sol.Al≦0.06wt.%、N≦0.01wt.%であり、表層から板厚中心部に向かってSi濃度が連続的に低くなるSi濃度勾配が形成され、表層のSi濃度が7wt.%以下であり、Si濃度が6.0〜7.0wt.%の部分が、鋼板の上下両面表層に存在し(ただし、表層のSi濃度が6.5wt.%の場合を除く)、その部分の厚みが、片面につき鋼板の表層から板厚深さ方向に板厚の10%以上であって、かつ板厚中心付近のSi濃度が2.2〜3.5wt.%(ただし、3%の場合を除く)であることを特徴とする高周波鉄損W 1 /10 k の低い珪素鋼板を提供するものである。
【0012】
第4に、上記第3の珪素鋼板において、前記Si濃度が6.0〜7.0wt.%である部分が、鋼板の上下両面表層に存在し、その部分の厚みが、片面につき鋼板の表層から板厚深さ方向に板厚の15〜25%であることを特微とする高周波鉄損W 1 /10 k の低い珪素鋼板を提供するものである。
【0013】
【発明の実施の形態】
以下本発明について詳細に説明する。
本発明に係る珪素鋼板は、基本的には、上述したように表層から板厚中心部に向かってSi濃度が連続的に低くなるSi濃度勾配が形成され、表層のSi濃度が8wt.%以下であり、Si濃度が5〜8wt.%の部分が、鋼板の上下両面表層に存在し、その部分の厚みが、片面につき鋼板の表層から板厚深さ方向に板厚の10%以上であって、かつ板厚中心付近のSi濃度が2〜3.5wt.%である。
【0014】
図1は、板厚方向にSi濃度分布を形成した場合における表層からSi濃度が5wt.%以上である部分の深さ割合dep(%)と鉄損W1/10k(周波数10kHz、磁束密度1kGaussでの鉄損値)との関係を示す図である。ただし、ここでは、図2に示したようにSi濃度が5wt.%となる深さをa、板厚をtとしたとき、表層からSi濃度が5wt.%以上である部分の深さ割合をdep(%)=(a/t)×100で定義している。
【0015】
なお、Si濃度はサンブル断面についてEPMA(電子線プローブマイクロアナライザ)で分析した結果である。また、ここでは、板厚0.2mmの圧延法にて製造された3wt.%Si鋼板に対し、1200℃のSiCl雰囲気中浸珪処理を行い、その後1200℃のN雰囲気中で拡散処理を行って種々のSi濃度分布を形成したサンプルを用いた。
【0016】
図1より、表層からSi濃度が5wt.%以上である部分の深さ割合を10%以上、より好ましくは15〜25%とすれば鉄損が著しく低下することがわかる。この時の鉄損は全板厚が6.5wt.%Siであるものより最大約30%低下する。なお、鋼板表層の高Si濃度部分のSi濃度の上限は、鉄損特性上からは特に規定されないが、Si濃度が8wt.%を超えると鋼板の加工性が著しく低下することから、本発明では上限を8wt.%と規定した。
【0017】
また状態図的に変態点を有すると熱処理による変態点通過で細粒化して磁気特性を著しく損ねる。このため状図的にα単相である必要から、板厚中心部の低Si部分のSi濃度の下限値を2.2wt.%とした。
【0018】
このように表層Si濃度が高く、板厚中心部が低Siである材料は特許第2541383号、特開平6−17202号公報および特開平9−184051号公報に開示されている。しかし、特許第254138号は、浸珪処理で6.5wt.%珪素鋼板を製造する際、生産性を上げるべく拡散処理時間を短縮した結果として得られる表層Si濃度が高い珪素鋼板を提案しており、鉄損は6.5wt.%珪素鋼板と同等である。また、特開平6−17202号公報は、6.5%珪素鋼板の加工性を改善するべく表層だけを6.5wt.%Siとしたものであり、鉄損は6.5wt.%珪素鋼板に比べ劣化するとしている。さらに、特開平9−184051号公報は、残留磁束密度を低下させるため表層高Si鋼板を提案しており、本発明と目的が異なっている。鉄損については50Hzの鉄損は表層Siの高い材料が低いとしている。しかし、周波数が高くなると一般には鉄損は全体のSi量に支配されると通常考えられ、板厚中心部のSi量が低い材料は鉄損特性が劣るとされている。
【0019】
本発明は、このような常識を覆し、特定のSi濃度分布を形成することにより、高周波鉄損が低い材料が得られるという初めて見出された知見に基づくものである。
【0020】
鋼板表層の高Si濃度部分を形成する手法はCVD、PVDその他いずれの方法でもよく、特に限定されるものではないが、Si濃度分布を形成する以前の母材は生産性の観点から大量生産に適した圧延法で製造することが好ましい。このため母材のSi含有量は通常の圧延が可能な3.5wt.%を上限とすることが好ましい。したがって、本発明の珪素鋼板における板厚中心部の低Si部分のSi濃度の上限値を3.5wt.%とした。
【0021】
図3は、板厚方向にSi濃度分布を形成した揚合における表層からSi濃度が実質的に6.5wt.%である部分の深さ割合(%)と鉄損W1/10kとの関係を示す図である。ただし、ここでは、図4に示したように表層のSi濃度が6.0〜7.0wt.%となる深さをb(表層のSi濃度は7.0wt.%以下)、板厚をtとしたとき、表層からSi濃度が実質的に6.5wt.%である部分の深さ割合をdep(%)=(b/t)×100で定義している。
【0022】
また、ここでは板厚0.2mmの圧延法にて製造された3wt.%Si鋼板に対し、1150℃のSiCl4雰囲気中で浸珪処理を行い、その後1150℃のN2雰囲気中で拡散処理を行って種々のSi濃度分布を形成したサンプルを用いた。
【0023】
図3より、表層からSi農度が実質的に6.5wt.%である部分の深さ割合を10%以上、より好ましくは15〜25%とすれば鉄損が著しく低下することがわかる。さらに図1と図3を比較すると、表層の高Si部分の濃度を実質的に6.5wt.%となるように限定することで、より一層鉄損を低減可能なことがわかる。
【0024】
なお、本発明の効果は珪素鋼板の板厚には依存せず、いずれの板厚であっても本発明に規定された範囲とすることで鉄損を著しく低減させることができる。
【0025】
次に、Si以外の元素の限定理由について説明する。
Cは多量に含有されると磁気時効を引き起こすため、その上限を0.02wt.%とする。その下限は特に規定されないが、経済的に除去する観点からは0.001wt.%とすることが好ましい。
【0026】
Mnは多量に含有されると鋼板が脆くなるため、その上限を0.5wt.%とする。ただし、その含有量が低く過ぎると、熱延工程で破断や表面キズを誘発するため、その下限を0.05wt.%とする。
【0027】
Pは磁気特性から見ると好ましい元素であるが、多量に含有されると鋼板の加工性を劣化させるため、その上限を0.01wt.%とする。その下限は特に規定されないが、経済的に除去する観点からは0.001wt.%とすることが好ましい。
【0028】
Sは加工性を劣化させるため、その上限を0.02wt.%とする必要がある。その下限は特に規定されないが、経済的に除去する観点からは0.001wt.%とすることが好ましい。
【0029】
sol.A1は同じく加工性を害するため、その上限を0.06wt.%とする。一方、脱酸剤としての必要性からその下限を0.001wt.%とする。
【0030】
Nは多量に含有されると窒化物を形成して磁気特性を劣化させるため、その上限を0.01wt.%とする必要がある。その下限は特に規定されないが、現在の製鋼技術では0.0001wt.%が事実上の下限となる。
【0031】
【実施例】
以下、本発明の実施例について説明する。
(実施例1)
表1の組成を有する板厚0.2mmの鋼板を圧延法にて作製し、1200℃ののSiC 雰囲気中で浸珪処理を行い、その後1200℃のN雰囲気中で拡散処理を行って種々のSi濃度分布を有する珪素鋼板を作製した。Si濃度分布はサンブル断面についてEPMA(電子線ブローブマイクロアナライザ)で分析した。Si以外の元素の量は、浸珪、拡散処理の前後でほとんど変化しなかった。
【0032】
【表1】

Figure 0004073075
【0033】
このようにして作製した鋼板から外径31mm、内径19mmのリング試料を採取し、周波数10kHz、磁束密度0.1Tでの交流磁気特性を測定した。図1は、表層からSi濃度が5wt.%以上である部分の深さ割合dep(%)と鉄損W1/10kとの関係を示す図である。ただし、ここでは、図2に示したようにSi濃度が5wt.%となる深さa、板厚tとしたとき、表層からSi獲度が5wt.%以上であるある部分の深さ割合をdep(%)=(a/t)xl00で定義している。
【0034】
図1より、表層からSi濃度が5wt.%以上である部分の深さ割合を10%以上、より好ましくは15〜25%とすれば鉄損が著しく低下することが確認された。
【0035】
【実施例2】
表1の組成を有する板厚0.2mmの鋼板を圧延法にて作製し、1150℃のSiCl4雰囲気中で浸珪処理を行い、その後1150℃のN2雰囲気中で拡散処理を行って種々のSi濃度分布を有する珪素鋼板を作製した。Si濃度分布はサンプル断面についてEPMAで分析した。Si以外の元素の量は、浸珪、拡散処理の前後でほとんど変化しなかった。
【0036】
このようにして作製した鋼板から外径31mm、内径19mmのリング試料を採取し、周波数10kHz、磁束密度0.1Tでの交流磁気特性を測定した。図3は、表層からSi濃度が実質的に6.5wt.%である部分の深さ割合(%)と鉄損W1/10kとの関係を示す図である。ただし、ここでは、図4に示したようにSi濃度が6.0〜7.0wt.%となる深さをb、板厚をtとしたとき、表層からSi濃度が実質的に6.5wt.%である部分の深さ割合をdep(%)=(b/t)×100で定義している。
【0037】
図3より、表層からSi濃度が実質的に6.5wt.%である部分の深さ割合を10%以上、より好ましくは15〜25%とすれば鉄損が著しく低下することが確認された。
【0038】
さらに図1と図3を比較すると、表層の高Si部分の濃度を実質的に6.5wt%となるように限定することで、より一層鉄損を低減できることが確認された。
【0039】
【発明の効果】
以上説明したように、本発明によれぱ、加工性を損なうことなく、かつ板厚を低減することなしに、高周波鉄損の著しく低い珪素鋼板を得ることができる。
【図面の簡単な説明】
【図1】板厚方向にSi濃度分布を形成した場合における表層からSi濃度が5wt.%以上である部分の深さ割合dep(%)と鉄損W1/10kとの関係を示す図。
【図2】図1の深さ割合dep(%)の定義を説明するための図。
【図3】板厚方向にSi濃度分布を形成した揚合における表層からSi濃度が実質的に6.5wt.%である部分の深さ割合(%)と鉄損W1/10kとの関係を示す図。
【図4】図3の深さ割合dep(%)の定義を説明するための図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon steel sheet having a low high-frequency iron loss that is suitable for use in iron cores such as transformers, reactors, and motors.
[0002]
[Prior art]
In general, it is known that the iron loss of a silicon steel plate rapidly increases as the excitation frequency increases. On the other hand, in recent years, the driving frequency of transformers, reactors, motors, etc., in which silicon steel plates are widely used, has been increasing year by year in order to reduce the size and increase the efficiency of the iron core.
[0003]
As the driving frequency is increased, the cases where the temperature rise and the efficiency decrease of the iron core due to the iron loss of the silicon steel plate are increasing. For these reasons, it has become necessary to reduce the high-frequency iron loss of silicon steel sheets.
[0004]
Conventionally, as a method of reducing high-frequency iron loss of silicon steel sheet, there is a method of reducing high-frequency iron loss by increasing the Si content and increasing the specific resistance, and by reducing the plate thickness and suppressing eddy current loss. A method for reducing high-frequency iron loss has been taken.
[0005]
[Problems to be solved by the invention]
However, among the above-described conventional techniques, the method of increasing the Si content significantly reduces the workability of the silicon steel sheet, leading to a decrease in productivity of the silicon steel sheet itself, and an increase in the processing cost of the iron core. There is a problem.
[0006]
In addition, the method of reducing the plate thickness has a problem in that the manufacturing cost of the steel plate itself increases as the thickness decreases, and the manufacturing cost of the iron core increases due to the increase in the number of laminated iron cores.
[0007]
This invention is made | formed in view of this situation, Comprising: It aims at providing the silicon steel plate with a low high frequency iron loss suitable for iron cores, such as a transformer, a reactor, and a motor.
[0008]
[Means for Solving the Problems]
The present inventors have result of extensive research rather downy solve the problems described above, and the surface Si concentration of the steel sheet in the silicon steel sheet, defining the thickness direction depths of the region having the Si concentration in a specific range Thus, it has been found that the iron loss, particularly the high-frequency iron loss, of the silicon steel sheet can be remarkably reduced.
[0009]
The present invention has been completed based on such knowledge. First, C ≦ 0.02 wt. %, 0.05 wt. % ≦ Mn ≦ 0.5 wt. %, P ≦ 0.01 wt. %, S ≦ 0.02 wt. %, 0.001 wt. % ≦ sol. Al ≦ 0.06 wt. %, N ≦ 0.01 wt. %, A Si concentration gradient in which the Si concentration continuously decreases from the surface layer toward the center of the plate thickness is formed, and the Si concentration of the surface layer is 8 wt. % Or less, and the Si concentration is 5 to 8 wt. % Is present on both upper and lower surface layers of the steel sheet (except when the Si concentration of the surface layer is 6.5 wt.%), And the thickness of that part extends from the surface layer of the steel sheet to the thickness direction of the steel sheet per side. 10% or more of the plate thickness and the Si concentration near the plate thickness center is 2.2 to 3.5 wt. % (Excluding the case of 3%) is to provide a low silicon steel high-frequency iron loss W 1/10 k, which is a.
[0010]
Second, in the first silicon steel sheet, the Si concentration is 5 to 8 wt. % Portion of the thickness, provide a low silicon steel high-frequency iron loss W 1/10 k, characterized in that the thickness depth direction from the surface of one side per steel sheet is 15 to 25% of a substantially plate thickness To do.
[0011]
Third, C ≦ 0.02 wt. %, 0.05 wt. % ≦ Mn ≦ 0.5 wt. %, P ≦ 0.01 wt. %, S ≦ 0.02 wt. %, 0.001 wt. % ≦ sol. Al ≦ 0.06 wt. %, N ≦ 0.01 wt. %, A Si concentration gradient in which the Si concentration continuously decreases from the surface layer toward the center of the plate thickness is formed, and the Si concentration of the surface layer is 7 wt. %, And the Si concentration is 6.0 to 7.0 wt. % Is present on both upper and lower surface layers of the steel sheet (except when the Si concentration of the surface layer is 6.5 wt.%) , And the thickness of that part extends from the surface layer of the steel sheet to the plate thickness depth direction on one side. 10% or more of the plate thickness and the Si concentration near the plate thickness center is 2.2 to 3.5 wt. % (Excluding the case of 3%) is to provide a low silicon steel high-frequency iron loss W 1/10 k, which is a.
[0012]
Fourth, in the third silicon steel plate, the Si concentration 6.0~7.0Wt. RF iron% in a part is present on the upper and lower surfaces a surface layer of the steel sheet, the thickness of that portion, to wherein there that the surface layer of the single-sided per steel sheet is 15 to 25% of the sheet thickness in the sheet thickness depth there is provided a low silicon steel sheet loss W 1/10 k.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The silicon steel sheet according to the present invention basically has a Si concentration gradient in which the Si concentration decreases continuously from the surface layer toward the center of the plate thickness as described above, and the Si concentration of the surface layer is 8 wt. % Or less, and the Si concentration is 5 to 8 wt. % Is present on the upper and lower surface layers of the steel sheet, and the thickness of that part is 10% or more of the sheet thickness in the thickness direction from the surface layer of the steel sheet on one side, and the Si concentration near the center of the sheet thickness 2 to 3.5 wt. %.
[0014]
FIG. 1 shows that when the Si concentration distribution is formed in the thickness direction, the Si concentration is 5 wt. It is a figure which shows the relationship between the depth ratio dep (%) of the part which is% or more, and the iron loss W1 / 10k (Iron loss value in frequency 10kHz and magnetic flux density 1kGauss). However, here, as shown in FIG. %, When the depth is a and the thickness is t, the Si concentration is 5 wt. The depth ratio of the portion which is equal to or greater than% is defined as dep (%) = (a / t) × 100.
[0015]
In addition, Si density | concentration is the result of having analyzed the sample section by EPMA (electron beam probe microanalyzer). Further, here, 3 wt. A sample in which various Si concentration distributions were formed by performing siliconization treatment in a SiCl 4 atmosphere at 1200 ° C. on a% Si steel sheet and then performing diffusion treatment in a N 2 atmosphere at 1200 ° C. was used.
[0016]
From FIG. 1, the Si concentration is 5 wt. It can be seen that if the depth ratio of the portion that is at least% is 10% or more, more preferably 15 to 25%, the iron loss is significantly reduced. The iron loss at this time is 6.5 wt. It is about 30% lower than that of% Si. The upper limit of the Si concentration in the high Si concentration portion of the steel sheet surface layer is not particularly defined in terms of iron loss characteristics, but the Si concentration is 8 wt. %, The workability of the steel sheet is remarkably lowered. Therefore, in the present invention, the upper limit is 8 wt. %.
[0017]
Further, if it has a transformation point in the phase diagram, it will be finely divided by passing through the transformation point by heat treatment, and the magnetic properties will be remarkably impaired. The need is this for state diagrammatically α single phase, 2.2 wt the lower limit of the Si concentration in the low Si portion of the center of plate thickness. %.
[0018]
A material having such a high surface layer Si concentration and a low Si thickness center is disclosed in Japanese Patent No. 2541383, Japanese Patent Laid-Open No. 6-17202, and Japanese Patent Laid-Open No. 9-184051. However, Japanese Patent No. 254138 is 6.5 wt. % Silicon steel sheet, a silicon steel sheet having a high surface Si concentration obtained as a result of shortening the diffusion treatment time in order to increase productivity is proposed, and the iron loss is 6.5 wt. Equivalent to% silicon steel sheet. Japanese Patent Laid-Open No. 6-17202 discloses that only the surface layer is 6.5 wt.% In order to improve the workability of a 6.5% silicon steel sheet. % Si, and the iron loss is 6.5 wt. It is supposed to deteriorate compared to the% silicon steel sheet. Further, Japanese Patent Laid-Open No. 9-184051 proposes a surface high Si steel sheet to reduce the residual magnetic flux density, and the object of the present invention is different from that of the present invention. Regarding the iron loss, the material with high surface layer Si is low in the iron loss at 50 Hz. However, when the frequency is increased, it is generally considered that the iron loss is generally governed by the total Si amount, and a material having a low Si amount at the center of the plate thickness is considered to have poor iron loss characteristics.
[0019]
The present invention is based on the knowledge found for the first time that a material with low high-frequency iron loss can be obtained by overturning such common sense and forming a specific Si concentration distribution.
[0020]
The method of forming the high Si concentration portion of the steel sheet surface layer may be any method such as CVD, PVD and the like, and is not particularly limited, but the base material before forming the Si concentration distribution is mass-produced from the viewpoint of productivity. It is preferable to manufacture by a suitable rolling method. For this reason, the Si content of the base material is 3.5 wt. % Is preferably the upper limit. Therefore, the upper limit value of the Si concentration in the low Si portion at the center of the plate thickness in the silicon steel plate of the present invention is 3.5 wt. %.
[0021]
FIG. 3 shows that the Si concentration is substantially 6.5 wt.% From the surface layer in the formation in which the Si concentration distribution is formed in the plate thickness direction. It is a figure which shows the relationship between the depth ratio (%) of the part which is%, and the iron loss W1 / 10k. However, here, as shown in FIG. 4, the Si concentration of the surface layer is 6.0 to 7.0 wt. % Is b (the Si concentration of the surface layer is 7.0 wt.% Or less) , and when the plate thickness is t, the Si concentration is substantially 6.5 wt. The depth ratio of the portion that is% is defined as dep (%) = (b / t) × 100.
[0022]
Also, here, 3 wt. A sample in which various Si concentration distributions were formed by performing siliconization treatment in an SiCl 4 atmosphere at 1150 ° C. on a% Si steel sheet and then performing diffusion treatment in an N 2 atmosphere at 1150 ° C. was used.
[0023]
From FIG. 3, the Si farming degree is substantially 6.5 wt. It can be seen that the iron loss is remarkably reduced when the depth ratio of the portion of% is 10% or more, more preferably 15 to 25%. Further, comparing FIG. 1 with FIG. 3, the concentration of the high Si portion of the surface layer is substantially 6.5 wt. It can be seen that the iron loss can be further reduced by limiting the ratio to%.
[0024]
The effect of the present invention does not depend on the thickness of the silicon steel sheet, and the iron loss can be remarkably reduced by setting the thickness within the range defined in the present invention regardless of the thickness.
[0025]
Next, the reason for limiting elements other than Si will be described.
If C is contained in a large amount, it causes magnetic aging, so the upper limit is 0.02 wt. %. The lower limit is not particularly defined, but 0.001 wt. % Is preferable.
[0026]
If Mn is contained in a large amount, the steel sheet becomes brittle, so the upper limit is 0.5 wt. %. However, if the content is too low, the lower limit is set to 0.05 wt. %.
[0027]
P is a preferable element from the viewpoint of magnetic properties, but if contained in a large amount, the workability of the steel sheet deteriorates, so the upper limit is 0.01 wt. %. The lower limit is not particularly defined, but 0.001 wt. % Is preferable.
[0028]
S degrades workability, so the upper limit is 0.02 wt. % Is required. The lower limit is not particularly defined, but 0.001 wt. % Is preferable.
[0029]
sol. A1 also impairs workability, so the upper limit is 0.06 wt. %. On the other hand, the lower limit is set to 0.001 wt. %.
[0030]
If N is contained in a large amount, nitrides are formed and the magnetic properties are deteriorated. % Is required. The lower limit is not particularly defined, but in the current steelmaking technology, 0.0001 wt. % Is the practical lower limit.
[0031]
【Example】
Examples of the present invention will be described below.
Example 1
The steel sheet having a thickness of 0.2mm having a composition of Table 1 was prepared by rolling method, performed siliconizing treatment in SiC l 4 atmosphere of the 1200 ° C., the diffusion treatment performed after that in N 2 atmosphere at 1200 ° C. Thus, silicon steel sheets having various Si concentration distributions were produced. The Si concentration distribution was analyzed with EPMA (electron beam probe microanalyzer) for the sample section. The amount of elements other than Si hardly changed before and after siliconization and diffusion treatment.
[0032]
[Table 1]
Figure 0004073075
[0033]
A ring sample having an outer diameter of 31 mm and an inner diameter of 19 mm was collected from the steel plate thus prepared, and the AC magnetic characteristics at a frequency of 10 kHz and a magnetic flux density of 0.1 T were measured. FIG. 1 shows that the Si concentration is 5 wt. It is a figure which shows the relationship between the depth ratio dep (%) of the part which is% or more, and the iron loss W1 / 10k. However, here, as shown in FIG. % Depth a and plate thickness t, the Si catch rate is 5 wt. Dep (%) = (a / t) xl00 is defined as the depth ratio of a certain portion that is equal to or greater than%.
[0034]
From FIG. 1, the Si concentration is 5 wt. It has been confirmed that the iron loss is remarkably reduced when the depth ratio of the portion that is at least% is 10% or more, more preferably 15 to 25%.
[0035]
[Example 2]
A steel sheet having a thickness of 0.2 mm having the composition shown in Table 1 was produced by a rolling method, subjected to a siliconization treatment in an SiCl 4 atmosphere at 1150 ° C., and then subjected to a diffusion treatment in an N 2 atmosphere at 1150 ° C. A silicon steel sheet having a Si concentration distribution was prepared. The Si concentration distribution was analyzed by EPMA for the sample cross section. The amount of elements other than Si hardly changed before and after siliconization and diffusion treatment.
[0036]
A ring sample having an outer diameter of 31 mm and an inner diameter of 19 mm was collected from the steel plate thus prepared, and the AC magnetic characteristics at a frequency of 10 kHz and a magnetic flux density of 0.1 T were measured. FIG. 3 shows that the Si concentration is substantially 6.5 wt. It is a figure which shows the relationship between the depth ratio (%) of the part which is%, and the iron loss W1 / 10k. However, here, as shown in FIG. 4, the Si concentration is 6.0 to 7.0 wt. % Is b and the thickness is t, the Si concentration is substantially 6.5 wt. The depth ratio of the portion that is% is defined as dep (%) = (b / t) × 100.
[0037]
3 that the Si concentration is substantially 6.5 wt. It is confirmed that the iron loss is remarkably reduced when the depth ratio of the portion that is% is 10% or more, more preferably 15 to 25%.
[0038]
Further, comparing FIG. 1 and FIG. 3, it was confirmed that the iron loss can be further reduced by limiting the concentration of the high Si portion of the surface layer to substantially 6.5 wt%.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a silicon steel plate having a remarkably low high-frequency iron loss without impairing workability and without reducing the plate thickness.
[Brief description of the drawings]
FIG. 1 shows that when a Si concentration distribution is formed in the thickness direction, the Si concentration is 5 wt. The figure which shows the relationship between the depth ratio dep (%) of the part which is% or more, and the iron loss W1 / 10k.
FIG. 2 is a view for explaining the definition of the depth ratio dep (%) in FIG. 1;
FIG. 3 shows that the Si concentration is substantially 6.5 wt. The figure which shows the relationship between the depth ratio (%) of the part which is%, and the iron loss W1 / 10k.
4 is a view for explaining the definition of the depth ratio dep (%) in FIG. 3; FIG.

Claims (4)

C≦0.02wt.%、0.05wt.%≦Mn≦0.5wt.%、P≦0.01wt.%、S≦0.02wt.%、0.001wt.%≦sol.Al≦0.06wt.%、N≦0.01wt.%であり、表層から板厚中心部に向かってSi濃度が連続的に低くなるSi濃度勾配が形成され、表層のSi濃度が8wt.%以下であり、Si濃度が5〜8wt.%の部分が、鋼板の上下両面表層に存在し(ただし、表層のSi濃度が6.5wt.%の場合を除く)、その部分の厚みが、片面につき鋼板の表層から板厚深さ方向に板厚の10%以上であって、かつ板厚中心付近のSi濃度が2.2〜3.5wt.%(ただし、3%の場合を除く)であることを特徴とする高周波鉄損W 1 /10 k の低い珪素鋼板。C ≦ 0.02 wt. %, 0.05 wt. % ≦ Mn ≦ 0.5 wt. %, P ≦ 0.01 wt. %, S ≦ 0.02 wt. %, 0.001 wt. % ≦ sol. Al ≦ 0.06 wt. %, N ≦ 0.01 wt. %, A Si concentration gradient in which the Si concentration continuously decreases from the surface layer toward the center of the plate thickness is formed, and the Si concentration of the surface layer is 8 wt. % Or less, and the Si concentration is 5 to 8 wt. % Is present on both upper and lower surface layers of the steel sheet (except when the Si concentration of the surface layer is 6.5 wt.%), And the thickness of that part extends from the surface layer of the steel sheet to the thickness direction of the steel sheet per side. 10% or more of the plate thickness and the Si concentration near the plate thickness center is 2.2 to 3.5 wt. % (Excluding the case of 3%) high-frequency iron loss W 1/10 k low silicon steel, which is a. 前記Si濃度が5〜8wt.%の部分の厚みが、片面につき鋼板の表層から板厚深さ方向に実質的に板厚の15〜25%であることを特徴とする請求項1に記載の高周波鉄損W 1 /10 k の低い珪素鋼板。 The Si concentration is 5 to 8 wt. % Portion of the thickness, the high-frequency iron loss W 1/10 k according to claim 1, characterized in that substantially 15 to 25% of the sheet thickness from the surface layer of one side per steel sheet in the thickness depth Low silicon steel sheet. C≦0.02wt.%、0.05wt.%≦Mn≦0.5wt.%、P≦0.01wt.%、S≦0.02wt.%、0.001wt.%≦sol.Al≦0.06wt.%、N≦0.01wt.%であり、表層から板厚中心部に向かってSi濃度が連続的に低くなるSi濃度勾配が形成され、表層のSi濃度が7wt.%以下であり、Si濃度が6.0〜7.0wt.%の部分が、鋼板の上下両面表層に存在し(ただし、表層のSi濃度が6.5wt.%の場合を除く)、その部分の厚みが、片面につき鋼板の表層から板厚深さ方向に板厚の10%以上であって、かつ板厚中心付近のSi濃度が2.2〜3.5wt.%(ただし、3%の場合を除く)であることを特徴とする高周波鉄損W 1 /10 k の低い珪素鋼板。 C ≦ 0.02 wt. %, 0.05 wt. % ≦ Mn ≦ 0.5 wt. %, P ≦ 0.01 wt. %, S ≦ 0.02 wt. %, 0.001 wt. % ≦ sol. Al ≦ 0.06 wt. %, N ≦ 0.01 wt. %, A Si concentration gradient in which the Si concentration continuously decreases from the surface layer toward the center of the plate thickness is formed, and the Si concentration of the surface layer is 7 wt. %, And the Si concentration is 6.0 to 7.0 wt. % Is present on both upper and lower surface layers of the steel sheet (except for the case where the Si concentration of the surface layer is 6.5 wt.%). The Si concentration in the vicinity of the center of the plate thickness is 2.2 to 3.5 wt. % (Excluding the case of 3%) high-frequency iron loss W 1/10 k low silicon steel, which is a. 前記Si濃度が6.0〜7.0wt.%である部分が、鋼板の上下両面表層に存在し、その部分の厚みが、片面につき鋼板の表層から板厚深さ方向に板厚の15〜25%であることを特微とする請求項3に記載の高周波鉄損W 1 /10 k の低い珪素鋼板。 The Si concentration is 6.0 to 7.0 wt. % Is present in the upper and lower surface layers of the steel sheet, and the thickness of the part is 15 to 25% of the sheet thickness from the surface layer of the steel sheet to the sheet thickness depth direction per one side. low silicon steel high-frequency iron loss W 1/10 k according to 3.
JP07862098A 1998-03-12 1998-03-12 Silicon steel sheet with low high-frequency iron loss W1 / 10k Expired - Fee Related JP4073075B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP07862098A JP4073075B2 (en) 1998-03-12 1998-03-12 Silicon steel sheet with low high-frequency iron loss W1 / 10k
PCT/JP1999/001063 WO1999046417A1 (en) 1998-03-12 1999-03-05 Silicon steel sheet and method for producing the same
US09/423,509 US6527876B2 (en) 1998-03-12 1999-03-05 Silicon steel sheet and method for producing the same
EP99939203A EP0987341A4 (en) 1998-03-12 1999-03-05 Silicon steel sheet and method for producing the same
KR1019997009343A KR100334860B1 (en) 1998-03-12 1999-03-05 Silicon steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07862098A JP4073075B2 (en) 1998-03-12 1998-03-12 Silicon steel sheet with low high-frequency iron loss W1 / 10k

Publications (2)

Publication Number Publication Date
JPH11256289A JPH11256289A (en) 1999-09-21
JP4073075B2 true JP4073075B2 (en) 2008-04-09

Family

ID=13666943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07862098A Expired - Fee Related JP4073075B2 (en) 1998-03-12 1998-03-12 Silicon steel sheet with low high-frequency iron loss W1 / 10k

Country Status (1)

Country Link
JP (1) JP4073075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111751A1 (en) 2012-01-27 2013-08-01 Jfeスチール株式会社 Electromagnetic steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664287B2 (en) * 2011-01-28 2015-02-04 Jfeスチール株式会社 Method for producing high silicon steel sheet
JP5994754B2 (en) * 2013-08-23 2016-09-21 Jfeスチール株式会社 Silica treatment equipment
WO2021065555A1 (en) * 2019-10-03 2021-04-08 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111751A1 (en) 2012-01-27 2013-08-01 Jfeスチール株式会社 Electromagnetic steel sheet
US10584406B2 (en) 2012-01-27 2020-03-10 Jfe Steel Corporation Electrical steel sheet

Also Published As

Publication number Publication date
JPH11256289A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP3948112B2 (en) Silicon steel sheet
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP7334673B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4073075B2 (en) Silicon steel sheet with low high-frequency iron loss W1 / 10k
JP4360349B2 (en) Soft magnetic steel bar
JP2006241563A (en) Nonoriented silicon steel sheet having excellent magnetic property and its production method
JP6555449B1 (en) Multi-layer electrical steel sheet
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP2000045053A (en) Grain-oriented silicon steel sheet low in core loss
EP4265779A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
JP2004339603A (en) High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP2002294416A (en) Grain-oriented electro magnetic steel sheet with low core loss, and manufacturing method and manufacturing apparatus therefor
JPH11293424A (en) Silicon steel sheet having high saturation magnetic flux density and high-frequency iron loss
JP4269348B2 (en) Silicon steel sheet
JP3948113B2 (en) Soft magnetic ribbon
JP4269350B2 (en) Method for producing high silicon steel sheet
JP5272713B2 (en) Rotor core for IPM motor
JP2016180176A (en) Steel sheet for rotor iron core of ipm motor, manufacturing method thereof, rotor iron core of ipm rotor, and ipm motor
JP2006070296A (en) Non-oriented electrical steel sheet for rotor, and its manufacturing method
JP3460569B2 (en) Silicon steel sheet with low residual magnetic flux density
JPH11293415A (en) Iron core low in residual magnetic flux density and excellent in workability and high frequency characteristic
KR101865256B1 (en) High silicon containing extremely thin electrical steel sheets and method for manufacturing the same
RU2742291C1 (en) Multilayered sheet of electrical steel
JP3458689B2 (en) Low residual magnetic flux density silicon steel sheet with excellent practical magnetic properties

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees