JP2002294416A - Grain-oriented electro magnetic steel sheet with low core loss, and manufacturing method and manufacturing apparatus therefor - Google Patents

Grain-oriented electro magnetic steel sheet with low core loss, and manufacturing method and manufacturing apparatus therefor

Info

Publication number
JP2002294416A
JP2002294416A JP2001098459A JP2001098459A JP2002294416A JP 2002294416 A JP2002294416 A JP 2002294416A JP 2001098459 A JP2001098459 A JP 2001098459A JP 2001098459 A JP2001098459 A JP 2001098459A JP 2002294416 A JP2002294416 A JP 2002294416A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
heating
groove
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001098459A
Other languages
Japanese (ja)
Other versions
JP4331900B2 (en
Inventor
Satoshi Arai
聡 新井
Hidekazu Nanba
英一 難波
Shigekazu Oba
茂和 大場
Misao Kobayashi
操 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001098459A priority Critical patent/JP4331900B2/en
Publication of JP2002294416A publication Critical patent/JP2002294416A/en
Application granted granted Critical
Publication of JP4331900B2 publication Critical patent/JP4331900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To manufacture a grain-oriented electromagnetic steel sheet with reduced core loss and magnetostriction. SOLUTION: The grain-oriented electromagnetic steel sheet with low core loss has linear or discontinuously linear grooves in an approximately transverse direction against a rolling direction, and has secondary recrystallized grain boundaries penetrating through the sheet thickness under parts of 15% or more and 90% or less of the total groove length. The manufacturing method includes heating the sheet to a recrystallization temperature after a final cold rolling, forming the linear or discontinuously linear grooves in the approximately transverse direction against the rolling direction by machining, and then annealing it for the purpose of secondary recrystallization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器等の静止誘
導器に使用される方向性電磁鋼板おいて、鉄損を低減し
た鋼板、及びその製造方法並びに製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet used for a static induction machine such as a transformer, which has a reduced iron loss, and a method and an apparatus for manufacturing the same.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主として変圧器に代
表される静止誘導器に使用される。その満たすべき特性
としては、交流で励磁したときのエネルギー損失すな
わち鉄損が小さいこと、機器の使用励磁域での透磁率
が高く容易に励磁できること、騒音の原因となる磁歪
が小さいこと等があげられる。特にに関しては、変圧
器が据え付けられてから廃棄されるまでの長期間にわた
って連続的に励磁され、エネルギー損失を発生し続ける
ことから、変圧器の価値を表わす指標であるT.O.
C.(Total Owning Cost) を決定する主要なパラメータ
となる。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used for stationary inductors typified by transformers. The characteristics to be satisfied are that the energy loss, that is, iron loss, when excited by alternating current is small, that the permeability is high in the used excitation range of the equipment and that it can be easily excited, and that the magnetostriction that causes noise is small. Can be In particular, since the transformer is continuously excited for a long period of time from installation to disposal and continues to generate energy loss, T.P. is an index indicating the value of the transformer. O.
C. (Total Owning Cost).

【0003】この方向性電磁鋼板の鉄損を低減するため
に、今までに多くの開発がなされてきた。すなわち、
ゴス方位と呼ばれる(110)[001]方位への集積
を高めること、電気抵抗を高めるSi等固溶元素の含
有量を高めること、鋼板の板厚を薄くすること、鋼
板に面張力を与えるセラミック被膜や絶縁被膜を付与す
ること、結晶粒の大きさを小さくすること等である。
しかし、これら冶金学的な手法による鉄損改善には限度
があり、他の手法による鉄損低減が求められていた。
In order to reduce the iron loss of the grain-oriented electrical steel sheet, many developments have been made so far. That is,
Increasing the integration in the (110) [001] orientation called the Goss orientation, increasing the content of solid solution elements such as Si, which increase the electrical resistance, reducing the thickness of the steel sheet, and ceramics that give surface tension to the steel sheet For example, providing a film or an insulating film, and reducing the size of crystal grains.
However, there is a limit to iron loss improvement by these metallurgical methods, and reduction of iron loss by other methods has been required.

【0004】この課題に対して、A.Fiedler,W.Pepperho
f は、方向性電磁鋼板の表面にカッター等で溝をつけ磁
区構造を変えることによって鉄損を低減する手法を提案
している(USP3,646,575号)。方向性電磁
鋼板は一般的に、互いに反対方向の磁化成分を持つスラ
ブ状の磁区が交互に並んだ磁区構造を持ち、これら磁区
が外部磁場下で拡大/縮小することによって磁化が行わ
れる。従って、方向性電磁鋼板が磁化されるときには、
隣接する磁区の境界(磁壁)の部分のみで磁化変化が生
じる。この磁化変化に伴って鋼板中には渦電流が流れ、
前述した鉄損の原因の60〜70%をしめる(渦電流
損)。渦電流損は渦電流の2乗に比例し、渦電流は磁壁
の移動速度に比例する。磁区幅を狭くすると、渦電流の
発生する部位は多くなるが、磁壁の移動速度は磁区幅に
逆比例して小さくなるから、結果として渦電流損は磁区
幅にほぼ比例して小さくなる。
In response to this problem, A. Fiedler, W. Pepperho
f proposes a method of reducing iron loss by forming a groove on the surface of a grain-oriented electrical steel sheet with a cutter or the like and changing the magnetic domain structure (US Pat. No. 3,646,575). A grain-oriented electrical steel sheet generally has a magnetic domain structure in which slab-shaped magnetic domains having magnetization components in mutually opposite directions are alternately arranged, and these domains are magnetized by expanding / reducing under an external magnetic field. Therefore, when the grain-oriented electrical steel sheet is magnetized,
Magnetization change occurs only at the boundary (domain wall) between adjacent magnetic domains. An eddy current flows in the steel sheet with this change in magnetization,
It accounts for 60 to 70% of the causes of iron loss described above (eddy current loss). The eddy current loss is proportional to the square of the eddy current, and the eddy current is proportional to the moving speed of the domain wall. When the magnetic domain width is reduced, the number of sites where eddy currents are generated increases, but the moving speed of the domain wall decreases in inverse proportion to the magnetic domain width. As a result, the eddy current loss decreases substantially in proportion to the magnetic domain width.

【0005】この磁区細分化の手法を工業的に利用可能
にするため、さらに様々な提案がなされた。例えば特公
昭58−5968号公報にあるように、鋼板面に直径
0.2〜10mmの小球を押しつけながら回転させ、表面
にキズをつけずに歪みを導入する方法、特公昭57−2
252号公報にあるように、圧延方向とほぼ直角方向に
レーザービームを照射し微少塑性歪を加える方法、特開
昭62−96617号公報にあるような、圧延方向とほ
ぼ直角方向にプラズマ炎を線状に放射する方法等があ
る。これらは何れも鋼板に微少な塑性歪を導入し、磁歪
の逆効果によって安定化された圧延方向と直角方向の磁
化成分を持つ磁区を利用して、磁区を細分化する技術で
あり、巻鉄心を作製した際の歪取り焼鈍によってその効
果が失われてしまうものであった。
[0005] Various proposals have been made to make this magnetic domain segmentation technique industrially applicable. For example, as disclosed in Japanese Patent Publication No. 58-5968, a method in which a small ball having a diameter of 0.2 to 10 mm is rotated while being pressed against the surface of a steel sheet to introduce distortion without scratching the surface.
No. 252, a method of applying a small plastic strain by irradiating a laser beam in a direction substantially perpendicular to the rolling direction, as disclosed in Japanese Patent Application Laid-Open No. Sho 62-96617, to generate a plasma flame in a direction substantially perpendicular to the rolling direction. There is a method of emitting light linearly. All of these are techniques for introducing fine plastic strain into a steel sheet and subdividing magnetic domains using magnetic domains having a magnetization component perpendicular to the rolling direction stabilized by the reverse effect of magnetostriction. The effect was lost due to the strain relief annealing at the time of manufacturing.

【0006】さらにこれらの磁区細分化手法に対し、歪
取り焼鈍によっても効果の失われない耐熱型の磁区細分
化手法が検討され、例えば特公昭63−44804号公
報にあるような、仕上げ焼鈍後の鋼板に歯車型ロールで
線状、点状または破線状等の凹部と、その後に行う75
0℃以上の熱処理よって微細結晶粒を生じさせる方法、
あるいは特公平5−69284号公報にあるような、フ
ォトエッチングによって鋼板表面に溝部を形成する方
法、特公平8−6140号公報にあるような、グラビア
印刷でレジスト膜を焼き付け電解腐食により溝を形成す
る方法等が提案されている。これらの方法は、溝部/微
細結晶粒に生じる磁極による静磁エネルギーの増大を、
スラブ状の磁区の幅を狭めることにより補償することを
基本的な原理としており、歪取り焼鈍によってその効果
が失われることはない。
In addition, a heat-resistant magnetic domain refining method which does not lose its effect even by strain relief annealing has been studied with respect to these magnetic domain refining methods. For example, after finish annealing as disclosed in Japanese Patent Publication No. 63-48404. The steel plate is formed with a gear-shaped roll to form a linear, dotted or dashed concave portion.
A method of generating fine crystal grains by heat treatment at 0 ° C. or higher,
Alternatively, a method of forming a groove on the surface of a steel sheet by photo-etching as disclosed in Japanese Patent Publication No. 5-69284, and a method of forming a groove by baking a resist film by gravure printing and electrolytic corrosion as disclosed in Japanese Patent Publication No. 8-6140. A method of doing so has been proposed. These methods reduce the increase in magnetostatic energy due to the magnetic poles generated in the grooves / fine crystal grains.
The basic principle is to compensate by reducing the width of the slab-shaped magnetic domain, and the effect is not lost by the strain relief annealing.

【0007】[0007]

【発明が解決しようとする課題】このようにして、方向
性電磁鋼板の鉄損は著しく改善されてきたが、文明化、
工業化によってエネルギー消費は伸びており、また化石
エネルギー資源の枯渇に対する懸念、CO2 よる地球温
暖化に対する要望から、より一層の鉄損低減が求められ
ている。また変電設備が都市部に作られるようになり変
圧器の発生する騒音を低減することが求められてきてい
る。
As described above, iron loss of grain-oriented electrical steel sheets has been remarkably improved.
Energy consumption is increasing due to industrialization, and concerns about depletion of fossil energy resources and demand for global warming due to CO 2 require further reduction of iron loss. In addition, substation facilities are being built in urban areas, and there is a need to reduce noise generated by transformers.

【0008】[0008]

【課題を解決するための手段】本発明者らは、鋼板表面
での溝形成を用いた低鉄損方向性電磁鋼板を鋭意研究し
た結果、溝下に選択的に二次再結晶粒界を形成すること
によって、極めて低い鉄損で、かつ低騒音の方向性電磁
鋼板を製造することを知見した。すなわち、本発明の要
旨は以下の構成からなる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on a low iron loss grain-oriented electrical steel sheet using groove formation on the surface of the steel sheet, and as a result, selectively formed secondary recrystallized grain boundaries below the groove. It has been found that by forming, a grain-oriented electrical steel sheet with extremely low iron loss and low noise is manufactured. That is, the gist of the present invention has the following configuration.

【0009】(1) 圧延方向とほぼ直角方向に線状の
溝を有し、その溝下部の長さにして15%以上90%以
下の部分に二次再結晶粒界が存在することを特徴とする
低鉄損方向性電磁鋼板。 (2) 方向性電磁鋼板を最終冷延後、再結晶温度まで
加熱した後、圧延方向とほぼ直角方向に線状の溝を機械
加工によって形成し、その後、二次再結晶焼鈍を行うこ
とにより、線状溝下部の長さにして15%以上90%以
下の部分に二次再結晶粒界を存在せしめることを特徴と
する低鉄損方向性電磁鋼板の製造方法。 (3) 機械加工後、二次再結晶焼鈍前に、湿水素中の
焼鈍により脱炭を行うことを特徴とする前記(2)記載
の低鉄損方向性電磁鋼板の製造方法。 (4) 再結晶温度までの加熱方法が通電加熱あるいは
誘導加熱であることを特徴とする前記(2)または
(3)記載の低鉄損方向性電磁鋼板の製造方法。 (5) 方向性電磁鋼板の製造工程において、最終冷延
後に冷延板を再結晶温度まで加熱する加熱装置と、圧延
方向とほぼ直角方向に線状あるいは不連続な線状の溝を
機械加工によって形成する溝形成装置を組み込んだこと
を特徴とする低鉄損方向性電磁鋼板の製造装置。 (6) 加熱装置による加熱が通電加熱または誘導加熱
にであことを特徴とする前記(5)記載の低鉄損方向性
電磁鋼板の製造装置。 (7) 加熱装置と溝形成装置とを、湿水素中での脱炭
用焼鈍装置に組み込んだことを特徴とする前記(5)記
載の低鉄損方向性電磁鋼板の製造装置。 (8) 再結晶温度までの加熱が通電加熱あるいは誘導
加熱であることを特徴とする前記(7)記載の低鉄損方
向性電磁鋼板の製造装置。
(1) A linear groove is formed in a direction substantially perpendicular to the rolling direction, and a secondary recrystallized grain boundary is present in a portion of 15% or more and 90% or less of the length of the groove. Low iron loss oriented magnetic steel sheet. (2) After the grain-oriented electrical steel sheet is finally cold-rolled and heated to the recrystallization temperature, a linear groove is formed by machining in a direction substantially perpendicular to the rolling direction, and then subjected to secondary recrystallization annealing. A method for producing a low iron loss grain-oriented electrical steel sheet, wherein a secondary recrystallized grain boundary is present in a portion of 15% or more and 90% or less in length of a linear groove. (3) The method for producing a low iron loss grain-oriented electrical steel sheet according to the above (2), wherein decarburization is performed by annealing in wet hydrogen before mechanical recrystallization annealing after machining. (4) The method for producing a low iron loss grain-oriented electrical steel sheet according to (2) or (3), wherein the heating method up to the recrystallization temperature is electric heating or induction heating. (5) In the manufacturing process of grain-oriented electrical steel sheets, a heating device for heating the cold-rolled sheet to the recrystallization temperature after the final cold-rolling, and machining linear or discontinuous linear grooves in a direction substantially perpendicular to the rolling direction. An apparatus for manufacturing a grain-oriented electrical steel sheet having a low iron loss, wherein a groove forming apparatus formed by the method is incorporated. (6) The apparatus for producing a low iron loss grain-oriented electrical steel sheet according to the above (5), wherein the heating by the heating device is electric heating or induction heating. (7) The apparatus for producing a low iron loss grain-oriented electrical steel sheet according to (5), wherein the heating device and the groove forming device are incorporated in an annealing device for decarburization in wet hydrogen. (8) The apparatus for producing a low iron loss grain-oriented electrical steel sheet according to the above (7), wherein the heating up to the recrystallization temperature is electric heating or induction heating.

【0010】[0010]

【発明の実施の形態】本発明者等は、質量にして3.2
%のSiと、インヒビター成分としてMnS,AlNを
含む方向性電磁鋼板の冷延板(板厚0.23mm)から、
鋼板表面の片面にほぼ圧延方向とほぼ直角方向に機械
的に線状の溝を加工した後に、650℃まで加熱し鋼板
の90%以上を再結晶させた試料、650℃まで加熱
し鋼板の90%以上を再結晶させた後に、鋼板表面片面
のほぼ圧延直角方向に機械的に線状の溝を加工した試
料、機械加工を行わずに650℃まで加熱し、鋼板の
90%以上を再結晶させた試料を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION
% Si and a cold-rolled sheet (sheet thickness 0.23 mm) of a grain-oriented electrical steel sheet containing MnS and AlN as inhibitor components,
After mechanically forming a linear groove on one side of the steel sheet surface in a direction substantially perpendicular to the rolling direction, the sample was heated to 650 ° C. to recrystallize 90% or more of the steel sheet. % Or more, and then re-crystallize 90% or more of the steel sheet by heating up to 650 ° C without mechanical processing. A sample was prepared.

【0011】これらの試料に湿水素中で均熱温度850
℃で2分間の脱炭を目的とした焼鈍を行い、鋼板表面に
MgOの焼鈍分離剤を塗布した後、1200℃で20時
間の二次再結晶を目的とする焼鈍を施した。前記の鋼
板には二次再結晶焼鈍後に、、と同様に鋼板表面片
面のほぼ圧延直角方向に機械的に線状の溝を加工した。
それぞれの線状溝の間隔は5mm、溝深さは16μmであ
った。これら試料から単板の磁気測定試料を切り出し、
800℃で3時間の歪取り焼鈍を施した。各試料の磁気
測定結果を表1に示す。鉄損、磁束密度、磁歪は、それ
ぞれ鋼板に応力を負荷しない状態で磁束正弦波条件で測
定した値である。
These samples were soaked in wet hydrogen at a soaking temperature of 850.
After annealing for decarburization at 2 ° C. for 2 minutes, an annealing separator of MgO was applied to the surface of the steel sheet, annealing was performed at 1200 ° C. for 20 hours for secondary recrystallization. After the secondary recrystallization annealing, a linear groove was mechanically formed on one surface of the steel sheet in a direction substantially perpendicular to the rolling direction in the same manner as described above.
The distance between the linear grooves was 5 mm, and the groove depth was 16 μm. From these samples, cut out a single plate magnetic measurement sample,
The strain relief annealing was performed at 800 ° C. for 3 hours. Table 1 shows the results of the magnetic measurement of each sample. The iron loss, the magnetic flux density, and the magnetostriction are values measured under a magnetic flux sine wave condition in a state where no stress is applied to the steel sheet.

【0012】[0012]

【表1】 [Table 1]

【0013】表1から解るように、前記の試料の鉄
損、磁歪が、他の試料に較べて優れていることが解る。
これら試料の二次再結晶組織を図1に示す。図1のa)
は本発明例の二次再結晶組織の模式図、b)は比較例
の二次再結晶組織の模式図、c)は本発明例の二次
再結晶組織写真である。このように、、の試料の結
晶粒界が溝の位置となんら関係がないのに対し、の試
料ではかなりの部分で溝の下部と二次再結晶粒界の位置
が一致していることが解る。また、本発明例では溝を横
切る二次再結晶粒界が溝により分断されていることが解
る。
As can be seen from Table 1, the iron loss and the magnetostriction of the above sample are superior to those of the other samples.
FIG. 1 shows the secondary recrystallized structures of these samples. FIG. 1 a)
Is a schematic diagram of the secondary recrystallization structure of the present invention example, b) is a schematic diagram of the secondary recrystallization structure of the comparative example, and c) is a photograph of the secondary recrystallization structure of the present invention example. Thus, while the grain boundary of the sample has no relation to the position of the groove, the position of the lower part of the groove and the position of the secondary recrystallized grain boundary in a considerable part of the sample are consistent. I understand. In addition, in the example of the present invention, it can be seen that the secondary recrystallized grain boundaries crossing the groove are separated by the groove.

【0014】本発明者等はさらに詳細な実験を施し、以
下の関係を見いだした。すなわち図2に示すように、導
入した溝の全長に対して、溝下部に二次再結晶粒界の存
在する溝の長さの比率が15%以上で90%以下の時に
優れた鉄損を持つ。この一連の実験では、3.1%Si
とAlNとMnSを含む方向性電磁鋼板の冷延板を、通
電加熱により300℃/sec の加熱速度で800℃まで
加熱した後、歯車で圧延直角方向から10゜の方向に機
械的に溝を加工し、その後上記の実験と同じ処理を施し
て二次再結晶させた。
The present inventors have conducted more detailed experiments and found the following relationship. That is, as shown in FIG. 2, when the ratio of the length of the groove where the secondary recrystallized grain boundary exists below the groove to the total length of the introduced groove is 15% or more and 90% or less, excellent iron loss is obtained. Have. In this series of experiments, 3.1% Si
A cold-rolled sheet of grain-oriented electrical steel containing AlN and MnS is heated to 800 ° C. at a heating rate of 300 ° C./sec. It was processed and then subjected to the same treatment as in the above experiment to perform secondary recrystallization.

【0015】以上に述べた優れた鉄損値が得られる理由
としては、線状の溝による磁区制御効果と、規則的に導
入した二次再結晶粒界による磁区制御効果の複合効果で
あると推定される。この複合効果による鉄損向上は、導
入される粒界が少なすぎると小さく、また多すぎてもか
えって小さくなると考えられる。
The reason why the above-described excellent iron loss value can be obtained is that a composite effect of a magnetic domain control effect by a linear groove and a magnetic domain control effect by a regularly introduced secondary recrystallization grain boundary is considered. Presumed. It is considered that the improvement in iron loss due to this combined effect is small when the grain boundaries introduced are too small, and rather small when the grain boundaries are too large.

【0016】また、線状の溝部と二次再結晶粒界を適当
量導入することにより磁歪が小さくなる理由としては、
二次再結晶粒の結晶方位が理想的なゴス方位よりずれる
ことにより生ずる、ランセット呼ばれる表面補助磁区
(例えば Alex Hubertet.al.Z.Angew.Phys.,19,521-52
9,(1965) )により励磁されたときに方向性電磁鋼板が
縮む効果と、溝部あるいは二次再結晶粒界に生ずる補助
磁区により励磁されたときに方向性電磁鋼板が伸びる効
果が補償し合って生じていると推定される。また、本発
明例では溝を横切る二次再結晶粒界が溝により分断され
ていることも、上記の理由の一つとして推定される。
The reason why the magnetostriction is reduced by introducing an appropriate amount of linear grooves and secondary recrystallized grain boundaries is as follows.
A lancet-assisted magnetic domain (eg, Alex Hubertet.al.Z.Angew.Phys., 19,521-52) generated when the crystal orientation of secondary recrystallized grains deviates from the ideal Goss orientation.
9, (1965)) compensates for the effect of shrinking the grain-oriented electrical steel sheet when excited by the magnetic field, and the effect of stretching the grain-oriented electrical steel sheet when excited by the auxiliary domains generated in the grooves or secondary recrystallized grain boundaries. It is estimated that this has occurred. Further, in the example of the present invention, the fact that the secondary recrystallized grain boundaries crossing the grooves are separated by the grooves is also presumed to be one of the reasons described above.

【0017】以下、本発明の実施の形態について説明す
る。本発明の方向性電磁鋼板の成分としては、従来公知
のいずれの成分組成も適合するが、代表組成をあげると
以下の様になる。Siは、添加量を多くすると電気抵抗
が高くなり、鉄損特性が改善される。しかし4.8%を
超えると、圧延時に割れやすくなってしまう。また0.
8%より少ないと、仕上げ焼鈍時にγ変態が生じ結晶方
位が損なわれてしまう。
Hereinafter, embodiments of the present invention will be described. As the components of the grain-oriented electrical steel sheet of the present invention, any conventionally known component compositions are suitable, but the following are representative compositions. When Si is added in a large amount, the electric resistance increases and the iron loss characteristics are improved. However, if it exceeds 4.8%, cracks are likely to occur during rolling. Also 0.
If it is less than 8%, γ transformation occurs at the time of finish annealing, and the crystal orientation is impaired.

【0018】Cは、一次再結晶組織を制御するうえで有
効な元素であるが、磁気特性に悪影響を及ぼすので、仕
上げ焼鈍前に脱炭する必要がある。Cが0.085%よ
り多いと、脱炭焼鈍時間が長くなり生産性が損なわれて
しまう。
C is an element effective in controlling the primary recrystallized structure, but has an adverse effect on the magnetic properties. Therefore, it is necessary to remove carbon before the finish annealing. If C is more than 0.085%, the decarburization annealing time will be long and productivity will be impaired.

【0019】二次再結晶を生じさせるために必要ないわ
ゆるインヒビターとしては、AlN系、MnS系、Mn
Se系いずれでも本発明の意図を損なうものではない
が、より低鉄損を得るためにはAlN系が最も好適であ
る。その場合、酸可溶性Alは二次再結晶が安定する
0.01〜0.065%が好ましい。
The so-called inhibitors required to cause secondary recrystallization include AlN-based, MnS-based, and Mn-based.
Although any of the Se-based alloys does not impair the intention of the present invention, the AlN-based alloy is most suitable for obtaining a lower iron loss. In this case, the acid-soluble Al is preferably 0.01 to 0.065% at which the secondary recrystallization is stable.

【0020】Nは、0.012%を超えると冷延時にブ
リスターとよばれる鋼板中の空孔を生じるので、それ以
下に抑えることが望ましい。この他、微量のCu,S
b,Mo,Bi,Ti等を鋼中に含有することは、本発
明の主旨を損なうものではない。
If N exceeds 0.012%, voids in the steel sheet called blisters are generated during cold rolling, so it is desirable to keep the N or less. In addition, trace amounts of Cu, S
The inclusion of b, Mo, Bi, Ti, etc. in steel does not impair the gist of the present invention.

【0021】こうして得られた鋼スラブを加熱後、熱間
圧延し、必要に応じて熱延板焼鈍を施した後に、1回な
いし中間焼鈍を挟んだ2回の冷間圧延を行い最終板厚と
した後、必要に応じて湿水素中で脱炭焼鈍を行い、Mg
Oを主体とする焼鈍分離剤を表面に塗布して、二次再結
晶を目的とする最終仕上げ焼鈍を行う。
The steel slab thus obtained is heated, hot-rolled, and if necessary, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing to obtain a final sheet thickness. After that, if necessary, decarburization annealing in wet hydrogen, Mg
An annealing separator mainly composed of O is applied to the surface, and final finish annealing for the purpose of secondary recrystallization is performed.

【0022】以上の工程において、冷間圧延後、一次再
結晶させた鋼板に機械的に線状あるいは不連続な溝加工
を施した後に二次再結晶させることが本発明の特徴であ
る。このプロセスにより溝下部の大部分に二次再結晶粒
界が形成され、優れた鉄損特性および磁歪特性を示すこ
ととなる。
In the above steps, it is a feature of the present invention that the steel sheet which has been subjected to the cold rolling, the primary recrystallized steel sheet is mechanically subjected to linear or discontinuous groove processing and then subjected to the secondary recrystallization. By this process, a secondary recrystallized grain boundary is formed in most of the lower portion of the groove, and excellent iron loss characteristics and magnetostriction characteristics are exhibited.

【0023】機械的に溝加工を形成する方法について
は、特公昭62−53579号公報に開示された歯車型
ロールによる方法、特公平06−63037号公報に開
示されたプレスによる方法等いずれを用いてもよい。形
成する溝の形状は、ほぼ圧延方向に直角な連続ないし不
連続な直線状の溝、特に連続的な直線状の溝が望まし
い。圧延直角方向の場合に最も効果が大きいが、直角方
向より30゜以内であればその効果は大きくは変わらな
い。また直線状が工具の加工上望ましいが、曲線の溝に
してもその効果を失うものではない。曲線の場合には、
中心線の方向が圧延直角方向より30゜以内になるよう
にすればよい。
Regarding the method of mechanically forming grooves, any of a method using a gear type roll disclosed in Japanese Patent Publication No. 62-53579 and a method using a press disclosed in Japanese Patent Publication No. 06-63037 may be used. You may. The shape of the groove to be formed is preferably a continuous or discontinuous linear groove substantially perpendicular to the rolling direction, particularly a continuous linear groove. The effect is greatest in the direction perpendicular to the rolling direction, but the effect is not significantly changed within 30 ° from the direction perpendicular to the rolling direction. Although a straight shape is desirable for machining the tool, the effect is not lost even if the groove is curved. For curves,
The direction of the center line should be within 30 ° from the direction perpendicular to the rolling.

【0024】線状溝の幅は10〜300μm、深さは5
〜50μm、溝間隔は圧延方向に1〜20mmが好ましい
が、この範囲を外れても本発明の効果が発現しないわけ
ではない。また溝加工は片面のみで十分に効果がある
が、両面に施しても本発明の思想に反するものではな
い。
The width of the linear groove is 10 to 300 μm and the depth is 5
Although it is preferable that the groove interval is 1 to 20 mm in the rolling direction, even if it is out of this range, the effect of the present invention is not necessarily not exhibited. Although the groove processing is sufficiently effective only on one side, it is not contrary to the idea of the present invention even if it is performed on both sides.

【0025】一次再結晶は、断面の金属組織で観察した
再結晶比率で50%以上を、より望ましくは90%以上
を完了させることが好ましいが、必ずしも本発明の条件
を限定するものではない。再結晶温度としては、再結晶
比率50%では600℃以上、90%では650℃以上
が望ましい。一次再結晶させる方法としては、一般的な
焼鈍炉による方法、通電加熱による方法、誘導加熱によ
る方法と何れの方法を用いても本発明の思想を損なうも
のではないが、設備のコンパクト化の観点から通電加熱
あるいは誘導加熱による方法が好ましい。
The primary recrystallization preferably completes a recrystallization ratio of 50% or more, more preferably 90% or more, as observed in the metal structure of the cross section, but does not necessarily limit the conditions of the present invention. The recrystallization temperature is desirably 600 ° C. or higher when the recrystallization ratio is 50%, and 650 ° C. or higher when the recrystallization ratio is 90%. As a method of primary recrystallization, a method using a general annealing furnace, a method using electric heating, and a method using induction heating do not impair the idea of the present invention. Therefore, a method using electric heating or induction heating is preferable.

【0026】こうして得られた表面に溝加工を施した鋼
板に、必要に応じて湿水素中で脱炭と一次再結晶粒成長
を目的とする焼鈍を施すが、磁気時効を起こさない程度
にしか鋼成分にCを含まない場合には、以下に記述する
二次再結晶焼鈍の前半部分で該焼鈍の効果を兼用しても
構わない。
The steel sheet having a groove formed on the surface thus obtained is subjected to annealing for the purpose of decarburization and primary recrystallized grain growth in wet hydrogen, if necessary, but only to the extent that magnetic aging does not occur. When C is not contained in the steel component, the effect of the annealing may be used in the first half of the secondary recrystallization annealing described below.

【0027】この後、鋼板表面にMgOを主体とする焼
鈍分離剤を塗布し、高温の二次再結晶焼鈍に供する。こ
の際、Al2 3 を主体とした焼鈍分離剤を用いて、M
2SiO4 からなるセラミック被膜を形成させない工
程をとることも可能である。この二次再結晶焼鈍に際し
て、必要に応じて特開平2−77525号公報にあるよ
うなNH3 ガス等を用いて上記の湿水素焼鈍後、二次再
結晶焼鈍前にNH3等の雰囲気ガスからの窒化によるA
lNのインヒビターの補強を行うこと、または二次再結
晶焼鈍の前段で、N2 雰囲気より窒化によるAlN系の
インヒビターの補強を行うことも、本発明の効果を損な
うものではない。また、磁気時効を起こさない程度にし
かCを含まない場合には、二次再結晶焼鈍の前半で一次
再結晶粒成長を行わせ、前述の湿水素中での脱炭と一次
再結晶粒成長を目的とする焼鈍を省略することも可能で
ある。
Thereafter, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet and subjected to high-temperature secondary recrystallization annealing. At this time, an annealing separator mainly composed of Al 2 O 3 is used, and M
It is also possible to take a step in which a ceramic coating made of g 2 SiO 4 is not formed. In the secondary recrystallization annealing, after the above wet hydrogen annealing with optionally NH 3 gas as in JP-A-2-77525 and the like, an atmosphere gas such as NH 3 before the secondary recrystallization annealing A by nitriding from
Reinforcing the 1N inhibitor or reinforcing the AlN-based inhibitor by nitriding in a N 2 atmosphere before the secondary recrystallization annealing does not impair the effects of the present invention. When C is contained only to the extent that magnetic aging does not occur, primary recrystallized grain growth is performed in the first half of the secondary recrystallization annealing, and decarburization in wet hydrogen and primary recrystallized grain growth are performed. It is also possible to omit the annealing for the purpose.

【0028】[0028]

【実施例】以下、本発明を実施例に基づいてさらに説明
する。 (実施例1)質量で3.3%SiとMnSeとAlN、
Sbのインヒビター成分(質量にしてMn:0.07
%、Se:0.02%、酸可溶Al:0.025%、
N:0.008%、Sb:0.04%)を含む0.23
mm厚の冷延板を、焼鈍炉で700℃まで30℃/sec で
加熱し100%再結晶させた後、(A)歯車型ロールを
用いて線状溝を形成した試料A、(B)グラビア印刷で
溝パターンを転写後、電解エッチングで溝加工をした試
料Bに、それぞれ850℃で100sec の湿水素中焼鈍
を行い、MgOを主体とする焼鈍分離剤を鋼板表面に塗
布後、1200℃で17hrの二次再結晶焼鈍を施した。
A,Bともに溝形状は直線状で、角度は圧延直角方向か
ら12゜、溝間隔3mm、溝幅100μm、溝深さ20μ
mであった。それぞれの鉄損値を表2に示す。溝下部粒
界比率が本発明範囲である材料Aの鉄損が、材料Bに較
べ低い鉄損を持つことがわかる。
The present invention will be further described below with reference to examples. (Example 1) 3.3% by mass of Si, MnSe and AlN,
Inhibitor component of Sb (Mn: 0.07 by mass)
%, Se: 0.02%, acid-soluble Al: 0.025%,
N: 0.008%, Sb: 0.04%)
After a cold rolled sheet having a thickness of mm was heated to 700 ° C. in an annealing furnace at 30 ° C./sec and recrystallized 100%, (A) samples A and (B) in which linear grooves were formed using a gear-type roll After transferring the groove pattern by gravure printing, each of the samples B subjected to the groove processing by electrolytic etching was annealed in wet hydrogen at 850 ° C. for 100 seconds, and an annealing separator mainly composed of MgO was applied to the surface of the steel sheet. For 17 hours.
The groove shape of both A and B is linear, the angle is 12 ° from the direction perpendicular to the rolling, the groove interval is 3 mm, the groove width is 100 μm, and the groove depth is 20 μ.
m. Table 2 shows the respective iron loss values. It can be seen that the core loss of the material A having the lower grain boundary ratio in the range of the present invention is lower than that of the material B.

【0029】[0029]

【表2】 [Table 2]

【0030】(実施例2)本発明の方向性電磁鋼板の製
造において、線状の溝を形成する場合の好適な装置例を
図3に示す。すなわち、方向性電磁鋼板のコイルに巻か
れた冷延板1は、巻きほぐされて加熱装置2に通り、再
結晶温度もしくはそれ以上の温度に加熱されて鋼板を再
結晶させる。加熱手段は通電加熱或いは誘導加熱のいず
れでもよい。次いで溝形成装置3に導入し、機械加工し
て鋼板表面に線状もしくは不連続線状の溝を形成しした
後に、脱炭を目的とした焼鈍を焼鈍装置4で施し、Mg
Oを主体とする焼鈍分離剤をコーター5で鋼板表面に塗
布し、コイラー6に巻取るまでの工程を示す。図3で
は、加熱装置2、溝形成装置3、焼鈍装置4の一連の工
程を示したが、加熱装置と溝形成装置を脱炭を目的とす
る焼鈍装置に組み込んでもよい。
Embodiment 2 FIG. 3 shows an example of a preferred apparatus for forming a linear groove in the production of a grain-oriented electrical steel sheet according to the present invention. That is, the cold-rolled sheet 1 wound around the coil of the grain-oriented electrical steel sheet is unwound and passes through the heating device 2, and is heated to a recrystallization temperature or higher to recrystallize the steel sheet. The heating means may be either electric heating or induction heating. Next, the steel sheet is introduced into the groove forming apparatus 3 and machined to form a linear or discontinuous groove on the surface of the steel sheet, and then subjected to annealing for decarburization in the annealing apparatus 4 to obtain Mg.
The process from applying an annealing separator mainly composed of O to the surface of a steel sheet by a coater 5 and winding the same around a coiler 6 will be described. Although FIG. 3 shows a series of steps of the heating device 2, the groove forming device 3, and the annealing device 4, the heating device and the groove forming device may be incorporated in an annealing device for decarburization.

【0031】[0031]

【発明の効果】以上説明した本発明によって、鉄損と磁
歪を低減した方向性電磁鋼板を製造することができる。
According to the present invention described above, a grain-oriented electrical steel sheet with reduced iron loss and magnetostriction can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溝と二次再結晶粒界の位置関係を示す鋼板表面
の図。点線で溝の位置、実線で二次再結晶粒界の位置を
示す。太い実線は二次再結晶粒界が溝の下にある部分を
示す。a)は本発明例、b)は比較例。c)は本発明例
での鋼板表面での金属組織写真である。
FIG. 1 is a diagram of a steel sheet surface showing a positional relationship between a groove and a secondary recrystallized grain boundary. The dotted line indicates the position of the groove, and the solid line indicates the position of the secondary recrystallized grain boundary. The thick solid line indicates the portion where the secondary recrystallized grain boundary is below the groove. a) is a present invention example, b) is a comparative example. c) is a metallographic photograph on the steel sheet surface in the example of the present invention.

【図2】線状溝の溝下部分の板厚を貫通する二次再結晶
粒界の、溝総延長に対する存在比率と鉄損W17/50 との
関係を表す図。
FIG. 2 is a view showing the relationship between the abundance ratio of the secondary recrystallized grain boundaries penetrating the thickness of the lower part of the linear groove to the total groove length and the iron loss W 17/50 .

【図3】方向性電磁鋼板の冷延板を加熱後、圧延方向と
ほぼ直角方向にほぼ線状の溝を機械加工によって形成
し、さらに焼鈍する装置に一例を示す図。
FIG. 3 is a diagram showing an example of an apparatus for forming a substantially linear groove in a direction substantially perpendicular to a rolling direction by heating a cold-rolled sheet of grain-oriented electrical steel sheet, followed by annealing.

【符号の説明】[Explanation of symbols]

1:冷延板 2:加熱装置 3:溝形成装置 4:焼鈍装置 5:コータ 6:コイラー 1: Cold rolled sheet 2: Heating device 3: Groove forming device 4: Annealing device 5: Coater 6: Coiler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大場 茂和 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 小林 操 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 Fターム(参考) 4K033 AA02 DA02 MA00 PA06 5E041 AA02 CA02 HB11 HB15 HB19 NN01 NN15 NN17  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigekazu Oba 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Tsutomu Kobayashi 1 Fujimachi, Hirohata-ku, Himeji-shi, Japan F-term in Hirohata Works (reference) 4K033 AA02 DA02 MA00 PA06 5E041 AA02 CA02 HB11 HB15 HB19 NN01 NN15 NN17

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧延方向とほぼ直角方向に線状の溝を有
し、その溝下部の長さにして15%以上90%以下の部
分に二次再結晶粒界が存在することを特徴とする低鉄損
方向性電磁鋼板。
The present invention is characterized in that it has a linear groove in a direction substantially perpendicular to the rolling direction, and a secondary recrystallized grain boundary exists in a portion of 15% or more and 90% or less in length of the groove lower part. Low iron loss oriented electrical steel sheet.
【請求項2】 方向性電磁鋼板を最終冷延後、再結晶温
度まで加熱した後、圧延方向とほぼ直角方向に線状の溝
を機械加工によって形成し、その後、二次再結晶焼鈍を
行うことにより、線状溝下部の長さにして15%以上9
0%以下の部分に二次再結晶粒界を存在せしめることを
特徴とする低鉄損方向性電磁鋼板の製造方法。
2. After the grain-oriented electrical steel sheet is finally cold-rolled and heated to a recrystallization temperature, a linear groove is formed by machining in a direction substantially perpendicular to the rolling direction, and then a secondary recrystallization annealing is performed. As a result, the length of the lower part of the linear groove is 15% or more 9
A method for producing a low iron loss grain-oriented electrical steel sheet, wherein a secondary recrystallized grain boundary is present in a portion of 0% or less.
【請求項3】 機械加工後、二次再結晶焼鈍前に、湿水
素中の焼鈍により脱炭を行うことを特徴とする請求項2
記載の低鉄損方向性電磁鋼板の製造方法。
3. The decarburization is performed by annealing in wet hydrogen after mechanical processing and before secondary recrystallization annealing.
A method for producing a low iron loss grain-oriented electrical steel sheet as described in the above.
【請求項4】 再結晶温度までの加熱方法が通電加熱あ
るいは誘導加熱であることを特徴とする請求項2または
3記載の低鉄損方向性電磁鋼板の製造方法。
4. The method for producing a low iron loss grain-oriented electrical steel sheet according to claim 2, wherein the heating method up to the recrystallization temperature is electric heating or induction heating.
【請求項5】 方向性電磁鋼板製造工程において、最終
冷延後に冷延板を再結晶温度まで加熱する加熱装置と、
圧延方向とほぼ直角方向に線状あるいは不連続な線状の
溝を機械加工によって形成する溝形成装置を組み込んだ
ことを特徴とする低鉄損方向性電磁鋼板の製造装置。
5. A heating device for heating a cold rolled sheet to a recrystallization temperature after final cold rolling in a grain-oriented electrical steel sheet manufacturing process,
An apparatus for manufacturing a low iron loss grain-oriented electrical steel sheet, comprising a groove forming apparatus for forming a linear or discontinuous linear groove in a direction substantially perpendicular to a rolling direction by machining.
【請求項6】 加熱装置による加熱が通電加熱または誘
導加熱であることを特徴とする請求項5記載の低鉄損方
向性電磁鋼板の製造装置。
6. The apparatus according to claim 5, wherein the heating by the heating device is electric heating or induction heating.
【請求項7】 加熱装置と溝形成装置とを、湿水素中で
の脱炭用焼鈍装置に組み込んだことを特徴とする請求項
5記載の低鉄損方向性電磁鋼板の製造装置。
7. The apparatus according to claim 5, wherein the heating device and the groove forming device are incorporated in an annealing device for decarburization in wet hydrogen.
【請求項8】 再結晶温度までの加熱が通電加熱あるい
は誘導加熱であることを特徴とする請求項7記載の低鉄
損方向性電磁鋼板の製造装置。
8. The apparatus according to claim 7, wherein the heating up to the recrystallization temperature is electric heating or induction heating.
JP2001098459A 2001-03-30 2001-03-30 Oriented electrical steel sheet and method and apparatus for manufacturing the same Expired - Lifetime JP4331900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098459A JP4331900B2 (en) 2001-03-30 2001-03-30 Oriented electrical steel sheet and method and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001098459A JP4331900B2 (en) 2001-03-30 2001-03-30 Oriented electrical steel sheet and method and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002294416A true JP2002294416A (en) 2002-10-09
JP4331900B2 JP4331900B2 (en) 2009-09-16

Family

ID=18952108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098459A Expired - Lifetime JP4331900B2 (en) 2001-03-30 2001-03-30 Oriented electrical steel sheet and method and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4331900B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136362A (en) * 2009-12-28 2011-07-14 Hitachi Industrial Equipment Systems Co Ltd Device and method for grooving electrical steel sheet
JP2011208196A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss
WO2012033197A1 (en) * 2010-09-09 2012-03-15 新日本製鐵株式会社 Oriented electromagnetic steel sheet and process for production thereof
JP2014025837A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Processed state evaluating method and processed state evaluating apparatus for steel plates
RU2509164C1 (en) * 2010-09-10 2014-03-10 ДжФЕ СТИЛ КОРПОРЕЙШН Texture electric steel sheet and method of its production
RU2601022C2 (en) * 2012-04-26 2016-10-27 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electrical steel sheet and method of its producing
JP2021025072A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP7372520B2 (en) 2019-08-01 2023-11-01 日本製鉄株式会社 Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for manufacturing wound iron core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101908042B1 (en) * 2016-06-23 2018-10-15 주식회사 포스코 Wound core and method for manufacturing wound core

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136362A (en) * 2009-12-28 2011-07-14 Hitachi Industrial Equipment Systems Co Ltd Device and method for grooving electrical steel sheet
JP2011208196A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss
KR101345469B1 (en) 2010-09-09 2013-12-27 신닛테츠스미킨 카부시키카이샤 Oriented electromagnetic steel sheet and process for production thereof
JP2013036121A (en) * 2010-09-09 2013-02-21 Nippon Steel & Sumitomo Metal Corp Method for manufacturing grain-oriented electromagnetic steel sheet
JP5158285B2 (en) * 2010-09-09 2013-03-06 新日鐵住金株式会社 Oriented electrical steel sheet
TWI417394B (en) * 2010-09-09 2013-12-01 Nippon Steel & Sumitomo Metal Corp Grain-oriented electrical steel sheet, and manufacturing method thereof
WO2012033197A1 (en) * 2010-09-09 2012-03-15 新日本製鐵株式会社 Oriented electromagnetic steel sheet and process for production thereof
US8657968B2 (en) 2010-09-09 2014-02-25 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and method of manufacturing the same
CN104099458A (en) * 2010-09-09 2014-10-15 新日铁住金株式会社 Method of manufacturing grain-oriented electrical steel sheet
RU2509164C1 (en) * 2010-09-10 2014-03-10 ДжФЕ СТИЛ КОРПОРЕЙШН Texture electric steel sheet and method of its production
RU2601022C2 (en) * 2012-04-26 2016-10-27 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electrical steel sheet and method of its producing
JP2014025837A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Processed state evaluating method and processed state evaluating apparatus for steel plates
JP2021025072A (en) * 2019-08-01 2021-02-22 日本製鉄株式会社 Oriented electromagnetic steel sheet, wound iron core, oriented electromagnetic steel sheet production method, and wound iron core production method
JP7277755B2 (en) 2019-08-01 2023-05-19 日本製鉄株式会社 Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for producing wound iron core
JP7372520B2 (en) 2019-08-01 2023-11-01 日本製鉄株式会社 Grain-oriented electrical steel sheet, wound iron core, method for producing grain-oriented electrical steel sheet, and method for manufacturing wound iron core

Also Published As

Publication number Publication date
JP4331900B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR100727333B1 (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
RU2610204C1 (en) Method of making plate of textured electrical steel
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
KR20160138253A (en) Method for producing oriented electromagnetic steel sheet
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2022027234A (en) Directional electromagnetic steel plate
JPH0211728A (en) Ultrahigh speed annealing of unoriented electric iron plate
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
CN113302318A (en) Method for producing grain-oriented electromagnetic steel sheet
JP2002294416A (en) Grain-oriented electro magnetic steel sheet with low core loss, and manufacturing method and manufacturing apparatus therefor
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH07268474A (en) Grain oriented silicon steel sheet with low iron loss
JP2004060026A (en) Grain oriented silicon steel sheet having excellent high frequency magnetic property, rollability and workability and method for producing the same
JP5854234B2 (en) Method for producing grain-oriented electrical steel sheet
JP6465049B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
JPH03260020A (en) Method for radiating eb
JP3488333B2 (en) Low iron loss grain-oriented electrical steel sheet
JP7031364B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3252700B2 (en) Electrical steel sheet with excellent magnetic properties and punchability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

R151 Written notification of patent or utility model registration

Ref document number: 4331900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term