JPH11256289A - Silicon steel sheet reduced in high frequency iron loss - Google Patents

Silicon steel sheet reduced in high frequency iron loss

Info

Publication number
JPH11256289A
JPH11256289A JP10078620A JP7862098A JPH11256289A JP H11256289 A JPH11256289 A JP H11256289A JP 10078620 A JP10078620 A JP 10078620A JP 7862098 A JP7862098 A JP 7862098A JP H11256289 A JPH11256289 A JP H11256289A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
concentration
silicon steel
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10078620A
Other languages
Japanese (ja)
Other versions
JP4073075B2 (en
Inventor
Misao Namikawa
操 浪川
Yoshiichi Takada
芳一 高田
Katsuji Kasai
勝司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP07862098A priority Critical patent/JP4073075B2/en
Priority to KR1019997009343A priority patent/KR100334860B1/en
Priority to EP99939203A priority patent/EP0987341A4/en
Priority to US09/423,509 priority patent/US6527876B2/en
Priority to PCT/JP1999/001063 priority patent/WO1999046417A1/en
Publication of JPH11256289A publication Critical patent/JPH11256289A/en
Application granted granted Critical
Publication of JP4073075B2 publication Critical patent/JP4073075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicon steel sheet reduced in high frequency iron loss and suitable for iron core for transformer, reactor, motor, etc. SOLUTION: The steel sheet has a composition containing, by weight, <=0.02% C, 0.05-0.5% Mn, <=0.01% P, <=0.02% S, 0.001-0.06% sol.Al, and <=0.01 N. In this steel sheet, a part having 5-8 wt.% Si concentration comprises >=10% of sheet thickness from respective surface and rear surface layers of the steel sheet in a direction of depth of sheet thickness, and further, Si concentration in the vicinity of the center of sheet thickness is made to 2.2 to 3.5 wt.%. By this method, the silicon steel sheet low in high frequency iron loss can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トランス、リアク
トル、モータなどの鉄心用として好適である高周波鉄損
の低い珪素鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon steel sheet having a low high-frequency iron loss suitable for use in iron cores of transformers, reactors, motors and the like.

【0002】[0002]

【従来の技術】一般に珪素鋼板の鉄損は励磁周波数が高
くなると急激に上昇することが知られている。一方、近
年、珪素鋼板が広く用いられているトランス、リアクト
ル、モータなどの駆動周波数は、鉄心の小型化や高効率
化をはかるために、年々高周波化してきている。
2. Description of the Related Art It is generally known that the iron loss of a silicon steel plate rapidly increases as the excitation frequency increases. On the other hand, in recent years, the driving frequency of transformers, reactors, motors, and the like, in which silicon steel sheets are widely used, has been increasing year by year in order to reduce the size and increase the efficiency of the iron core.

【0003】この駆動周波数の高周波化に伴い、珪素鋼
板の鉄損によるこれら鉄心の温度上昇や効率の低下が間
題となるケースがとみに増加してきている。このような
理由から珪素鋼板の高周波鉄損を低減することが必要と
されるようになってきている。
[0003] With the increase in the driving frequency, the number of cases in which a rise in the temperature of these iron cores and a decrease in efficiency due to iron loss of the silicon steel plate become a problem are increasing. For these reasons, it has become necessary to reduce high-frequency iron loss of silicon steel sheets.

【0004】従来、珪素鋼板の高周波鉄損を低減する手
法としては、Si含有量を高めて固有抵抗を高くするこ
とで高周波鉄損を低減する方法と、板厚を薄くして渦電
流損失を抑えることで高周波鉄損を低減する方法がとら
れている。
Conventionally, there are two methods of reducing the high-frequency iron loss of silicon steel sheets: a method of reducing the high-frequency iron loss by increasing the Si content and increasing the specific resistance, and a method of reducing the eddy current loss by reducing the thickness of the sheet. A method of reducing high-frequency iron loss by suppressing it has been adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来技術のうち、Si含有量を高める方法は、珪素鋼板の
加工性を著しく低下させるため、珪素鋼板そのものの生
産性の低下を招くことに加え、鉄心の加工コストの上昇
も招くという問題点がある。
However, among the above-mentioned prior arts, the method of increasing the Si content significantly lowers the workability of the silicon steel sheet, so that the productivity of the silicon steel sheet itself is lowered. There is a problem that the cost of processing the iron core also increases.

【0006】また板厚を薄くする方法も、薄くするほど
鋼板そのものの製造コストが増加し、なおかつ鉄心の積
層枚数が増えることから鉄心の製作コストの上昇を招く
という間題点がある。
The method of reducing the thickness of the sheet also has a problem that the thinner the sheet, the higher the manufacturing cost of the steel sheet itself, and the more the number of laminated iron cores, resulting in an increase in the manufacturing cost of the iron core.

【0007】本発明はかかる事情に鑑みてなされたもの
であって、トランス、リアクトル、モータなどの鉄心用
として好適である高周波鉄損の低い珪素鋼板を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a silicon steel sheet having low high-frequency iron loss, which is suitable for use in iron cores of transformers, reactors, motors, and the like.

【0008】[0008]

【課題を解決するための手段】本発明者らは上述した課
題を解決すぺく鋭意研究を重ねた結果、珪素鋼板におい
て鋼板の表層Si濃度と、そのSi濃度を有する領域の
板厚方向深さを特定の範囲に規定することにより、珪素
鋼板の鉄損、特に高周波鉄損を著しく低くすることがで
きることを見出した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the surface Si concentration of a steel sheet in a silicon steel sheet and the depth in the thickness direction of the region having the Si concentration It has been found that by defining the content in a specific range, the iron loss of the silicon steel sheet, particularly the high-frequency iron loss, can be significantly reduced.

【0009】本発明は、このような知見に基づいて完成
されたものであって、第1に、C≦0.02wt.%、
0.05wt.%≦Mn≦0.5wt.%、P≦0.0
1wt.%、S≦0.02wt.%、0.001wt.
%≦soI.Al≦0.06wt.%、N≦0.01.
wt%であり、Si濃度が5〜8wt.%の部分が、鋼
板の上下両面表層から板厚深さ方向に板厚の10%以上
であって、かつ板厚中心付近のSi濃度が2.2〜3.
5wt.%であることを特徴とする高周波鉄損の低い珪
素鋼板を提供するものである。
The present invention has been completed on the basis of these findings. First, C ≦ 0.02 wt. %,
0.05 wt. % ≦ Mn ≦ 0.5 wt. %, P ≦ 0.0
1 wt. %, S ≦ 0.02 wt. %, 0.001 wt.
% ≦ soI. Al ≦ 0.06 wt. %, N ≦ 0.01.
wt%, and the Si concentration is 5 to 8 wt. % Is 10% or more of the sheet thickness in the thickness direction from the upper and lower surfaces of the steel sheet, and the Si concentration near the center of the sheet thickness is 2.2 to 3.%.
5 wt. %, Provided is a silicon steel sheet having a low high-frequency iron loss.

【0010】第2に、上記珪素鋼板において、Si濃度
が5〜8wt.%の部分が、鋼板の上下両面表層から板
厚深さ方向に実質的に板厚の15〜25%であることを
特徴とする高周波鉄損の低い珪素鋼板を提供するもので
ある。
Second, in the silicon steel sheet, the Si concentration is 5 to 8 wt. % Is substantially 15 to 25% of the sheet thickness in the thickness direction from the upper and lower surface layers of the steel sheet.

【0011】第3に、上記第1の珪素鋼板において、S
i濃度が実質的に6.5wt.%である部分が、鋼板の
上下両面表層から板厚深さ方向に板厚の10%以上であ
ることを特徴とする高周波鉄損の低い珪素鋼板を提供す
るものである。
Third, in the first silicon steel sheet, S
i concentration is substantially 6.5 wt. % Is 10% or more of the sheet thickness in the thickness direction from the upper and lower surface layers of the steel sheet.

【0012】第4に、上記第3の珪素鋼板において、S
i濃度が実質的に6.5wt.%である部分が、鋼板の
上下両面表層から板厚深さ方向に板厚の15〜25%で
あることを特微とする高周波鉄損の低い珪素鋼板を提供
するものである。
Fourth, in the third silicon steel sheet, S
i concentration is substantially 6.5 wt. The present invention provides a silicon steel sheet having a low high-frequency iron loss, characterized in that the percentage is 15 to 25% of the sheet thickness in the thickness direction from the upper and lower surfaces of the steel sheet.

【0013】[0013]

【発明の実施の形態】以下本発明について詳細に説明す
る。本発明に係る珪素鋼板は、基本的には、上述したよ
うにSi濃度が5〜8wt.%の部分が、鋼板の上下両
面表層から板厚深さ方向に板厚の10%以上であって、
かつ板厚中心付近のSi濃度が2〜3.5wt.%であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The silicon steel sheet according to the present invention basically has a Si concentration of 5 to 8 wt. % Portion is 10% or more of the thickness in the thickness direction from the upper and lower surfaces of the steel sheet,
And the Si concentration near the center of the sheet thickness is 2 to 3.5 wt. %.

【0014】図1は、板厚方向にSi濃度分布を形成し
た場合における表層からSi濃度が5wt.%以上であ
る部分の深さ割合dep(%)と鉄損W1/10k(周波数
10kHz、磁束密度1kGaussでの鉄損値)との
関係を示す図である。ただし、ここでは、図2に示した
ようにSi濃度が5wt.%となる深さをa、板厚をt
としたとき、表層からSi濃度が5wt.%以上である
部分の深さ割合をdep(%)=(a/t)×100で
定義している。
FIG. 1 shows a case where the Si concentration is 5 wt. 5 is a diagram showing a relationship between a depth ratio dep (%) of a portion equal to or more than% and iron loss W1 / 10k (iron loss value at a frequency of 10 kHz and a magnetic flux density of 1 kGauss). FIG. However, here, as shown in FIG. % Is the depth and the plate thickness is t
, The Si concentration from the surface layer is 5 wt. % Is defined as depth (%) = (a / t) × 100.

【0015】なお、Si濃度はサンブル断面についてE
PMA(電子線プローブマイクロアナライザ)で分析し
た結果である。また、ここでは、板厚0.2mmの圧延
法にて製造された3wt.%Si鋼板に対し、1200
℃のSiCI4雰囲気中浸珪処理を行い、その後120
0℃のN2雰囲気中で拡散処理を行って種々のSi濃度
分布を形成したサンプルを用いた。
Incidentally, the Si concentration is E
It is the result of having analyzed with PMA (electron probe microanalyzer). In addition, here, 3 wt. % Si steel sheet
Silicon carbide in an atmosphere of SiCl 4 at
Samples in which various Si concentration distributions were formed by performing a diffusion treatment in an N 2 atmosphere at 0 ° C. were used.

【0016】図1より、表層からSi濃度が5wt.%
以上である部分の深さ割合を10%以上、より好ましく
は15〜25%とすれば鉄損が著しく低下することがわ
かる。この時の鉄損は全板厚が6.5wt.%Siであ
るものより最大約30%低下する。なお、鋼板表層の高
Si濃度部分のSi濃度の上限は、鉄損特性上からは特
に規定されないが、Si濃度が8wt.%を超えると鋼
板の加工性が著しく低下することから、本発明では上限
を8wt.%と規定した。
FIG. 1 shows that the surface layer has a Si concentration of 5 wt. %
It can be seen that when the depth ratio of the above portion is 10% or more, more preferably 15 to 25%, the iron loss is significantly reduced. The iron loss at this time was 6.5 wt. % Si up to about 30% lower. Note that the upper limit of the Si concentration in the high Si concentration portion of the steel sheet surface layer is not particularly limited from the viewpoint of iron loss characteristics, but the Si concentration is 8 wt. %, The workability of the steel sheet is significantly reduced. %.

【0017】また状態図的に変態点を有すると熱処理に
よる変態点通過で細粒化して磁気特性を著しく損ねる。
このため状熊図的にα単相である必要から、板厚中心部
の低Si部分のSi濃度の下限値を2.2wt.%とし
た。
If a transformation point is present in a phase diagram, the particles are refined by passing through the transformation point due to heat treatment, and the magnetic properties are significantly impaired.
Therefore, the lower limit of the Si concentration in the low Si portion at the center of the plate thickness is 2.2 wt. %.

【0018】このように表層Si濃度が高く、板厚中心
部が低Siである材料は特許第2541383号、特開
平6−17202号公報および特開平9−184051
号公報に開示されている。しかし、特許第254138
号は、浸珪処理で6.5wt.%珪素鋼板を製造する
際、生産性を上げるべく拡散処理時間を短縮した結果と
して得られる表層Si濃度が高い珪素鋼板を提案してお
り、鉄損は6.5wt.%珪素鋼板と同等である。ま
た、特開平6−17202号公報は、6.5%珪素鋼板
の加工性を改善するべく表層だけを6.5wt.%Si
としたものであり、鉄損は6.5wt.%珪素鋼板に比
べ劣化するとしている。さらに、特開平9−18405
1号公報は、残留磁束密度を低下させるため表層高Si
鋼板を提案しており、本発明と目的が異なっている。鉄
損については50Hzの鉄損は表層Siの高い材料が低
いとしている。しかし、周波数が高くなると一般には鉄
損は全体のSi量に支配されると通常考えられ、板厚中
心部のSi量が低い材料は鉄損特性が劣るとされてい
る。
As described above, materials having a high surface layer Si concentration and a low Si thickness center portion are disclosed in Japanese Patent No. 2541383, JP-A-6-17202 and JP-A-9-184051.
No. 6,086,045. However, Patent 254138
No. was 6.5 wt. %, A silicon steel sheet having a high surface Si concentration obtained as a result of shortening the diffusion processing time in order to increase the productivity in order to increase productivity has a core loss of 6.5 wt. % Silicon steel sheet. Also, Japanese Patent Application Laid-Open No. 6-17202 discloses that 6.5% by weight of only the surface layer is used to improve the workability of a 6.5% silicon steel sheet. % Si
The iron loss was 6.5 wt. It is said that it deteriorates as compared with the% silicon steel sheet. Further, Japanese Patent Application Laid-Open No. 9-18405
No. 1 discloses a high surface layer Si to reduce the residual magnetic flux density.
A steel plate is proposed, and the purpose is different from the present invention. Regarding the iron loss at 50 Hz, a material having a high surface layer Si has a low iron loss. However, it is generally considered that the iron loss is generally governed by the total amount of Si when the frequency increases, and it is said that a material having a low Si amount at the center of the sheet thickness has poor iron loss characteristics.

【0019】本発明は、このような常識を覆し、特定の
Si濃度分布を形成することにより、高周波鉄損が低い
材料が得られるという初めて見出された知見に基づくも
のである。
The present invention is based on the first finding that a material having a low high-frequency iron loss can be obtained by overturning such common sense and forming a specific Si concentration distribution.

【0020】鋼板表層の高Si濃度部分を形成する手法
はCVD、PVDその他いずれの方法でもよく、特に限
定されるものではないが、Si濃度分布を形成する以前
の母材は生産性の観点から大量生産に適した圧延法で製
造することが好ましい。このため母材のSi含有量は通
常の圧延が可能な3.5wt.%を上限とすることが好
ましい。したがって、本発明の珪素鋼板における板厚中
心部の低Si部分のSi濃度の上限値を3.5wt.%
とした。
The method of forming the high Si concentration portion on the surface layer of the steel sheet may be CVD, PVD or any other method, and is not particularly limited, but the base material before forming the Si concentration distribution may be formed from the viewpoint of productivity. It is preferable to manufacture by a rolling method suitable for mass production. Therefore, the Si content of the base material is 3.5 wt. % Is preferably the upper limit. Therefore, in the silicon steel sheet of the present invention, the upper limit of the Si concentration in the low Si portion at the center of the thickness is 3.5 wt. %
And

【0021】図3は、板厚方向にSi濃度分布を形成し
た揚合における表層からSi濃度が実質的に6.5w
t.%である部分の深さ割合(%)と鉄損W1/10kとの
関係を示す図である。ただし、ここでは、図4に示した
ようにSi濃度が6.0〜7.0wt.%となる深さを
b、板厚をtとしたとき、表層からSi濃度が実質的に
6.5wt.%である部分の深さ割合をdep(%)=
(b/t)×100で定義している。
FIG. 3 shows that when the Si concentration distribution is formed in the thickness direction, the Si concentration is substantially 6.5 W from the surface layer.
t. FIG. 9 is a diagram showing a relationship between a depth ratio (%) of a portion which is% and an iron loss W1 / 10k. However, here, as shown in FIG. 4, the Si concentration was 6.0 to 7.0 wt. % When the depth is b and the plate thickness is t, the Si concentration from the surface layer is substantially 6.5 wt. Dep (%) =
(B / t) × 100.

【0022】また、ここでは板厚0.2mmの圧延法に
て製造された3wt.%Si鋼板に対し、1150℃の
SiCl4雰囲気中で浸珪処理を行い、その後1150
℃のN2雰囲気中で拡散処理を行って種々のSi濃度分
布を形成したサンプルを用いた。
In addition, here, 3 wt. % Si steel sheet is subjected to a siliconizing treatment in a SiCl 4 atmosphere at 1150 ° C.
Samples in which various Si concentration distributions were formed by performing a diffusion treatment in a N 2 atmosphere at a temperature of ° C were used.

【0023】図3より、表層からSi農度が実質的に
6.5wt.%である部分の深さ割合を10%以上、よ
り好ましくは15〜25%とすれば鉄損が著しく低下す
ることがわかる。さらに図1と図3を比較すると、表層
の高Si部分の濃度を実質的に6.5wt.%となるよ
うに限定することで、より一層鉄損を低減可能なことが
わかる。
As shown in FIG. 3, the Si yield from the surface layer is substantially 6.5 wt. It can be seen that the iron loss is significantly reduced when the depth ratio of the portion which is% is 10% or more, more preferably 15 to 25%. Further, comparing FIG. 1 with FIG. 3, the concentration of the high Si portion of the surface layer is substantially 6.5 wt. %, The iron loss can be further reduced.

【0024】なお、本発明の効果は珪素鋼板の板厚には
依存せず、いずれの板厚であっても本発明に規定された
範囲とすることで鉄損を著しく低減させることができ
る。
The effect of the present invention does not depend on the thickness of the silicon steel sheet, and the iron loss can be significantly reduced by setting the thickness within the range specified in the present invention regardless of the thickness.

【0025】次に、Si以外の元素の限定理由について
説明する。Cは多量に含有されると磁気時効を引き起こ
すため、その上限を0.02wt.%とする。その下限
は特に規定されないが、経済的に除去する観点からは
0.001wt.%とすることが好ましい。
Next, the reasons for limiting elements other than Si will be described. If C is contained in a large amount, it causes magnetic aging, so the upper limit is 0.02 wt. %. Although the lower limit is not particularly specified, 0.001 wt. % Is preferable.

【0026】Mnは多量に含有されると鋼板が脆くなる
ため、その上限を0.5wt.%とする。ただし、その
含有量が低く過ぎると、熱延工程で破断や表面キズを誘
発するため、その下限を0.05wt.%とする。
If Mn is contained in a large amount, the steel sheet becomes brittle, so the upper limit is 0.5 wt. %. However, if the content is too low, breakage and surface flaws are induced in the hot rolling step, so the lower limit is 0.05 wt. %.

【0027】Pは磁気特性から見ると好ましい元素であ
るが、多量に含有されると鋼板の加工性を劣化させるた
め、その上限を0.01wt.%とする。その下限は特
に規定されないが、経済的に除去する観点からは0.0
01wt.%とすることが好ましい。
P is a preferable element from the viewpoint of magnetic properties. However, if P is contained in a large amount, the workability of the steel sheet is deteriorated. %. The lower limit is not particularly defined, but from the viewpoint of economical removal, 0.0
01 wt. % Is preferable.

【0028】Sは加工性を劣化させるため、その上限を
0.02wt.%とする必要がある。その下限は特に規
定されないが、経済的に除去する観点からは0.001
wt.%とすることが好ましい。
Since S deteriorates workability, its upper limit is 0.02 wt. %. Although the lower limit is not particularly defined, it is 0.001 from the viewpoint of economical removal.
wt. % Is preferable.

【0029】sol.A1は同じく加工性を害するた
め、その上限を0.06wt.%とする。一方、脱酸剤
としての必要性からその下限を0.001wt.%とす
る。
Sol. A1 also impairs processability, so its upper limit is 0.06 wt. %. On the other hand, the lower limit is 0.001 wt. %.

【0030】Nは多量に含有されると窒化物を形成して
磁気特性を劣化させるため、その上限を0.01wt.
%とする必要がある。その下限は特に規定されないが、
現在の製鋼技術では0.0001wt.%が事実上の下
限となる。
If N is contained in a large amount, it forms nitrides and deteriorates magnetic properties.
%. The lower limit is not specified, but
With the current steelmaking technology, 0.0001 wt. % Is effectively the lower limit.

【0031】[0031]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表1の組成を有する板厚0.2mmの鋼板
を圧延法にて作製し、1200℃ののSiCI4雰囲気
中で浸珪処理を行い、その後1200℃のN2雰囲気中
で拡散処理を行って種々のSi濃度分布を有する珪素鋼
板を作製した。Si濃度分布はサンブル断面についてE
PMA(電子線ブローブマイクロアナライザ)で分析し
た。Si以外の元素の量は、浸珪、拡散処理の前後でほ
とんど変化しなかった。
Embodiments of the present invention will be described below. (Example 1) A steel sheet having a composition of Table 1 and having a thickness of 0.2 mm was prepared by a rolling method, subjected to a siliconizing treatment in a SiCl 4 atmosphere at 1200 ° C, and then in a N 2 atmosphere at 1200 ° C. Diffusion treatment was performed to produce silicon steel sheets having various Si concentration distributions. The Si concentration distribution is E
The analysis was performed with a PMA (electron probe microanalyzer). The amounts of the elements other than Si hardly changed before and after the siliconizing and diffusion treatment.

【0032】[0032]

【表1】 [Table 1]

【0033】このようにして作製した鋼板から外径31
mm、内径19mmのリング試料を採取し、周波数10
kHz、磁束密度0.1Tでの交流磁気特性を測定し
た。図1は、表層からSi濃度が5wt.%以上である
部分の深さ割合dep(%)と鉄損W1/10kとの関係を
示す図である。ただし、ここでは、図2に示したように
Si濃度が5wt.%となる深さa、板厚tとしたと
き、表層からSi獲度が5wt.%以上であるある部分
の深さ割合をdep(%)=(a/t)xl00で定義
している。
From the steel sheet produced in this way, the outer diameter 31
mm, a ring sample with an inner diameter of 19 mm
The alternating current magnetic characteristics at kHz and a magnetic flux density of 0.1 T were measured. FIG. 1 shows that a Si concentration of 5 wt. FIG. 9 is a diagram showing a relationship between a depth ratio dep (%) of a portion which is equal to or more than% and an iron loss W1 / 10k. However, here, as shown in FIG. %, The thickness a and the thickness t are 5 wt. % Is defined as dep (%) = (a / t) × 100.

【0034】図1より、表層からSi濃度が5wt.%
以上である部分の深さ割合を10%以上、より好ましく
は15〜25%とすれば鉄損が著しく低下することが確
認された。
As shown in FIG. 1, the Si concentration from the surface layer was 5 wt. %
It was confirmed that when the depth ratio of the above portion was 10% or more, more preferably 15 to 25%, the iron loss was significantly reduced.

【0035】[0035]

【実施例2】表1の組成を有する板厚0.2mmの鋼板
を圧延法にて作製し、1150℃のSiCl4雰囲気中
で浸珪処理を行い、その後1150℃のN2雰囲気中で
拡散処理を行って種々のSi濃度分布を有する珪素鋼板
を作製した。Si濃度分布はサンプル断面についてEP
MAで分析した。Si以外の元素の量は、浸珪、拡散処
理の前後でほとんど変化しなかった。
Example 2 A steel sheet having a composition of Table 1 and having a thickness of 0.2 mm was prepared by a rolling method, subjected to a siliconizing treatment in a SiCl 4 atmosphere at 1150 ° C., and then diffused in a N 2 atmosphere at 1150 ° C. The treatment was performed to produce silicon steel sheets having various Si concentration distributions. Si concentration distribution is EP
Analyzed by MA. The amounts of the elements other than Si hardly changed before and after the siliconizing and diffusion treatment.

【0036】このようにして作製した鋼板から外径31
mm、内径19mmのリング試料を採取し、周波数10
kHz、磁束密度0.1Tでの交流磁気特性を測定し
た。図3は、表層からSi濃度が実質的に6.5wt.
%である部分の深さ割合(%)と鉄損W1/10kとの関係
を示す図である。ただし、ここでは、図4に示したよう
にSi濃度が6.0〜7.0wt.%となる深さをb、
板厚をtとしたとき、表層からSi濃度が実質的に6.
5wt.%である部分の深さ割合をdep(%)=(b
/t)×100で定義している。
From the steel sheet produced in this way, the outer diameter 31
mm, a ring sample with an inner diameter of 19 mm
The alternating current magnetic characteristics at kHz and a magnetic flux density of 0.1 T were measured. FIG. 3 shows that the Si concentration is substantially 6.5 wt.
FIG. 9 is a diagram showing a relationship between a depth ratio (%) of a portion which is% and an iron loss W1 / 10k. However, here, as shown in FIG. 4, the Si concentration was 6.0 to 7.0 wt. B is the depth to be%.
Assuming that the plate thickness is t, the Si concentration from the surface layer is substantially 6.
5 wt. Dep (%) = (b)
/ T) × 100.

【0037】図3より、表層からSi濃度が実質的に
6.5wt.%である部分の深さ割合を10%以上、よ
り好ましくは15〜25%とすれば鉄損が著しく低下す
ることが確認された。
FIG. 3 shows that the Si concentration from the surface layer is substantially 6.5 wt. It has been confirmed that when the depth ratio of the portion which is% is 10% or more, more preferably 15 to 25%, the iron loss is remarkably reduced.

【0038】さらに図1と図3を比較すると、表層の高
Si部分の濃度を実質的に6.5wt%となるように限
定することで、より一層鉄損を低減できることが確認さ
れた。
Further, comparing FIG. 1 with FIG. 3, it was confirmed that the iron loss can be further reduced by limiting the concentration of the high Si portion of the surface layer to substantially 6.5 wt%.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれぱ、
加工性を損なうことなく、かつ板厚を低減することなし
に、高周波鉄損の著しく低い珪素鋼板を得ることができ
る。
As described above, according to the present invention,
A silicon steel sheet with extremely low high-frequency iron loss can be obtained without impairing workability and without reducing the sheet thickness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】板厚方向にSi濃度分布を形成した場合におけ
る表層からSi濃度が5wt.%以上である部分の深さ
割合dep(%)と鉄損W1/10kとの関係を示す図。
FIG. 1 shows a case where a Si concentration is 5 wt. The figure which shows the relationship between the depth ratio dep (%) of the part which is more than% and iron loss W1 / 10k.

【図2】図1の深さ割合dep(%)の定義を説明する
ための図。
FIG. 2 is a view for explaining the definition of a depth ratio dep (%) in FIG. 1;

【図3】板厚方向にSi濃度分布を形成した揚合におけ
る表層からSi濃度が実質的に6.5wt.%である部
分の深さ割合(%)と鉄損W1/10kとの関係を示す図。
FIG. 3 shows that the Si concentration is substantially 6.5 wt. The figure which shows the relationship between the depth ratio (%) of the part which is%, and iron loss W1 / 10k.

【図4】図3の深さ割合dep(%)の定義を説明する
ための図。
FIG. 4 is a view for explaining the definition of a depth ratio dep (%) in FIG. 3;

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C≦0.02wt.%、0.05wt.
%≦Mn≦0.5wt.%、P≦0.01wt.%、S
≦0.02wt.%、0.001wt.%≦soI.A
l≦0.06wt.%、N≦0.01.wt%であり、
Si濃度が5〜8wt.%の部分が、鋼板の上下両面表
層から板厚深さ方向に板厚の10%以上であって、かつ
板厚中心付近のSi濃度が2.2〜3.5wt.%であ
ることを特徴とする高周波鉄損の低い珪素鋼板。
1. The method according to claim 1, wherein C ≦ 0.02 wt. %, 0.05 wt.
% ≦ Mn ≦ 0.5 wt. %, P ≦ 0.01 wt. %, S
≦ 0.02 wt. %, 0.001 wt. % ≦ soI. A
l ≦ 0.06 wt. %, N ≦ 0.01. wt%,
When the Si concentration is 5 to 8 wt. % Is 10% or more of the sheet thickness in the thickness direction from the upper and lower surfaces of the steel sheet, and the Si concentration near the center of the sheet thickness is 2.2 to 3.5 wt. % Silicon steel sheet having a low high-frequency iron loss.
【請求項2】 Si濃度が5〜8wt.%の部分が、鋼
板の上下両面表層から板厚深さ方向に実質的に板厚の1
5〜25%であることを特徴とする請求項1に記載の高
周波鉄損の低い珪素鋼板。
2. An Si concentration of 5 to 8 wt. % Portion is substantially 1% of the sheet thickness in the thickness direction from the upper and lower surfaces of the steel sheet.
The silicon steel sheet having a low high-frequency iron loss according to claim 1, wherein the content is 5 to 25%.
【請求項3】 Si濃度が実質的に6.5wt.%であ
る部分が、鋼板の上下両面表層から板厚深さ方向に板厚
の10%以上であることを特徴とする請求項1に記載の
高周波鉄損の低い珪素鋼板。
3. The method according to claim 1, wherein the Si concentration is substantially 6.5 wt. 2. The silicon steel sheet having a low high-frequency iron loss according to claim 1, wherein the percentage of the steel sheet is 10% or more of the sheet thickness in the thickness direction from the upper and lower surfaces of the steel sheet.
【請求項4】 Si濃度が実質的に6.5wt.%であ
る部分が、鋼板の上下両面表層から板厚深さ方向に板厚
の15〜25%であることを特微とする請求項3に記載
の高周波鉄損の低い珪素鋼板。
4. The method according to claim 1, wherein the Si concentration is substantially 6.5 wt. 4. The silicon steel sheet having a low high-frequency iron loss according to claim 3, wherein the percentage of the steel sheet is 15 to 25% of the sheet thickness in the thickness direction from the upper and lower surfaces of the steel sheet.
JP07862098A 1998-03-12 1998-03-12 Silicon steel sheet with low high-frequency iron loss W1 / 10k Expired - Fee Related JP4073075B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP07862098A JP4073075B2 (en) 1998-03-12 1998-03-12 Silicon steel sheet with low high-frequency iron loss W1 / 10k
KR1019997009343A KR100334860B1 (en) 1998-03-12 1999-03-05 Silicon steel sheet and method for producing the same
EP99939203A EP0987341A4 (en) 1998-03-12 1999-03-05 Silicon steel sheet and method for producing the same
US09/423,509 US6527876B2 (en) 1998-03-12 1999-03-05 Silicon steel sheet and method for producing the same
PCT/JP1999/001063 WO1999046417A1 (en) 1998-03-12 1999-03-05 Silicon steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07862098A JP4073075B2 (en) 1998-03-12 1998-03-12 Silicon steel sheet with low high-frequency iron loss W1 / 10k

Publications (2)

Publication Number Publication Date
JPH11256289A true JPH11256289A (en) 1999-09-21
JP4073075B2 JP4073075B2 (en) 2008-04-09

Family

ID=13666943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07862098A Expired - Fee Related JP4073075B2 (en) 1998-03-12 1998-03-12 Silicon steel sheet with low high-frequency iron loss W1 / 10k

Country Status (1)

Country Link
JP (1) JP4073075B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158773A (en) * 2011-01-28 2012-08-23 Jfe Steel Corp Method of manufacturing high-silicon steel sheet
JP2015040338A (en) * 2013-08-23 2015-03-02 Jfeスチール株式会社 Siliconizing treatment apparatus
US20220290287A1 (en) * 2019-10-03 2022-09-15 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867713B2 (en) 2012-01-27 2016-02-24 Jfeスチール株式会社 Electrical steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158773A (en) * 2011-01-28 2012-08-23 Jfe Steel Corp Method of manufacturing high-silicon steel sheet
JP2015040338A (en) * 2013-08-23 2015-03-02 Jfeスチール株式会社 Siliconizing treatment apparatus
US20220290287A1 (en) * 2019-10-03 2022-09-15 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
EP4039832A4 (en) * 2019-10-03 2023-03-08 JFE Steel Corporation Non-oriented electromagnetic steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP4073075B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
RU2529258C1 (en) Method to produce sheet from unoriented electrical steel
EP3196325B1 (en) Grain-oriented electrical steel sheet
EP3561084B1 (en) Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
JP4616935B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
RU2571672C1 (en) Electric steel sheet
JP3948112B2 (en) Silicon steel sheet
EP3561085A2 (en) Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
JP2009263782A (en) Grain-oriented magnetic steel sheet and manufacturing method therefor
JP2010062275A (en) Motor core and motor core material
JPH11256289A (en) Silicon steel sheet reduced in high frequency iron loss
JP2006241563A (en) Nonoriented silicon steel sheet having excellent magnetic property and its production method
JP4116748B2 (en) Magnet buried type non-oriented electrical steel sheet for motor
KR102174155B1 (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
JP2000045053A (en) Grain-oriented silicon steel sheet low in core loss
JPH11293424A (en) Silicon steel sheet having high saturation magnetic flux density and high-frequency iron loss
JP2000160306A (en) Non-oriented silicon steel sheet excellent in workability and its production
JP4311230B2 (en) Oriented electrical steel sheet
JP3948113B2 (en) Soft magnetic ribbon
JP2022030684A (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2023248922A1 (en) Steel material processing method and electromagnetic steel sheet
JP4269350B2 (en) Method for producing high silicon steel sheet
JPH11199988A (en) Silicon steel sheet having gradient of silicon concentration
JP2006265685A (en) Grain-oriented magnetic steel sheet and producing method therefor
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP3460569B2 (en) Silicon steel sheet with low residual magnetic flux density

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees