JP4311230B2 - Oriented electrical steel sheet - Google Patents

Oriented electrical steel sheet Download PDF

Info

Publication number
JP4311230B2
JP4311230B2 JP2004051494A JP2004051494A JP4311230B2 JP 4311230 B2 JP4311230 B2 JP 4311230B2 JP 2004051494 A JP2004051494 A JP 2004051494A JP 2004051494 A JP2004051494 A JP 2004051494A JP 4311230 B2 JP4311230 B2 JP 4311230B2
Authority
JP
Japan
Prior art keywords
steel sheet
tensile stress
iron loss
coating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004051494A
Other languages
Japanese (ja)
Other versions
JP2005240102A (en
Inventor
之啓 新垣
誠司 岡部
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004051494A priority Critical patent/JP4311230B2/en
Publication of JP2005240102A publication Critical patent/JP2005240102A/en
Application granted granted Critical
Publication of JP4311230B2 publication Critical patent/JP4311230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、主としてトランス等の鉄心材料に用いられる方向性電磁鋼板に関するものである。   The present invention relates to grain-oriented electrical steel sheets used mainly for iron core materials such as transformers.

方向性電磁鋼板において、商用周波数での低鉄損並びに低励磁場での高磁束密度は、変圧器の高効率化と省エネルギー化のために極めて重要な特性である。近年、省エネルギー化を進める上で、さらなるエネルギー損失の改善、すなわち低鉄損化が急務となっている。低鉄損化を達成する方法には、{110}〈001〉方位の圧延方向への集積度を高める『高配向化』、圧延方向への引張応力を高める『被膜の高引張応力化』、局所歪みや鋼板表面への溝加工による『磁区細分化』、電気抵抗を高める『高Si化』や、渦電流を抑制する『薄物化』等の技術があり、これらの技術は、個々に多くの研究がなされており、それぞれはすでに非常に高いレベルに到達しつつある。また、鋼板表面の凹凸を抑制する『表面平滑化』は、それ自身でも低鉄損化に有効であり、非特許文献1によれば、被膜の引張応力効果に変化をもたらすことが示されている。   In grain-oriented electrical steel sheets, low iron loss at a commercial frequency and high magnetic flux density in a low excitation field are extremely important characteristics for improving the efficiency and energy saving of a transformer. In recent years, there is an urgent need for further energy loss improvement, that is, lower iron loss, in order to save energy. To achieve low iron loss, {110} <001> orientation increases the degree of integration in the rolling direction (high orientation), increases the tensile stress in the rolling direction (high tensile stress of the coating), There are technologies such as "domain refinement" by local strain and groove processing on the steel sheet surface, "high Si" to increase electrical resistance, and "thinning" to suppress eddy currents. Are being studied and each is already reaching a very high level. Further, “surface smoothing” that suppresses unevenness on the surface of the steel sheet is effective in itself for reducing iron loss, and according to Non-Patent Document 1, it is shown that the tensile stress effect of the coating is changed. Yes.

ここで、高配向化が進んだ方向性電磁鋼板において低鉄損を得るためには、鋼板表面に、レーザー(特許文献1参照)やプラズマ炎(非特許文献2参照)等を照射したり、あるいはエッチング(特許文献2参照)を施す等の手法により、鋼板表面に線状の溝を形成するといった、磁区細分化処理が必須の技術である。このような磁区細分化を施した鋼板では、高磁束密度材(高B8材)ほど、高い引張応力の作用下に低鉄損を得られる事が知られている。従って、現行の高B8材において引張応力効果による低鉄損化を進めるためには、高い引張応力を有する被膜を付加する技術が必要である。 Here, in order to obtain a low iron loss in a grain oriented electrical steel sheet that has been highly oriented, the surface of the steel sheet is irradiated with a laser (see Patent Document 1), a plasma flame (see Non-Patent Document 2), or the like. Alternatively, magnetic domain subdivision processing such as forming linear grooves on the steel sheet surface by a technique such as etching (see Patent Document 2) is an essential technique. In such domain refining alms steel sheet, the higher the magnetic flux density material (high B 8 material), it is known that to obtain a low iron loss under the action of high tensile stress. Therefore, in order to reduce the iron loss by the tensile stress effect in the current high B 8 material, a technique for adding a coating film having a high tensile stress is necessary.

しかしながら、被膜による引張応力は、被膜と鋼板との熱膨張係数の違いにより付与されるため、高引張応力の被膜ほど剥離しやすいという問題があり、引張応力効果による低鉄損化を進める上での障害となっている。
なお、被膜の耐剥離特性を高めるために、鋼板と熱膨張係数の近い被膜を形成し、その代わりに被膜による引張応力が膜厚に比例するという関係を用いて、膜厚を大きくすることで高引張応力を得る方法が考えられる。しかし、この手法では、トランスに使用する際に占積率の低下を招き、その性能を大きく下げてしまうことになる。逆に、占積率を高めるためには、薄くても引張応力効果の大きい被膜を成膜しなければならず、その場合、鋼板と熱膨張係数の大きく異なる被膜を成膜することになり、耐剥離特性は劣化することになり、結局は二律背反の関係に陥ることになる。
日本応用磁気学会誌,17(1993),211. 特公昭57-2252号公報 B.Fukuda,K.Sato,T.Sugiyama,A.Honda and Y.Ito:Proc,of ASM Con. of Hard and Soft Magnetic Materials,8710-008,(USA),(1987) 特公平8-6140号公報
However, since the tensile stress due to the coating is applied due to the difference in thermal expansion coefficient between the coating and the steel sheet, there is a problem that the coating with a higher tensile stress is more easily peeled off. Has become an obstacle.
In order to improve the peel resistance of the film, a film having a thermal expansion coefficient close to that of the steel sheet is formed, and instead, by using the relationship that the tensile stress due to the film is proportional to the film thickness, the film thickness is increased. A method for obtaining a high tensile stress is conceivable. However, this method causes a decrease in the space factor when used in a transformer, and greatly reduces its performance. On the contrary, in order to increase the space factor, it is necessary to form a film having a large tensile stress effect even if it is thin, in which case a film having a coefficient of thermal expansion greatly different from that of the steel sheet is formed. The anti-peeling properties will deteriorate, and eventually fall into a trade-off relationship.
Journal of Japan Society of Applied Magnetics, 17 (1993), 211. Japanese Patent Publication No.57-2252 B. Fukuda, K. Sato, T. Sugiyama, A. Honda and Y. Ito: Proc, of ASM Con. Of Hard and Soft Magnetic Materials, 8710-008, (USA), (1987) Japanese Patent Publication No. 8-6140

上述のように、さらなる低鉄損を得るためには、高い引張応力を有する被膜の開発が必要であるが、被膜の耐剥離特性や製品での占積率の劣化を生じさせない方策が併せて必要になるため、技術的な問題が極めて多く、高い引張応力を有する被膜を利用した技術は、未だ工業的に実用化されていないのが現状である。
従って、現在使用されている被膜で得られる引張応力範囲、あるいは比較的容易に付加し得る引張応力範囲において、高い引張応力被膜を付加した場合と同等の低鉄損が実現できる鋼板があれば、被膜の耐剥離特性や製品での占積率の劣化を心配することもなく、極めて有用である。さらに、このように低い引張応力で低鉄損が実現できる鋼板では、密着特性が高くかつ高い引張応力を有する被膜が開発された場合には、被膜に必要とされる厚さを薄くできるため、さらなる占積率の向上も期待される。
As described above, in order to obtain a further low iron loss, it is necessary to develop a film having a high tensile stress, but measures that do not cause deterioration of the peeling resistance characteristics of the film and the space factor of the product are also combined. Therefore, there are many technical problems, and the technology using a coating film having a high tensile stress has not been put into practical use yet.
Therefore, if there is a steel sheet that can achieve the same low iron loss as when a high tensile stress coating is added in the tensile stress range obtained with the coating currently used, or in the tensile stress range that can be applied relatively easily, It is extremely useful without worrying about the peeling resistance characteristics of the film and the deterioration of the space factor of the product. Furthermore, in a steel sheet that can realize low iron loss with such a low tensile stress, when a coating having high adhesion characteristics and a high tensile stress is developed, the thickness required for the coating can be reduced. Further improvement in the space factor is also expected.

本発明は、現在の被膜技術において比較的容易に得られ、また、被膜剥離の問題の生じない低い引張応力の範囲内、具体的には引張応力が12MPa以下の張力被膜の下で、従来の鋼板に引張応力が15MPaを超える張力被膜を付与した場合と同等の鉄損を得るための方途について提案することを目的とするものである。   The present invention is relatively easy to obtain in the present coating technology, and within the range of low tensile stress that does not cause the problem of film peeling, specifically under the tension coating with a tensile stress of 12 MPa or less. The purpose is to propose a way to obtain iron loss equivalent to the case where a tensile coating with a tensile stress exceeding 15 MPa is applied to the steel sheet.

上述したように、方向性電磁鋼板の鉄損改善手段として、鋼板への引張応力の印加が知られている。一般に、引張応力の印加による鉄損改善効果は、電気学会マグネティックス研究会資料 Mag,86-170 p.62 Fig.2(1986)において認められるとおり、B8値が高い方向性電磁鋼板で、その効果が大きいことが知られている。このB8値を高めるためには{110}〈001〉方位いわゆるゴス方位が圧延方向に高い集積率を持つことによって実現できる。 As described above, application of tensile stress to a steel sheet is known as means for improving the iron loss of grain-oriented electrical steel sheets. In general, the iron loss improvement effect due to the application of tensile stress, the Institute of Electrical Engineers of Japan Magnetics Society materials Mag, 86-170 p.62 Fig.2 as seen in (1986), 8 value B is at a high grain-oriented electrical steel sheet, It is known that the effect is great. Increasing the B 8 value can be realized by having a high accumulation rate in the rolling direction in the {110} <001> orientation, the so-called Goss orientation.

ここで、図1に示すように、圧延方向とゴス方位とのなす角度には〈001〉軸の鋼板表面内での首ふり角(以下、α角とする)と、〈001〉軸の鋼板表面に対する鉛直方向への仰角(以下、β角とする)とがあり、このαおよびβ角を低減させることによって高いB8値を実現できるのである。
一方、被膜の引張応力による鉄損の改善効果メカニズムは、引張応力の付加にて生じる磁区細分化により、渦電流損失が低減されるところにある。この磁区幅を決定する主たる要素は上記のβ角であり、必ずしもα角の制御まで行わなくともよい。従って、B8値を高めることよりも、β角を適切な範囲に限定した鋼板を用いることによって、低い引張応力により大きな効果を得られる可能性があると考えられるのである。
Here, as shown in FIG. 1, the angle formed between the rolling direction and the Goss direction includes the neck angle (hereinafter referred to as α angle) of the <001> axis steel plate and the <001> axis steel plate. There is an elevation angle (hereinafter referred to as β angle) in the vertical direction with respect to the surface, and a high B 8 value can be realized by reducing the α and β angles.
On the other hand, the mechanism of the effect of improving the iron loss due to the tensile stress of the coating is that the eddy current loss is reduced by the magnetic domain fragmentation caused by the addition of the tensile stress. The main factor for determining the magnetic domain width is the β angle described above, and it is not always necessary to control the α angle. Therefore, it is considered that there is a possibility that a large effect can be obtained with a low tensile stress by using a steel sheet in which the β angle is limited to an appropriate range rather than increasing the B 8 value.

そこで、発明者らは、二次再結晶を発現させる際にβ角を制御する焼鈍方法を利用することによって、極めて狭い範囲に限定されたβ角を有する鋼板を得た上で、該鋼板に磁区細分化を施し、さらに種々の引張応力を付加した状態において鉄損の測定を行った。かように測定した種々の引張応力による鉄損低減効果を鋭意検討したところ、特に低い引張応力における鉄損改善が顕著であるβ角領域を見出し、本発明を完成するに到った。さらに、必要な引張応力を得るために必要となる、被膜の厚みについても知見するに到った。   Therefore, the inventors obtained a steel sheet having a β angle limited to a very narrow range by utilizing an annealing method for controlling the β angle when developing secondary recrystallization, The iron loss was measured in the state where the magnetic domain was further subdivided and various tensile stresses were applied. As a result of diligent examination of the effect of reducing the iron loss due to the various tensile stresses thus measured, the inventors have found a β-angle region where the iron loss improvement is particularly remarkable at a low tensile stress, and completed the present invention. Furthermore, it came to discover also about the thickness of a film required in order to obtain a required tensile stress.

すなわち、本発明の要旨構成は次の通りである。
(1)磁区細分化処理を施した鋼板の表面に、張力付与型の被膜を有する多結晶方向性電磁鋼板であって、該鋼板は、3方向ある〈001〉軸のうち圧延方向となす角度が最も小さい〈001〉軸の鋼板表面に対する仰角が1°以下である領域の面積が鋼板表面積の80%以上であり、かつ被膜における引張応力が5MPa以上12MPa以下であることを特徴とする方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows.
(1) A polycrystalline grain-oriented electrical steel sheet having a tension-imparting coating on the surface of a steel sheet subjected to magnetic domain refinement treatment, the steel sheet being an angle formed with the rolling direction among three <001> axes The area of the region where the elevation angle of the <001> axis with respect to the steel sheet surface, which is the smallest, is 1 ° or less is 80% or more of the steel sheet surface area, and the tensile stress in the coating is 5 MPa or more and 12 MPa or less. Electrical steel sheet.

(2)前記〈001〉軸の鋼板表面に対する仰角が1°以下である領域の面積が鋼板表面積の95%以上である上記(1)に記載の方向性電磁鋼板。 (2) the <001> oriented electrical steel sheet according area of the region elevation to the steel sheet surface of the shaft is 1 ° or less in the above (1) is 95% or more of the steel plate surface area.

(3)鋼板表面に、膜厚が0.3〜2.0μmのTiN被膜を有する上記(1)または(2)に記載の方向性電磁鋼板。 (3) on the surface of the steel sheet, oriented electrical steel sheet towards according to (1) or (2) the film thickness has a TiN coating 0.3 to 2.0 .mu.m.

(4)鋼板表面に、膜厚が1.0〜3.5μmのガラスを主体とする被膜を有する上記(1)または(2)に記載の方向性電磁鋼板。 (4) The grain-oriented electrical steel sheet according to (1) or (2) , wherein the steel sheet has a coating film mainly composed of glass having a film thickness of 1.0 to 3.5 μm.

本発明によれば、容易に得られる低い引張応力により、十分な鉄損低減効果を実現できる。従って、高引張応力被膜が有する剥離特性の劣化という問題を回避することが可能であり、また高引張応力を得るために必要となる膜厚の増加を抑え、占積率の高い鋼板を得ることが出来る。   According to the present invention, a sufficient iron loss reduction effect can be realized by the low tensile stress that can be easily obtained. Therefore, it is possible to avoid the problem of deterioration of the peeling characteristics of the high tensile stress film, and to suppress the increase in the film thickness necessary for obtaining the high tensile stress and to obtain a steel sheet having a high space factor. I can do it.

次に、本発明を導くに到った実験結果について、詳しく説明する。
実験1
まず、Si:3mass%を含有する板厚:0.23mmの鋼板に、脱炭・一次再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った。次いで、得られたフォルステライト被膜付き方向性電磁鋼板に、プラズマジェット法により磁区細分化処理を施した後、X線ラウエ回折による結晶方位解析を5mm間隔で行い、結晶方位を特定した。そして、α角の影響を除くために、α角<1°で、かつβ角の測定値が0.3°、1.0°、1.4°および2.7°のそれぞれから±0.1°以内となる試験片4種を切り出し、引張応力付加治具を用いて、鋼板両端を圧延方向に15MPaまで順に引張り、その状態で交流鉄損特性を測定した。
Next, the experimental results that led to the present invention will be described in detail.
Experiment 1
First, decarburization and primary recrystallization annealing were applied to a steel sheet containing Si: 3 mass%: 0.23 mm, followed by the application of an annealing separator mainly composed of MgO, followed by final finish annealing. . Next, the obtained forsterite-coated grain-oriented electrical steel sheet was subjected to magnetic domain subdivision treatment by a plasma jet method, and then crystal orientation analysis by X-ray Laue diffraction was performed at intervals of 5 mm to identify the crystal orientation. In order to eliminate the influence of the α angle, four types of test pieces with an α angle <1 ° and a measured value of the β angle within ± 0.1 ° from each of 0.3 °, 1.0 °, 1.4 ° and 2.7 ° Using a jig for cutting and applying a tensile stress, both ends of the steel plate were pulled in order in the rolling direction up to 15 MPa, and AC iron loss characteristics were measured in that state.

なお、プラズマジェット法による磁区細分化処理とは、非特許文献2に記載されるような高温のプラズマ炎を鋼板圧延方向と直角方向に5mm間隔で照射し、線状の熱歪領域を与えたものである。
また、ラウエ回折による結晶方位解析は、鋼板表面にX線を照射し、その反射の回折スポットから結晶方位を測定する手法であり、今回は鋼板表面を5mm間隔のメッシュに区切り、メッシュ各交点部分の測定を行って、これを平均して各試験片の結晶方位とした。
In addition, the magnetic domain subdivision process by the plasma jet method is a high-temperature plasma flame as described in Non-Patent Document 2 is irradiated at intervals of 5 mm in the direction perpendicular to the rolling direction of the steel sheet to give a linear thermal strain region. Is.
The crystal orientation analysis by Laue diffraction is a method of irradiating the steel plate surface with X-rays and measuring the crystal orientation from the reflected diffraction spot. This time, the steel plate surface is divided into meshes with intervals of 5 mm, and each mesh intersection part. Was measured and averaged to obtain the crystal orientation of each test piece.

かくして得られたβ角の特定された方向性電磁鋼板における、引張応力付加時の交流鉄損特性について調べた結果を図2に示す。ここで、W17/50は50Hzおよび1.7Tで励磁した際の鉄損値である。 FIG. 2 shows the results of examining the AC iron loss characteristics when a tensile stress is applied in the grain-oriented electrical steel sheet with the specified β angle thus obtained. Here, W 17/50 is the iron loss value when excited at 50 Hz and 1.7 T.

図2に見られるように、βが1°以下の試料において、それより大きいβ角の試料とは鉄損の改善挙動が変化している。すなわち、β>1°の試料では、引張応力の付加に伴って鉄損が徐々に改善する、従来の知見通りの挙動を示すが、β≦1°の試料では低引張応力域にて急激な鉄損の改善を示し、その後、張力が10MPa付近において鉄損が極小値をとる。
このような張力による鉄損改善の挙動は、高β角の領域で起こるような、引張でランセット磁区が消失して磁区細分化が生じて鉄損が改善されるといった、メカニズムではないと考えられる。すなわち、低β角であるβ≦1°の領域では、磁区細分化処理を施した際に不可避的に生じる補助磁区が非常に大きくなり、そこに適正な張力を付与することによって補助磁区が急減に小さくなって、磁区細分化効果が十分に発揮されたことによるものと考えられる。
As can be seen in FIG. 2, the improvement behavior of iron loss is changed in a sample having β of 1 ° or less as compared with a sample having a larger β angle. In other words, the β> 1 ° sample shows a behavior as in the conventional knowledge in which the iron loss gradually improves with the addition of the tensile stress, but the β ≦ 1 ° sample shows a sharp increase in the low tensile stress region. It shows an improvement in iron loss, and then the iron loss takes a minimum value when the tension is around 10 MPa.
The behavior of iron loss improvement due to such tension is not considered to be a mechanism that the lancet magnetic domain disappears due to tension and magnetic domain fragmentation occurs and iron loss is improved as occurs in the high β angle region. . That is, in the region of β ≦ 1 °, which is a low β angle, the auxiliary magnetic domains that are inevitably generated when the magnetic domain subdivision processing is performed become extremely large, and the auxiliary magnetic domains are rapidly reduced by applying appropriate tension thereto. This is considered to be due to the fact that the magnetic domain fragmentation effect was sufficiently exhibited.

実験2
フォルステライト被膜は小さいながらも被膜に引張応力を有しており、鋼板に付加する引張応力の値を限定するには適当ではない。また、表面に凹凸が生じてしまい、その影響も含まれている。そこで、実験1同様の手法により得たフォルステライト被膜付き方向性電磁鋼板に、酸洗そして化学研磨を施し、フォルステライト被膜を有していない表面形状が極めて平滑な、板厚が0.20mmの鋼板を準備し、この鋼板につき、実験1と同様にプラズマジェット法により磁区細分化処理を施し、再度実験を行った。
かくして得られたβ角の特定された方向性電磁鋼板における、引張応力付加時の交流鉄損特性について調べた結果を、図3に示す。
Experiment 2
Although the forsterite film is small, it has a tensile stress on the film, and is not suitable for limiting the value of the tensile stress applied to the steel sheet. Further, irregularities are generated on the surface, and the influence thereof is also included. Therefore, the grain-oriented electrical steel sheet with forsterite coating obtained by the same method as in Experiment 1 was pickled and chemically polished, and the surface shape without the forsterite coating was extremely smooth, and the thickness was 0.20 mm. This steel sheet was subjected to a magnetic domain fragmentation treatment by the plasma jet method in the same manner as in Experiment 1, and the experiment was performed again.
FIG. 3 shows the results of examining the AC iron loss characteristics when tensile stress is applied in the grain-oriented electrical steel sheet with the specified β angle thus obtained.

図3に見られるように、図2の結果と同様、βが1°以下の試料において、それより大きいβ角の試料とは鉄損の改善挙動が変化しており、β≦1°の試料では低引張応力により急激に鉄損の改善を示し、その後、張力が5〜10MPa付近において鉄損が極小をとった。
またβ≦1°の試料での12MPa以下の低引張応力付加時の鉄損値は、フォルステライト被膜材同様、引張応力付加時最高の鉄損を示すとされているβ=2°近傍の試料に15MPaもの高引張応力を付加したものと同等の値を示していた。
以上の実験結果により、本発明は導かれたものである。
As can be seen in FIG. 3, in the sample with β of 1 ° or less, the iron loss improvement behavior is different from the sample with β angle larger than that in the sample of β ≦ 1 °. Shows a drastic improvement in iron loss due to low tensile stress, and then the iron loss was minimized when the tension was around 5 to 10 MPa.
In addition, the iron loss value when a low tensile stress of 12 MPa or less is applied to a sample with β ≦ 1 ° is the same as the forsterite coating material, and the sample near β = 2 ° is said to show the highest iron loss when a tensile stress is applied. In addition, a value equivalent to that obtained by applying a high tensile stress of 15 MPa was shown.
The present invention has been derived from the above experimental results.

以下に、本発明の電磁鋼板について、その要件の限定理由を説明する。
[圧延方向とほぼ平行な〈001〉軸の鋼板表面に対する仰角βが1°以下]
上述の実験結果では、β>1°の試料では、いずれも引張応力により鉄損は改善するものの、高い引張応力が付与されるに連れて徐々に鉄損が改善する挙動を示した。すなわち鉄損改善には高張力が必要となり、耐剥離特性が劣化する。
一方、β≦1°の試料に関しては、10MPa程度を極小とした、12MPa以下の低引張応力で大きな鉄損改善効果があり、耐剥離特性と鉄損特性を両立できる。
以上から、β角は1°以下とする。
Below, the reason for limitation of the requirements is explained about the electrical steel sheet of the present invention.
[An elevation angle β with respect to the steel plate surface of the <001> axis that is substantially parallel to the rolling direction is 1 ° or less.]
In the above experimental results, all the samples with β> 1 ° showed a behavior in which the iron loss was gradually improved as a high tensile stress was applied, although the iron loss was improved by the tensile stress. That is, high tension is required to improve the iron loss, and the peel resistance is deteriorated.
On the other hand, a sample with β ≦ 1 ° has a large iron loss improvement effect at a low tensile stress of 12 MPa or less, with a minimum of about 10 MPa, and can achieve both peeling resistance and iron loss characteristics.
From the above, the β angle is 1 ° or less.

[β≦1°の領域が鋼板表面積の80%以上(好ましくは95%以上)]
β≦1°の領域が鋼板に占める比率、具体的には、X線ラウエ回折実験により5mm間隔の測定点で得られたβ角が1°以下となる測定点が全測定点中80%未満であると、その鉄損改善挙動は引張応力により徐々に鉄損改善が進むという、図2あるいは図3に示すβ>1°の試料と同様の挙動となり、低引張応力域で鉄損が極小値をとることがないので、低引張応力で低鉄損を得ることが出来なくなる。これより5MPa以上の低引張応力により、現状得られるβ角が2°程度の試料に15MPaの高引張応力を付加した鉄損と同等の鉄損値を得ることが出来た。よって、β≦1°の領域が鋼板表面積の80%以上となる必要がある。
さらに、集積率が高まり、その面積率が95%以上となると、引張応力による鉄損改善挙動は完全に図2あるいは図3の鋼板全域がβ≦1°となる試料と同一の挙動を示すようになる。
[A region where β ≦ 1 ° is 80% or more (preferably 95% or more) of the steel plate surface area]
Ratio of β ≦ 1 ° to steel sheet, specifically, the measurement points where β angle obtained at the measurement point of 5mm interval by X-ray Laue diffraction experiment is 1 ° or less is less than 80% of all measurement points If this is the case, the iron loss improvement behavior is the same behavior as the sample of β> 1 ° shown in FIG. 2 or FIG. 3 in which the iron loss improvement gradually progresses due to the tensile stress, and the iron loss is minimal in the low tensile stress region. Since no value is taken, low iron loss cannot be obtained with low tensile stress. As a result, with a low tensile stress of 5 MPa or more, an iron loss value equivalent to an iron loss obtained by adding a high tensile stress of 15 MPa to a sample having a β angle of about 2 ° obtained at present can be obtained. Therefore, the region of β ≦ 1 ° needs to be 80% or more of the steel plate surface area.
Further, when the accumulation rate increases and the area ratio becomes 95% or more, the iron loss improvement behavior due to the tensile stress is completely the same as that of the sample in which the entire steel plate in FIG. 2 or FIG. 3 has β ≦ 1 °. become.

[被膜における引張応力が5MPa以上12MPa以下]
上述の実験結果から、低β角を有する鋼板に付加する引張応力は5MPa未満の弱い引張応力であっても高β角の鋼板に比べて大きい鉄損改善効果が得られることがわかる。さらに、その引張応力が5MPa以上になると、高β角の鋼板に高引張応力を付加した鉄損に匹敵する鉄損値を得ることができる。
[Tensile stress in the coating is 5MPa or more and 12MPa or less]
From the above experimental results, it can be seen that even if the tensile stress applied to the steel sheet having a low β angle is a weak tensile stress of less than 5 MPa, a large iron loss improvement effect can be obtained as compared with the steel sheet having a high β angle. Furthermore, when the tensile stress is 5 MPa or more, an iron loss value comparable to the iron loss obtained by applying high tensile stress to a high β-angle steel sheet can be obtained.

ここで、高い引張応力を生じる被膜は剥離特性が悪いことは前述のとおりである。そこで、引張付与被膜を成膜後、室温(25°)条件下で70mmφ〜10mmφの円筒に沿わせる形で鋼板を曲げ、その際に剥離が生じる円筒の径により、被膜の耐剥離特性を検証した。その結果を、図4に示す。   Here, as described above, a coating film that generates a high tensile stress has poor peeling characteristics. Therefore, after depositing the tensile coating, the steel sheet is bent along a 70mmφ to 10mmφ cylinder at room temperature (25 °), and the peeling resistance of the coating is verified by the diameter of the cylinder where peeling occurs. did. The result is shown in FIG.

図4から明らかなように、耐剥離特性は13MPa程度で劣化し始めている。そのため、剥離特性をよくするためには少なくとも13MPa以下とすることが必要である。そして、前述のとおり、12MPa以下の引張応力とすることで、鉄損特性と耐剥離特性の両立が可能となる。   As is clear from FIG. 4, the peel resistance starts to deteriorate at about 13 MPa. Therefore, in order to improve the peeling characteristics, it is necessary to set it to at least 13 MPa or less. As described above, by setting the tensile stress to 12 MPa or less, it is possible to achieve both iron loss characteristics and peeling resistance characteristics.

[膜厚0.3〜2.0μmのTiN被膜または膜厚1.0〜3.5μmのガラスを主体とする被膜]
被膜としては、TiN被膜およびガラスを主体とする被膜を用いることができ、それぞれの被膜は、化学蒸着や真空蒸着による方法、または主成分を鋼板に塗布した後焼付けにより成膜する方法等を用いて成膜することができる。これらの被膜により得られる引張応力は、熱膨張係数に依存しているため、同一成分の被膜であっても成膜時の温度によって、被膜引張応力の大きさが異なるものとなる。そこで、TiN被膜およびガラスを主体とする被膜について、それぞれ5〜12MPaの引張応力を得るために必要となる膜厚を求めた。
[Film mainly composed of TiN film with a film thickness of 0.3 to 2.0 μm or glass with a film thickness of 1.0 to 3.5 μm]
As the coating, a TiN coating and a coating mainly composed of glass can be used, and each coating uses a method by chemical vapor deposition or vacuum deposition, or a method in which a main component is applied to a steel plate and then deposited by baking. To form a film. Since the tensile stress obtained by these films depends on the thermal expansion coefficient, the magnitude of the film tensile stress varies depending on the temperature at the time of film formation even if the films have the same component. Therefore, for the TiN film and the film mainly composed of glass, the film thickness required to obtain a tensile stress of 5 to 12 MPa was determined.

さて、上記β角を制御して引張応力効果を有する鋼板の片側だけに成膜すると、成膜した側のみに引張応力がかかる結果、鋼板に反りが生じる。この室温(25°)の条件下での鋼板の反りと鋼板ヤング率との関係から、鋼板に付与されている引張応力を算出し、この結果から5〜12MPaの引張応力を得るために必要となる膜厚を求めたところ、TiN被膜の膜厚は0.3〜2.0μmおよびガラスを主体とする被膜の膜厚は1.0〜3.5μmとなった。   When the β angle is controlled to form a film only on one side of a steel sheet having a tensile stress effect, the steel sheet is warped as a result of applying a tensile stress only to the formed side. From the relationship between the warpage of the steel sheet and the Young's modulus of the steel sheet at room temperature (25 °), the tensile stress applied to the steel sheet is calculated, and it is necessary to obtain a tensile stress of 5 to 12 MPa from this result. As a result, the film thickness of the TiN film was 0.3 to 2.0 μm, and the film thickness of the film mainly composed of glass was 1.0 to 3.5 μm.

なお、引張応力の算出は、図5に示すように、鋼板(地鉄)の片面に成膜した際の反り具合として、LおよびXを測定し、次の2式
L=2Rsin(θ/2)
X=R{1−cos(θ/2)}
より、曲率半径Rは
R=(L2+4X2)/8X
となるところから、この式に、LおよびXを代入して曲率半径Rを算出する。次いで、算出した曲率半径Rを、次式に代入すれば、地鉄表面の引張応力σを求めることができる。
σ=E・ε=E・(d/2R)
ただし、ε:地鉄界面歪(板厚中央でε=0)
d:板厚
E:ヤング率(E100=1.4 MPa)
As shown in FIG. 5, the tensile stress is calculated by measuring L and X as warpage when a film is formed on one surface of a steel plate (ground iron), and the following two formulas L = 2Rsin (θ / 2) )
X = R {1-cos (θ / 2)}
Therefore, the radius of curvature R is R = (L 2 + 4X 2 ) / 8X
Therefore, the curvature radius R is calculated by substituting L and X into this equation. Next, if the calculated radius of curvature R is substituted into the following equation, the tensile stress σ on the surface of the ground iron can be obtained.
σ = E · ε = E · (d / 2R)
Where ε: Strain at the interface between iron and steel (ε = 0 at the center of the plate thickness)
d: Plate thickness
E: Young's modulus (E 100 = 1.4 MPa)

次に、本発明の電磁鋼板は、以下に示す製造方法が考えられる。
通常、コイル状で行われる最終仕上焼鈍によれば、およそβ=0°の二次再結晶粒が発生しても、成長がコイルに沿って行われるため、コイルの外側で±1.5°、内側では±2.0°のばらつきが生じる。従って、鋼板表面積の80%以上においてβ角を1°以内とする鋼板を得ることは極めて難しい。しかし、二次再結晶粒が微細になるように粒成長を制御すれば、コイルに沿った結晶方位の変動も抑制されるため、β≦1°に制御することが可能になる。
Next, the manufacturing method shown below can be considered for the electrical steel sheet of the present invention.
Normally, according to the final finish annealing performed in a coil shape, even if secondary recrystallized grains of approximately β = 0 ° are generated, the growth is performed along the coil. Then, a variation of ± 2.0 ° occurs. Therefore, it is extremely difficult to obtain a steel sheet having a β angle within 1 ° at 80% or more of the steel sheet surface area. However, if the grain growth is controlled so that the secondary recrystallized grains become fine, fluctuations in the crystal orientation along the coil can be suppressed, so that β ≦ 1 ° can be controlled.

このためには、二次再結晶粒を細粒にする元素であるSnやSb等の元素の添加などが、有効である。もしくは、コイル焼鈍によるばらつきをなくすために、コイル形状で行わずシート状で連続焼鈍したり、直径の極めて大きなコイルによる焼鈍に変更したりして焼鈍を行っても良い。さらには、磁場中での焼鈍等により、積極的に結晶方位を制御する等が考えられる。 For this purpose, addition of elements such as Sn and Sb, which are elements that make secondary recrystallized grains fine, is effective. Or, in order to eliminate variations due to coil annealing, or continuous annealing in sheet form without a coil shape may be performed an annealing or changing the annealing by a very large diameter coil. Furthermore, it is conceivable to actively control the crystal orientation by annealing in a magnetic field.

なお、その他の製造条件は、方向性電磁鋼板の一般に従えばよい。   In addition, what is necessary is just to follow other general manufacturing conditions of a grain-oriented electrical steel sheet.

かくして得られた鋼板に、さらに磁区細分化処理を施す。この磁区細分化処理としては、レーザーやプラズマ炎等を照射したり、エッチングを施す等の手法により鋼板表面に、線状の溝を形成する。あるいは、機械的に線状や点状の歪を与える等の処理が好適である。   The steel sheet thus obtained is further subjected to magnetic domain refinement treatment. As this magnetic domain subdivision treatment, linear grooves are formed on the surface of the steel sheet by a technique such as irradiation with laser or plasma flame or etching. Alternatively, a process such as mechanically giving a linear or point-like distortion is suitable.

ついで、磁区細分化処理後の鋼板表面に、鉄損を改善するために、引張応力を有する被膜を生成させるが、その目的のためには2種類以上の被膜からなる多層膜構造としても良い。また、用途に応じて、樹脂等を混合させたコーティングを施しても良い。また、本発明の方向性電磁鋼板では、低引張応力により低鉄損が得られるため、特公昭59-17521号公報や特開昭53-28043号公報等にある、コロイダルシリカ、リン酸塩および無水クロム酸等からなるガラス状コーティングの利用や、特開平6-65755号公報等にあるホウ酸アルミニウムを主成分とする引張応力被膜や、TiNを用いCVD法やPVD法で成膜するセラミック被膜(例えば特公昭63-54767号公報参照)を用いることができる。   Next, in order to improve iron loss on the surface of the steel sheet after the magnetic domain refinement treatment, a film having a tensile stress is generated. For this purpose, a multilayer film structure composed of two or more kinds of films may be used. Moreover, you may give the coating which mixed resin etc. according to a use. Further, in the grain-oriented electrical steel sheet of the present invention, low iron loss can be obtained by low tensile stress. Therefore, colloidal silica, phosphate and the like described in JP-B-59-17521, JP-A-53-28043, and the like. Use of glassy coating made of chromic anhydride, etc., tensile stress film mainly composed of aluminum borate, as disclosed in JP-A-6-65755, etc., and ceramic film formed by TiN using CVD or PVD method (See, for example, Japanese Patent Publication No. 63-54767).

C:0.01mass%およびSi:3.4mass%を基本成分とし二次粒微細化元素であるSnを0.15%まで種々の量で含有した鋼スラブを、連続鋳造にて製造したのち、該スラブを加熱後、熱間圧延によって2.2mm厚の熱延板とした。ついで、900℃,3分の条件で熱延板焼鈍を施したのち、圧延によって0.80mmの板厚に仕上げた。その後、910℃,3分の再結晶焼鈍を施し、最終板厚となる0.27mmまで圧延を行った。得られた鋼板に820℃,3分の脱炭焼純を施して、鋼中Cを0.0020mass%まで低減したのち、MgOを主成分とする焼鈍分離剤を塗布し、最終仕上焼鈍を施した。最終仕上焼鈍は、コイル形状とシート形状の両方で行い、窒素雰囲気中850℃まで加熱し、その後、水素および窒素混合雰囲気で1100℃まで加熱し、その後水素雰囲気に切り替えて1180°以上の高温で焼鈍を行った。   C: Steel slabs containing 0.01 mass% and Si: 3.4 mass% as basic components and containing Sn, the secondary grain refining element, in various amounts up to 0.15% are manufactured by continuous casting, and then heated. Thereafter, a hot-rolled sheet having a thickness of 2.2 mm was formed by hot rolling. Next, hot-rolled sheet annealing was performed at 900 ° C. for 3 minutes, and finished to a thickness of 0.80 mm by rolling. Thereafter, recrystallization annealing was performed at 910 ° C. for 3 minutes, and rolling was performed to a final thickness of 0.27 mm. The obtained steel sheet was decarburized and annealed at 820 ° C. for 3 minutes to reduce C in the steel to 0.0020 mass%, and then an annealing separator containing MgO as a main component was applied, followed by final finish annealing. Final finish annealing is performed in both coil shape and sheet shape, heated to 850 ° C in nitrogen atmosphere, then heated to 1100 ° C in hydrogen and nitrogen mixed atmosphere, then switched to hydrogen atmosphere at a high temperature of 1180 ° C or higher Annealing was performed.

次に、得られた鋼板を100mm×300mmに剪断し、その表面の5mm間隔でX線ラウエ回折を行い、鋼板のβ角を測定した。さらに、その測定結果から、β≦1°となる面積を決定した各種の試験板を得た。これら試験板には、プラズマジェット法により磁区細分化処理を施した。なお、試験板は、フォルステライト被膜を有した鋼板と化学研磨により表面を平滑にした鋼板との両方を用意した。そして、無引張応力時の鉄損がほぼ同等で、β≦1°となる面積率のみが違う試料について比較を行った。さらに、引張応力の付加は、鋼板表面にCVD法によりTiNの被膜を形成して行った。そして、その膜厚を変化させることにより引張応力を変化させた。   Next, the obtained steel plate was sheared to 100 mm × 300 mm, X-ray Laue diffraction was performed at 5 mm intervals on the surface, and the β angle of the steel plate was measured. Furthermore, from the measurement results, various test plates were determined in which the area satisfying β ≦ 1 ° was determined. These test plates were subjected to magnetic domain fragmentation by the plasma jet method. In addition, the test plate prepared both the steel plate which has a forsterite film, and the steel plate which smooth | blunted the surface by chemical polishing. Then, comparison was made with respect to samples in which the iron loss at the time of no tensile stress was almost the same and only the area ratio for which β ≦ 1 ° was different. Furthermore, the tensile stress was applied by forming a TiN film on the surface of the steel plate by the CVD method. And the tensile stress was changed by changing the film thickness.

かくして得られた鋼板について、鉄損W17/50と被膜の耐剥離性とを調査した。その結果を表1に示すように、発明材(フォルステライト被膜なし)では、5MPaの引張応力付加で約0.1W/kgの改善が実現しており、約0.6W/kgという極めて低い鉄損を示している。
さらに、発明材(フォルステライト被膜あり)では、5MPaの引張応力付加で約0.08W/kgの改善が起こっており、0.7W/kg未満の低い鉄損を示している。
The steel sheet thus obtained was examined for iron loss W 17/50 and peel resistance of the coating. As shown in Table 1, the invention material (without forsterite coating) has achieved an improvement of about 0.1 W / kg with the addition of 5 MPa tensile stress, resulting in an extremely low iron loss of about 0.6 W / kg. Show.
Furthermore, the invention material (with forsterite coating) has improved by about 0.08 W / kg with the addition of 5 MPa tensile stress, indicating a low iron loss of less than 0.7 W / kg.

Figure 0004311230
Figure 0004311230

従来の方向性電磁鋼板は、加工などにより引張応力被膜の有する引張応力を打ち消す圧縮カが加わると鉄損が劣化してしまい、素材特性から予想された特性より、製品加工後の特性が悪くなってしまう問題があった。しかし、本発明では、5MPa〜12MPaでほぼ一定の鉄損値を示すことから、仮に10MPaの引張応力を持つ被膜を付与した場合、5MPa程度の圧縮力によっても鉄損特性が変化しない、すなわち歪感受性が極めて小さく、最終的な製品特性を予想しやすいという点でも極めて有用である。   In conventional grain-oriented electrical steel sheets, the iron loss deteriorates when compression force is applied to counteract the tensile stress of the tensile stress coating due to processing, etc., and the characteristics after product processing become worse than those expected from the material characteristics. There was a problem. However, in the present invention, since the iron loss value is almost constant at 5 MPa to 12 MPa, if a film having a tensile stress of 10 MPa is applied, the iron loss characteristics do not change even with a compressive force of about 5 MPa, that is, strain It is also very useful in that the sensitivity is very small and the final product characteristics are easy to predict.

ゴス方位({110}〈001〉)と圧延方向のずれ角を説明した模式図である。It is a schematic diagram explaining the deviation angle between the Goth direction ({110} <001>) and the rolling direction. フォルステライト被膜材における引張応力付加時の鉄損改善挙動を示す図である。It is a figure which shows the iron loss improvement behavior at the time of the tensile stress addition in a forsterite coating material. 化学研磨材における引張応力付加時の鉄損改善挙動を示す図である。It is a figure which shows the iron loss improvement behavior at the time of the tensile stress addition in a chemical abrasive. 引張応力被膜の剥離特性を示す図である。It is a figure which shows the peeling characteristic of a tensile stress film. 被膜引張応力評価方法を示す図である。It is a figure which shows the film tensile stress evaluation method.

Claims (4)

磁区細分化処理を施した鋼板の表面に、張力付与型の被膜を有する多結晶方向性電磁鋼板であって、該鋼板は、3方向ある〈001〉軸のうち圧延方向となす角度が最も小さい〈001〉軸の鋼板表面に対する仰角が1°以下である領域の面積が鋼板表面積の80%以上であり、かつ被膜における引張応力が5MPa以上12MPa以下であることを特徴とする方向性電磁鋼板。 A polycrystalline grain-oriented electrical steel sheet having a tension-applying coating on the surface of a steel sheet subjected to magnetic domain refinement, the steel sheet having the smallest angle with the rolling direction among the <001> axes in three directions A grain-oriented electrical steel sheet characterized in that the area of an elevation angle of the <001> axis with respect to the steel sheet surface is 1 ° or less is 80% or more of the steel sheet surface area, and the tensile stress in the coating is 5 MPa or more and 12 MPa or less. 前記〈001〉軸の鋼板表面に対する仰角が1°以下である領域の面積が鋼板表面積の95%以上である請求項1に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1, wherein the area of the region where the elevation angle of the <001> axis to the steel sheet surface is 1 ° or less is 95% or more of the surface area of the steel sheet. 鋼板表面に、膜厚が0.3〜2.0μmのTiN被膜を有する請求項1または2に記載の方向性電磁鋼板。   The grain-oriented electrical steel sheet according to claim 1 or 2, having a TiN film having a film thickness of 0.3 to 2.0 µm on the steel sheet surface. 鋼板表面に、膜厚が1.0〜3.5μmのガラスを主体とする被膜を有する請求項1または2に記載の方向性電磁鋼板。   The grain-oriented electrical steel sheet according to claim 1 or 2, wherein the steel sheet has a coating mainly composed of glass having a film thickness of 1.0 to 3.5 µm.
JP2004051494A 2004-02-26 2004-02-26 Oriented electrical steel sheet Expired - Fee Related JP4311230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051494A JP4311230B2 (en) 2004-02-26 2004-02-26 Oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051494A JP4311230B2 (en) 2004-02-26 2004-02-26 Oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2005240102A JP2005240102A (en) 2005-09-08
JP4311230B2 true JP4311230B2 (en) 2009-08-12

Family

ID=35022140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051494A Expired - Fee Related JP4311230B2 (en) 2004-02-26 2004-02-26 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4311230B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647655B1 (en) * 2014-12-15 2016-08-11 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
CN112513306B (en) 2018-07-31 2022-05-24 日本制铁株式会社 Grain-oriented electromagnetic steel sheet
KR102457420B1 (en) 2018-07-31 2022-10-24 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
BR112022015126A2 (en) 2020-02-05 2022-09-27 Nippon Steel Corp ORIENTED GRAIN ELECTRIC STEEL SHEET
US20230084111A1 (en) 2020-02-05 2023-03-16 Nippon Steel Corporation Grain oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2005240102A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US6562473B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
JP5858052B2 (en) Coated grain-oriented electrical steel sheet and manufacturing method thereof
RU2721969C1 (en) Product from textured silicon steel with low losses in iron for transformer with low noise level and method of production thereof
KR101551781B1 (en) Grain-oriented electrical steel sheet
JP2009018573A (en) Grain-oriented electromagnetic steel sheet including electrically insulating coating
WO2016129291A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
JP4311230B2 (en) Oriented electrical steel sheet
JPWO2020149347A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2021046592A (en) Grain-oriented electromagnetic steel sheet
JP6350773B1 (en) Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
JP6660025B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP4734455B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JP3333798B2 (en) Grain-oriented electrical steel sheet with low iron loss
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
WO2019013352A1 (en) Oriented electromagnetic steel plate
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2002220644A (en) Grain-oriented electromagnetic steel sheet with satisfactory properties of high frequency iron loss, and manufacturing method therefor
JP7329049B2 (en) Electrical steel sheet and manufacturing method thereof
CN114762911A (en) Low-magnetostriction oriented silicon steel and manufacturing method thereof
WO2020012665A1 (en) Grain-oriented electromagnetic steel sheet and manufacturing method for same
BR112021013687A2 (en) METHOD TO PRODUCE AN ORIENTED GRAIN ELECTRIC STEEL SHEET
JP2006265685A (en) Grain-oriented magnetic steel sheet and producing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4311230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees