JP3333798B2 - Grain-oriented electrical steel sheet with low iron loss - Google Patents

Grain-oriented electrical steel sheet with low iron loss

Info

Publication number
JP3333798B2
JP3333798B2 JP08786795A JP8786795A JP3333798B2 JP 3333798 B2 JP3333798 B2 JP 3333798B2 JP 08786795 A JP08786795 A JP 08786795A JP 8786795 A JP8786795 A JP 8786795A JP 3333798 B2 JP3333798 B2 JP 3333798B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
iron loss
aspect ratio
average aspect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08786795A
Other languages
Japanese (ja)
Other versions
JPH08288115A (en
Inventor
邦浩 千田
昌義 石田
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP08786795A priority Critical patent/JP3333798B2/en
Publication of JPH08288115A publication Critical patent/JPH08288115A/en
Application granted granted Critical
Publication of JP3333798B2 publication Critical patent/JP3333798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電気
機器の鉄心に用いて好適な低鉄損方向性電磁鋼板に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss magnetic steel sheet suitable for use in iron cores of transformers and other electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、変圧器やその他の電
気機器用鉄心として利用され、磁気特性に優れること、
なかでも鉄損の低いことが要求される。この鉄損は概ね
ヒステリシス損と渦電流損の和で表すことができ、この
ヒステリシス損は強い抑制力をもつインヒビターを用い
ることにより、結晶方向をゴス方位、すなわち(11
0)〈001〉方位に高度に集積させること、磁化した
とき磁壁移動の際のピンニング因子の生成原因となる不
純物元素を低減させること、等により大幅に低減されて
きた。一方、渦電流損については、Si含有量を増加して
電気抵抗を増大させること、鋼板板厚を薄くすること、
鋼板地鉄表面に地鉄と熱膨張係数の異なる被膜を形成し
て地鉄に張力を付与すること、結晶粒の微細化により磁
区幅を縮小すること、等によって低減が図られてきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as cores for transformers and other electrical equipment, and have excellent magnetic properties.
Above all, low iron loss is required. The iron loss can be generally represented by the sum of the hysteresis loss and the eddy current loss, and the hysteresis loss is determined by using an inhibitor having a strong suppressing force to change the crystal direction to the Goss orientation, that is, (11).
0) It has been greatly reduced by highly integrating in the <001> direction, by reducing impurity elements which cause generation of a pinning factor at the time of domain wall movement when magnetized, and the like. On the other hand, regarding eddy current loss, increasing the Si content to increase the electrical resistance, reducing the thickness of the steel sheet,
The reduction has been attempted by forming a film having a different thermal expansion coefficient from that of the base steel on the surface of the steel base steel to impart tension to the base steel, reducing the magnetic domain width by refining crystal grains, and the like.

【0003】さらに渦電流損を低減すべく鋼板の圧延方
向とほぼ垂直な方向に磁極を導入し、180 度磁区を細分
化する方法が開発されており、非耐熱型磁区細分化法と
してレーザー光(特公昭57-2252 号公報)、プラズマ炎
(特開昭62-96617号公報)等を照射する方法、耐熱型磁
区細分化法としては、2次再結晶後の鋼板に機械的加工
により溝を形成する方法(特公昭50-35679号公報)、仕
上焼鈍前に圧延方向と直交する方向に線状の刻み目を導
入する方法(特公平3-69968号公報)などがそれぞれ開
示されている。
[0003] In order to further reduce eddy current loss, a method has been developed in which a magnetic pole is introduced in a direction substantially perpendicular to the rolling direction of the steel sheet to subdivide the 180-degree magnetic domain. (Japanese Patent Publication No. 57-2252), a method of irradiating a plasma flame (Japanese Patent Application Laid-Open No. 62-96617) and the like, and a heat-resistant magnetic domain subdivision method include forming grooves in a steel sheet after secondary recrystallization by mechanical processing. (Japanese Patent Publication No. 50-35679) and a method of introducing a linear notch in a direction perpendicular to the rolling direction before finish annealing (Japanese Patent Publication No. 3-69968).

【0004】また、特開昭54-40223号公報には結晶の
[001]方位の圧延面からの傾斜角を適正に制御する
ことで渦電流損を低減する方法が開示されている。
Japanese Patent Application Laid-Open No. 54-40223 discloses a method for reducing eddy current loss by appropriately controlling the inclination angle of a crystal from a rolled surface in the [001] direction.

【0005】[0005]

【発明が解決しようとする課題】このように従来は、ヒ
ステリシス損低減のためには結晶方位のゴス方位への集
積が、また渦電流損の低減のためには圧延方向の磁区幅
の低減が主に図られてきたが、これらの方法のみでは今
まで以上の大幅な鉄損の改善は期待できなくなってき
た。
As described above, conventionally, in order to reduce the hysteresis loss, integration of the crystal orientation in the Goss orientation and to reduce eddy current loss, the magnetic domain width in the rolling direction has to be reduced. Although mainly aimed at, it is no longer possible to expect a significant improvement in iron loss by using these methods alone.

【0006】この発明は、上記鉄損低減の要請に有利に
適合するものであり、方向性電磁鋼板の鉄損要因とし
て、新たに鋼板内の磁束密度分布の不均一に着目し、2
次再結晶の形状を規定することにより、このような不均
一を低減し、その結果、従来にも増して低鉄損を達成し
た方向性電磁鋼板を提案することを目的とするものであ
る。
The present invention advantageously satisfies the above requirement for reduction of iron loss, and newly focuses on non-uniformity of magnetic flux density distribution in a steel sheet as a factor of iron loss of a grain-oriented electrical steel sheet.
An object of the present invention is to propose a grain-oriented electrical steel sheet which reduces such non-uniformity by defining the shape of the secondary recrystallization, and as a result, achieves a lower iron loss than ever before.

【0007】[0007]

【課題を解決するための手段】この発明は、最終仕上げ
焼鈍を経た含けい素鋼板につき、鋼板表面の下地被膜中
にAl成分を 0.1〜0.7 g/m2、Ti成分を 0.1〜0.8 g/m2
有し、2次再結晶粒の圧延方向の長さと板幅方向の長さ
との平均アスペクト比が0.10〜0.95であり、かつ磁化力
800 A/m における磁束密度B8 が1.89 T以上であること
を特徴とする鉄損の低い方向性電磁鋼板である。
SUMMARY OF THE INVENTION The present invention relates to a silicon-containing steel sheet which has been subjected to a final finish annealing, wherein an Al component is contained in an undercoat on the steel sheet surface in an amount of 0.1 to 0.7 g / m 2 and a Ti component is contained in a 0.1 to 0.8 g / m m 2 and containing an average aspect ratio of the length of the rolling direction of the secondary recrystallized grains length and sheet width direction is 0.10 to 0.95, and magnetizing force
800 magnetic flux density B 8 in A / m is less oriented electrical steel sheet iron loss, characterized in that at least 1.89 T.

【0008】ここに、平均アスペクト比は、下記の式
(1)もしくは式(2) にて定めることができる。
Here, the average aspect ratio is expressed by the following equation:
(1) or Equation (2).

【数1】 (Equation 1)

【0009】前述したように方向性電磁鋼板の鉄損は、
ヒステリシス損及び渦電流損の二者に分けられる。前者
は磁壁移動の妨げとなる不純物元素量と、結晶方位[0
01]の圧延方向への集積度とによって決まり、後者は
板厚、比抵抗、磁区幅によって決まるとされている。こ
れらの因子は、鋼板中の局所的な磁束密度の分布が均一
だとするならば、鋼板の磁気特性と良い対応を示し、こ
れらの因子の制御のみで鉄損低減が図られる。
As described above, the iron loss of the grain-oriented electrical steel sheet is as follows.
Hysteresis loss and eddy current loss can be divided into two types. In the former, the amount of the impurity element that hinders the domain wall movement and the crystal orientation [0
01] in the rolling direction, and the latter is determined by the sheet thickness, the specific resistance, and the magnetic domain width. These factors show a good correspondence with the magnetic properties of the steel sheet if the local magnetic flux density distribution in the steel sheet is uniform, and iron loss can be reduced only by controlling these factors.

【0010】しかしながら、現実の多結晶鋼板、特に方
向性電磁鋼板のような結晶粒の大きな鋼板では、励磁状
態における磁束密度は不均一に分布している。この点に
着目して発明者らは、前述のような従来より知られる鉄
損決定因子の他に、鋼板内の局所局所の磁束密度の不均
一が電磁鋼板の鉄損を劣化させる一要因であることを明
らかにした。それゆえ、局所磁束密度分布の不均一度を
軽減した場合、詳しくは次の式(3) で定義される局所磁
束密度分布の不均一度rが0.15以下であるような場合
に、特に優れた磁気特性の鋼板が得られるのである。こ
の知見をもとに発明者らは、2次再結晶粒の形状を適正
化することによって、このような磁束密度分布の均一性
を制御できることを明らかにし、この発明に至ったので
ある。
However, in an actual polycrystalline steel sheet, particularly a steel sheet having a large crystal grain such as a grain-oriented electrical steel sheet, the magnetic flux density in the excited state is unevenly distributed. Focusing on this point, in addition to the previously known iron loss determinant described above, the inventors have found that local non-uniformity of magnetic flux density in the steel sheet is one factor that deteriorates the iron loss of the electromagnetic steel sheet. Revealed that there is. Therefore, when the nonuniformity of the local magnetic flux density distribution is reduced, in particular, when the nonuniformity r of the local magnetic flux density distribution defined by the following equation (3) is 0.15 or less, it is particularly excellent. The result is a steel sheet with magnetic properties. Based on this finding, the present inventors have clarified that the uniformity of the magnetic flux density distribution can be controlled by optimizing the shape of the secondary recrystallized grains, and have reached the present invention.

【数2】 (Equation 2)

【0011】以下、この発明を完成するために発明者ら
が行った、上述の2次再結晶粒の形状に関する種々の実
験及びその結果について述べる。Siを 3.3%含有する鋼
スラブを熱間圧延し、中間焼鈍を挟む2回の冷間圧延を
施して最終板厚としたのち脱炭、1次再結晶焼鈍を施
し、しかるのちに2次再結晶焼鈍、次いで純化焼鈍を施
す一連の工程によって一方向性けい素鋼板を製造するに
当たり、脱炭焼鈍後の鋼板表面に、Al2O3 を0〜10%、
TiO2を0〜15%、SnO2を0〜10%の範囲で種々に含有さ
せたMgO スラリーを塗布した種々の鋼板を、板幅方向に
0℃/cm , 5℃/cm , 10℃/cm , 20℃/cm , 30℃/cm 及
び40℃/cm の各条件になる温度勾配を与えながら昇温し
て2次再結晶を完了させ、次いで1200℃、10時間の純化
焼鈍を行った。
In the following, various experiments on the shape of the above-mentioned secondary recrystallized grains and the results thereof performed by the inventors to complete the present invention will be described. A steel slab containing 3.3% of Si is hot-rolled, subjected to two cold-rollings with intermediate annealing to obtain a final sheet thickness, decarburized, subjected to primary recrystallization annealing, and then to secondary recrystallization. In producing a unidirectional silicon steel sheet by a series of steps of crystal annealing and then purification annealing, 0 to 10% of Al 2 O 3 is added to the steel sheet surface after decarburizing annealing,
Various steel sheets coated with MgO slurry containing various amounts of TiO 2 in the range of 0 to 15% and SnO 2 in the range of 0 to 10% were subjected to 0 ° C / cm, 5 ° C / cm, 10 ° C / The secondary recrystallization was completed by raising the temperature while giving a temperature gradient of each condition of cm 2, 20 ° C./cm, 30 ° C./cm and 40 ° C./cm 2, and then purification annealing was performed at 1200 ° C. for 10 hours. .

【0012】その結果、2次再結晶焼鈍時の板幅方向へ
の温度勾配とMgO 中へのSnO2の添加によって、鋼板平面
内で圧延方向に直交する方向へ長い2次再結晶粒形状の
鋼板が得られた。
As a result, due to the temperature gradient in the sheet width direction during the secondary recrystallization annealing and the addition of SnO 2 into MgO, the secondary recrystallized grains having a long shape in the direction perpendicular to the rolling direction in the plane of the steel sheet. A steel plate was obtained.

【0013】次に、以上のようにして得られた鋼板(板
厚0.23mm)を、圧延方向に長さ 280mm、これと直交する
方向に幅 100mmになる試片に剪断し、得られた試片の鉄
損W1 7/50(最大磁束密度 1.7 T、周波数50Hzにおける損
失)を単板磁気試験器によって測定した。さらに、消磁
状態における各試片の平均的な磁区幅を磁区観察によっ
て求めた。
Next, the steel sheet (plate thickness 0.23 mm) obtained as described above was sheared into a specimen having a length of 280 mm in the rolling direction and a width of 100 mm in a direction perpendicular to the rolling direction. iron loss W 1 7/50 piece (maximum magnetic flux density 1.7 T, the loss at a frequency 50 Hz) were measured by veneer magnetic tester. Further, the average magnetic domain width of each specimen in the demagnetized state was determined by magnetic domain observation.

【0014】その結果、鋼板表面の下地被膜中にAl及び
Tiを含有しないものは、平均の磁区幅が0.40〜0.50mmと
広く、またAlを 0.1 g/m2 未満、Tiを 0.1 g/m2 未満で
下地被膜中に含有する鋼板は磁区幅が0.30〜0.40mmとや
や広かった。これに対し、下地被膜中にAlを0.1 g/m2
上、Tiを0.1 g/m2以上含有するものは平均磁区幅が0.30
mm未満と狭かった。なお、SnO2のMgO への添加による磁
区幅の変化は認められなかった。
As a result, Al and
Containing no Ti is the magnetic domain width of the average is wide and 0.40~0.50Mm, also less than 0.1 g / m 2 of Al, the steel sheet containing the base in the coating is less than 0.1 g / m 2 of Ti has a magnetic domain width 0.30 It was rather wide with ~ 0.40mm. On the other hand, those containing 0.1 g / m 2 or more of Al and 0.1 g / m 2 or more of Ti in the undercoat film have an average magnetic domain width of 0.30 or more.
It was narrow, less than mm. No change in the magnetic domain width due to the addition of SnO 2 to MgO was observed.

【0015】次に、上述の各試片に酸洗マクロエッチン
グを施して2時再結晶組織を露わにし、各結晶粒の圧延
方向の平均長さLi , 圧延方向と直交する方向の平均長
さC i を計測し、前記式(1) により、各試片の平均アス
ペクト比a1 を求めた。ここでLi , i はそれぞれ圧
延方向、圧延方向と直交する方向に5mmごとの直線を引
き、各結晶粒と交差する部分の長さの平均として求め
た。板幅方向の温度勾配と平均アスペクト比a1 との関
係を、SnO2添加量で層別して図1に示す。図1から判る
ように、板幅方向温度勾配が大きくなるに従い、a1
最大値は小さくなっている。またSnO2の添加量が多いほ
ど2次再結晶粒は板幅方向に成長し、小さいアスペクト
比の鋼板が得られている。
Next, the pickling macroetchin was added to each of the above-mentioned specimens.
At 2 o'clock to reveal the recrystallized structure and roll each crystal grain
Average length L in directioni, The average length in the direction perpendicular to the rolling direction
Sa C iIs measured, and the average as
Pect ratio a1I asked. Where Li,CiIs the pressure
Draw a straight line every 5 mm in the direction perpendicular to the rolling direction and rolling direction.
Calculated as the average of the length of the part that intersects with each crystal grain
Was. Temperature gradient in plate width direction and average aspect ratio a1Relationship with
The person in charge, SnOTwoThe results are shown in FIG. Figure 1 shows
Thus, as the temperature gradient in the plate width direction increases, a1of
The maximum value is smaller. Also SnOTwoIs large.
Secondary recrystallized grains grow in the width direction of the plate, and have a small aspect ratio.
A steel sheet with a specific ratio is obtained.

【0016】かかる平均アスペクト比a1 と前述した鉄
損W17/50との関係をグラフ化して図2に示す。図2にお
いては、3水準の平均磁区幅及び下地被膜中Al, Ti含有
量についての結果を示している。すなわち、Al, Tiを下
地被膜中に0.50 g/m2 含有する鋼板では、0.15〜0.20mm
の狭い磁区幅が得られているが、このとき、特に平均ア
スペクト比a1 が0.10〜0.95の範囲にある場合には、極
めて良好な鉄損値が得られている。このように、磁区幅
が細分化された状態において、平均アスペクト比a1
適合範囲内にあれば、磁区幅、平均アスペクト比それぞ
れの効果によって予想される以上の、鉄損低減効果があ
ることが分かる。
FIG. 2 is a graph showing the relationship between the average aspect ratio a 1 and the aforementioned iron loss W 17/50 . FIG. 2 shows the results for the average magnetic domain width at three levels and the Al and Ti contents in the undercoat. That, Al, with steel sheet 2 containing 0.50 g / m in the base film is Ti, 0.15 to 0.20 mm
Although narrow magnetic domain width of is obtained, this time, in particular average aspect ratio a 1 is when the range of 0.10 to 0.95 is very good iron loss value is obtained. Thus, in a state in which the magnetic domain width is subdivided, if the average aspect ratio a 1 is within the compliance range, the magnetic domain width, the average aspect ratio of more than expected by the respective effects, that there is iron loss reducing effect I understand.

【0017】次に、かかる鉄損低減効果が得られる条件
を見極めるために、鉄損特性に及ぼす下地被膜中のAl,
Ti成分量の影響についてより詳しく調べた。すなわち、
平均アスペクト比a1 が 0.1〜0.95の2次再結晶粒形状
の試料について、下地被膜中のAl, Ti成分量を種々に変
化させて、鉄損W17/50に及ぼす影響を調べた。その結果
を図3に示す。図3より、Al, Tiの下地被膜中含有量が
それぞれ 0.1〜0.7 g/m2, 0.1 〜0.8 g/m2のとき、W
17/50が0.80W/kgを下回る優れた磁気特性が得られてい
ることがわかる。
Next, in order to determine the conditions under which the iron loss reduction effect can be obtained, the effect of Al,
The effect of Ti content was investigated in more detail. That is,
The average aspect ratio of the sample of the secondary recrystallized grains shape of a 1 is 0.1 to 0.95, Al in the base coat, with variously changing the Ti component amount, were investigated on the iron loss W 17/50. The result is shown in FIG. From FIG. 3, Al, each base in the coating amount of Ti 0.1~0.7 g / m 2, when the 0.1 ~0.8 g / m 2, W
It can be seen that excellent magnetic properties with 17/50 less than 0.80 W / kg were obtained.

【0018】このように、下地被膜中にAl, Tiを所定量
で含有させることにより磁区細分化効果が現れて鉄損低
減効果が得られる理由は、Al2O3 及び/又は MgO・Al2O
3 並びにTiO2及び/又は MgO・TiO2が被膜中に形成さ
れ、下地被膜の張力効果を高めたためだと考えられる。
As described above, when the Al and Ti are contained in the base film in predetermined amounts, the magnetic domain refining effect appears and the iron loss reducing effect is obtained. The reason is that Al 2 O 3 and / or MgO · Al 2 O
It is considered that 3 and TiO 2 and / or MgO.TiO 2 were formed in the coating and the tensile effect of the underlying coating was enhanced.

【0019】以上のような実験結果から、下地被膜中の
Al成分量及びTi成分量を特定すること、及び2次再結晶
の形状を圧延方向に直交する方向に長くすることによ
り、極めて低い鉄損を得られることが明らかとなり、こ
の発明に至ったのである。なお、いずれの実験において
も MgO中に添加したSnO2中のSnは全量鋼中に拡散均一化
していた。
From the above experimental results, it was found that
By specifying the Al component amount and the Ti component amount, and increasing the shape of the secondary recrystallization in the direction perpendicular to the rolling direction, it became clear that an extremely low iron loss can be obtained. is there. In all the experiments, the total amount of Sn in SnO 2 added to MgO was diffused and homogenized in the steel.

【0020】[0020]

【作用】この発明の方向性電磁鋼板において、圧延方向
と直交する方向に長い結晶粒群が良好な磁気特性を与え
る理由につき、鋼板の局所的な磁気特性の分布を測定す
ることにより、さらに詳しく解析した。
In the grain-oriented electrical steel sheet according to the present invention, the reason why a group of crystal grains long in the direction perpendicular to the rolling direction gives good magnetic properties is determined in detail by measuring the distribution of local magnetic properties of the steel sheet. Analyzed.

【0021】発明者らは、実験により得られた平均アス
ペクト比の異なる鋼板の局所的な磁束密度分布を「探針
法」と呼ばれる方法を用いて測定した。ここで「探針
法」とは、鋼板の磁化方向と直交する方向にならぶ2本
の針を地鉄部分に接触させることにより、サーチコイル
と同様の局所的な磁束密度を非破壊で測定することので
きる方法である。測定は、鋼板全体の最大磁束密度が
1.7 Tになるように励磁した際に、鋼板の圧延方向に直
交する方向の10mm幅を通過する磁束における圧延方向の
成分について行った。また測定点は圧延方向、圧延方向
に直交する方向にそれぞれ10mmの間隔をおいて設定し、
鋼板の圧延方向中央の約 200点に対して測定を行った。
かくして得られた数値から、局所領域の磁束密度分布を
前記式(3) に従って定量化した。
The inventors measured the local magnetic flux density distribution of steel sheets having different average aspect ratios obtained by experiments using a method called a “probe method”. Here, the "probe method" is a non-destructive measurement of the local magnetic flux density similar to that of a search coil by bringing two needles arranged in a direction perpendicular to the magnetization direction of the steel sheet into contact with the base iron part. It is a method that can be. The measurement shows that the maximum magnetic flux density
The component in the rolling direction of the magnetic flux passing through a 10 mm width in a direction perpendicular to the rolling direction of the steel sheet when excited to 1.7 T was performed. The measurement points are set at 10 mm intervals in the rolling direction and the direction perpendicular to the rolling direction, respectively,
The measurement was performed at approximately 200 points in the center of the steel sheet in the rolling direction.
From the numerical values thus obtained, the magnetic flux density distribution in the local region was quantified according to the above equation (3).

【0022】図4に示すのは平均磁区幅0.10mm〜0.20mm
になる試料の平均アスペクト比a1と局所磁束密度分布
の不均一度rの関係である。図4には平均アスペクト比
1の増加に伴って、rも増大するという関係が示され
ている。したがって、a1 が減少し、圧延方向と直交す
る方向に長い粒となることで局所磁束密度が均一にな
り、低鉄損が得られることがわかる。
FIG. 4 shows an average magnetic domain width of 0.10 mm to 0.20 mm.
Is the relationship between the average aspect ratio a 1 of the sample and the nonuniformity r of the local magnetic flux density distribution. FIG. 4 shows a relationship that r increases as the average aspect ratio a 1 increases. Thus, a 1 is reduced, local magnetic flux density by a long grain in a direction perpendicular to the rolling direction becomes uniform, it can be seen that the low iron loss can be obtained.

【0023】かかる平均アスペクト比が局所磁束密度分
布に及ぼす影響についてそのメカニズムを考えると次の
ようになる。図5は、モデル的に2つの結晶粒からなる
鋼板の磁束の流れを示し、図5 (A)は、平均アスペクト
比が大きい結晶粒のモデルであり、図5(B) は平均アス
ペクト比が小さい結晶粒のモデルである。磁束は、磁極
が生成し得るようなα角(結晶方位[001]の板面内
での回転角)に差のある粒界や鋼板エッジを避けて通る
傾向があるため、粒ごとにα角の差がある場合は、図5
にハッチングで示したような磁束の流れにくい部分が生
じる。単純にはこのような部分の鋼板中に占める割合が
大きい程、局所的な磁束密度は鋼板内で不均一に分布す
るといって良い。
Considering the mechanism of the influence of the average aspect ratio on the local magnetic flux density distribution, it is as follows. FIG. 5 schematically shows the flow of magnetic flux of a steel sheet composed of two crystal grains. FIG. 5 (A) is a model of a crystal grain having a large average aspect ratio, and FIG. This is a model of a small crystal grain. Since the magnetic flux tends to pass through a grain boundary or an edge of a steel sheet having a difference in α angle (rotation angle in the plane of the crystal orientation [001]) at which a magnetic pole can be generated, the magnetic flux has an α angle for each grain. If there is a difference between
A portion where the magnetic flux hardly flows as shown by hatching occurs. Simply, it can be said that the greater the proportion of such a portion in the steel sheet, the more unevenly the local magnetic flux density is distributed in the steel sheet.

【0024】ここで図5の (A)と(B) を比較すると、平
均アスペクト比の大きい図5 (A)よりも平均アスペクト
比の小さい図5(B) の方が磁束の通りにくい部分の面積
が小さくなっている。しかもこのような効果は、(B) の
ような圧延方向と直交する方向に延びる粒界を増やして
いけばさらに顕著になる。したがって、結晶方位の平均
値が同一であれば平均アスペクト比を小さくするほど励
磁下における鋼板内の磁束密度はより均一に分布し、ひ
いては鉄損特性が向上するといえる。
Here, comparing FIGS. 5A and 5B, FIG. 5B having a smaller average aspect ratio has a smaller portion of the magnetic flux than FIG. 5A having a larger average aspect ratio. The area is smaller. Moreover, such an effect becomes more remarkable when the number of grain boundaries extending in a direction perpendicular to the rolling direction as shown in FIG. Therefore, if the average value of the crystal orientations is the same, it can be said that the smaller the average aspect ratio is, the more uniformly the magnetic flux density in the steel sheet under excitation is improved, and the more the iron loss characteristics are improved.

【0025】局所磁束密度分布が不均一だと鉄損特性が
劣化するのは、鋼板の内部で磁束密度が不均一に分布し
た場合、局所的な磁束波形の歪みが増大し、渦電流損の
増加が起こるため、全体の鉄損が劣化するのだと考えら
れる。
When the local magnetic flux density distribution is non-uniform, the iron loss characteristic deteriorates because, when the magnetic flux density is non-uniformly distributed inside the steel sheet, the local distortion of the magnetic flux waveform increases and the eddy current loss increases. It is considered that the increase in iron loss deteriorates the total iron loss.

【0026】以上のことから、この発明では、平均アス
ペクト比を0.95以下にすることによって鋼板中の磁束密
度の均一性が充分に保たれるため、鉄損の低い方向性電
磁鋼板が得られるといえる。
From the above, according to the present invention, since the uniformity of the magnetic flux density in the steel sheet is sufficiently maintained by setting the average aspect ratio to 0.95 or less, a grain-oriented electrical steel sheet having low iron loss can be obtained. I can say.

【0027】なお、以上の実験では前記式(1) を用い、
各粒のRD(圧延方向),TD(圧延方向に直交する方
向)の長さについては平均長さを用いる方法を採用した
が、式(1) では各粒の平均長さに限らず、最大長さを用
いる方法であっても良い。また、式(1) ばかりでなく、
前記式(2) のようにRD,TD方向それぞれの平均粒径
長から平均アスペクト比を算出する方法でも同様に平均
アスペクト比を求めることができ、この場合でも平均ア
スペクト比が0.95より小さい範囲で、良好な鉄損特性を
有する鋼板が得られる。
In the above experiment, the above equation (1) was used.
For the lengths of RD (rolling direction) and TD (direction perpendicular to the rolling direction) of each grain, a method using an average length was adopted. However, in equation (1), not only the average length of each grain but also the maximum length. A method using a length may be used. Also, not only equation (1),
The average aspect ratio can be similarly obtained by calculating the average aspect ratio from the average particle lengths in the RD and TD directions as in the above equation (2). In this case, the average aspect ratio can be obtained in a range where the average aspect ratio is smaller than 0.95. Thus, a steel sheet having good iron loss characteristics can be obtained.

【0028】図6,図7には前記(2) 式の定義による平
均アスペクト比と、式(1) において各粒のRD,TD方
向平均長さを用いて算出した平均アスペクト比a1 の関
係を示す。なお、図6, 図7で示したa3,a4 は(2) 式
に従い、下記のような式(4),(5) によってそれぞれ導い
たものである。
FIGS. 6 and 7 show the relationship between the average aspect ratio defined by the equation (2) and the average aspect ratio a 1 calculated by using the average length of each grain in the RD and TD directions in the equation (1). Is shown. Note that a 3 and a 4 shown in FIGS. 6 and 7 are derived from the following equations (4) and (5) according to the equation (2).

【数3】 (Equation 3)

【0029】図6,図7ではa1 が 0.1〜0.95の範囲は
3,a4 においても 0.1〜0.95に対応しており、式(4),
(5) のようなアスペクト比の定義によっても同様の結果
が得られることがわかる。ここで式(2) のRD,TD方
向の結晶粒径長の平均長さの算出法としては、鋼板のR
D,TD方向にメッシュ状に直線を引き、これと交差す
る粒界の数を計数し、平均アスペクト比を算出する方法
や、各粒のRD,TD方向の長さの最大値を測り取り、
これらの単純平均から〈L〉,〈C〉を求める方法など
がある。
In FIGS. 6 and 7, the range of a 1 from 0.1 to 0.95 also corresponds to a 3 and a 4 from 0.1 to 0.95.
It can be seen that similar results can be obtained by defining the aspect ratio as in (5). Here, as a method of calculating the average length of the crystal grain length in the RD and TD directions of the equation (2), R
Draw a straight line in a mesh shape in the D and TD directions, count the number of grain boundaries that intersect with this, count the number of grain boundaries, calculate the average aspect ratio, and measure the maximum value of the length of each grain in the RD and TD directions,
There is a method of obtaining <L> and <C> from these simple averages.

【0030】以上の説明から、この発明の方向性電磁鋼
板ではアスペクト比aとして、0.1〜0.95の範囲に限定
する。アスペクト比が 0.1未満の場合(例えば圧延直角
方向にわたって結晶粒界が存在しないような場合)、結
晶粒界に生成する磁極によって、磁壁の方向を圧延方向
に矯正するという効果が失われ、図2のように鉄損が劣
化したものと考えられる。この意味から圧延直角方向に
も多少の結晶粒界が存在するほうが好ましく、アスペク
ト比として0.1 を下限とすることが必要である。逆に0.
95より大きい場合、磁束密度の不均一を招き、鉄損が劣
化する。より好ましい範囲は、0.15〜0.80である。
From the above description, in the grain-oriented electrical steel sheet of the present invention, the aspect ratio a is limited to the range of 0.1 to 0.95. When the aspect ratio is less than 0.1 (for example, when there is no grain boundary in the direction perpendicular to the rolling direction), the effect of correcting the direction of the domain wall in the rolling direction is lost due to the magnetic pole generated at the grain boundary. It is considered that the iron loss deteriorated as shown in FIG. In this sense, it is preferable that some crystal grain boundaries exist in the direction perpendicular to the rolling direction, and the lower limit of the aspect ratio needs to be 0.1. Conversely, 0.
If it is larger than 95, the magnetic flux density becomes non-uniform and iron loss deteriorates. A more preferred range is from 0.15 to 0.80.

【0031】この平均アスペクト比の他、下地被膜中の
Al及びTiの含有量を規制することが必要であり、このAl
含有量が 0.1g/m2未満の場合、十分な磁区細分化効果が
得られず、逆に0.7 g/m2を超える場合は下地被膜の形成
を阻害する。したがって、Al含有量は 0.1〜0.7 g/m2
範囲とする。同様にTi含有量が0.1 g/m2未満の場合も、
十分な磁区細分化効果が得られず、逆に0.8 g/m2を超え
る場合には鋼中にTiが侵入して鉄損を劣化させる。した
がってTi含有量は 0.1〜0.8 g/m2の範囲とする。より好
適な範囲はAl、Tiがそれぞれ0.30〜0.7 g/m2、 0.4〜0.
8 g/m2である。
In addition to this average aspect ratio,
It is necessary to regulate the content of Al and Ti.
When the content is less than 0.1 g / m 2 , a sufficient magnetic domain refining effect cannot be obtained, and when it exceeds 0.7 g / m 2 , the formation of a base coat is inhibited. Therefore, the Al content is in the range of 0.1 to 0.7 g / m 2 . Similarly, if the Ti content is less than 0.1 g / m 2,
If a sufficient magnetic domain refining effect cannot be obtained, and if it exceeds 0.8 g / m 2 , Ti penetrates into the steel to deteriorate iron loss. Therefore, the Ti content is in the range of 0.1 to 0.8 g / m 2 . More preferred range is Al, Ti each 0.30~0.7 g / m 2, 0.4~0.
8 g / m 2 .

【0032】また、B8 が1.89 Tより小さいような鋼板
では、ヒステリシス損の占める割合が大きくこの発明の
ようなアスペクト比、磁区幅の適正化による鉄損低減効
果が埋没し勝ちなために、B8 は、1.89 T以上に限定す
る。
Further, in the steel sheet as B 8 is smaller than 1.89 T, an aspect ratio such as the rate is large the present invention occupied by the hysteresis loss, since the iron loss reducing effect is buried wins by optimizing the magnetic domain width, B 8 is limited to more than 1.89 T.

【0033】次に、この発明の方向性電磁鋼板の製造方
法について述べる。まず、電磁鋼板の成分組成範囲であ
るが、従来公知の成分系の電磁鋼板のいずれも、特に制
限が加えられることなく、この発明の方向性電磁鋼板と
することができる。代表的な成分及びそれら含有量につ
いて述べると次のようになる。Cは0.02〜0.10wt%、Si
は2.0 〜4.5 wt%程度が好ましい。さらにインビビター
にはMnS , MnSe系及びAlN 系があり、いずれか一方の使
用又は併用が可能である。MnS , MnSe系の場合は、Mn:
0.02〜0.20wt%並びにS及びSeのうち少なくとも一種を
単独又は合計量で0.010 〜0.040 wt%程度を含有させ
る。AlN 系の場合には、Al:0.010 〜0.065 wt%、N:
0.001 〜0.0150wt%の範囲で含有させる。さらに、必要
に応じて、Sb:0.01〜0.20wt%、Cu:0.02〜0.20wt%、
Mo:0.01〜0.05wt%、Sn:0.01〜0.30wt%、Ge:0.005
〜0.30wt%、Ni:0.01〜0.20wt%の範囲で含有させるこ
とができる。
Next, a method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described. First, regarding the component composition range of the magnetic steel sheet, any of the conventionally known component-based magnetic steel sheets can be used as the grain-oriented magnetic steel sheet of the present invention without any particular limitation. The typical components and their contents are as follows. C is 0.02-0.10wt%, Si
Is preferably about 2.0 to 4.5 wt%. Further, there are MnS, MnSe-based and AlN-based inviters, and any one of them can be used or used in combination. For MnS and MnSe systems, Mn:
0.02 to 0.20 wt% and at least one of S and Se are used alone or in a total amount of about 0.010 to 0.040 wt%. In the case of AlN system, Al: 0.010 to 0.065 wt%, N:
It is contained in the range of 0.001 to 0.0150 wt%. Further, if necessary, Sb: 0.01 to 0.20 wt%, Cu: 0.02 to 0.20 wt%,
Mo: 0.01 to 0.05 wt%, Sn: 0.01 to 0.30 wt%, Ge: 0.005
To 0.30 wt%, Ni: 0.01 to 0.20 wt%.

【0034】Cは、0.02wt%未満の含有量では良好な一
次再結晶組織を得られず、0.10wt%を超えると脱炭不良
となり磁気特性が劣化するので0.02〜0.10wt%程度が好
ましい。。Siは、製品の電気抵抗を高め渦電流損を低減
させるために必要な成分であり、2.0 wt%未満では最終
仕上焼鈍中にα−γ変態によって結晶方位が損なわれ、
4.5 wt%を超えると冷延性に問題が生ずるために2.0 〜
4.5 wt%程度が好ましい。
If the content of C is less than 0.02 wt%, a good primary recrystallized structure cannot be obtained. If the content exceeds 0.10 wt%, decarburization becomes poor and the magnetic properties deteriorate, so that about 0.02 to 0.10 wt% is preferable. . Si is a component necessary to increase the electrical resistance of the product and reduce eddy current loss. If the content is less than 2.0 wt%, the crystal orientation is impaired by α-γ transformation during final finish annealing,
If the content exceeds 4.5 wt%, a problem occurs in cold rolling.
About 4.5 wt% is preferable.

【0035】Mn並びにS及びSeの1種又は2種は、イン
ヒビターとして機能するものであり、Mn量が0.02wt%未
満又はS及びSeを単独又は合計で0.010 wt%未満の場合
はインヒビター機能が不十分であり、また、Mn量が0.20
wt%を超えたりS及びSeを単独又は合計で0.040 wt%を
超えるとスラブ加熱のために必要とする温度が高くなり
すぎて実用的ではないので、Mnは0.02〜0.20wt%、S及
びSeの1種又は2種は単独又は合計として0.010 〜0.04
0 wt%程度とする。
One or two of Mn and S and Se function as an inhibitor. When the amount of Mn is less than 0.02 wt% or when S and Se are used alone or less than 0.010 wt% in total, the inhibitor function is not obtained. Insufficient and Mn content is 0.20
If the content of Sn and S exceeds 0.1% by weight or the total amount of S and Se exceeds 0.040% by weight, the temperature required for slab heating becomes too high to be practical, so that Mn is 0.02 to 0.20% by weight, S and Se. One or two of the above may be used alone or as a total of 0.010 to 0.04
About 0 wt%.

【0036】AlN系インビビターの場合は、良好な鉄損
を得るためにはAlは0.010 〜0.065 wt%、Nは0.010 〜
0.150 wt%の範囲とするのが望ましい。かかるAl、Nの
それぞれの上限値を超える含有量ではAlN の粗大化を招
き抑制力を失い、下限値を下回る含有量ではインビビタ
ーとしてのAlN の量が不足する。
In the case of an AlN-based inviter, in order to obtain a good iron loss, Al is 0.010 to 0.065 wt% and N is 0.010 to 0.010 wt%.
It is desirable to be in the range of 0.150 wt%. If the content exceeds the upper limit of each of Al and N, AlN becomes coarse and the inhibitory power is lost, and if the content is lower than the lower limit, the amount of AlN as an inviter becomes insufficient.

【0037】さらに磁束密度を向上させるためにSb及び
/又はCuを添加させることは可能である。Sbは、0.20wt
%を超えると脱炭性が悪くなり、0.01wt%未満では効果
がないので0.01〜0.20wt%が好ましい。Cuは、0.20wt%
を超えると酸洗性が悪化し、0.01wt%未満では効果がな
いので0.01〜0.20wt%が好ましい。表面性状を改善する
ためにMoを添加することもできる。Mo量が0.05wt%を超
えると脱炭性が悪くなり、0.01wt%に満たないと効果が
ないので0.01〜0.05wt%の範囲が好ましい。
In order to further improve the magnetic flux density, it is possible to add Sb and / or Cu. Sb is 0.20wt
%, The decarburization property deteriorates, and if it is less than 0.01 wt%, there is no effect, so 0.01 to 0.20 wt% is preferable. Cu is 0.20wt%
If the content exceeds 0.01%, the acid washability deteriorates, and if the content is less than 0.01% by weight, there is no effect. Mo may be added to improve the surface properties. If the amount of Mo exceeds 0.05 wt%, the decarburization property deteriorates, and if it is less than 0.01 wt%, there is no effect, so the range of 0.01 to 0.05 wt% is preferable.

【0038】加えて鉄損を向上させるためにSn、Ge、及
びNiを単独又は複合して添加することができる。Snは0.
30wt%を超える含有量では脆化し、0.01wt%に満たない
量では効果がないので0.01〜0.30wt%が好ましい。Ge
は、0.30wt%を超える含有量では良好な一次再結晶組織
が得られず、0.005 wt%に満たないと効果がないので0.
005 〜0.30wt%が好ましい。Niは、0.20wt%を超える含
有量では熱間強度が低下し、0.01wt%に未満では効果が
ないので0.01〜0.20wt%が好ましい。
In addition, Sn, Ge, and Ni can be added alone or in combination to improve iron loss. Sn is 0.
If the content exceeds 30% by weight, embrittlement occurs, and if the content is less than 0.01% by weight, there is no effect, so 0.01 to 0.30% by weight is preferable. Ge
If the content exceeds 0.30 wt%, a good primary recrystallization structure cannot be obtained, and if the content is less than 0.005 wt%, there is no effect.
005 to 0.30 wt% is preferred. If the content of Ni exceeds 0.20 wt%, the hot strength decreases, and if the content is less than 0.01 wt%, there is no effect, so 0.01 to 0.20 wt% is preferable.

【0039】上述した成分を含有する溶鋼に調製した
後、常法に従い溶鋼を連続鋳造法あるいは造塊法で鋳造
し、必要に応じて分塊圧延工程を挟んでスラブを得、こ
のスラブに1300〜1500℃程度に加熱してから熱間圧延を
し、必要に応じて熱延板焼鈍を行った後、1回ないしは
中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷
延板とする。
After preparing a molten steel containing the above-described components, the molten steel is cast by a continuous casting method or an ingot casting method according to a conventional method, and if necessary, a slab is obtained through a slab rolling process. After hot-rolling after heating to about 1500 ° C, hot-rolled sheet annealing as necessary, cold-rolled sheet of final thickness by cold rolling one or more times with intermediate annealing And

【0040】最終冷延の後は、湿水素雰囲気中、 800〜
1000℃で1〜10 min程度の脱炭焼鈍を行い、焼鈍分離剤
(例えばMgO を主成分とするもの)を鋼板表面に塗布し
てから、1200℃、5時間以上の二次再結晶・純化焼鈍を
行う。その後、下地被膜上に必要に応じてコロイダルシ
リカ等張力コーティングを塗布して製品とする。
After the final cold rolling, in a wet hydrogen atmosphere,
Perform decarburizing annealing at 1000 ° C for about 1 to 10 minutes, apply an annealing separator (for example, one containing MgO as a main component) to the steel sheet surface, and then perform secondary recrystallization and purification at 1200 ° C for 5 hours or more. Perform annealing. Thereafter, if necessary, a tension coating such as colloidal silica is applied on the undercoating to obtain a product.

【0041】製品となった方向性電磁鋼板が、この発明
の平均アスペクト比を満足させるために、かかる製造工
程中、脱炭焼鈍直前に2次再結晶粒成長阻止材としてSn
SO4等を圧延方向と直交する方向に線状に塗布したり
(線間隔5〜50mm程度)、焼鈍分離剤中に2次再結晶粒
成長阻止材としてSnO2等を添加したり(添加量3〜15%
程度)、二次再結晶焼鈍中に板幅方向に温度勾配をつけ
ること(0〜50℃/cm 程度)は好適である。また、鋼板
下地被膜中のAl、Ti含有量を満足させるために、焼鈍分
離剤中にAl2O3 やTiO2等を添加すること(添加量はAl2O
3 が5%程度以下、TiO2が2〜10%程度)は好適であ
る。なお、Alについては、焼鈍分離剤中に添加しなくと
も、鋼中成分としてあらかじめ含有させられており、純
化焼鈍において被膜中のAl2O3 となるために、それで足
りる。
In order to satisfy the average aspect ratio of the present invention, the grain-oriented electrical steel sheet as a product should be made of Sn as a secondary recrystallized grain growth inhibiting material immediately before decarburization annealing during such a manufacturing process.
SO 4 or the like may be applied linearly in a direction perpendicular to the rolling direction (line spacing of about 5 to 50 mm), or SnO 2 or the like may be added to the annealing separator as a secondary recrystallization grain growth inhibitor (addition amount). 3 to 15%
It is preferable to provide a temperature gradient in the sheet width direction during the secondary recrystallization annealing (about 0 to 50 ° C./cm). Also, in order to satisfy the Al and Ti contents in the steel sheet base coat, Al 2 O 3 or TiO 2 is added to the annealing separator (the addition amount is Al 2 O
3 is about 5% or less, and TiO2 is about 2 to 10%). It should be noted that Al is already contained as a component in the steel without being added to the annealing separator, and is sufficient because it becomes Al 2 O 3 in the coating in the purification annealing.

【0042】なお、この発明の方向性電磁鋼板は、この
ような製造方法を用いて得られたものに限られず、この
発明を満足するのであれば製造方法は限定されない。
The grain-oriented electrical steel sheet of the present invention is not limited to one obtained by using such a manufacturing method, and the manufacturing method is not limited as long as the present invention is satisfied.

【0043】[0043]

【実施例】【Example】

実施例1 C:0.07wt%、Si:3.25wt%、Mn:0.07wt%、S:0.02
5 wt%、Al:0.025 wt%、N:0.007 wt%、Cu:0.13wt
%、Sb:0.023 wt%を含有するけい素鋼スラブを1430℃
で30分加熱後、熱間圧延して2.2mm の板厚の熱延板と
し、1000℃,1分の焼鈍を施した後、冷間圧延により板
厚1.5mm にし、1100℃,2分間の中間焼鈍を施し、冷間
圧延により0.23mmの最終板厚とした。次に 840℃,2分
間の脱炭焼鈍を行った後、引張りにより5%の均一歪を
導入し、TiO2を5%、SnO2を6%添加したMgO を塗布後
コイルに巻き取り、板幅方向に0℃/cm , 10℃/cm , 20
℃/cm , 30℃/cm の温度勾配を与えながら昇温して2次
再結晶を完了させ、1200℃,10時間の純化焼鈍を行っ
た。この後、未反応MgO を除去し、張力コーティングを
800℃, 90秒N2 中にて焼付けた。
Example 1 C: 0.07 wt%, Si: 3.25 wt%, Mn: 0.07 wt%, S: 0.02
5 wt%, Al: 0.025 wt%, N: 0.007 wt%, Cu: 0.13 wt
%, Sb: 0.023 wt% silicon steel slab at 1430 ℃
And then hot-rolled to form a hot-rolled sheet with a thickness of 2.2 mm, annealed at 1000 ° C for 1 minute, and then cold-rolled to a thickness of 1.5 mm, and heated at 1100 ° C for 2 minutes. Intermediate annealing was performed, and a final thickness of 0.23 mm was obtained by cold rolling. Then 840 ° C., after decarburization annealing for 2 minutes, were introduced 5% uniform strain by pulling, the TiO 2 5%, wound up MgO addition of SnO 2 6% in the coating after the coil, plate 0 ° C / cm, 10 ° C / cm, 20 in width direction
The temperature was raised while giving a temperature gradient of 30 ° C./cm 2 to 30 ° C./cm 2 to complete the secondary recrystallization, followed by a purification annealing at 1200 ° C. for 10 hours. After this, unreacted MgO is removed and a tension coating is applied.
Baking was performed at 800 ° C. for 90 seconds in N 2 .

【0044】このようにして得られた製品を圧延方向に
長さ280mm 、これと直交する方向に幅100mm の試験片と
して切り出し、単板磁気試験器によってW17/50及びB8
を測定した。さらに、下地被膜中のAl及びTi含有量を分
析した。この後、酸によって張力コーティング及びフォ
ルステライト被膜を除去し、マクロ組織の観察を行い、
式(1) に従って平均アスペクト比を算出した。
[0044] In this way long the product obtained in the rolling direction of 280 mm, cut out as a test piece width 100mm in a direction perpendicular thereto, W 17/50 and B 8 by veneer magnetic tester
Was measured. Further, the contents of Al and Ti in the undercoat film were analyzed. Thereafter, the tension coating and the forsterite film were removed with an acid, and the macrostructure was observed.
The average aspect ratio was calculated according to equation (1).

【0045】表1にエプスタイン測定枠で測定した各コ
イルの長手方向中心部(中巻部)の磁気特性(W17/50
8 )と平均アスペクト比a1 について、2次再結晶焼
鈍昇温時の板幅方向温度勾配0℃/cm , 10℃/cm , 20℃
/cm , 30℃/cm それぞれによって得られる製品のうち、
1 のもっとも高いものと低いものについての結果を示
してある。
Table 1 shows the magnetic characteristics (W 17/50 , W 17/50 ) of the center ( medium winding ) of each coil measured in the Epstein measurement frame.
B 8 ) and average aspect ratio a 1 , temperature gradient in the width direction at the time of secondary recrystallization annealing temperature rise 0 ° C./cm, 10 ° C./cm, 20 ° C.
/ cm, 30 ℃ / cm
The results for the highest and lowest a 1 are shown.

【0046】[0046]

【表1】 [Table 1]

【0047】表1では2次再結晶焼鈍昇温時の板幅方向
温度勾配の増大に従って鉄損は改善される傾向にある
が、これは2次再結晶の形状が変化し、平均アスペクト
比が小さくなったことによる効果であることがわかる。
In Table 1, the iron loss tends to be improved as the temperature gradient in the sheet width direction increases at the time of raising the temperature of the secondary recrystallization annealing. This is because the shape of the secondary recrystallization changes and the average aspect ratio is reduced. It can be seen that the effect is due to the reduction.

【0048】実施例2 C:0.069 wt%、Si:3.31wt%、Mn:0.069 wt%、S:
0.023 wt%、Al:0.021 wt%、N:0.0083wt%、Cu:0.
13wt%、Sb:0.023 wt%を含有するけい素鋼スラブを実
施例1と同様の中間焼鈍を挟む2回の冷間圧延により0.
23mmまで圧延し、最終板厚としたのち、圧延方向と直交
する方向に幅50μmで SnSO4粉を線状に塗布してから脱
炭焼鈍を施し、TiO2を10%添加したMgO を塗布し、次い
で最終仕上げ焼鈍を施した。この後未反応 MgOを除去
し、張力コーティングを焼付け製品とした。
Example 2 C: 0.069 wt%, Si: 3.31 wt%, Mn: 0.069 wt%, S:
0.023 wt%, Al: 0.021 wt%, N: 0.0083 wt%, Cu: 0.
A silicon steel slab containing 13 wt% and Sb: 0.023 wt% was subjected to cold rolling twice with intermediate annealing as in Example 1 to obtain 0.2%.
After rolling to 23 mm to obtain the final sheet thickness, SnSO 4 powder is applied linearly with a width of 50 μm in a direction perpendicular to the rolling direction, followed by decarburization annealing, and MgO with 10% TiO 2 added is applied. , Followed by final finish annealing. Thereafter, unreacted MgO was removed, and the tension coating was baked.

【0049】以上のような工程において、SnSO4 粉の線
状塗布の間隔を10cm, 20cm, 30cm,40mmと変化させた4
種の製品を得た。また同じ素材を用いてSnSO4 粉を塗布
せず脱炭焼鈍、最終仕上げ焼鈍を施した製品を作製し
た。
In the above steps, the intervals of the linear application of the SnSO 4 powder were changed to 10 cm, 20 cm, 30 cm and 40 mm.
A seed product was obtained. In addition, using the same material, a product that was subjected to decarburizing annealing and final finishing annealing without applying SnSO 4 powder was produced.

【0050】以上のようにして得た鋼板の磁気特性をエ
プスタイン測定枠によって測定した。この後、磁化力10
000 A/m まで磁化し、50Hzにて消磁してから、磁性コロ
イドを用いた磁区観察を行い、鋼板の平均磁区幅を求め
た。さらに下地被膜中のAl及びTi分析を行った。またマ
クロエッチングにより、2次再結晶粒組織を露わにし、
平均アスペクト比a1 を求めた。その結果、 SnSO4粉を
塗布した部分では微細な2次再結晶粒が現れているか、
あるいはこの部分において周囲から2次再結晶粒成長し
た粒が止まり、結晶粒界となっていた。また、W17/50
8 平均アスペクト比、平均磁区幅の測定結果を表2に
示す。
The magnetic properties of the steel sheet obtained as described above were measured using an Epstein measurement frame. After this, magnetizing force 10
After magnetizing to 000 A / m and degaussing at 50 Hz, magnetic domain observation using a magnetic colloid was performed to determine the average magnetic domain width of the steel sheet. Further, Al and Ti in the undercoating film were analyzed. Also, by macro etching, the secondary recrystallized grain structure is exposed,
To obtain an average aspect ratio of a 1. As a result, fine secondary recrystallized grains appear in the portion where the SnSO 4 powder is applied,
Alternatively, in this portion, the grains that have undergone secondary recrystallized grain growth stop from the surroundings, forming crystal grain boundaries. W 17/50 ,
B 8 average aspect ratio, the measurement results of the average magnetic domain width shown in Table 2.

【0051】[0051]

【表2】 [Table 2]

【0052】表2には、 SnSO4粉の塗布間隔を変えて得
られた試料群のうち、ほぼ同等の平均磁区幅であった試
料についての結果を記載している。 SnSO4の線状塗布す
ると、圧延方向と直交する方向に延びる微細粒群や、結
晶粒界が生じるから、これらに生成する磁極によって磁
区が細分化され、その結果、鉄損が改善されたとも考え
られる。しかしながら、表2に記載したのは同等磁区幅
の試料であるから、このような磁区細分化の影響は除去
されている。したがって、表2の結果は SnSO4粉の線状
塗布によって2次再結晶粒の平均アスペクト比が小さく
なり、磁束の分布が均一化したことが原因であるといえ
る。
Table 2 shows the results of the samples obtained by changing the application interval of the SnSO 4 powder and having the same average magnetic domain width. When SnSO 4 is applied in a linear form, fine grain groups and crystal grain boundaries extending in a direction perpendicular to the rolling direction are generated, and the magnetic domains generated in these are subdivided into magnetic domains, and as a result, iron loss is improved. Conceivable. However, since the samples described in Table 2 are samples having the same magnetic domain width, the influence of such magnetic domain segmentation has been eliminated. Accordingly, the results in Table 2 can be attributed to the fact that the average aspect ratio of the secondary recrystallized grains was reduced by the linear application of the SnSO 4 powder, and the distribution of the magnetic flux was made uniform.

【0053】[0053]

【発明の効果】この発明は、下地被膜中のAl及びTiの含
有量及び2次再結晶粒の形状を適正化した鉄損の低い方
向性電磁鋼板であって、この発明による鋼板をトランス
等の鉄心に使用することで多大な電力エネルギーが節約
できる。
According to the present invention, there is provided a grain-oriented electrical steel sheet having a low iron loss in which the contents of Al and Ti in a base coat and the shape of secondary recrystallized grains are optimized. A great deal of electric energy can be saved by using the iron core.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2次再結晶時の板幅方向の温度勾配と2次再結
晶粒の平均アスペクト比の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a temperature gradient in a sheet width direction during secondary recrystallization and an average aspect ratio of secondary recrystallized grains.

【図2】平均アスペクト比a1 と鉄損W17/50の関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between an average aspect ratio a 1 and iron loss W 17/50 .

【図3】下地被膜中Al, Ti含有量と鉄損W17/50の関係。
(0.1≦a1 ≦0.95)
FIG. 3 shows the relationship between the Al and Ti contents in the undercoat and the iron loss W 17/50 .
(0.1 ≦ a 1 ≦ 0.95)

【図4】平均アスペクト比a1 と磁束密度分布不均一度
rの関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an average aspect ratio a 1 and a magnetic flux density distribution nonuniformity r.

【図5】平均アスペクト比の大小と磁束密度分布の均一
度の関係についての説明図である。
FIG. 5 is a diagram illustrating the relationship between the magnitude of the average aspect ratio and the uniformity of the magnetic flux density distribution.

【図6】式(1) による平均アスペクト比a3 と式(4) に
よる平均アスペクト比a1 の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the average aspect ratio a 3 according to equation (1) and the average aspect ratio a 1 according to equation (4).

【図7】式(1) による平均アスペクト比a4 と式(5) に
よる平均アスペクト比a2 の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the average aspect ratio a 4 according to equation (1) and the average aspect ratio a 2 according to equation (5).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−17261(JP,A) 特開 平6−73511(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/12 - 1/375 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-6-17261 (JP, A) JP-A-6-73511 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 1/12-1/375

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 最終仕上げ焼鈍を経た含けい素鋼板につ
き、鋼板表面の下地被膜中にAl成分を 0.1〜0.7 g/m2
Ti成分を 0.1〜0.8 g/m2含有し、2次再結晶粒の圧延方
向の長さと板幅方向の長さとの平均アスペクト比が0.10
〜0.95であり、かつ磁化力800 A/m における磁束密度B
8 が1.89T 以上であることを特徴とする鉄損の低い方向
性電磁鋼板。
1. A silicon-containing steel sheet which has been subjected to final finish annealing, wherein an Al component is contained in a base coat on the steel sheet surface in an amount of 0.1 to 0.7 g / m 2 ,
Containing 0.1 to 0.8 g / m 2 of Ti component, and having an average aspect ratio of 0.10 between the length of the secondary recrystallized grains in the rolling direction and the length in the sheet width direction.
磁 束 0.95 and the magnetic flux density B at a magnetizing force of 800 A / m
A grain-oriented electrical steel sheet having a low iron loss, wherein 8 is 1.89T or more.
JP08786795A 1995-04-13 1995-04-13 Grain-oriented electrical steel sheet with low iron loss Expired - Fee Related JP3333798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08786795A JP3333798B2 (en) 1995-04-13 1995-04-13 Grain-oriented electrical steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08786795A JP3333798B2 (en) 1995-04-13 1995-04-13 Grain-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH08288115A JPH08288115A (en) 1996-11-01
JP3333798B2 true JP3333798B2 (en) 2002-10-15

Family

ID=13926833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08786795A Expired - Fee Related JP3333798B2 (en) 1995-04-13 1995-04-13 Grain-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP3333798B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69810852T2 (en) * 1997-07-17 2003-06-05 Kawasaki Steel Co Grain-oriented electrical steel sheet with excellent magnetic properties and its manufacturing process
JP2007039812A (en) * 2006-10-06 2007-02-15 Jfe Steel Kk Steel sheet having excellent surface property
JP2011063829A (en) * 2009-09-15 2011-03-31 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
JP6838601B2 (en) * 2017-12-28 2021-03-03 Jfeスチール株式会社 Low iron loss directional electromagnetic steel sheet and its manufacturing method
KR102437377B1 (en) * 2017-12-28 2022-08-26 제이에프이 스틸 가부시키가이샤 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP7492109B2 (en) * 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7492111B2 (en) * 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7492110B2 (en) * 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710000B2 (en) * 1991-07-10 1998-02-04 新日本製鐵株式会社 Unidirectional silicon steel sheet with excellent coating and magnetic properties
JP2855994B2 (en) * 1992-08-25 1999-02-10 日本鋼管株式会社 Non-oriented electrical steel sheet with excellent high frequency magnetic properties

Also Published As

Publication number Publication date
JPH08288115A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR101173334B1 (en) Unidirectionally grain oriented electromagnetic steel sheet having excellent iron loss properties
EP1108794A1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
JP2002220642A (en) Grain-oriented electromagnetic steel sheet with low iron loss and manufacturing method therefor
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP2009263782A (en) Grain-oriented magnetic steel sheet and manufacturing method therefor
WO2019132363A1 (en) Double oriented electrical steel sheet and method for manufacturing same
JP2001192785A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP3333798B2 (en) Grain-oriented electrical steel sheet with low iron loss
JPH0832929B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP3390345B2 (en) Grain-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
JPH055126A (en) Production of nonoriented silicon steel sheet
JP6879320B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149344A1 (en) Insulation film without forsterite film Directional electromagnetic steel sheet with excellent adhesion
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP4192403B2 (en) Electrical steel sheet used under DC bias
WO2024063163A1 (en) Grain-oriented electrical steel sheet
JP3455019B2 (en) Unidirectional electrical steel sheet for instruments with excellent low-field magnetic properties and manufacturing method
JP4119614B2 (en) Method for producing grain-oriented electrical steel sheet
JP3176646B2 (en) Manufacturing method of non-oriented electrical steel sheet for high frequency
JPH0688170A (en) Thick grain-oriented silicon steel sheet excellent in magnetic property
JP2002194434A (en) Method for producing low core less grain oriented electrical steel sheet having excellent high frequency magnetic characteristic and film characteristic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees