JP2007039812A - Steel sheet having excellent surface property - Google Patents

Steel sheet having excellent surface property Download PDF

Info

Publication number
JP2007039812A
JP2007039812A JP2006274541A JP2006274541A JP2007039812A JP 2007039812 A JP2007039812 A JP 2007039812A JP 2006274541 A JP2006274541 A JP 2006274541A JP 2006274541 A JP2006274541 A JP 2006274541A JP 2007039812 A JP2007039812 A JP 2007039812A
Authority
JP
Japan
Prior art keywords
concentration
surface layer
steel sheet
less
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274541A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakada
博士 中田
Tadashi Inoue
正 井上
Hiroyasu Kikuchi
啓泰 菊池
Yoshihide Ishii
吉秀 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006274541A priority Critical patent/JP2007039812A/en
Publication of JP2007039812A publication Critical patent/JP2007039812A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet having excellent surface properties and free from surface defects caused by the concentration of impurity elements on a slab surface layer by scale formation at high temperature. <P>SOLUTION: The steel sheet comprises, by mass, ≤0.05% Ni, ≤0.1% Cu, ≤0.005% As, ≤0.005% Ge, ≤1% Si and ≤0.1% P, and is obtained by heating a cold slab, and thereafter performing hot rolling. The concentration of Ni in the surface layer of the steel sheet after scale removal is ≤0.9%, and also, the contrast ratio of the Ni concentration in the surface layer is <2 times; wherein the contrast ratio of the Ni concentration in the surface layer denotes (the Ni concentration in the Ni-concentrated part of the surface layer)/(the Ni concentration in the Ni-nonconcentrated part of the surface layer). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面性状に優れた鋼板に関するものである。   The present invention relates to a steel sheet having excellent surface properties.

家電製品や自動車の外板に使用される鋼板は、意匠性の点から、高度の表面品質が求められる。にも係わらず、熱間圧延前にNi、Cuなどの不純物元素のうちFeより酸化され難いものが、酸化スケールの生成にともなってスラブ地鉄表層に不均一に濃化し、その濃化部分が酸洗後あるいは電気亜鉛めっきのめっき処理後に図1に示すような山型の濃色模様(以下、山型模様と称す)となって現れ、製品の表面性状を悪化させている。   Steel sheets used for home appliances and automobile outer plates are required to have a high degree of surface quality in terms of design. Nevertheless, impurity elements such as Ni and Cu that are less likely to be oxidized than Fe before hot rolling are unevenly concentrated on the surface layer of the slab steel as the oxide scale is formed. After pickling or after electrogalvanizing, a mountain-shaped dark color pattern (hereinafter referred to as a mountain-shaped pattern) as shown in FIG. 1 appears, deteriorating the surface properties of the product.

上記問題点に対して、例えば、特許文献1には、鋼板表面の模様状欠陥を防止する手段として、Ni量を低減し、鋼板表層部のNi濃度の上限を制限することで模様状欠陥の発生を防止する方法が開示されている。
特開平8-337842号公報
For example, in Patent Document 1, as a means for preventing a pattern defect on the surface of a steel sheet, the amount of Ni is reduced, and the upper limit of the Ni concentration of the steel sheet surface layer portion is limited in Patent Document 1, for example. A method for preventing the occurrence is disclosed.
JP-A-8-337842

しかしながら、実際には 鋼中のNi量が0.01%程度と低く、鋼板表層部のNi濃度がオージェ電子分光解析によっても模様部と正常部との差が検出できないような微小な濃度差の場合でも、酸洗後の鋼板の表面には山型模様が発生することがあり、特許文献1に記載の技術では模様状欠陥を十分低減することはできない。   However, in reality, the Ni content in the steel is as low as about 0.01%, and the Ni concentration in the surface layer of the steel sheet is so small that the difference between the pattern part and the normal part cannot be detected even by Auger electron spectroscopy analysis. Even in this case, a chevron pattern may occur on the surface of the steel plate after pickling, and the technique described in Patent Document 1 cannot sufficiently reduce pattern defects.

本発明はこのような事情に鑑みなされたものであり、高温でのスケール生成によるスラブ表層への不純物元素の濃化が起因となる表面欠陥はなく、表面性状に優れた鋼板を提供することを目的とする。   The present invention has been made in view of such circumstances, and there is no surface defect caused by concentration of impurity elements on the slab surface layer due to scale generation at high temperature, and it is intended to provide a steel sheet having excellent surface properties. Objective.

本発明者らは、スケール除去後の鋼板の表層Niの濃度に着目し、表面性状に優れた鋼板を得るために鋭意研究を重ねた結果、表層最大Ni濃度および、(表層のNi濃化部のNi濃度)/(表層のNi非濃化部のNi濃度)で表される表層Ni濃度コントラスト比を所定のレベル以下に規制することにより、スラブ表層の不純物元素の濃化に起因する表面欠陥がない優れた表面性状を有する鋼板が得られることを見出した。   The inventors of the present invention focused on the concentration of the surface layer Ni of the steel plate after scale removal, and as a result of intensive research to obtain a steel plate having excellent surface properties, the maximum Ni concentration of the surface layer and the (Ni concentration portion of the surface layer) The surface defects caused by the concentration of impurity elements in the slab surface layer by regulating the surface layer Ni concentration contrast ratio represented by (Ni concentration in the non-concentrated surface layer) to a predetermined level or less. It has been found that a steel sheet having an excellent surface texture without any problem can be obtained.

本発明はかかる知見に基づきなされたもので、以下のような構成を有する。
mass%で、Ni:0.05%以下、Cu:0.1%以下、As:0.005%以下、Ge:0.005%以下、Si:1%以下、P:0.1%以下を含有し、冷片スラブを加熱した後熱間圧延して得られる鋼板であって、スケール除去後の鋼板表層のNi濃度が0.9%以下で、かつ、表層Ni濃度コントラスト比が2倍未満であることを特徴とする表面性状に優れた鋼板。ただし、表層Ni濃度コントラスト比とは、(表層のNi濃化部のNi濃度)/(表層のNi非濃化部のNi濃度)である。
なお、本明細書において、鋼の成分を示す%はすべてmass%である。
The present invention has been made based on such knowledge, and has the following configuration.
mass: Ni: 0.05% or less, Cu: 0.1% or less, As: 0.005% or less, Ge: 0.005% or less, Si: 1% or less, P: 0.1% or less A steel sheet obtained by hot rolling after heating a cold piece slab, wherein the Ni concentration of the steel sheet surface layer after scale removal is 0.9% or less, and the surface layer Ni concentration contrast ratio is less than twice A steel sheet with excellent surface properties, characterized by being However, the surface layer Ni concentration contrast ratio is (Ni concentration of Ni concentrated portion of surface layer) / (Ni concentration of Ni non-concentrated portion of surface layer).
In addition, in this specification, all% which shows the component of steel is mass%.

本発明によれば、表面性状に優れた鋼板を得ることができる。   According to the present invention, a steel sheet having excellent surface properties can be obtained.

以下に本発明の詳細をその限定理由と合わせて説明する。
まず、本発明者らは、従来の鋼板で発生していた鋼板表面の山型模様について詳細に解析するために、通常の条件にて酸洗しスケールを除去した後の熱延鋼板の表層Niの濃度を、EPMA分析装置を用いて、プローブ径5μm、加速電圧15kVの条件にて測定し、50μm×50μmの分析領域のNi/Feカウント 数比を山型模様部および正常部で算出し、(山型模様部のNi/Feカウント数比)/(正常部のNi/Feカウント数比)をコントラスト比として評価した。また、酸洗後の熱延鋼板山型模様部のうち、目視で濃く見える箇所5点の表層Ni濃度分析を行い、その最大値を表層の最大Ni濃度とした。なお、目視で山型模様として認識されない3ヶ所についても同様に分析した。すなわち、50μm×50μmの分析領域を任意に各々10領域選定し、Ni/Feカウント数比を算出し、それらの最大値を表層の最大Ni濃度、最大値と平均値の比を表層Ni濃度コントラスト比とした。その結果を図2に示す。図2において、山型模様として認識されるものを表面性状×:NG、認識されないものを表面性状○:OKとして示している。
ここで、EPMA分析装置とは波長分散型X線分光により、特定元素の高精度の分析が可能な装置であり、オージェ電子分光解析よりも1桁程度高精度の分析が可能である。
The details of the present invention will be described below together with the reasons for limitation.
First, in order to analyze in detail a chevron pattern on the surface of a steel plate that has occurred in a conventional steel plate, the present inventors have performed a surface layer Ni of a hot-rolled steel plate after pickling under normal conditions and removing the scale. Is measured under the conditions of a probe diameter of 5 μm and an acceleration voltage of 15 kV using an EPMA analyzer, and the Ni / Fe count number ratio in the analysis region of 50 μm × 50 μm is calculated in the chevron pattern portion and the normal portion, The ratio of (Ni / Fe count number ratio of the chevron pattern portion) / (Ni / Fe count number ratio of the normal portion) was evaluated as the contrast ratio. Further, among the hot-rolled steel sheet chevron pattern portions after pickling, surface Ni concentration analysis was performed at five points that look dark visually, and the maximum value was taken as the maximum Ni concentration of the surface layer. In addition, it analyzed similarly about three places which are not recognized as a chevron pattern visually. That is, 10 analysis areas of 50 μm × 50 μm are selected arbitrarily, the Ni / Fe count number ratio is calculated, the maximum value of these is the maximum Ni concentration of the surface layer, and the ratio of the maximum value to the average value is the surface layer Ni concentration contrast Ratio. The result is shown in FIG. In FIG. 2, those recognized as chevron patterns are indicated as surface properties x: NG, and those not recognized are indicated as surface properties ◯: OK.
Here, the EPMA analyzer is an apparatus capable of analyzing a specific element with high accuracy by wavelength dispersive X-ray spectroscopy, and can perform analysis with an accuracy about one digit higher than Auger electron spectroscopy analysis.

図2によれば、表層Ni濃度0.9%超えで、かつ、正常部と比較してコントラスト比で2倍以上のNiの濃化がある場合、山型模様として認識され、表面性状が劣化していることがわかる。そして、鋼板表面のNi濃度が山型模様部と正常部とのNiの濃度比がある程度以上になると(EPMA分析装置を用いた場合では、正常部と比較したコントラスト比で2倍以上のNiの濃化)、鋼板表面の山型模様として認識されることがわかった。
さらに、その他の元素の山型模様部への濃化挙動について詳細に調べた結果、Ni以外の成分元素(Cu、As、Ge)についても同様に山型模様部に濃化することで表面性状を劣化させており、これらの元素の濃化制御も併せて行うことで初めて山型の模様を抜本的に改善できることが判った。
According to FIG. 2, when the Ni concentration of the surface layer exceeds 0.9% and there is Ni concentration more than twice as high as the contrast ratio compared to the normal part, it is recognized as a chevron pattern and the surface properties deteriorate. You can see that When the Ni concentration on the surface of the steel sheet is more than a certain level of the Ni concentration ratio between the chevron pattern portion and the normal portion (in the case of using an EPMA analyzer, the contrast ratio compared with the normal portion is more than twice the Ni concentration). Concentration), it was found to be recognized as a chevron pattern on the steel sheet surface.
Furthermore, as a result of investigating the concentration behavior of other elements in the chevron pattern part in detail, the surface properties can be obtained by concentrating the component elements other than Ni (Cu, As, Ge) in the chevron pattern part as well. It has been found that the chevron pattern can be drastically improved only when the concentration control of these elements is also performed.

以上の理由から、まず、本発明では、スケール除去後の熱延鋼板の表層最大Ni濃度は0.9%以下とする。上記解析結果より、Ni濃化量が多い箇所が存在するとその箇所は山型模様となって表面性状を劣化させるため、表面の模様を有効に防止するにはNiの表面濃度は0.9%以下とする必要がある。   For the above reasons, first, in the present invention, the maximum Ni concentration in the surface layer of the hot-rolled steel sheet after scale removal is set to 0.9% or less. From the above analysis results, if there is a portion with a large amount of Ni concentration, the portion becomes a chevron pattern and deteriorates the surface properties. Therefore, to effectively prevent the surface pattern, the surface concentration of Ni is 0.9%. It is necessary to do the following.

また、スケール除去後の熱延鋼板の表層Ni濃度コントラスト比は2倍未満とする。ここで、コントラスト比とは、(表層のNi濃化部のNi濃度)/(表層のNi非濃化部のNi濃度)であり、より具体的にはEPMA分析装置を用いた場合のコントラスト比:(山型模様部のNi/Feカウント数比)/(正常部のNi/Feカウント数比)である。
前記解析結果より、表層のNi濃度が小さい場合でも、山型模様部と正常部でのNi濃度比が大きく違う場合は、鋼板表層において濃淡の色のコントラストが認識され表面性状が劣化する。そのため、表層の山型模様を有効に防止するために、コントラスト比は2倍未満とする必要がある。表層Ni濃化のない状態、すなわちコントラスト比を1とすることが望ましい。
Moreover, the surface layer Ni concentration contrast ratio of the hot-rolled steel sheet after scale removal is set to less than 2 times. Here, the contrast ratio is (Ni concentration of Ni concentrated portion of surface layer) / (Ni concentration of Ni non-concentrated portion of surface layer), more specifically, contrast ratio when using an EPMA analyzer. : (Ni / Fe count number ratio of chevron pattern portion) / (Ni / Fe count number ratio of normal portion).
From the above analysis results, even when the Ni concentration in the surface layer is small, if the Ni concentration ratio between the chevron pattern portion and the normal portion is greatly different, the contrast of the light and shaded color is recognized in the steel plate surface layer, and the surface properties deteriorate. Therefore, the contrast ratio needs to be less than twice in order to effectively prevent the chevron pattern on the surface layer. It is desirable that the surface Ni is not concentrated, that is, the contrast ratio is 1.

次に、本発明おける鋼板の成分の限定理由について説明する。
Niはスラブ表層部に不均一濃化し山型模様を発現させる元素であり、含有量が多い程、表面濃化のコントラストがつきやすい。そのため、不均一濃化を防ぎ山型模様の発現を押さえるために、Niは0.05%以下とする。
Next, the reasons for limiting the components of the steel sheet in the present invention will be described.
Ni is an element that unevenly concentrates in the surface layer portion of the slab and develops a chevron pattern. The greater the content, the more easily the contrast of surface concentration. Therefore, Ni is set to 0.05% or less in order to prevent uneven concentration and suppress the expression of the chevron pattern.

Cuは原料に鉄スクラップを用いる場合等に特に混入しやすい元素であり、Niと同様にスラブ表層部に不均一濃化し、山型模様を発現させて表面性状を劣化させる。そのため、不均一濃化を防ぎ山型模様の発現を押さえるために、Cuは0.1%以下とする。   Cu is an element that is particularly easily mixed when iron scrap is used as a raw material, and similarly to Ni, it is unevenly concentrated on the surface portion of the slab and causes a chevron pattern to deteriorate the surface properties. Therefore, in order to prevent uneven concentration and suppress the expression of the chevron pattern, Cu is made 0.1% or less.

As、GeはNiと同様にスラブ表層部に不均一濃化し、山型模様を発現させ表面性状を劣化させる。そのため、不均一濃化を防ぎ山型模様の発現を押さえるために、As、Geはそれぞれ0.005%以下とする。   As and Ge, as with Ni, are concentrated unevenly on the surface of the slab, causing a chevron pattern and deteriorating the surface properties. Therefore, in order to prevent uneven concentration and suppress the expression of the chevron pattern, As and Ge are each 0.005% or less.

Siは鋼の固溶強化効果のある元素である。しかし、添加量が1%を超えると、デスケーリング時の脱スケール性を劣化させるうえ、スラブ加熱時に表面粗さを増大させることでNi濃化層が深くなり、熱延後もNi濃化部として残るため、Siは1%以下とすることが好ましい。   Si is an element having a solid solution strengthening effect of steel. However, if the added amount exceeds 1%, the descaling property at the time of descaling is deteriorated, and the Ni concentrated layer becomes deeper by increasing the surface roughness at the time of slab heating. Therefore, Si is preferably 1% or less.

Pは鋼の固溶強化に寄与する元素である。しかし、0.1%を超える添加はスラブ冷片加熱時にSiと低融点酸化物を生成して表面粗さを増大させ、地鉄表層のNi濃化層が深くなるため、Pは0.1%以下とすることが好ましい。   P is an element contributing to solid solution strengthening of steel. However, addition exceeding 0.1% generates Si and a low-melting-point oxide during slab cold piece heating, increases the surface roughness, and deepens the Ni-enriched layer of the surface iron surface layer. % Or less is preferable.

また、本発明における鋼板は以下の範囲の成分を含むことが好ましい。
Cは鋼の強度を向上させるため、0.1%以下程度添加できる。ただし添加量が0.1%を超えると鋼板の加工性が劣化するため好ましくない。
Mnも鋼の強度を向上させる元素であり、Sを固定してスラブ表面疵を低減する効果があるため、0.1%以上の添加が好ましい。しかし添加量が2%を超えると著しく加工性が劣化するため好ましくない。
Sは0.015%を上限とする。0.015%を超えるとスラブ表面疵が増加するため好ましくない。
Moreover, it is preferable that the steel plate in this invention contains the component of the following ranges.
C can be added in an amount of about 0.1% or less in order to improve the strength of the steel. However, if the addition amount exceeds 0.1%, the workability of the steel sheet deteriorates, which is not preferable.
Mn is an element that improves the strength of the steel, and since it has the effect of fixing S and reducing the surface slab surface, addition of 0.1% or more is preferable. However, if the addition amount exceeds 2%, workability is remarkably deteriorated.
The upper limit of S is 0.015%. If it exceeds 0.015%, the slab surface flaw increases, which is not preferable.

なお、本発明の効果が得られる範囲で、例えば、強度向上を目的にTi、Nb、Vをそれぞれ0.1%以下程度、例えば、焼入性向上を目的にCr、Moをそれ ぞれ0.2%以下程度添加することができる。その他、本発明の効果を妨げない範囲で、例えば、加工性向上を目的に、Ca、REMをそれぞれ0.005%以 下程度添加することができる。   In addition, within the range where the effect of the present invention is obtained, for example, Ti, Nb, and V are each about 0.1% or less for the purpose of improving the strength, for example, Cr and Mo are each set to 0 for the purpose of improving the hardenability. About 2% or less can be added. In addition, within a range not impeding the effects of the present invention, for example, Ca and REM can be added to each about 0.005% or less for the purpose of improving workability.

次に本発明の表面性状に優れた鋼板の製造方法について説明する。
本発明の表面性状に優れた鋼板は、上述した成分組成を有する鋼を鋳造後、粗圧延を行った後、熱間圧延、酸洗等を行うことにより得られる。
ここで、本発明者らは、熱間圧延試験および表面欠陥の解析を行った。その結果、スラブの熱履歴を以下の方法で適正化すること、さらに好ましくはデスケーリング条件を適正化することで、酸洗以降の工程における山型模様の発現をきわめて少なくできることがわかった。
Next, the manufacturing method of the steel plate excellent in the surface property of this invention is demonstrated.
The steel sheet having excellent surface properties according to the present invention can be obtained by casting the steel having the above-described component composition, performing rough rolling, hot rolling, pickling, and the like.
Here, the present inventors conducted a hot rolling test and analysis of surface defects. As a result, it was found that the appearance of chevron patterns in the steps after pickling can be greatly reduced by optimizing the thermal history of the slab by the following method, more preferably by optimizing the descaling conditions.

すなわち、スラブを加熱して圧延に供する場合のスラブ表層最高加熱温度:1200℃以下、加熱時のスケールオフ量:2mm以下で熱間圧延を行う。このスラブ最高加熱温度が1200℃超ではFeの酸化が促進され、Ni、Cuなどの難酸化元素が地鉄表層に排出され易くなる。また、加熱時のスケールオフ量が2mm超となっても、Feの酸化量が増えることでNi等の濃化が進行し、表面性状が劣化する。   That is, hot rolling is performed at a slab surface maximum heating temperature of 1200 ° C. or lower and a scale-off amount during heating of 2 mm or lower when the slab is heated and used for rolling. When the maximum heating temperature of the slab exceeds 1200 ° C., the oxidation of Fe is promoted, and hardly oxidizable elements such as Ni and Cu are easily discharged to the surface layer of the steel. Even if the amount of scale-off during heating exceeds 2 mm, the amount of Fe oxidation increases, so that concentration of Ni or the like proceeds and the surface properties deteriorate.

続いて、粗圧延第1パス前にデスケーリングを行うことが好ましい。ここでの粗圧延とは、例えば、圧下率20%以上の水平圧延である。よってデスケーリング前に幅調整のための幅圧下や、スラブ端部の形状矯正などのため軽圧下水平圧延を行っても良い。前記デスケーリングの方法は、衝突圧1MPa以上の水流で、0.01秒以上の噴射とすることが好ましい。この時、デスケーリング媒体は特に規定しないが、例えば、高圧水を用いることができる。衝突圧1MPa以上の水流で、0.01秒以上の噴射でデスケーリングを行うことにより、スラブ表層を削り取る効果、およびスケールを効果的に除去しデスケーリング後に地鉄表面を大気に露出させることで山型模様の元となるNi等の不均一濃化層をスケールオフして除去し易くする効果がある。   Subsequently, descaling is preferably performed before the first rough rolling pass. Here, the rough rolling is horizontal rolling with a rolling reduction of 20% or more, for example. Therefore, light rolling horizontal rolling may be performed for width adjustment for width adjustment or shape correction of the slab end before descaling. The descaling method is preferably jetting for 0.01 seconds or more with a water flow having a collision pressure of 1 MPa or more. At this time, the descaling medium is not particularly defined, but, for example, high-pressure water can be used. By performing descaling by jetting for 0.01 seconds or more with a water flow with an impact pressure of 1 MPa or more, the effect of scraping off the slab surface layer, and effectively removing the scale and exposing the surface of the iron bar to the atmosphere after descaling There is an effect of facilitating removal of the non-uniformly concentrated layer such as Ni which is the basis of the chevron pattern by scaling off.

以上、本発明により、表面性状に優れた鋼板が得られ、得られた鋼板としては、酸洗材、熱延下地EG材、冷延下地EG材、Crめっき材などに適用可能である。   As described above, a steel sheet having excellent surface properties can be obtained by the present invention, and the obtained steel sheet can be applied to pickling materials, hot-rolled base EG materials, cold-rolled base EG materials, Cr-plated materials, and the like.

表1に示す化学成分の鋼スラブ(A)を、冷片より表2に示す温度に加熱し、スケールオフ量およびデスケーリング条件を表2の条件として、第1パスを圧延率22%の水平圧延とした粗圧延を行い、その後、通常の熱間圧延、酸洗を行い、No.1、2の鋼板を得た。   The steel slab (A) having the chemical composition shown in Table 1 is heated from the cold piece to the temperature shown in Table 2, the scale-off amount and the descaling conditions are the conditions shown in Table 2, and the first pass is a horizontal with a rolling rate of 22%. Rough rolling was performed, followed by normal hot rolling and pickling. One or two steel plates were obtained.

Figure 2007039812
Figure 2007039812

Figure 2007039812
得られた熱延鋼板について、表層最大Ni濃度および表層Ni濃度コントラスト比を求め、山型模様の評価を行った。ここで、表層最大Ni濃度および表層Ni濃度コントラスト比の測定は、通常の条件にて酸洗しスケールを除去した後の熱延鋼板の表層Niの濃度を、EPMA分析装置を用いて、プローブ径5μm、加速電圧15kVの条件にて測定し、次いで、50μm×50μmの分析領域のNi/Feカウント数比を山型模様部および正常部で算出し、(山型模様部のNi/Feカウント数比)/(正常部のNi/Feカウント数比)をコントラスト比として評価した。また、酸洗後の熱延鋼板山型模様部のうち、目視で濃く見える箇所5点の表層Ni濃度分析を行い、その最大値を表層のNi濃度とした。なお、山型模様が発生していないものについては、50μm×50μmの分析領域を任意に10領域選定し、Ni/Feカウント数比を算出し、その最大値を表層のNi濃度とした。また、最大値と平均値の比を表層Ni濃度コントラスト比とした。
結果を表3に示す。なお、表3において、山型模様の評価は通常条件にて酸洗した熱延鋼板を目視にて判定し、山型模様が発生していないものを○、発生しているものを×とした。
Figure 2007039812
About the obtained hot-rolled steel sheet, the surface layer maximum Ni concentration and the surface layer Ni concentration contrast ratio were determined, and the chevron pattern was evaluated. Here, the measurement of the maximum surface layer Ni concentration and the surface layer Ni concentration contrast ratio is performed by measuring the surface layer Ni concentration of the hot-rolled steel sheet after pickling under normal conditions and removing the scale using an EPMA analyzer. Measurement was performed under the conditions of 5 μm and acceleration voltage of 15 kV, and then the Ni / Fe count number ratio of the analysis region of 50 μm × 50 μm was calculated for the chevron pattern part and the normal part, and (Ni / Fe count number of the chevron pattern part) Ratio) / (ratio of Ni / Fe count of normal part) was evaluated as a contrast ratio. Further, among the hot-rolled steel sheet chevron pattern portions after pickling, surface Ni concentration analysis was performed at five points that look dark, and the maximum value was taken as the Ni concentration of the surface layer. In addition, for the case where no chevron pattern was generated, 10 analysis regions of 50 μm × 50 μm were arbitrarily selected, the Ni / Fe count number ratio was calculated, and the maximum value was taken as the Ni concentration of the surface layer. The ratio between the maximum value and the average value was defined as the surface Ni concentration contrast ratio.
The results are shown in Table 3. In Table 3, the evaluation of the chevron pattern was made by visually observing a hot-rolled steel sheet pickled under normal conditions. .

Figure 2007039812
表3より、比較例であるNo.1のようにスケールオフ量が大きい場合は、山型模様により表面性状が劣化しているが、本発明例であるNo.2では、表面性状は良好であった。
Figure 2007039812
From Table 3, No. which is a comparative example. When the scale-off amount is large as in No. 1, the surface texture is deteriorated due to the chevron pattern. In 2, the surface properties were good.

本発明により得られる鋼板は、山型模様の発生のきわめて少なく表面性状に優れているため、酸洗材、熱延下地EG材、冷延下地EG材、Crめっき材などに適用可能であり、自動車や家電製品の外板に使用される鋼板として最適である。   Since the steel sheet obtained by the present invention has very few surface patterns and excellent surface properties, it can be applied to pickling materials, hot-rolled base EG materials, cold-rolled base EG materials, Cr-plated materials, etc. It is optimal as a steel plate used for the outer plate of automobiles and home appliances.

従来技術の鋼板表面に発生する山型模様の模式図。The schematic diagram of the chevron pattern which generate | occur | produces on the steel plate surface of a prior art. 表層の最大Ni濃度と表層Ni濃度コントラスト比および表面性状との関係を示す図。The figure which shows the relationship between the maximum Ni density | concentration of surface layer, surface layer Ni density | concentration contrast ratio, and surface property.

Claims (1)

mass%で、Ni:0.05%以下、Cu:0.1%以下、As:0.005%以下、Ge:0.005%以下、Si:1%以下、P:0.1%以下を含有し、冷片スラブを加熱した後熱間圧延して得られる鋼板であって、スケール除去後の鋼板表層のNi濃度が0.9%以下で、かつ、表層Ni濃度コントラスト比が2倍未満であることを特徴とする表面性状に優れた鋼板。ただし、表層Ni濃度コントラスト比とは、(表層のNi濃化部のNi濃度)/(表層のNi非濃化部のNi濃度)である。
mass: Ni: 0.05% or less, Cu: 0.1% or less, As: 0.005% or less, Ge: 0.005% or less, Si: 1% or less, P: 0.1% or less A steel sheet obtained by hot rolling after the cold slab is contained, the Ni concentration of the steel sheet surface layer after scale removal is 0.9% or less, and the surface Ni concentration contrast ratio is less than twice A steel sheet with excellent surface properties, characterized by being However, the surface layer Ni concentration contrast ratio is (Ni concentration of Ni concentrated portion of surface layer) / (Ni concentration of Ni non-concentrated portion of surface layer).
JP2006274541A 2006-10-06 2006-10-06 Steel sheet having excellent surface property Pending JP2007039812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274541A JP2007039812A (en) 2006-10-06 2006-10-06 Steel sheet having excellent surface property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274541A JP2007039812A (en) 2006-10-06 2006-10-06 Steel sheet having excellent surface property

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001113388A Division JP3900851B2 (en) 2001-04-12 2001-04-12 Manufacturing method of steel sheet with excellent surface properties

Publications (1)

Publication Number Publication Date
JP2007039812A true JP2007039812A (en) 2007-02-15

Family

ID=37798068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274541A Pending JP2007039812A (en) 2006-10-06 2006-10-06 Steel sheet having excellent surface property

Country Status (1)

Country Link
JP (1) JP2007039812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101554A4 (en) * 2020-02-06 2023-02-22 Nippon Steel Corporation Hot-rolled steel sheet and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288115A (en) * 1995-04-13 1996-11-01 Kawasaki Steel Corp Grain oriented electromagnetic steel plate with low iron loss
JPH08337842A (en) * 1995-06-12 1996-12-24 Kobe Steel Ltd Steel sheet for electrogalvanizing excellent in grained flaw resistance, electrogalvanized steel sheet and their production
JPH0952110A (en) * 1995-08-11 1997-02-25 Kobe Steel Ltd Manufacture of ni, cu-containing hot rolled steel sheet, cold rolled steel sheet and plated steel sheet without scale defect
JPH09327717A (en) * 1996-06-06 1997-12-22 Kobe Steel Ltd Production of hot rolled steel plate and cold rolled steel plate excellent in surface property
JP2000178655A (en) * 1998-12-11 2000-06-27 Nippon Steel Corp Steel sheet excellent in surface property and its production
JP2000219917A (en) * 1999-01-28 2000-08-08 Nippon Steel Corp Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288115A (en) * 1995-04-13 1996-11-01 Kawasaki Steel Corp Grain oriented electromagnetic steel plate with low iron loss
JPH08337842A (en) * 1995-06-12 1996-12-24 Kobe Steel Ltd Steel sheet for electrogalvanizing excellent in grained flaw resistance, electrogalvanized steel sheet and their production
JPH0952110A (en) * 1995-08-11 1997-02-25 Kobe Steel Ltd Manufacture of ni, cu-containing hot rolled steel sheet, cold rolled steel sheet and plated steel sheet without scale defect
JPH09327717A (en) * 1996-06-06 1997-12-22 Kobe Steel Ltd Production of hot rolled steel plate and cold rolled steel plate excellent in surface property
JP2000178655A (en) * 1998-12-11 2000-06-27 Nippon Steel Corp Steel sheet excellent in surface property and its production
JP2000219917A (en) * 1999-01-28 2000-08-08 Nippon Steel Corp Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101554A4 (en) * 2020-02-06 2023-02-22 Nippon Steel Corporation Hot-rolled steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
EP2172574B1 (en) Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
KR101615842B1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
WO2016158426A1 (en) Ferritic stainless steel sheet, cover member, and method for producing ferritic stainless steel sheet
JP2008266726A (en) High strength hot rolled steel sheet with excellent blankability, and its manufacturing method
JP2016196682A (en) Austenitic stainless steel sheet, cover member, and method for producing the austenitic stainless steel sheet
JP2014077642A (en) Estimation method of hic sensitivity of steel material and manufacturing method of high strength thick steel plate for line pipe superior in anti hic performance using the same
JP6853887B2 (en) Austenitic stainless steel with excellent workability and surface properties and its manufacturing method
JP4285302B2 (en) Stainless steel containing fine inclusions and method for producing the same
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP3900851B2 (en) Manufacturing method of steel sheet with excellent surface properties
JP2007039812A (en) Steel sheet having excellent surface property
JP4635954B2 (en) Method for casting Cr-containing steel
JP5491968B2 (en) Steel bar manufacturing method
JP2020509210A (en) Austenitic stainless steel workpiece with excellent surface properties and method for producing the same
JP2022155342A (en) Ferritic stainless steel material and method for manufacturing the same, and corrosion-resistant member
JP2022155337A (en) Austenitic stainless steel material and method for manufacturing the same, and corrosion-resistant member
JP2011190523A (en) Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone
JP2008260992A (en) Method for pickling stainless steel stock and method for producing the same
JP2008266697A (en) Pickling method and manufacturing method for stainless steel material
JP5023452B2 (en) Hot rolled steel sheet with excellent surface properties
JP2022155339A (en) Ferrite-austenite two-phase system stainless steel material and method for manufacturing them, and corrosion-resistant member
JP2007039774A (en) Hot rolled steel sheet having excellent surface property
JP2022155343A (en) Ferrite-austenite two-phase system stainless steel material and method for manufacturing the same, and corrosion-resistant member
JP4350257B2 (en) Materials for hot rolling of Fe-Cr and Fe-Cr-Ni stainless steels and methods for preventing ear cracks during hot rolling

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309