JP3900851B2 - Manufacturing method of steel sheet with excellent surface properties - Google Patents

Manufacturing method of steel sheet with excellent surface properties Download PDF

Info

Publication number
JP3900851B2
JP3900851B2 JP2001113388A JP2001113388A JP3900851B2 JP 3900851 B2 JP3900851 B2 JP 3900851B2 JP 2001113388 A JP2001113388 A JP 2001113388A JP 2001113388 A JP2001113388 A JP 2001113388A JP 3900851 B2 JP3900851 B2 JP 3900851B2
Authority
JP
Japan
Prior art keywords
concentration
less
steel sheet
slab
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001113388A
Other languages
Japanese (ja)
Other versions
JP2002309343A (en
Inventor
博士 中田
正 井上
啓泰 菊池
吉秀 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001113388A priority Critical patent/JP3900851B2/en
Publication of JP2002309343A publication Critical patent/JP2002309343A/en
Application granted granted Critical
Publication of JP3900851B2 publication Critical patent/JP3900851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面性状に優れた鋼板製造方法に関するものである。
【0002】
【従来の技術】
家電製品や自動車の外板に使用される鋼板は、意匠性の点から、高度の表面品質が求められる。にも係わらず、熱間圧延前にNi、Cuなどの不純物元素のうちFeより酸化され難いものが、酸化スケールの生成にともなってスラブ地鉄表層に不均一に濃化し、その濃化部分が酸洗後あるいは電気亜鉛めっき等のめっき処理後に図1に示すような山型の濃色模様(以下、山型模様と称す)となって現れ、製品の表面性状を悪化させている。
【0003】
上記問題点に対して、例えば、特開平8-337842号公報には、鋼板表面の模様状欠陥を防止する手段として、Ni量を低減し、鋼板表層部のNi濃度の上限を制限することで模様状欠陥の発生を防止する方法が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、実際には鋼中のNi量が0.01%程度と低く、鋼板表層部のNi濃度がオージェ電子分光解析によっても模様部と正常部との差が検出できないような微小な濃度差の場合でも、酸洗後の鋼板の表面には山型模様が発生することがあり、特開平8-337842号公報の技術では模様状欠陥を十分低減することはできない。
【0005】
本発明はこのような事情に鑑みなされたものであり、高温でのスケール生成によるスラブ表層への不純物元素の濃化が起因となる表面欠陥はなく、しかも製造コストも低い表面性状に優れた鋼板製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、スケール除去後の鋼板の表層Niの濃度に着目し、表面性状に優れた鋼板を得るために鋭意研究を重ねた結果、表層最大Ni濃度および、(表層のNi濃化部のNi濃度)/(表層のNi非濃化部のNi濃度)で表される表層Ni濃度コントラスト比を所定のレベル以下に規制することにより、スラブ表層の不純物元素の濃化に起因する表面欠陥がない優れた表面性状を有する鋼板が得られること、また、スラブ表層の熱履歴、さらには粗圧延前のデスケーリング条件を適正化することにより、上記のような表面性状に優れた鋼板を安定して且つ安価に製造できることを見出した。
【0007】
本発明はかかる知見に基づきなされたもので、以下のような構成を有する。
【0010】
[]mass%で、Ni:0.05%以下、Cu:0.1%以下、As:0.005%以下、Ge:0.005% 以下、Si:1%以下、P:0.1%以下を含有する鋼をスラブに鋳造し、この鋳造されたスラブを加熱するに際し、スラブ表層最高加熱温度:1200℃以下、保持時のスケールオフ量:2mm以下とし、引き続き、熱間圧延を行うことを特徴とする表面性状に優れた鋼板の製造方法。
【0011】
[]前記[ ] おいて、粗圧延前に、衝突圧1MPa以上の水流で0.01秒以上のデスケーリングを行うことを特徴とする表面性状に優れた鋼板の製造方法。
【0012】
なお、本明細書において、鋼の成分を示す%はすべてmass%である。
【0013】
【発明の実施の形態】
以下に本発明の詳細をその限定理由と合わせて説明する。
【0014】
まず、本発明者らは、従来の鋼板で発生していた鋼板表面の山型模様について詳細に解析するために、通常の条件にて酸洗しスケールを除去した後の熱延鋼板の表層Niの濃度を、EPMA分析装置を用いて、プローブ径5μm、加速電圧15kVの条件にて測定し、50μm×50μmの分析領域のNi/Feカウント数比を山型模様部および正常部で算出し、(山型模様部のNi/Feカウント数比)/(正常部のNi/Feカウント数比)をコントラスト比として評価した。また、酸洗後の熱延鋼板山型模様部のうち、目視で濃く見える箇所5点の表層Ni濃度分析を行い、その最大値を表層の最大Ni濃度とした。なお、目視で山型模様として認識されない3ヶ所についても同様に分析した。すなわち、50μm×50μmの分析領域を任意に各々10領域選定し、Ni/Feカウント数比を算出し、それらの最大値を表層の最大Ni濃度、最大値と平均値の比を表層Ni濃度コントラスト比とした。その結果を図2に示す。図2において、山型模様として認識されるものを表面性状×:NG、認識されないものを表面性状○:OKとして示している。
【0015】
ここで、EPMA分析装置とは波長分散型X線分光により、特定元素の高精度の分析が可能な装置であり、オージェ電子分光解析よりも1桁程度高精度の分析が可能である。
【0016】
図2によれば、表層Ni濃度0.9%超えで、かつ、正常部と比較してコントラスト比で2倍以上のNiの濃化がある場合、山型模様として認識され、表面性状が劣化していることがわかる。そして、鋼板表面のNi濃度が山型模様部と正常部とのNiの濃度比がある程度以上になると(EPMA分析装置を用いた場合では、正常部と比較したコントラスト比で2倍以上のNiの濃化)、鋼板表面の山型模様として認識されることがわかった。
【0017】
さらに、その他の元素の山型模様部への濃化挙動について詳細に調べた結果、Ni以外の成分元素(Cu、As、Ge)についても同様に山型模様部に濃化することで表面性状を劣化させており、これらの元素の濃化制御も併せて行うことで初めて山型の模様を抜本的に改善できることが判った。
【0018】
以上の理由から、まず、本発明では、スケール除去後の熱延鋼板の表層最大Ni濃度は0.9%以下とする。上記解析結果より、Ni濃化量が多い箇所が存在するとその箇所は山型模様となって表面性状を劣化させるため、表面の模様を有効に防止するにはNiの表面濃度は0.9%以下とする必要がある。
【0019】
また、スケール除去後の熱延鋼板の表層Ni濃度コントラスト比は2倍未満とする。ここで、コントラスト比とは、(表層のNi濃化部のNi濃度)/(表層のNi非濃化部のNi濃度)であり、より具体的にはEPMA分析装置を用いた場合のコントラスト比:(山型模様部のNi/Feカウント数比)/(正常部のNi/Feカウント数比)である。
【0020】
前記解析結果より、表層のNi濃度が小さい場合でも、山型模様部と正常部でのNi濃度比が大きく違う場合は、鋼板表層において濃淡の色のコントラストが認識され表面性状が劣化する。そのため、表層の山型模様を有効に防止するために、コントラスト比は2倍未満とする必要がある。表層Ni濃化のない状態、すなわちコントラスト比を1とすることが望ましい。
【0021】
つぎに本発明おける鋼板の成分の限定理由について説明する。
【0022】
Niはスラブ表層部に不均一濃化し山型模様を発現させる元素であり、含有量が多い程、表面濃化のコントラストがつきやすい。そのため、不均一濃化を防ぎ山型模様の発現を押さえるために、Niは0.05%以下とする。
【0023】
Cuは原料に鉄スクラップを用いる場合等に特に混入しやすい元素であり、Niと同様にスラブ表層部に不均一濃化し、山型模様を発現させて表面性状を劣化させる。そのため、不均一濃化を防ぎ山型模様の発現を押さえるために、Cuは0.1%以下とする。
【0024】
As、GeはNiと同様にスラブ表層部に不均一濃化し、山型模様を発現させ表面性状を劣化させる。そのため、不均一濃化を防ぎ山型模様の発現を押さえるために、As、Geはそれぞれ0.005%以下とする。
【0025】
Siは鋼の固溶強化効果のある元素である。しかし、添加量が1%を超えると、デスケーリング時の脱スケール性を劣化させるうえ、スラブ加熱時に表面粗さを増大させることでNi濃化層が深くなり、熱延後もNi濃化部として残るため、Siは1%以下とすることが好ましい。
【0026】
Pは鋼の固溶強化に寄与する元素である。しかし、0.1%を超える添加はスラブ冷片加熱時にSiと低融点酸化物を生成して表面粗さを増大させ、地鉄表層のNi濃化層が深くなるため、Pは0.1%以下とすることが好ましい。
【0027】
また、本発明における鋼板は以下の範囲の成分を含むことが好ましい。
【0028】
Cは鋼の強度を向上させるため、0.1%以下程度添加できる。ただし添加量が0.1%を超えると鋼板の加工性が劣化するため好ましくない。
【0029】
Mnも鋼の強度を向上させる元素であり、Sを固定してスラブ表面疵を低減する効果があるため、0.1%以上の添加が好ましい。しかし添加量が2%を超えると著しく加工性が劣化するため好ましくない。
【0030】
Sは0.015%を上限とする。0.015%を超えるとスラブ表面疵が増加するため好ましくない。
【0031】
なお、本発明の効果が得られる範囲で、例えば、強度向上を目的にTi、Nb、Vをそれぞれ0.1%以下程度、例えば、焼入性向上を目的にCr、Moをそれぞれ0.2%以下程度添加することができる。その他、本発明の効果を妨げない範囲で、例えば、加工性向上を目的に、Ca、REMをそれぞれ0.005%以下程度添加することができる。
【0032】
次に本発明の表面性状に優れた鋼板の製造方法について説明する。
【0033】
本発明の表面性状に優れた鋼板は、上述した成分組成を有する鋼を鋳造後、粗圧延を行った後、熱間圧延、酸洗等を行うことにより得られる。
【0034】
ここで、本発明者らは、熱間圧延試験および表面欠陥の解析を行った。その結果、スラブの熱履歴を以下の2通りの方法で適正化すること、さらに好ましくはデスケーリング条件を適正化することで、酸洗以降の工程における山型模様の発現をきわめて少なくできることがわかった。
【0035】
すなわち第一の方法として、鋳造後直ちに、あるいは冷片に冷却することなくスラブ表層温度:1200℃以下、保持時間:90分以下の条件でスラブを保持した後、熱間圧延を行う。これにより、スラブ表層の酸化量が少なくなるため、スケールオフによるNi等の濃化を低く抑えることができ、山型模様の発現を極めて少なくすることができる。その際、スラブ保持温度が1200℃超または保持時間が90分超では、Feの酸化が促進され、Ni、Cuなどの難酸化元素が地鉄表層に排出され易くなり、Feの酸化量が増えることで表面性状が劣化する。そのため、上記のようにスラブ熱履歴を制限することにより、粗圧延前にスラブ表層部が酸化されて、Feより酸化されにくいNi元素が表層部に濃化することを抑制でき、このためNi濃化量が多くなることで山型模様のコントラストが助長されるのを防ぐことができる。
【0036】
第二の方法としては、スラブを加熱して圧延に供する場合のスラブ表層最高加熱温度:1200℃以下、加熱時のスケールオフ量:2mm以下で熱間圧延を行う。このスラブ最高加熱温度が1200℃超ではFeの酸化が促進され、Ni、Cuなどの難酸化元素が地鉄表層に排出され易くなる。また、加熱時のスケールオフ量が2mm超となっても、Feの酸化量が増えることでNi等の濃化が進行し、表面性状が劣化する。
【0037】
続いて、本発明においては、粗圧延第1パス前にデスケーリングを行うことが好ましい。ここでの粗圧延とは、例えば、圧下率20%以上の水平圧延である。よってデスケーリング前に幅調整のための幅圧下や、スラブ端部の形状矯正などのため軽圧下水平圧延を行っても良い。前記デスケーリングの方法は、衝突圧1MPa以上の水流で、0.01秒以上の噴射とすることが好ましい。この時、デスケーリング媒体は特に規定しないが、例えば、高圧水を用いることができる。衝突圧1MPa以上の水流で、0.01秒以上の噴射でデスケーリングを行うことにより、スラブ表層を削り取る効果、およびスケールを効果的に除去しデスケーリング後に地鉄表面を大気に露出させることで山型模様の元となるNi等の不均一濃化層をスケールオフして除去し易くする効果がある。
【0038】
以上、本発明により、表面性状に優れた鋼板が得られ、得られた鋼板としては、酸洗材、熱延下地EG材、冷延下地EG材、Crめっき材などに適用可能である。
【0039】
【実施例】
[実施例1]表1に示す化学成分の鋼(A)を鋳造してスラブとし、引き続き、直ちに圧延を開始するか、あるいは表2に示す所定の温度および時間で保熱炉中でスラブを保持した後、表2に示す条件でデスケーリングを行った。次いで、第1パスを圧延率22%の水平圧延とした粗圧延を行い、その後、通常の熱間圧延、酸洗を行い、No.1〜6の鋼板を得た。このとき、デスケーリング前の状態におけるスケールオフ量は、No.1、2、5、6については、0.4〜1.3mmであった。
【0040】
【表1】

Figure 0003900851
【0041】
【表2】
Figure 0003900851
【0042】
得られた熱延鋼板について、表層最大Ni濃度および表層Ni濃度コントラスト比を測定した。ここで、表層最大Ni濃度および表層Ni濃度コントラスト比の測定は、通常の条件にて酸洗しスケールを除去した後の熱延鋼板の表層Niの濃度を、EPMA分析装置を用いて、プローブ径5μm、加速電圧15kVの条件にて測定し、次いで、50μm×50μmの分析領域のNi/Feカウント数比を山型模様部および正常部で算出し、(山型模様部のNi/Feカウント数比)/(正常部のNi/Feカウント数比)をコントラスト比として評価した。また、酸洗後の熱延鋼板山型模様部のうち、目視で濃く見える箇所5点の表層Ni濃度分析を行い、その最大値を表層のNi濃度とした。なお、山型模様が発生していないものについては、50μm×50μmの分析領域を任意に10領域選定し、Ni/Feカウント数比を算出し、その最大値を表層のNi濃度とした。また、最大値と平均値の比を表層Ni濃度コントラスト比とした。
【0043】
得られた結果を表3に示す。なお、表3において、山型模様の評価は通常条件にて酸洗した熱延鋼板を目視にて判定し、山型模様が発生していないものを○、発生しているものを×とした。
【0044】
【表3】
Figure 0003900851
【0045】
表3より、No.1、2、5、6では、山型模様が発生しておらず、表面性状に優れた鋼板が得られることがわかる。
【0046】
一方、No.3、4では山型模様が発生し、表面性状が劣っている。
【0047】
[実施例2] 表4に示す化学成分の鋼スラブ(B)を、冷片より表5に示す温度に加熱し、スケールオフ量およびデスケーリング条件を表5の条件として、実施例1と同様の圧延条件にて熱間圧延、酸洗を行い、No.7、8の鋼板を得た。得られた熱延鋼板について、実施例1と同様に表層最大Ni濃度および表層Ni濃度コントラスト比を求め、山型模様の評価を行った。結果を表6に示す。
【0048】
【表4】
Figure 0003900851
【0049】
【表5】
Figure 0003900851
【0050】
【表6】
Figure 0003900851
【0051】
表6より、比較例であるNo.7のようにスケールオフ量が大きい場合は、山型模様により表面性状が劣化しているが、本発明例であるNo.8では、表面性状は良好であった。
【0052】
【発明の効果】
以上述べたように、本発明によれば、表面性状に優れた鋼板を得ることができる。また、本発明の製造方法によれば、生産性を損なうことなく表面性状に優れた鋼板を生産でき、経済性にも優れる。また、得られる鋼板は、山型模様の発生のきわめて少なく表面性状に優れているため、酸洗材、熱延下地EG材、冷延下地EG材、Crめっき材などに適用可能であり、自動車や家電製品の外板に使用される鋼板として最適である。
【図面の簡単な説明】
【図1】従来技術の鋼板表面に発生するの山型模様の模式図。
【図2】表層の最大Ni濃度と表層Ni濃度コントラスト比および表面性状との関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of steel sheet excellent in surface properties.
[0002]
[Prior art]
Steel sheets used for home appliances and automobile outer plates are required to have a high degree of surface quality in terms of design. Nevertheless, impurity elements such as Ni and Cu that are less likely to be oxidized than Fe before hot rolling are unevenly concentrated on the surface layer of the slab steel as the oxide scale is formed. After pickling or plating treatment such as electrogalvanization, a mountain-shaped dark color pattern (hereinafter referred to as a mountain-shaped pattern) as shown in FIG. 1 appears, which deteriorates the surface properties of the product.
[0003]
For example, Japanese Patent Application Laid-Open No. 8-337842 discloses a method for preventing a pattern defect on the surface of a steel sheet by reducing the amount of Ni and limiting the upper limit of the Ni concentration in the surface layer of the steel sheet. A method for preventing the occurrence of pattern defects is disclosed.
[0004]
[Problems to be solved by the invention]
However, in reality, the Ni content in the steel is as low as about 0.01%, and the Ni concentration in the steel sheet surface layer portion is so small that the difference between the pattern portion and the normal portion cannot be detected even by Auger electron spectroscopy analysis. Even in this case, a chevron pattern may be generated on the surface of the steel plate after pickling, and the pattern defect cannot be sufficiently reduced by the technique of Japanese Patent Laid-Open No. 8-337842.
[0005]
The present invention has been made in view of such circumstances, and there is no surface defect due to the concentration of impurity elements on the surface of the slab due to scale generation at high temperature, and the steel sheet has excellent surface properties with low manufacturing costs. It aims at providing the manufacturing method of.
[0006]
[Means for Solving the Problems]
The inventors of the present invention focused on the concentration of the surface layer Ni of the steel plate after scale removal, and as a result of intensive research to obtain a steel plate having excellent surface properties, the maximum Ni concentration of the surface layer and the (Ni concentration portion of the surface layer) The surface defects caused by the concentration of impurity elements in the slab surface layer by regulating the surface layer Ni concentration contrast ratio represented by (Ni concentration in the non-concentrated surface layer) to a predetermined level or less. A steel sheet with excellent surface properties can be obtained, and the thermal history of the slab surface layer and further descaling conditions before rough rolling can be optimized to stabilize the steel sheets with excellent surface properties as described above. And it was found that it can be manufactured at low cost.
[0007]
The present invention has been made based on such knowledge, and has the following configuration.
[0010]
[ 1 ] In mass%, Ni: 0.05% or less, Cu: 0.1% or less, As: 0.005% or less, Ge: 0.005% or less, Si: 1% or less, P: 0.1 % Steel or less is cast into a slab, and when the cast slab is heated, the maximum heating temperature of the slab surface layer is 1200 ° C. or less, and the scale-off amount during holding is 2 mm or less, followed by hot rolling. A method for producing a steel sheet having excellent surface properties.
[0011]
[2] Oite to [1], before rough rolling method for producing a steel sheet excellent in surface properties which is characterized in that the descaling of 0.01 seconds water flow more impact pressure 1 MPa.
[0012]
In addition, in this specification, all% which shows the component of steel is mass%.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described below together with the reasons for limitation.
[0014]
First, in order to analyze in detail a chevron pattern on the surface of a steel plate that has occurred in a conventional steel plate, the present inventors have performed a surface layer Ni of a hot-rolled steel plate after pickling under normal conditions and removing the scale. Was measured using an EPMA analyzer under the conditions of a probe diameter of 5 μm and an acceleration voltage of 15 kV, and the Ni / Fe count number ratio in the analysis region of 50 μm × 50 μm was calculated for the chevron pattern portion and the normal portion, The ratio of (Ni / Fe count number ratio of the chevron pattern portion) / (Ni / Fe count number ratio of the normal portion) was evaluated as the contrast ratio. Further, among the hot-rolled steel sheet chevron pattern portions after pickling, surface Ni concentration analysis was performed at five points that look dark visually, and the maximum value was taken as the maximum Ni concentration of the surface layer. In addition, it analyzed similarly about three places which are not recognized as a chevron pattern visually. That is, 10 analysis areas of 50 μm × 50 μm are selected arbitrarily, the Ni / Fe count number ratio is calculated, the maximum value of these is the maximum Ni concentration of the surface layer, and the ratio of the maximum value to the average value is the surface layer Ni concentration contrast Ratio. The result is shown in FIG. In FIG. 2, those recognized as chevron patterns are indicated as surface properties x: NG, and those not recognized are indicated as surface properties ◯: OK.
[0015]
Here, the EPMA analyzer is an apparatus capable of analyzing a specific element with high accuracy by wavelength dispersive X-ray spectroscopy, and can perform analysis with an accuracy about one digit higher than Auger electron spectroscopy analysis.
[0016]
According to FIG. 2, when the Ni concentration of the surface layer exceeds 0.9% and there is Ni concentration more than twice as high as the contrast ratio compared to the normal part, it is recognized as a chevron pattern and the surface properties deteriorate. You can see that When the Ni concentration on the surface of the steel sheet is more than a certain level of the Ni concentration ratio between the chevron pattern portion and the normal portion (in the case of using an EPMA analyzer, the contrast ratio compared with the normal portion is more than twice the Ni concentration). Concentration), it was found to be recognized as a chevron pattern on the steel sheet surface.
[0017]
Furthermore, as a result of investigating the concentration behavior of other elements in the chevron pattern part in detail, the surface properties can be obtained by concentrating the component elements other than Ni (Cu, As, Ge) in the chevron pattern part as well. It has been found that the chevron pattern can be drastically improved only when the concentration control of these elements is also performed.
[0018]
For the above reasons, first, in the present invention, the maximum Ni concentration in the surface layer of the hot-rolled steel sheet after scale removal is set to 0.9% or less. From the above analysis results, if there is a portion with a large amount of Ni concentration, the portion becomes a chevron pattern and deteriorates the surface properties. Therefore, to effectively prevent the surface pattern, the surface concentration of Ni is 0.9%. It is necessary to do the following.
[0019]
Moreover, the surface layer Ni concentration contrast ratio of the hot-rolled steel sheet after scale removal is set to less than 2 times. Here, the contrast ratio is (Ni concentration of Ni concentrated portion of surface layer) / (Ni concentration of Ni non-concentrated portion of surface layer), more specifically, contrast ratio when using an EPMA analyzer. : (Ni / Fe count number ratio of chevron pattern portion) / (Ni / Fe count number ratio of normal portion).
[0020]
From the above analysis results, even when the Ni concentration in the surface layer is small, if the Ni concentration ratio between the chevron pattern portion and the normal portion is greatly different, the contrast of the light and shaded color is recognized in the steel plate surface layer, and the surface properties deteriorate. Therefore, the contrast ratio needs to be less than twice in order to effectively prevent the chevron pattern on the surface layer. It is desirable that the surface Ni is not concentrated, that is, the contrast ratio is 1.
[0021]
Next, the reasons for limiting the components of the steel sheet in the present invention will be described.
[0022]
Ni is an element that unevenly concentrates in the surface layer portion of the slab and develops a chevron pattern. The greater the content, the more easily the contrast of surface concentration. Therefore, Ni is set to 0.05% or less in order to prevent uneven concentration and suppress the expression of the chevron pattern.
[0023]
Cu is an element that is particularly easily mixed when iron scrap is used as a raw material, and similarly to Ni, it is unevenly concentrated on the surface portion of the slab and causes a chevron pattern to deteriorate the surface properties. Therefore, in order to prevent uneven concentration and suppress the expression of the chevron pattern, Cu is made 0.1% or less.
[0024]
As and Ge, as with Ni, are concentrated unevenly on the surface of the slab, causing a chevron pattern and deteriorating the surface properties. Therefore, in order to prevent uneven concentration and suppress the expression of the chevron pattern, As and Ge are each 0.005% or less.
[0025]
Si is an element having a solid solution strengthening effect of steel. However, if the added amount exceeds 1%, the descaling property at the time of descaling is deteriorated, and the Ni concentrated layer becomes deeper by increasing the surface roughness at the time of slab heating. Therefore, Si is preferably 1% or less.
[0026]
P is an element contributing to solid solution strengthening of steel. However, addition exceeding 0.1% generates Si and a low-melting-point oxide during slab cold piece heating, increases the surface roughness, and deepens the Ni-enriched layer of the surface iron surface layer. % Or less is preferable.
[0027]
Moreover, it is preferable that the steel plate in this invention contains the component of the following ranges.
[0028]
C can be added in an amount of about 0.1% or less in order to improve the strength of the steel. However, if the addition amount exceeds 0.1%, the workability of the steel sheet deteriorates, which is not preferable.
[0029]
Mn is an element that improves the strength of the steel, and since it has the effect of fixing S and reducing the surface slab surface, addition of 0.1% or more is preferable. However, if the addition amount exceeds 2%, workability is remarkably deteriorated.
[0030]
The upper limit of S is 0.015%. If it exceeds 0.015%, the slab surface flaw increases, which is not preferable.
[0031]
In the range where the effect of the present invention can be obtained, for example, Ti, Nb, and V are each about 0.1% or less for the purpose of improving the strength, for example, Cr and Mo are each 0.2% for the purpose of improving the hardenability. % Or less can be added. In addition, within a range that does not hinder the effects of the present invention, for example, about 0.005% or less of Ca and REM can be added for the purpose of improving workability.
[0032]
Next, the manufacturing method of the steel plate excellent in the surface property of this invention is demonstrated.
[0033]
The steel sheet having excellent surface properties according to the present invention can be obtained by casting the steel having the above-described component composition, performing rough rolling, hot rolling, pickling, and the like.
[0034]
Here, the present inventors conducted a hot rolling test and analysis of surface defects. As a result, it has been found that by optimizing the thermal history of the slab by the following two methods, and more preferably by optimizing the descaling conditions, the appearance of chevron patterns in the processes after pickling can be greatly reduced. It was.
[0035]
That is, as a first method, hot rolling is performed after holding a slab immediately after casting or without cooling to a cold piece under conditions of a slab surface temperature of 1200 ° C. or less and a holding time of 90 minutes or less. Thereby, since the oxidation amount of the slab surface layer is reduced, the concentration of Ni or the like due to the scale-off can be suppressed to a low level, and the expression of the chevron pattern can be extremely reduced. At that time, if the slab holding temperature exceeds 1200 ° C. or the holding time exceeds 90 minutes, the oxidation of Fe is promoted, and it becomes easy to discharge hardly oxidizable elements such as Ni and Cu to the surface layer of the iron and the amount of oxidation of Fe increases. As a result, the surface properties deteriorate. Therefore, by limiting the slab heat history as described above, the slab surface layer portion is oxidized before rough rolling, and it is possible to suppress the Ni element that is less likely to be oxidized than Fe from being concentrated in the surface layer portion. It is possible to prevent the contrast of the chevron pattern from being promoted by increasing the amount of formation.
[0036]
As a second method, hot rolling is performed at a slab surface maximum heating temperature of 1200 ° C. or lower and a scale-off amount during heating of 2 mm or lower when the slab is heated and used for rolling. When the maximum heating temperature of the slab exceeds 1200 ° C., the oxidation of Fe is promoted, and hardly oxidizable elements such as Ni and Cu are easily discharged to the surface layer of the steel. Even if the amount of scale-off during heating exceeds 2 mm, the amount of Fe oxidation increases, so that concentration of Ni or the like proceeds and the surface properties deteriorate.
[0037]
Subsequently, in the present invention, it is preferable to perform descaling before the first rough rolling pass. Here, the rough rolling is horizontal rolling with a rolling reduction of 20% or more, for example. Therefore, light rolling horizontal rolling may be performed for width adjustment for width adjustment or shape correction of the slab end before descaling. The descaling method is preferably jetting for 0.01 seconds or more with a water flow having a collision pressure of 1 MPa or more. At this time, the descaling medium is not particularly defined, but, for example, high-pressure water can be used. By performing descaling by jetting for 0.01 seconds or more with a water flow with an impact pressure of 1 MPa or more, the effect of scraping off the slab surface layer, and effectively removing the scale and exposing the surface of the iron bar to the atmosphere after descaling There is an effect of facilitating removal of the non-uniformly concentrated layer such as Ni which is the basis of the chevron pattern by scaling off.
[0038]
As described above, a steel sheet having excellent surface properties can be obtained by the present invention, and the obtained steel sheet can be applied to pickling materials, hot-rolled base EG materials, cold-rolled base EG materials, Cr-plated materials, and the like.
[0039]
【Example】
[Example 1] Steel (A) having the chemical composition shown in Table 1 is cast into a slab, and then rolling is started immediately, or the slab is formed in a heat-retaining furnace at a predetermined temperature and time shown in Table 2. After being held, descaling was performed under the conditions shown in Table 2. Next, rough rolling was performed in which the first pass was horizontal rolling with a rolling rate of 22%, and then normal hot rolling and pickling were performed. 1 to 6 steel plates were obtained. At this time, the scale-off amount in the state before descaling is N o. About 1, 2, 5, and 6, it was 0.4-1.3 mm.
[0040]
[Table 1]
Figure 0003900851
[0041]
[Table 2]
Figure 0003900851
[0042]
About the obtained hot-rolled steel sheet, the surface layer maximum Ni concentration and the surface layer Ni concentration contrast ratio were measured. Here, the measurement of the maximum surface layer Ni concentration and the surface layer Ni concentration contrast ratio is performed by measuring the surface layer Ni concentration of the hot-rolled steel sheet after pickling under normal conditions and removing the scale using an EPMA analyzer. Measurement was performed under the conditions of 5 μm and acceleration voltage of 15 kV, and then the Ni / Fe count number ratio of the analysis region of 50 μm × 50 μm was calculated for the chevron pattern part and the normal part, and (Ni / Fe count number of the chevron pattern part) Ratio) / (ratio of Ni / Fe count of normal part) was evaluated as a contrast ratio. Further, among the hot-rolled steel sheet chevron pattern portions after pickling, surface Ni concentration analysis was performed at five points that look dark, and the maximum value was taken as the Ni concentration of the surface layer. In addition, for the case where no chevron pattern was generated, 10 analysis regions of 50 μm × 50 μm were arbitrarily selected, the Ni / Fe count number ratio was calculated, and the maximum value was taken as the Ni concentration of the surface layer. The ratio between the maximum value and the average value was defined as the surface Ni concentration contrast ratio.
[0043]
The obtained results are shown in Table 3. In Table 3, the evaluation of the chevron pattern was made by visually observing a hot-rolled steel sheet pickled under normal conditions. .
[0044]
[Table 3]
Figure 0003900851
[0045]
From Table 3 , No. In 1, 2, 5, and 6, it can be seen that a chevron pattern is not generated, and a steel sheet having excellent surface properties can be obtained.
[0046]
On the other hand , No. In 3 and 4, a chevron pattern is generated and the surface properties are inferior.
[0047]
[Example 2] A steel slab (B) having the chemical composition shown in Table 4 was heated from a cold piece to the temperature shown in Table 5, and the scale-off amount and descaling conditions were the same as those in Example 5, with the conditions of Table 5 being used. Hot rolling and pickling are performed under the rolling conditions of 7 and 8 steel plates were obtained. About the obtained hot-rolled steel sheet, the surface layer maximum Ni concentration and the surface layer Ni concentration contrast ratio were determined in the same manner as in Example 1, and the chevron pattern was evaluated. The results are shown in Table 6.
[0048]
[Table 4]
Figure 0003900851
[0049]
[Table 5]
Figure 0003900851
[0050]
[Table 6]
Figure 0003900851
[0051]
From Table 6, No. which is a comparative example. When the scale-off amount is large as in No. 7, the surface texture is degraded due to the chevron pattern. In No. 8, the surface properties were good.
[0052]
【The invention's effect】
As described above, according to the present invention, a steel sheet having excellent surface properties can be obtained. Moreover, according to the manufacturing method of this invention, the steel plate excellent in surface property can be produced without impairing productivity, and it is excellent also in economical efficiency. In addition, since the steel sheet obtained has very few surface patterns and excellent surface properties, it can be applied to pickling materials, hot-rolled base EG materials, cold-rolled base EG materials, Cr-plated materials, etc. It is most suitable as a steel plate used for the outer plate of home appliances.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a chevron pattern generated on the surface of a conventional steel plate.
FIG. 2 is a diagram showing the relationship between the maximum Ni concentration of the surface layer, the surface Ni concentration contrast ratio, and the surface properties.

Claims (2)

mass%で、Ni:0.05%以下、Cu:0.1%以下、As:0.005%以下、Ge:0.005%以下、Si:1%以下、P:0.1%以下を含有する鋼をスラブに鋳造し、この鋳造されたスラブを加熱するに際し、スラブ表層最高加熱温度:1200℃以下、保持時のスケールオフ量:2mm以下とし、引き続き、熱間圧延を行うことを特徴とする表面性状に優れた鋼板の製造方法。mass: Ni: 0.05% or less, Cu: 0.1% or less, As: 0.005% or less, Ge: 0.005% or less, Si: 1% or less, P: 0.1% or less The steel contained is cast into a slab, and when the cast slab is heated, the maximum heating temperature of the slab layer is 1200 ° C. or less, the scale-off amount during holding is 2 mm or less, and then hot rolling is performed. A method for producing a steel sheet having excellent surface properties. 粗圧延前に、衝突圧1MPa以上の水流で0.01秒以上のデスケーリングを行うことを特徴とする請求項に記載の表面性状に優れた鋼板の製造方法。The method for producing a steel sheet having excellent surface properties according to claim 1 , wherein descaling is performed for 0.01 second or more with a water flow having a collision pressure of 1 MPa or more before rough rolling.
JP2001113388A 2001-04-12 2001-04-12 Manufacturing method of steel sheet with excellent surface properties Expired - Fee Related JP3900851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001113388A JP3900851B2 (en) 2001-04-12 2001-04-12 Manufacturing method of steel sheet with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001113388A JP3900851B2 (en) 2001-04-12 2001-04-12 Manufacturing method of steel sheet with excellent surface properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006274541A Division JP2007039812A (en) 2006-10-06 2006-10-06 Steel sheet having excellent surface property

Publications (2)

Publication Number Publication Date
JP2002309343A JP2002309343A (en) 2002-10-23
JP3900851B2 true JP3900851B2 (en) 2007-04-04

Family

ID=18964614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001113388A Expired - Fee Related JP3900851B2 (en) 2001-04-12 2001-04-12 Manufacturing method of steel sheet with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3900851B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529510B2 (en) * 2004-03-30 2010-08-25 Jfeスチール株式会社 Method for producing hot-rolled steel sheet with excellent surface properties
JP4407458B2 (en) * 2004-10-08 2010-02-03 Jfeスチール株式会社 High corrosion resistant steel with zinc rich primer
CN114901849B (en) * 2020-02-06 2023-09-01 日本制铁株式会社 Hot-rolled steel sheet and method for producing same

Also Published As

Publication number Publication date
JP2002309343A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
CN101573466B (en) Ferritic stainless steel and manufacture method thereof
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP4849731B2 (en) Mo-containing high Cr high Ni austenitic stainless steel sheet excellent in ductility and manufacturing method
JP3900851B2 (en) Manufacturing method of steel sheet with excellent surface properties
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP4524894B2 (en) Multi-layer structure Cr-based stainless steel and method for producing the same
JP4306411B2 (en) Steel plate for heat treatment and its manufacturing method
JP2007039812A (en) Steel sheet having excellent surface property
JP3873385B2 (en) Rolling bearing
JP5491968B2 (en) Steel bar manufacturing method
JP2022155342A (en) Ferritic stainless steel material and method for manufacturing the same, and corrosion-resistant member
JP2020509210A (en) Austenitic stainless steel workpiece with excellent surface properties and method for producing the same
JP4360136B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP3915235B2 (en) Method for producing austenitic stainless steel sheet without surface pattern
JP2022155337A (en) Austenitic stainless steel material and method for manufacturing the same, and corrosion-resistant member
JP3721637B2 (en) Method for producing Ca-containing austenitic heat resistant steel
JPH04276042A (en) Austenitic stainless steel and its production
JP4158390B2 (en) Hot forged steel for cold work with excellent fatigue resistance and cold workability
JP3491432B2 (en) Manufacturing method of austenitic stainless steel sheet
JP4350257B2 (en) Materials for hot rolling of Fe-Cr and Fe-Cr-Ni stainless steels and methods for preventing ear cracks during hot rolling
KR102255102B1 (en) Manufacturing method of austenitic stainless steel with improved surface quality
JP5023452B2 (en) Hot rolled steel sheet with excellent surface properties
JP2022155338A (en) Ferritic stainless steel material, martensite-based stainless steel material, ferrite-martensite two-phase system stainless steel material and method for manufacturing them, and corrosion-resistant member
JP3858302B2 (en) Steel plate for heat treatment with excellent oxide scale adhesion
JP2022155339A (en) Ferrite-austenite two-phase system stainless steel material and method for manufacturing them, and corrosion-resistant member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees