JP6879320B2 - Manufacturing method of grain-oriented electrical steel sheet - Google Patents

Manufacturing method of grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6879320B2
JP6879320B2 JP2019036603A JP2019036603A JP6879320B2 JP 6879320 B2 JP6879320 B2 JP 6879320B2 JP 2019036603 A JP2019036603 A JP 2019036603A JP 2019036603 A JP2019036603 A JP 2019036603A JP 6879320 B2 JP6879320 B2 JP 6879320B2
Authority
JP
Japan
Prior art keywords
mass
annealing
temperature
steel sheet
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019036603A
Other languages
Japanese (ja)
Other versions
JP2019210544A (en
Inventor
今村 猛
今村  猛
雅紀 竹中
雅紀 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019210544A publication Critical patent/JP2019210544A/en
Application granted granted Critical
Publication of JP6879320B2 publication Critical patent/JP6879320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Continuous Casting (AREA)

Description

本発明は、変圧器や発電機等の鉄心材料に用いて好適な方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet suitable for use as an iron core material such as a transformer or a generator.

方向性電磁鋼板は、変圧器や発電機等の鉄心材料として広く用いられている軟磁性材料であり、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有していることが特徴である。このような結晶組織は、製造工程の仕上焼鈍において二次再結晶を起こさせ、いわゆるゴス(Goss)方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させることによって形成される。 The grain-oriented electrical steel sheet is a soft magnetic material widely used as an iron core material for transformers, generators, etc., and has a crystal structure in which the <001> orientation, which is the easy axis of iron magnetization, is highly aligned in the rolling direction of the steel sheet. It is a feature that it has. Such a crystal structure causes secondary recrystallization in the finish annealing of the manufacturing process, and preferentially causes huge growth of crystal grains in the {110} <001> orientation, which is the so-called Goth orientation. It is formed.

上記の二次再結晶を起こさせる技術としては、インヒビターと呼ばれる析出物を使用し、仕上焼鈍中にGoss方位を有する粒を優先的に二次再結晶させる技術が一般的に使用されている。例えば、特許文献1には、AlNやMnSをインヒビターとして使用する技術が、また、特許文献2には、MnSやMnSeをインヒビターとして使用する技術が開示されている。これらのインヒビターを用いる方法は、1300℃以上の高温にスラブを加熱する必要があるが、二次再結晶を安定して発現させることができる、極めて有用な技術である。 As a technique for causing the above-mentioned secondary recrystallization, a technique in which a precipitate called an inhibitor is used and grains having a Goss orientation are preferentially secondary recrystallized during finish annealing is generally used. For example, Patent Document 1 discloses a technique of using AlN or MnS as an inhibitor, and Patent Document 2 discloses a technique of using MnS or MnSe as an inhibitor. The method using these inhibitors requires heating the slab to a high temperature of 1300 ° C. or higher, but it is an extremely useful technique capable of stably expressing secondary recrystallization.

さらに、これらのインヒビターの働きを強化する補助インヒビターとして、PbやSb,Nb,Teを利用する技術(特許文献3)や、ZrやTi,B,Nb,Ta,V,Cr,Moを利用する技術(特許文献4)が提案されている。 Further, as an auxiliary inhibitor for enhancing the action of these inhibitors, a technique using Pb, Sb, Nb, Te (Patent Document 3) and Zr, Ti, B, Nb, Ta, V, Cr, Mo are used. A technique (Patent Document 4) has been proposed.

また、上記技術とは異なり、特許文献5には、酸可溶性のAl(sol.Al)を0.010〜0.060mass%含有させ、スラブ加熱温度を1200℃以下の低温に抑えた上で、脱炭焼鈍工程で適度な量の窒化を行うことにより、二次再結晶時に(Al,Si)Nを析出させてインヒビターとして用いる技術も提案されている。 Further, unlike the above technique, Patent Document 5 contains 0.010 to 0.060 mass% of acid-soluble Al (sol.Al), and the slab heating temperature is suppressed to a low temperature of 1200 ° C. or lower. A technique has also been proposed in which (Al, Si) N is precipitated during secondary recrystallization by performing an appropriate amount of nitriding in the decarburization annealing step and used as an inhibitor.

また、上記のような二次再結晶にインヒビターを用いる技術において、仕上焼鈍条件を適正化することによって、インヒビターとしての効果を最大限に発現させる技術が提案されている。例えば、特許文献6には、仕上焼鈍における二次再結晶発現温度領域800〜1150℃における雰囲気の露点を−20〜+30℃の範囲とし、該温度域を35hr以下で加熱する方法が、特許文献7には、仕上焼鈍における700〜850℃間の任意の所定の温度までは20℃/hrで加熱し、上記所定温度から1100〜1300℃の温度域までを5℃/hr以上15℃/hr未満で加熱する方法が提案されている。 Further, in the above-mentioned technique of using an inhibitor for secondary recrystallization, a technique has been proposed in which the effect as an inhibitor is maximized by optimizing the finish annealing conditions. For example, Patent Document 6 describes a method in which the dew point of an atmosphere in the secondary recrystallization temperature range of 800 to 1150 ° C. in finish annealing is set in the range of -20 to + 30 ° C. and the temperature range is heated at 35 hr or less. No. 7 is heated at 20 ° C./hr to an arbitrary predetermined temperature between 700 and 850 ° C. in the finish annealing, and 5 ° C./hr or more and 15 ° C./hr from the above-mentioned predetermined temperature to the temperature range of 1100 to 1300 ° C. A method of heating below is proposed.

特公昭40−015644号公報Tokukousho 40-0156444 特公昭51−013469号公報Special Publication No. 51-013469 特公昭38−008214号公報Special Publication No. 38-008214 特開昭52−024116号公報Japanese Unexamined Patent Publication No. 52-024116 特開平03−002324号公報Japanese Unexamined Patent Publication No. 03-002324 特開昭50−134917号公報Japanese Unexamined Patent Publication No. 50-134917 特開平03−013527号公報Japanese Unexamined Patent Publication No. 03-013527

しかしながら、発明者らの経験によれば、インヒビター形成成分を含有し、さらに補助インヒビターとして偏析元素を含有する鋼スラブを素材として方向性電磁鋼板を製造する技術に、上記特許文献6や7に開示された仕上焼鈍条件を適用したとしても、必ずしも良好な磁気特性を有する方向性電磁鋼板を安定して製造することは難しいのが実情である。 However, according to the experience of the inventors, the above-mentioned Patent Documents 6 and 7 disclose a technique for producing a grain-oriented electrical steel sheet from a steel slab containing an inhibitor-forming component and further containing an segregation element as an auxiliary inhibitor. Even if the finished finish annealing conditions are applied, it is difficult to stably produce grain-oriented electrical steel sheets having good magnetic properties.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、インヒビター形成元素を含有し、かつ、補助インヒビターとして粒界偏析元素を含有する鋼素材を用いて、良好な磁気特性を有する方向性電磁鋼板を安定して製造する方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to use a steel material containing an inhibitor-forming element and a grain boundary segregation element as an auxiliary inhibitor. It is an object of the present invention to propose a method for stably producing a grain-oriented electrical steel sheet having various magnetic properties.

発明者らは、上記課題の解決に向け、補助インヒビターとして機能する粒界偏析元素が仕上焼鈍を介して磁気特性に及ぼす影響に着目して鋭意検討を重ねた。その結果、粒界偏析元素であるSb,Sn,MoおよびPの総量が仕上焼鈍における昇温速度および冷却速度の適正範囲に大きく影響しており、粒界偏析元素の総量に応じて仕上焼鈍の昇温速度および冷却速度を制御することで、良好な磁気特性を有する方向性電磁鋼板を安定して製造することができることを見出し、本発明を開発するに至った。 In order to solve the above problems, the inventors have made extensive studies focusing on the effect of the grain boundary segregation element, which functions as an auxiliary inhibitor, on the magnetic properties through finish annealing. As a result, the total amount of the grain boundary segregating elements Sb, Sn, Mo and P greatly affects the appropriate range of the temperature rising rate and the cooling rate in the finish annealing, and the finish annealing is performed according to the total amount of the grain boundary segregating elements. It has been found that a directional electromagnetic steel sheet having good magnetic characteristics can be stably produced by controlling the heating rate and the cooling rate, and the present invention has been developed.

すなわち、本発明は、C:0.02〜0.10mass%、Si:2.0〜5.0mass%、Mn:0.01〜1.00mass%、sol.Al:0.01〜0.04mass%、N:0.004〜0.020mass%、SおよびSeのうちから選ばれる1種または2種を合計で0.002〜0.040mass%の範囲で含有し、さらにSn:0.010〜0.200mass%、Sb:0.010〜0.200mass%、Mo:0.010〜0.150mass%およびP:0.010〜0.150mass%のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1250℃以上の温度に再加熱した後、熱間圧延して熱延板とし、熱延板焼鈍を施した後または施すことなく、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍し、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍した後、平坦化焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記鋼スラブは連続鋳造法で製造し、かつ、連続鋳造時に鋳型内電磁撹拌を適用して溶鋼に0.1m/s以上の旋回流速を発生させ、上記仕上焼鈍の昇温過程における750℃から1050℃までの平均昇温速度をR(℃/hr)、仕上焼鈍の冷却過程における1000℃から700℃までの平均冷却速度をR(℃/hr)としたとき、上記Sn,Sb,MoおよびPの含有量の総量X(mass%)、R(℃/hr)およびR(℃/hr)が下記(1)式;
1/6X≦R≦1/X ・・・(1)
および(2)式;
80X≦R≦400X ・・・(2)
を満たすことを特徴とする方向性電磁鋼板の製造方法を提案する。
That is, in the present invention, C: 0.02 to 0.10 mass%, Si: 2.0 to 5.0 mass%, Mn: 0.01 to 1.00 mass%, sol. Al: 0.01 to 0.04 mass%, N: 0.004 to 0.020 mass%, one or two selected from S and Se are contained in the range of 0.002 to 0.040 mass% in total. Then, select from Sn: 0.010 to 0.200 mass%, Sb: 0.010 to 0.200 mass%, Mo: 0.010 to 0.150 mass% and P: 0.010 to 0.150 mass%. A steel slab containing one or more of the following types and having a component composition in which the balance is Fe and unavoidable impurities is reheated to a temperature of 1250 ° C. or higher, and then hot-rolled to obtain a hot-rolled plate. After or without plate annealing, one cold rolling or two or more cold rolling with intermediate annealing sandwiched between them to obtain a cold-rolled plate with the final plate thickness, and decarburization annealing that also serves as primary recrystallization annealing. In the method for producing a directional electromagnetic steel sheet, which comprises a series of steps of applying an annealing separator to the surface of the steel sheet, finishing annealing, and then flattening and annealing, the steel slab is produced by a continuous casting method and is continuous. At the time of casting, electromagnetic stirring in the mold is applied to generate a swirling flow velocity of 0.1 m / s or more in the molten steel, and the average temperature rise rate from 750 ° C. to 1050 ° C. in the temperature raising process of the finish annealing is R h (° C./ hr), when the average cooling rate from 1000 ° C. to 700 ° C. in the cooling process of finish annealing is R c (° C./hr), the total content of Sn, Sb, Mo and P is X (mass%). R h (° C./hr) and R c (° C./hr) are given by the following equation (1);
1 / 6X ≤ R h ≤ 1 / X ... (1)
And equation (2);
80X ≤ R c ≤ 400X ... (2)
We propose a method for manufacturing grain-oriented electrical steel sheets, which is characterized by satisfying the above conditions.

本発明の方向性電磁鋼板の製造方法は、上記仕上焼鈍の昇温過程における1050℃から1150℃までの間の平均昇温速度を10〜30℃/hrの範囲とすることを特徴とする。 The method for producing grain-oriented electrical steel sheets of the present invention is characterized in that the average heating rate between 1050 ° C. and 1150 ° C. in the heating process of finish annealing is in the range of 10 to 30 ° C./hr.

また、本発明の方向性電磁鋼板の製造方法は、上記仕上焼鈍の昇温過程における750℃から1050℃までの間のいずれかの温度で、5hr以上保持することを特徴とする。 Further, the method for producing a grain-oriented electrical steel sheet of the present invention is characterized in that it is held for 5 hours or more at any temperature between 750 ° C. and 1050 ° C. in the temperature raising process of the finish annealing.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、Bi:0.005〜0.50mass%、Te:0.005〜0.050mass%およびNb:10〜200ppmのうちから選ばれる1種または2種以上を含有することを特徴とする。 Further, the steel slab used in the method for producing a grain-oriented electrical steel sheet of the present invention has Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu in addition to the above component composition. : Contains one or more selected from 0.01 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Te: 0.005 to 0.050 mass% and Nb: 10 to 200 ppm. It is characterized by doing.

本発明によれば、鋼スラブ中に含まれる粒界偏析元素であるSb,Sn、MoおよびPの総含有量に基づいて、仕上焼鈍における昇温速度および冷却速度を適正化することで、良好な磁気特性を有する方向性電磁鋼板を工業的に安定して製造することが可能となる。 According to the present invention, it is preferable to optimize the heating rate and the cooling rate in the finish annealing based on the total contents of the grain boundary segregating elements Sb, Sn, Mo and P contained in the steel slab. It becomes possible to industrially stably manufacture grain-oriented electrical steel sheets having various magnetic properties.

優れた磁気特性を得ることができる仕上焼鈍の昇温速度Rと冷却速度Rに及ぼす粒界偏析元素の総量Xの影響を示すグラフである。It is a graph which shows the influence of the total amount X of the grain boundary segregating element on the heating rate R h and the cooling rate R c of finish annealing which can obtain excellent magnetic properties. 磁束密度Bに及ぼす、粒界偏析元素の総量Xと仕上焼鈍の平均昇温速度Rの影響を示すグラフである。It is a graph which shows the influence of the total amount X of grain boundary segregating elements and the average temperature rise rate R h of finish annealing on the magnetic flux density B 8. 製品板の鉄損W17/50に及ぼす、粒界偏析元素の総量Xと仕上焼鈍の平均冷却速度Rの影響を示すグラフである。It is a graph which shows the influence of the total amount X of grain boundary segregating elements and the average cooling rate R c of finish annealing on the iron loss W 17/50 of a product plate. 連続鋳造時の溶鋼の旋回流速が磁束密度に及ぼす影響を示すグラフである。It is a graph which shows the influence on the magnetic flux density of the swirling flow velocity of molten steel at the time of continuous casting.

まず、本発明を開発するに至らしめた実験について説明する。
<実験1>
C:0.074mass%、Si:3.51mass%、Mn:0.12mass%、S:0.002mass%、sol.Al:0.025mass%、N:0.0075mass%、Se:0.023mass%、Sb:0.025mass%およびMo:0.010mass%の成分組成を有する鋼スラブAと、C:0.070mass%、Si:3.45mass%、Mn:0.11mass%、sol.Al:0.024mass%、N:0.0071mass%、S:0.002mass%、Se:0.024mass%、Sb:0.120mass%およびMo:0.052mass%の成分組成を有する鋼スラブBを連続鋳造法で製造した、その際、鋳型内電磁撹拌を適用し、旋回流速0.3m/sの溶鋼流を発生させた。次いで、上記鋼スラブを、1400℃の温度に再加熱した後、熱間圧延して板厚2.4mmの熱延板とし、1000℃×60sの熱延板焼鈍を施した後、冷間圧延して中間板厚1.5mmとし、1150℃×150sの中間焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延板に仕上げた。
First, the experiments that led to the development of the present invention will be described.
<Experiment 1>
C: 0.074 mass%, Si: 3.51 mass%, Mn: 0.12 mass%, S: 0.002 mass%, sol. Steel slab A having a component composition of Al: 0.025 mass%, N: 0.0075 mass%, Se: 0.023 mass%, Sb: 0.025 mass% and Mo: 0.010 mass%, and C: 0.070 mass%. , Si: 3.45 mass%, Mn: 0.11 mass%, sol. Steel slab B having a component composition of Al: 0.024 mass%, N: 0.0071 mass%, S: 0.002 mass%, Se: 0.024 mass%, Sb: 0.120 mass% and Mo: 0.052 mass%. Manufactured by the continuous casting method, electromagnetic stirring in the mold was applied to generate a molten steel flow having a swirling flow velocity of 0.3 m / s. Next, the steel slab is reheated to a temperature of 1400 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.4 mm, annealed by hot-rolled plate at 1000 ° C. × 60 s, and then cold-rolled. The intermediate plate thickness was 1.5 mm, and after intermediate annealing at 1150 ° C. × 150 s, it was cold-rolled to finish a cold-rolled plate having a final plate thickness of 0.23 mm.

次いで、50vol%H−50vol%N、露点60℃の雰囲気下で、840℃×150sの一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、1200℃×5hrの仕上焼鈍を施した。なお、仕上焼鈍の雰囲気は、昇温過程の常温から900℃までと冷却過程の900℃以下の温度は窒素雰囲気とし、それ以外は水素雰囲気とした。この際、仕上焼鈍の昇温過程における常温から750℃までの平均昇温速度は30℃/hr、1050℃から1200℃までの平均昇温速度は10℃/hr、冷却過程の1200℃から1000℃/hrまでの平均冷却速度は30℃/hr、700℃以下の平均冷却速度は10℃/hrとし、昇温過程の750℃から1050℃までの平均昇温速度Rと、冷却過程の1000℃から700℃までの平均冷却速度Rを種々に変化させた。 Then, the steel sheet 50vol% H 2 -50vol% N 2 , under an atmosphere of a dew point of 60 ° C., was subjected to decarburization annealing serving also as a primary recrystallization annealing of 840 ° C. × 150s, the annealing separator consisting mainly of MgO It was applied to the surface and subjected to finish annealing at 1200 ° C. × 5 hr. The atmosphere of finish annealing was a nitrogen atmosphere when the temperature was from room temperature to 900 ° C. in the temperature raising process and 900 ° C. or lower in the cooling process, and a hydrogen atmosphere was used otherwise. At this time, the average heating rate from normal temperature to 750 ° C. in the finishing annealing heating process is 30 ° C./hr, the average heating rate from 1050 ° C. to 1200 ° C. is 10 ° C./hr, and the average heating rate from 1200 ° C. to 1000 in the cooling process. ° C. / average cooling rate average cooling rate of 30 ° C. / hr, 700 ° C. or less up hr is set to 10 ° C. / hr, the average heating rate R h to 1050 ° C. from 750 ° C. heating process, the cooling process The average cooling rate R c from 1000 ° C to 700 ° C was varied.

その後、上記仕上焼鈍後の鋼板は、840℃×30sの平坦化焼鈍を施した後、試験片を採取し、磁束密度B(磁化力800A/mでの磁束密度)を、JIS C2550に記載の方法で測定した。 After that, the steel sheet after finish annealing was subjected to flattening annealing at 840 ° C. × 30 s, and then a test piece was sampled, and the magnetic flux density B 8 (magnetic flux density at a magnetization force of 800 A / m) was described in JIS C 2550. It was measured by the method of.

上記測定の結果を、鋼スラブAについては図1(a)に、鋼スラブBについては図1(b)に示した。この結果から、偏析元素であるSbおよびMoの総量が異なる鋼スラブAと鋼スラブBとでは、良好な磁束密度が得られる平均昇温速度Rと平均冷却速度Rの適正範囲が大きく異なっていることがわかる。 The results of the above measurements are shown in FIG. 1 (a) for the steel slab A and in FIG. 1 (b) for the steel slab B. From this result, the appropriate ranges of the average heating rate R h and the average cooling rate R c for obtaining a good magnetic flux density are significantly different between the steel slab A and the steel slab B in which the total amounts of the segregating elements Sb and Mo are different. You can see that.

<実験2>
C:0.050〜0.055mass%、Si:3.27〜3.45mass%、Mn:0.07〜0.09mass%、sol.Al:0.022〜0.025mass%、N:0.0069〜0.0077mass%、S:0.002〜0.003mass%、およびSe:0.017〜0.022mass%を含有し、さらに、偏析元素であるSb,Sn,MoおよびPを種々の量含有する鋼スラブを連続鋳造法で製造した。その際、鋳型内電磁撹拌を適用し、旋回流速0.2m/sの溶鋼流を発生させた。次いで、上記鋼スラブを1350℃の温度に再加熱した後、熱間圧延して板厚2.6mmの熱延板とし、1050℃×60sの熱延板焼鈍を施した後、冷間圧延して中間板厚1.8mmとし、1150℃×150sの中間焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延板に仕上げた。
<Experiment 2>
C: 0.050 to 0.055 mass%, Si: 3.27 to 3.45 mass%, Mn: 0.07 to 0.09 mass%, sol. Al: 0.022 to 0.025 mass%, N: 0.0069 to 0.0077 mass%, S: 0.002 to 0.003 mass%, and Se: 0.017 to 0.022 mass%, and further. Steel slabs containing various amounts of segregating elements Sb, Sn, Mo and P were produced by a continuous casting method. At that time, electromagnetic stirring in the mold was applied to generate a molten steel flow having a swirling flow velocity of 0.2 m / s. Next, the steel slab was reheated to a temperature of 1350 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.6 mm, annealed by hot-rolled plate at 1050 ° C. × 60 s, and then cold-rolled. The intermediate plate thickness was set to 1.8 mm, and after intermediate annealing at 1150 ° C. × 150 s, it was cold-rolled to finish a cold-rolled plate having a final plate thickness of 0.23 mm.

次いで、55vol%H−45vol%N、露点62℃の雰囲気下で840℃×150sの一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、1220℃×15hrの仕上焼鈍を施した。なお、仕上焼鈍の雰囲気は、昇温過程の常温から900℃までと冷却過程の900℃以下の温度は窒素雰囲気、それ以外は水素雰囲気とした。この際、仕上焼鈍の昇温過程における常温から750℃までの平均昇温速度は40℃/hr、1050℃から1200℃までの平均昇温速度は15℃/hr、冷却過程の1200℃から1000℃/hrまでの平均冷却速度は25℃/hr、700℃以下の平均冷却速度は20℃/hrとし、昇温過程の750℃から1050℃までの平均昇温速度Rと、冷却過程の1000℃から700℃までの平均冷却速度Rを種々に変化させた。 Then, 55vol% H 2 -45vol% N 2, was subjected to decarburization annealing serving also as a primary recrystallization annealing of 840 ° C. × 150s under an atmosphere of a dew point of 62 ° C., the steel sheet surface with an annealing separator composed mainly of MgO Was applied to and subjected to finish annealing at 1220 ° C. × 15 hr. The atmosphere of finish annealing was a nitrogen atmosphere when the temperature was from room temperature to 900 ° C. in the temperature raising process and 900 ° C. or lower in the cooling process, and a hydrogen atmosphere in other cases. At this time, the average heating rate from normal temperature to 750 ° C. in the finishing annealing heating process is 40 ° C./hr, the average heating rate from 1050 ° C. to 1200 ° C. is 15 ° C./hr, and the average heating rate from 1200 ° C. to 1000 in the cooling process. ° C. / average cooling rate average cooling rate of 25 ° C. / hr, 700 ° C. or less up hr is set to 20 ° C. / hr, the average heating rate R h to 1050 ° C. from 750 ° C. heating process, the cooling process The average cooling rate R c from 1000 ° C to 700 ° C was varied.

その後、上記仕上焼鈍後の鋼板は、820℃×20sの平坦化焼鈍を施した後、試験片を採取し、磁束密度B(磁化力800A/mでの磁束密度)と鉄損W17/50(50Hzの周波数で1.7Tの励磁を行った場合の鉄損)を、JIS C2550に記載の方法で測定した。 After that, the steel sheet after finish annealing was subjected to flattening annealing at 820 ° C. × 20 s, and then a test piece was sampled to obtain a magnetic flux density B 8 (magnetic flux density at a magnetization force of 800 A / m) and an iron loss W 17 /. 50 (iron loss when excited by 1.7 T at a frequency of 50 Hz) was measured by the method described in JIS C 2550.

図2は、磁束密度Bの測定結果について、偏析元素Sb,Sn,MoおよびPの総含有量(以降、「総量」ともいう)Xと、仕上焼鈍の750℃から1050℃までの平均昇温速度Rとの関係で整理して示したものである。なお、図2に示した各点に対しては、偏析元素の総量Xと平均昇温速度Rが同じで、平均冷却速度Rが異なる条件が存在するが、図2に示した磁束密度の評価は、それらの中で最も良好な値の磁束密度Bの評価結果を示したものである。すなわち、図2は、平均冷却速度Rが最適化されたときの磁束密度を評価したものである。 Figure 2 is a measurement result of the magnetic flux density B 8, segregation elements Sb, Sn, the total content of Mo and P (hereinafter, also referred to as "total") X and the average temperature from 750 ° C. to finish annealing to 1050 ° C. It is shown organized in relation to the temperature rate R h. For each point shown in FIG. 2, there is a condition that the total amount X of the segregated elements and the average heating rate R h are the same and the average cooling rate R c is different, but the magnetic flux density shown in FIG. 2 is present. The evaluation of the above shows the evaluation result of the magnetic flux density B 8 having the best value among them. That is, FIG. 2 is an evaluation of the magnetic flux density when the average cooling rate R c is optimized.

そして、図2から、良好な磁束密度Bが得られる仕上焼鈍における平均昇温速度Rの範囲は、偏析元素の総量Xによって大きく変化し、具体的には、下記(1)式;
1/6X≦R≦1/X ・・・(1)
を満たす範囲で良好な磁束密度が得られることがわかった。
Then, from FIG. 2, the range of the average Atsushi Nobori rate R h in finish annealing good magnetic flux density B 8 is obtained, largely changed by the total amount X of segregating elements, specifically, the following equation (1);
1 / 6X ≤ R h ≤ 1 / X ... (1)
It was found that a good magnetic flux density can be obtained within the range satisfying.

また、図3は、鉄損W17/50の測定結果ついて、偏析元素Sb,Sn,MoおよびPの総含有量(総量)Xと、仕上焼鈍の1000℃から700℃までの平均冷却速度Rとの関係で整理して示したものである。なお、図2と同様、図3に示した各点に対しては、偏析元素の総量Xと平均冷却速度Rが同じで、平均昇温速度Rが異なる条件が存在するが、図3に示した鉄損特性の評価は、それらの中で最も良好な値の鉄損W17/50の評価結果を示したものである。すなわち、図3は、平均昇温速度Rが最適化されときの鉄損特性を評価したものである。 Further, FIG. 3 shows the measurement results of the iron loss W 17/50, the total content (total amount) X of the segregating elements Sb, Sn, Mo and P, and the average cooling rate R of the finish annealing from 1000 ° C. to 700 ° C. It is shown organized in relation to c. Similar to FIG. 2, for each point shown in FIG. 3, there is a condition that the total amount X of the segregated elements and the average cooling rate R c are the same, but the average temperature rise rate R h is different. The evaluation of the iron loss characteristics shown in (1) shows the evaluation result of the iron loss W 17/50, which is the best value among them. That is, FIG. 3 is an evaluation of the iron loss characteristics when the average temperature rise rate R h is optimized.

そして、図3から、良好な鉄損W17/50が得られる仕上焼鈍における冷却過程の1000℃から700℃間の平均冷却速度Rの範囲は、偏析元素の総量Xによって変化し、具体的には、下記(2)式;
80X≦R≦400X ・・・(2)
を満たす範囲で良好な鉄損特性が得られることがわかった。
Then, from FIG. 3, the range of the average cooling rate R c between 1000 ° C. and 700 ° C. in the cooling process in the finish annealing in which a good iron loss W 17/50 is obtained varies depending on the total amount X of the segregated elements, and is concrete. The following equation (2);
80X ≤ RC ≤ 400X ... (2)
It was found that good iron loss characteristics can be obtained within the range satisfying.

このように、偏析元素の総量Xによって、仕上焼鈍の昇温速度Rと冷却速度Rの最適範囲が異なる理由について、現時点ではまだ十分に明らかとなっていないが、発明者らは以下のように考えている。
まず、図2から、偏析元素の総量Xが多い場合には、仕上焼鈍の昇温過程の750℃から1050℃までの平均昇温速度Rが遅いときに磁束密度が良好になる傾向が認められる。上記750℃から1050℃の温度域は、二次再結晶が開始する温度であるが、偏析元素が多いときは、二次再結晶粒の粒界に偏析元素が多量に偏析するため、二次再結晶粒の粒成長が阻害される。また、二次再結晶粒の粒成長が阻害され、二次再結晶粒に蚕食されていない一次再結晶組織が残存したまま高温まで加熱されると、残存した一次再結晶組織から好ましくない方位の二次再結晶粒が発生したり、一次再結晶粒が正常粒成長して粗大化し、二次再結晶粒に蚕食されない領域が発生したりし、磁気特性が劣化すると考えられる。したがって、偏析元素の総量が多い場合には、二次再結晶の完了に時間が掛かるため、二次再結晶が起こる温度域の昇温速度を遅くすることで磁束密度の低下が抑制される。
As described above, the reason why the optimum ranges of the temperature rising rate R h and the cooling rate R c of the finish annealing differ depending on the total amount X of the segregated elements has not been sufficiently clarified at this time, but the inventors have described the following. I'm thinking.
First, from FIG. 2, when the total amount X of segregated elements is large, the magnetic flux density tends to be good when the average temperature rise rate R h from 750 ° C. to 1050 ° C. in the finishing annealing temperature rise process is slow. Be done. The temperature range of 750 ° C. to 1050 ° C. is the temperature at which secondary recrystallization starts, but when there are many segregating elements, a large amount of segregating elements segregate at the grain boundaries of the secondary recrystallized grains, so that the secondary recrystallization is secondary. Grain growth of recrystallized grains is inhibited. Further, when the grain growth of the secondary recrystallized grains is inhibited and the primary recrystallized grains that are not recrystallized by the secondary recrystallized grains are heated to a high temperature while remaining, the remaining primary recrystallized grains have an unfavorable orientation. It is considered that secondary recrystallized grains are generated, primary recrystallized grains grow normally and become coarse, and regions that are not eroded by the secondary recrystallized grains are generated, resulting in deterioration of magnetic properties. Therefore, when the total amount of segregating elements is large, it takes time to complete the secondary recrystallization, so that the decrease in the magnetic flux density is suppressed by slowing the temperature rise rate in the temperature range where the secondary recrystallization occurs.

逆に、偏析元素の総量Xが少ない場合には、仕上焼鈍の昇温過程の750℃から1050℃までの平均昇温速度Rが遅いと、却って磁束密度が低下する傾向が認められる。この理由は、昇温速度が遅いと、二次再結晶が開始するまでの時間が相対的に長くなると考えられるが、偏析元素が少ないことから、その間に一次再結晶粒の正常粒成長が少なからず起こり、磁束密度に悪影響を及ぼしていることが考えられる。
なお、上記のメカニズムが正しいとすれば、偏析元素の総量が多い場合は、二次再結晶が起こる温度域は、一定温度に一定時間保持した方が好ましいと考えられる。
Conversely, if the total amount X of segregating elements is small, the average heating rate R h from 750 ° C. heating process of final annealing to 1050 ° C. is slow, is observed a tendency that rather flux density decreases. The reason for this is that if the rate of temperature rise is slow, the time until the start of secondary recrystallization is considered to be relatively long, but since there are few segregating elements, the normal grain growth of the primary recrystallization grains is small during that time. It is considered that this occurs without any problem and adversely affects the magnetic flux density.
If the above mechanism is correct, it is considered preferable to keep the temperature range in which secondary recrystallization occurs at a constant temperature for a certain period of time when the total amount of segregating elements is large.

また、図3から、偏析元素の総量Xが多い場合は、仕上焼鈍の1000℃から700℃までの平均冷却速度Rが速いほど鉄損特性が良好となる傾向が認められる。仕上焼鈍の冷却過程においては、二次再結晶は既に完了しており、粒界移動はほぼ起こらないが、粒界への溶質原子の偏析が起こり、冷却速度が遅いときは、偏析元素の粒界への偏析が助長される。そして、仕上焼鈍に続く平坦化焼鈍では、鋼板に張力を付与した状態で焼鈍を行うため、鋼板には歪(転移)が導入される。通常、ここで導入される歪は、焼鈍時に消失するが、偏析元素が多く存在する粒界では、転位の移動が妨げられ、歪が過剰に蓄積され、鉄損特性に悪影響を及ぼすようになる。したがって、偏析元素の総量Xが多いほど、仕上焼鈍の冷却速度を高めて、粒界偏析を抑制することによって、平坦化焼鈍での鉄損劣化を防止することができると考えられる。 Further, from FIG. 3, when the total amount X of the segregated elements is large, the iron loss characteristic tends to be improved as the average cooling rate R c of the finish annealing from 1000 ° C. to 700 ° C. is faster. In the cooling process of finish annealing, secondary recrystallization has already been completed and grain boundary movement hardly occurs, but segregation of solute atoms to the grain boundaries occurs, and when the cooling rate is slow, grains of segregating elements Segregation to the world is promoted. Then, in the flattening annealing following the finish annealing, the steel sheet is annealed in a state where tension is applied, so that strain (transition) is introduced into the steel sheet. Normally, the strain introduced here disappears during annealing, but at grain boundaries where a large amount of segregating elements are present, the movement of dislocations is hindered, the strain is excessively accumulated, and the iron loss characteristics are adversely affected. .. Therefore, it is considered that the larger the total amount X of the segregating elements, the higher the cooling rate of the finish annealing and the suppression of the grain boundary segregation, thereby preventing the iron loss deterioration in the flattening annealing.

<実験3>
C:0.068mass%、Si:3.22mass%、Mn:0.15mass%、sol.Al:0.025mass%、N:0.0075mass%、Se:0.017mass%、Sb:0.055mass%およびMo:0.040mass%の成分組成を有する鋼を溶製し、連続鋳造法にて鋼スラブとした。その際、鋳型内電磁撹拌を適用し、印加電流を調整することで、鋳型内溶鋼の旋回流速を種々に変化させ。次いで、上記鋼スラブを1370℃の温度に再加熱した後、熱間圧延して板厚2.3mmの熱延板とし、1000℃×60sの熱延板焼鈍を施した後、冷間圧延して中間板厚1.8mmとし、1100℃×150sの中間焼鈍を施した後、冷間圧延して最終板厚0.20mmの冷延板に仕上げた。
<Experiment 3>
C: 0.068 mass%, Si: 3.22 mass%, Mn: 0.15 mass%, sol. Steels having a component composition of Al: 0.025 mass%, N: 0.0075 mass%, Se: 0.017 mass%, Sb: 0.055 mass% and Mo: 0.040 mass% are melted and subjected to a continuous casting method. It was a steel slab. At that time, by applying electromagnetic agitation in the mold and adjusting the applied current, the swirling flow velocity of the molten steel in the mold can be changed in various ways. Next, the steel slab was reheated to a temperature of 1370 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.3 mm, annealed by hot-rolled plate at 1000 ° C. × 60 s, and then cold-rolled. The intermediate plate thickness was 1.8 mm, and after intermediate annealing at 1100 ° C. × 150 s, it was cold-rolled to finish a cold-rolled plate having a final plate thickness of 0.20 mm.

次いで、50vol%H−50vol%N、露点62℃の雰囲気下で、840℃×100sの一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布し、1200℃×5hrの仕上焼鈍を施した。なお、仕上焼鈍の雰囲気は、昇温過程の常温から900℃までと冷却過程の900℃以下の温度は窒素雰囲気とし、それ以外は水素雰囲気とした。この際、仕上焼鈍の昇温過程における常温から750℃までの平均昇温速度は25℃/hr、1050℃から1200℃までの平均昇温速度は8℃/hr、冷却過程の1200℃から1000℃/hrまでの平均冷却速度は30℃/hr、700℃以下の平均冷却速度は10℃/hrとし、昇温過程の750℃から1050℃までの平均昇温速度Rは8℃/hr、冷却過程の1000℃から700℃までの平均冷却速度Rは20℃/hrとした。 Then, 50vol% H 2 -50vol% N 2, under an atmosphere of a dew point of 62 ° C., was subjected to decarburization annealing serving also as a primary recrystallization annealing of 840 ° C. × 100s, an annealing separator composed mainly of MgO It was applied to the surface of a steel sheet and subjected to finish annealing at 1200 ° C. × 5 hr. The atmosphere of finish annealing was a nitrogen atmosphere when the temperature was from room temperature to 900 ° C. in the temperature raising process and 900 ° C. or lower in the cooling process, and a hydrogen atmosphere was used otherwise. At this time, the average heating rate from normal temperature to 750 ° C. in the finishing annealing heating process is 25 ° C./hr, the average heating rate from 1050 ° C. to 1200 ° C. is 8 ° C./hr, and the average heating rate from 1200 ° C. to 1000 in the cooling process. ° C. / average cooling rate average cooling rate of 30 ° C. / hr, 700 ° C. or less up hr is set to 10 ° C. / hr, the average heating rate R h to 1050 ° C. from 750 ° C. heating process is 8 ° C. / hr The average cooling rate R c from 1000 ° C to 700 ° C in the cooling process was set to 20 ° C / hr.

その後、上記仕上焼鈍後の鋼板は、840℃×30sの平坦化焼鈍を施した後、試験片を採取し、磁束密度B(磁化力800A/mでの磁束密度)を、JIS C2550に記載の方法で測定した。その結果を図4に示す。この結果から、連続鋳造時の溶鋼流の旋回流速を0.1m/s以上とすることで、良好な磁気特性が得られていることがわかる。 After that, the steel sheet after finish annealing was subjected to flattening annealing at 840 ° C. × 30 s, and then a test piece was sampled, and the magnetic flux density B 8 (magnetic flux density at a magnetization force of 800 A / m) was described in JIS C 2550. It was measured by the method of. The result is shown in FIG. From this result, it can be seen that good magnetic characteristics are obtained by setting the swirling flow velocity of the molten steel flow during continuous casting to 0.1 m / s or more.

上記のように、連続鋳造時に鋳型内電磁撹拌を適用し、旋回流速0.1m/s以上の溶鋼流を発生させることで良好な磁気特性が得られる理由は、大量に添加した偏析元素が流速の影響でスラブ内に均一に分散し、磁気特性向上効果が均一に発現したためと考えられる。また、電磁撹拌しない場合には、偏析元素の局所濃化が助長されるとともに、主な凝固組織が柱状晶となるため、好ましくない結晶方位が増加し、最終製品の磁気特性を劣化させることも考えられる。 As described above, the reason why good magnetic properties can be obtained by applying electromagnetic agitation in the mold during continuous casting and generating a molten steel flow with a swirling flow velocity of 0.1 m / s or more is that the segregation element added in a large amount has a flow velocity. It is considered that the effect of the above was uniformly dispersed in the slab, and the effect of improving the magnetic characteristics was uniformly exhibited. In addition, when electromagnetic stirring is not performed, local concentration of segregated elements is promoted, and the main solidified structure becomes columnar crystals, which increases unfavorable crystal orientation and deteriorates the magnetic properties of the final product. Conceivable.

なお、発明者らは、上記のような仕上焼鈍の冷却過程で起こる過剰な粒界偏析に起因して、平坦化焼鈍で鉄損劣化が引き起こされるのを回避する技術として、仕上焼鈍での冷却速度に応じて、平坦化焼鈍で鋼板に付与する張力を制限する技術を開発し、既に、国際公開第2016/140373号に開示している。しかし、本発明の技術は、平坦化焼鈍の張力を制御せずに鉄損劣化を防止する方法であり、上記技術とは技術思想が異なる。 The inventors have described cooling by finish annealing as a technique for avoiding iron loss deterioration by flattening annealing due to excessive grain boundary segregation that occurs in the cooling process of finish annealing as described above. A technique for limiting the tension applied to a steel sheet by flattening annealing according to the speed has been developed and already disclosed in International Publication No. 2016/140373. However, the technique of the present invention is a method of preventing iron loss deterioration without controlling the tension of flattening annealing, and the technical idea is different from the above technique.

次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(鋼スラブ)の成分組成について説明する。
C:0.02〜0.10mass%
Cは、0.02mass%に満たないと、組織がα単相となり、鋳込み時や熱延時に素材が脆化してスラブに割れが生じたり、熱延後の鋼板のエッジに耳割れが生じるなどして、製造に支障を来たす欠陥を生ずるようになる。一方、C含有量が0.10mass%を超えると、脱炭焼鈍で磁気時効の起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.02〜0.10mass%の範囲とする。好ましくは0.025〜0.08mass%の範囲である。
Next, the composition of the steel material (steel slab) used in the production of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.02 to 0.10 mass%
If C is less than 0.02 mass%, the structure becomes α single phase, and the material becomes brittle during casting or hot rolling, causing cracks in the slab, and cracks in the edges of the steel sheet after hot rolling. As a result, defects that interfere with manufacturing will occur. On the other hand, if the C content exceeds 0.10 mass%, it becomes difficult to reduce it to 0.005 mass% or less, which does not cause magnetic aging due to decarburization annealing. Therefore, C is in the range of 0.02 to 0.10 mass%. It is preferably in the range of 0.025 to 0.08 mass%.

Si:2.0〜5.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.0mass%未満では十分ではなく、一方、5.0mass%を超えると、加工性が低下し、圧延して製造することが困難となる。よって、Siは2.0〜5.0mass%の範囲とする。好ましくは2.5〜4.0mass%の範囲である。
Si: 2.0-5.0 mass%
Si is an element necessary to increase the specific resistance of steel and reduce iron loss. The above effect is not sufficient if it is less than 2.0 mass%, while if it exceeds 5.0 mass%, the workability is lowered and it becomes difficult to manufacture by rolling. Therefore, Si is in the range of 2.0 to 5.0 mass%. It is preferably in the range of 2.5 to 4.0 mass%.

Mn:0.01〜1.00mass%
Mnは、鋼の熱間加工性を改善するのに必要な元素である。上記効果は、0.01mass%未満では十分ではなく、一方、1.00mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.01〜1.00mass%の範囲とする。好ましくは0.02〜0.30mass%の範囲である。
Mn: 0.01 to 1.00 mass%
Mn is an element required to improve the hot workability of steel. The above effect is not sufficient if it is less than 0.01 mass%, while if it exceeds 1.00 mass%, the magnetic flux density of the product plate is lowered. Therefore, Mn is set in the range of 0.01 to 1.00 mass%. It is preferably in the range of 0.02 to 0.30 mass%.

sol.Al:0.01〜0.04mass%
Alは、AlNを形成して析出し、二次再結晶焼鈍において、正常粒成長を抑制するインヒビターとして機能する元素である。しかし、Al含有量が、酸可溶性Al(sol.Al)で0.01mass%に満たないと、インヒビターの絶対量が不足し、正常粒成長の抑制力が不足する。一方、0.04mass%を超えると、AlNがオストワルド成長して粗大化し、やはり正常粒成長の抑制力が不足する。そのため、Alの含有量はsol.Alで0.01〜0.04mass%の範囲とする。好ましくは0.012〜0.030mass%の範囲である
sol. Al: 0.01 to 0.04 mass%
Al is an element that forms and precipitates AlN and functions as an inhibitor that suppresses normal grain growth in secondary recrystallization annealing. However, if the Al content is less than 0.01 mass% of acid-soluble Al (sol.Al), the absolute amount of the inhibitor is insufficient, and the ability to suppress normal grain growth is insufficient. On the other hand, when it exceeds 0.04 mass%, AlN grows Ostwald and becomes coarse, and the ability to suppress normal grain growth is also insufficient. Therefore, the Al content is sol. The range of Al is 0.01 to 0.04 mass%. It is preferably in the range of 0.012 to 0.030 mass%.

N:0.004〜0.020mass%
Nは、AlとAlNを形成し、析出してインヒビターとして機能するが、含有量が0.004mass%未満では、インヒビターの絶対量が不足し、正常粒成長の抑制力が不足する。一方、N含有量が0.020mass%を超えると、熱間圧延時にスラブの膨れを起こすおそれがある。そのため、Nの含有量は0.004〜0.020mass%とする。好ましくは0.006〜0.010mass%の範囲である
N: 0.004 to 0.020 mass%
N forms Al and AlN and precipitates to function as an inhibitor, but if the content is less than 0.004 mass%, the absolute amount of the inhibitor is insufficient and the ability to suppress normal grain growth is insufficient. On the other hand, if the N content exceeds 0.020 mass%, slab swelling may occur during hot rolling. Therefore, the content of N is set to 0.004 to 0.020 mass%. It is preferably in the range of 0.006 to 0.010 mass%.

SおよびSeのうちの1種または2種:合計で0.002〜0.040mass%
SおよびSeは、Mnと結合してインヒビターとなるMnSおよびMnSeを形成する。しかし、単独もしくは合計で0.002mass%に満たないと、その効果が十分に得られない。一方、0.040mass%を超えると、インヒビターがオストワルド成長して粗大化し、正常粒成長の抑制力が不足するようになる。よって、SおよびSeの含有量は、合計で0.002〜0.040mass%の範囲とする。好ましくは0.005〜0.030mass%の範囲である。
One or two of S and Se: 0.002 to 0.040 mass% in total
S and Se combine with Mn to form MnS and MnSe as inhibitors. However, if it is less than 0.002 mass% alone or in total, the effect cannot be sufficiently obtained. On the other hand, if it exceeds 0.040 mass%, the inhibitor grows Ostwald and becomes coarse, and the inhibitory power of normal grain growth becomes insufficient. Therefore, the total contents of S and Se are in the range of 0.002 to 0.040 mass%. It is preferably in the range of 0.005 to 0.030 mass%.

Sn:0.010〜0.200mass%、Sb:0.010〜0.200mass%、Mo:0.010〜0.150mass%、P:0.010〜0.150mass%のうちの少なくとも1種以上
Sn,Sb,MoおよびPは、いずれも粒界に偏析する傾向が強い元素であり、磁気特性を向上する観点から、本発明においては必須の元素である。それらの元素の含有量がそれぞれ0.010mass%より少ないと、磁気特性改善効果が十分に得られず、一方、SnおよびSbは0.200mass%、MoおよびPは0.150mass%を超えると、粒界への偏析が過大となり、粒界割れ等のトラブルが生じるおそれがある。よって、Sn,Sb,MoおよびPは、それぞれ上記範囲とする。好ましくは、Sn:0.020〜0.150mass%、Sb:0.020〜0.100mass%、Mo:0.010〜0.100mass%、P:0.02〜0.08mass%の範囲である。
Sn: 0.010 to 0.200 mass%, Sb: 0.010 to 0.200 mass%, Mo: 0.010 to 0.150 mass%, P: at least one of 0.010 to 0.150 mass% Sn, Sb, Mo and P are all elements having a strong tendency to segregate at grain boundaries, and are essential elements in the present invention from the viewpoint of improving magnetic properties. When the content of each of these elements is less than 0.010 mass%, the effect of improving magnetic properties cannot be sufficiently obtained, while when Sn and Sb exceed 0.200 mass% and Mo and P exceed 0.150 mass%, Segregation to the grain boundaries becomes excessive, which may cause problems such as cracks at the grain boundaries. Therefore, Sn, Sb, Mo and P are each within the above range. Preferably, Sn: 0.020 to 0.150 mass%, Sb: 0.020 to 0.100 mass%, Mo: 0.010 to 0.100 mass%, P: 0.02 to 0.08 mass%. ..

本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記成分以外の残部はFeおよび不可避的不純物であるが、磁束密度を向上させる目的で、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、Bi:0.005〜0.50mass%、Te:0.005〜0.050mass%およびNb:0.0010〜0.0200massのうちから選ばれる1種または2種以上を含有することができる。それぞれの含有量が上記範囲の下限値より少ないと、磁束密度向上効果が小さく、逆に、上記範囲の上限値を超えると、飽和磁束密度の低下を招き、磁気特性が低下する。したがって、Ni,Cr,Cu,Bi,TeおよびNbのいずれか1種以上を添加する場合は、上記範囲とするのが好ましい。 In the steel material used for manufacturing the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and unavoidable impurities, but for the purpose of improving the magnetic flux density, Ni: 0.010 to 1.50 mass%, Cr. : 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Te: 0.005 to 0.050 mass% and Nb: 0.0010 to 0 It can contain one or more selected from 0.0200 mass. If the content of each is less than the lower limit of the above range, the effect of improving the magnetic flux density is small, and conversely, if the content exceeds the upper limit of the above range, the saturation magnetic flux density is lowered and the magnetic characteristics are lowered. Therefore, when any one or more of Ni, Cr, Cu, Bi, Te and Nb is added, it is preferably in the above range.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
まず、上記に説明した成分組成を有する鋼スラブは、連続鋳造法で製造するとともに、鋳型内電磁撹拌を適用することにより、溶鋼に0.1m/s以上の旋回流速を発生させる必要がある。流速が0.1m/s未満では、上述した偏析元素が凝固時に偏析し、最終製品の磁気特性を向上させることができない。好ましくは0.2m/s以上である。また、同様の技術として、ストランド内の電磁撹拌技術があるが、この技術を用いて旋回流速を発生させる場合も本発明に該当する。なお、上記旋回流速は、電磁撹拌コイル対面の凝固中スラブの幅方向1/4位置の凝固シェル近傍の溶鋼の流速を、電磁界解析計算により求めた値である。
Next, the method for manufacturing the grain-oriented electrical steel sheet of the present invention will be described.
First, the steel slab having the component composition described above needs to be produced by a continuous casting method and to generate a swirling flow velocity of 0.1 m / s or more in the molten steel by applying electromagnetic agitation in the mold. If the flow velocity is less than 0.1 m / s, the above-mentioned segregating elements segregate during solidification, and the magnetic properties of the final product cannot be improved. It is preferably 0.2 m / s or more. Further, as a similar technique, there is an electromagnetic agitation technique in a strand, and the case where a swirling flow velocity is generated by using this technique also falls under the present invention. The swirling flow velocity is a value obtained by electromagnetic field analysis calculation of the flow velocity of the molten steel in the vicinity of the solidified shell at the position 1/4 in the width direction of the solidifying slab facing the electromagnetic stirring coil.

次いで、上記鋼スラブを1250℃以上の温度に再加熱した後、熱間圧延する。スラブの加熱温度が1250℃未満では、添加したインヒビター形成成分が鋼中に十分に固溶しない。好ましいスラブ加熱温度は1300℃以上である。なお、スラブを加熱する手段は、ガス炉、誘導加熱炉、通電炉など、公知の手段を用いることができる。スラブの再加熱に続く熱間圧延は、従来公知の条件で行なえばよく、特に制限はない。 Next, the steel slab is reheated to a temperature of 1250 ° C. or higher, and then hot-rolled. If the heating temperature of the slab is less than 1250 ° C., the added inhibitor-forming component does not sufficiently dissolve in the steel. The preferred slab heating temperature is 1300 ° C. or higher. As the means for heating the slab, known means such as a gas furnace, an induction heating furnace, and an energizing furnace can be used. The hot rolling following the reheating of the slab may be performed under conventionally known conditions, and is not particularly limited.

次いで、上記熱間圧延後の鋼板(熱延板)は、そのまま冷間圧延に移行してもよいが、良好な磁気特性を得るためには、熱延板焼鈍を施すことが好ましい。熱延板焼鈍の均熱温度は800〜1200℃の範囲が好ましい。800℃未満では、熱延板焼鈍の効果が十分ではなく、一方、1200℃を超えると、粒径が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなる。 Next, the steel sheet (hot-rolled sheet) after the hot-rolling may be directly transferred to cold-rolling, but in order to obtain good magnetic properties, it is preferable to perform hot-rolled sheet annealing. The soaking temperature of the hot-rolled sheet annealing is preferably in the range of 800 to 1200 ° C. If it is less than 800 ° C., the effect of hot-rolled sheet annealing is not sufficient, while if it exceeds 1200 ° C., the particle size becomes too coarse and it becomes difficult to obtain a sized primary recrystallized structure.

次いで、熱間圧延後または熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚(製品板厚)の冷延板とする。中間焼鈍の均熱温度は900〜1200℃の範囲とするのが好ましい。900℃未満では、再結晶粒が細かくなり過ぎ、一次再結晶組織におけるGoss核が減少して磁気特性が低下する。一方、1200℃を超えると、熱延板焼鈍と同様、粒径が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなる。また、最終板厚とする冷間圧延(最終冷間圧延)は、再結晶集合組織を改善し、磁気特性を向上する観点から、冷間圧延の鋼板温度を100〜300℃の温度に加熱して行う温間圧延を採用したり、冷間圧延の途中で100〜300℃の温度で時効処理(パス間時効)を1回または複数回施したりすることが好ましい。 Next, the hot-rolled plate after hot-rolling or after hot-rolling plate annealing is cold-rolled once or cold-rolled two or more times with intermediate annealing sandwiched between them to achieve the final plate thickness (product plate thickness). And. The soaking temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. Below 900 ° C., the recrystallized grains become too fine, the Goss nuclei in the primary recrystallized structure decrease, and the magnetic properties deteriorate. On the other hand, if the temperature exceeds 1200 ° C., the particle size becomes too coarse as in the case of hot-rolled sheet annealing, and it becomes difficult to obtain a sized primary recrystallized structure. In cold rolling (final cold rolling), which is the final plate thickness, the temperature of the cold rolled steel sheet is heated to a temperature of 100 to 300 ° C. from the viewpoint of improving the recrystallization texture and improving the magnetic properties. It is preferable to employ warm rolling performed in the cold rolling, or to perform aging treatment (inter-pass aging) once or multiple times at a temperature of 100 to 300 ° C. in the middle of cold rolling.

次いで、上記最終板厚とした冷延板は、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。脱炭焼鈍は、脱炭を促進する観点から、露点が10℃以上の湿潤雰囲気下で、800〜900℃の温度域で行うことが好ましい。 Next, the cold-rolled plate having the final plate thickness is subjected to decarburization annealing that also serves as primary recrystallization annealing. From the viewpoint of promoting decarburization, decarburization annealing is preferably performed in a temperature range of 800 to 900 ° C. in a moist atmosphere with a dew point of 10 ° C. or higher.

次いで、上記一次再結晶後の鋼板は、その表面にMgOを主体とする焼鈍分離剤を塗布、乾燥した後、仕上焼鈍を施すことにより、二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させる。この仕上焼鈍の工程は、本発明において、最も重要な工程であり、前述したように、鋼スラブ中の偏析元素であるSn,Sb,MoおよびPの総含有量Xに応じて、仕上焼鈍の昇温過程における750℃から1050℃間の平均昇温速度Rや、冷却過程における1000℃から700℃間の平均冷却速度Rを、先述した(1)式や(2)式で規定される適正範囲に制御することが必要である。 Next, the steel sheet after the primary recrystallization is coated with an annealing separator mainly composed of MgO on the surface thereof, dried, and then subjected to finish annealing to develop a secondary recrystallization structure and to form a forsterite film. To form. This finish annealing step is the most important step in the present invention, and as described above, the finish annealing step is performed according to the total content X of the segregating elements Sn, Sb, Mo and P in the steel slab. The average temperature rise rate R h between 750 ° C. and 1050 ° C. in the temperature rise process and the average cooling rate R c between 1000 ° C. and 700 ° C. in the cooling process are defined by the above-mentioned equations (1) and (2). It is necessary to control within the appropriate range.

ここで、上記2点の温度間の平均速度とは、2点間の温度差を、その2点間の温度変化に費やした時間で除した値であり、その2点間で昇温速度や冷却速度に変化があっても、また、等温に保持する処理があっても影響されない。工業生産における仕上焼鈍では、昇温速度や冷却速度は時間とともに変化し、一定に保つことは一般的に困難であるからである。 Here, the average speed between the temperatures of the two points is a value obtained by dividing the temperature difference between the two points by the time spent for the temperature change between the two points, and the temperature rise rate between the two points. It is not affected by changes in the cooling rate or even if there is a treatment to keep the temperature constant. This is because in finish annealing in industrial production, the rate of temperature rise and the rate of cooling change with time, and it is generally difficult to keep them constant.

また、仕上焼鈍の昇温過程の1050℃から1150℃の間の平均昇温速度は、被膜特性を向上する観点から、10〜30℃/hrの範囲とするのが好ましい。この間の昇温速度が10℃/hrを下回ると被膜の耐剥離特性が劣化する傾向が強くなり、一方、30℃/hrを超えると、被膜形成が不十分となる可能性が高くなるからである。より好ましくは15〜25℃/hrの範囲である。 Further, the average heating rate between 1050 ° C. and 1150 ° C. in the temperature raising process of the finish annealing is preferably in the range of 10 to 30 ° C./hr from the viewpoint of improving the film characteristics. If the rate of temperature rise during this period is less than 10 ° C./hr, the peeling resistance of the coating film tends to deteriorate, while if it exceeds 30 ° C./hr, there is a high possibility that the coating film formation will be insufficient. is there. More preferably, it is in the range of 15 to 25 ° C./hr.

また、上記仕上焼鈍の昇温過程の750℃から1050℃までの二次再結晶が開始する温度域では、前述したように、良好な磁気特性を得る観点から、上記温度間のいずれかの温度に5hr以上を保持することが好ましい。より好ましい保持時間は20〜75hrの範囲である。この場合も、750℃から1050℃までの平均昇温速度Rは、保持時間を含めた、750℃から1050℃に昇温するのに費やした時間で温度差300℃を除した値となる。 Further, in the temperature range where the secondary recrystallization from 750 ° C. to 1050 ° C. in the temperature raising process of the finish annealing starts, as described above, from the viewpoint of obtaining good magnetic characteristics, any temperature between the above temperatures is obtained. It is preferable to hold 5 hr or more. A more preferred retention time is in the range of 20-75 hr. In this case as well, the average temperature rise rate R h from 750 ° C. to 1050 ° C. is a value obtained by dividing the temperature difference of 300 ° C. by the time spent for raising the temperature from 750 ° C. to 1050 ° C. including the holding time. ..

なお、本発明の仕上焼鈍では、偏析元素の総量Xが多くなると、750℃から1050℃までの間の平均昇温速度Rを遅くする必要があり、生産性が低下することから、常温から750℃までは、上記速度Rよりも速い速度で昇温し、生産性の悪化を回避するのが好ましい。 In the final annealing of the present invention, the total amount X of segregating elements increases, it is necessary to slow the average heating rate R h of between 750 ° C. to 1050 ° C., since the productivity is lowered, from room temperature until 750 ° C., the rate R was raised at a faster rate than h, it is to avoid deterioration in productivity preferred.

次いで、上記仕上焼鈍後の鋼板は、水洗やブラッシング、酸洗等で、鋼板表面に付着した未反応の焼鈍分離剤を除去した後、仕上焼鈍における巻き癖等の形状不良を矯正し、鉄損特性を改善するため、平坦化焼鈍を施すことが好ましい。 Next, the steel sheet after the finish annealing is washed with water, brushed, pickled, etc. to remove the unreacted annealing separator adhering to the surface of the steel sheet, and then the shape defects such as curl in the finish annealing are corrected to cause iron loss. It is preferable to perform flattening annealing in order to improve the characteristics.

なお、方向性電磁鋼板を積層して使用する場合には、鉄損を改善するため、上記平坦化焼鈍において、あるいはその前または後で、鋼板表面に絶縁被膜を被成するのが好ましい。上記絶縁被膜は、鉄損を低減する観点から、鋼板に張力を付与する張力付与被膜を採用するのが好ましい。また、被膜密着性をより向上したり、より優れた鉄損低減効果を得るためには、バインダーを介して張力付与被膜を被成したり、鋼板表面に物理蒸着法や化学蒸着法で無機被膜を形成した後、張力付与被膜を被成したりするのが好ましい。 When the grain-oriented electrical steel sheets are laminated and used, it is preferable to coat the surface of the steel sheets with an insulating film in the above-mentioned flattening annealing or before or after the flattening annealing in order to improve the iron loss. From the viewpoint of reducing iron loss, it is preferable to use a tension applying film that applies tension to the steel sheet. Further, in order to further improve the film adhesion and obtain a better iron loss reduction effect, a tension-applying film is formed via a binder, or an inorganic film is applied to the surface of the steel sheet by a physical vapor deposition method or a chemical vapor deposition method. After forming the above, it is preferable to cover the tension applying film.

さらに、より鉄損を低減するためには、磁区細分化処理を施してもよい。磁区細分化の方法としては、従来公知の方法を用いることができ、例えば、最終製品とした鋼板表面にレーザーやプラズマ等を照射し、線状または点列状の熱歪や衝撃歪を導入したりする方法や、最終板厚とした鋼板表面にいずれかの工程で溝を形成したりする方法等を用いることができる。 Further, in order to further reduce the iron loss, magnetic domain subdivision treatment may be performed. As a method of subdividing the magnetic domain, a conventionally known method can be used. For example, the surface of a steel sheet as a final product is irradiated with a laser, plasma, or the like to introduce linear or dotted thermal strain or impact strain. A method of forming a groove on the surface of a steel plate having a final plate thickness in any of the steps can be used.

C:0.055mass%、Si:3.45mass%、Mn:0.12mass%、sol.Al:0.020mass%、S:0.0020mass%、Se:0.020mass%、N:0.0072mass%、Sn:0.020mass%、Sb:0.036mass%、Mo:0.022mass%およびP:0.030mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを連続鋳造で製造した。この際、鋳型内電磁撹拌を適用し、印加電流を調整することで、溶鋼の旋回流速を表1に記載したように変化させた。なお、上記鋼スラブの偏析元素(Sn,Sb,Mo,P)の総含有量Xは0.108mass%であり、この値から先述した本発明の(1)式、(2)式におけるパラメータ1/6X、1/X、80Xおよび400Xを求めると、それぞれ1/6X=1.54、1/X=9.25、80X=8.64、400X=43.2となる。 C: 0.055 mass%, Si: 3.45 mass%, Mn: 0.12 mass%, sol. Al: 0.020 mass%, S: 0.0020 mass%, Se: 0.020 mass%, N: 0.0072 mass%, Sn: 0.020 mass%, Sb: 0.036 mass%, Mo: 0.022 mass% and P : A steel slab containing 0.030 mass% and having a composition of the balance consisting of Fe and unavoidable impurities was produced by continuous casting. At this time, the swirling flow velocity of the molten steel was changed as shown in Table 1 by applying electromagnetic agitation in the mold and adjusting the applied current. The total content X of the segregating elements (Sn, Sb, Mo, P) of the steel slab is 0.108 mass%, and from this value, the parameter 1 in the above-mentioned equations (1) and (2) of the present invention. When / 6X, 1 / X, 80X and 400X are obtained, 1 / 6X = 1.54, 1 / X = 9.25, 80X = 8.64 and 400X = 43.2, respectively.

次いで、上記鋼スラブを、1300℃の温度に再加熱した後、熱間圧延して板厚2.7mmの熱延板とし、1000℃×30sの熱延板焼鈍を施した後、冷間圧延して中間板厚1.8mmとし、1125℃×120sの中間焼鈍を施した後、最終冷間圧延して板厚0.23mmの冷延板とした。次いで、55vol%H−45vol%N、露点60℃の雰囲気下で、840℃×150sの一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、1220℃×10hrの仕上焼鈍を施した。なお、上記仕上焼鈍の雰囲気は、昇温過程の常温から900℃までと冷却過程の900℃以下の温度は窒素雰囲気、それ以外は水素雰囲気とした。この際、上記仕上焼鈍の昇温過程における常温から750℃までの平均昇温速度Rh1を25℃/hr、1050℃から1220℃までの平均昇温速度を20℃/hr、冷却過程の1220℃から1000℃/hrまでの平均冷却速度を30℃/hr、700℃以下の平均冷却速度を50℃/hrとし、昇温過程の750℃から1050℃までの平均昇温速度Rと、冷却過程の1000℃から700℃までの平均冷却温速度Rを、上述した鋼スラブの偏析元素の総量Xを考慮し、表1に示したように種々に変化させた。 Next, the steel slab was reheated to a temperature of 1300 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.7 mm, annealed by hot-rolled plate at 1000 ° C. for 30 s, and then cold-rolled. The intermediate plate thickness was 1.8 mm, and after intermediate annealing at 1125 ° C. × 120 s, the final cold rolling was performed to obtain a cold-rolled plate having a plate thickness of 0.23 mm. Then, the steel sheet 55vol% H 2 -45vol% N 2 , under an atmosphere of a dew point of 60 ° C., was subjected to decarburization annealing serving also as a primary recrystallization annealing of 840 ° C. × 150s, the annealing separator consisting mainly of MgO It was applied to the surface and subjected to finish annealing at 1220 ° C. × 10 hr. The atmosphere of the finish annealing was a nitrogen atmosphere at room temperature to 900 ° C. in the temperature raising process and 900 ° C. or lower in the cooling process, and a hydrogen atmosphere at other times. At this time, the average temperature rise rate R h1 from normal temperature to 750 ° C. in the temperature rise process of the finish annealing is 25 ° C./hr, the average temperature rise rate from 1050 ° C. to 1220 ° C. is 20 ° C./hr, and 1220 in the cooling process. ° C. from 1000 ° C. / hr an average cooling rate of up to 30 ° C. / hr, 700 ° C. the average cooling rate below the 50 ° C. / hr, the average heating rate R h to 1050 ° C. from 750 ° C. heating process, The average cooling temperature rate R c from 1000 ° C. to 700 ° C. in the cooling process was variously changed as shown in Table 1 in consideration of the total amount X of segregated elements of the steel slab described above.

その後、上記仕上焼鈍後の鋼板は、850℃×100sの平坦化焼鈍を施した後、試験片を採取し、磁束密度B(磁化力800A/mでの磁束密度)と鉄損W17/50(50Hzの周波数で1.7Tの励磁を行った場合の鉄損)を、JIS C2550に記載の方法で測定した。 After that, the steel sheet after the finish annealing was subjected to flattening annealing at 850 ° C. × 100 s, and then a test piece was sampled to obtain a magnetic flux density B 8 (magnetic flux density at a magnetization force of 800 A / m) and an iron loss W 17 /. 50 (iron loss when excited by 1.7 T at a frequency of 50 Hz) was measured by the method described in JIS C 2550.

得られた結果を表1に併記した。
この結果から、電磁撹拌を適用して溶鋼に本発明範囲内の旋回流速を発生させ、かつ、偏析元素の総量Xを考慮した本発明の平均昇温速度Rおよび平均冷却速度Rを満たす条件で仕上焼鈍を施した鋼板は、いずれも磁束密度と鉄損特性が優れていることがわかる。
The results obtained are also shown in Table 1.
From this result, electromagnetic stirring is applied to generate a swirling flow velocity within the range of the present invention in the molten steel, and the average heating rate R h and the average cooling rate R c of the present invention in consideration of the total amount X of segregated elements are satisfied. It can be seen that the steel sheets that have been finish-annealed under the conditions are all excellent in magnetic flux density and iron loss characteristics.

Figure 0006879320
Figure 0006879320

表2示した種々の成分組成を有する鋼スラブを連続鋳造法で製造した。この際、鋳型内電磁撹拌を適用して、溶鋼の旋回流速を0.25m/sとした。次いで、上記鋼スラブを1410℃の温度に再加熱した後、熱間圧延して板厚2.5mmの熱延板とし、950℃×30sの熱延板焼鈍を施した後、冷間圧延して中間板厚1.6mmの板厚とし、1165℃×20sの中間焼鈍を施した後、最終冷間圧延して板厚0.20mmの冷延板とした。 Steel slabs having various component compositions shown in Table 2 were produced by a continuous casting method. At this time, electromagnetic stirring in the mold was applied to set the swirling flow velocity of the molten steel to 0.25 m / s. Next, the steel slab was reheated to a temperature of 1410 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.5 mm, annealed by hot-rolled plate at 950 ° C. × 30 s, and then cold-rolled. The intermediate plate thickness was 1.6 mm, and after intermediate annealing at 1165 ° C. × 20 s, the final cold rolling was performed to obtain a cold rolled plate having a plate thickness of 0.20 mm.

次いで、60vol%H−40vol%N、露点58℃の雰囲気下で、835℃×100sの一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、900℃の温度に50hr保持して二次再結晶を起こさせた後、1200℃の温度に5hr保持する仕上焼鈍を施した。なお、上記仕上焼鈍の雰囲気は、昇温過程の常温から900℃までと冷却過程の900℃以下の温度は窒素雰囲気、それ以外は水素雰囲気とした。
この際、仕上焼鈍の昇温過程における常温から750℃までの平均昇温速度を40℃/hr、750℃の温度から、900℃の温度での保定を経て、1050℃に加熱するまでの平均昇温速度Rを5℃/hr、1050℃から1200℃までの平均昇温速度を15℃/s、冷却過程の1200℃から1000℃までの平均冷却速度を40℃/hr、1000℃から700℃までの平均冷却速度Rを20℃/hr、700℃以下の平均冷却速度を40℃/hrとした。因みに、上記平均昇温速度Rと平均冷却速度Rは、表2に記載された各スラブに含まれる偏析元素(Sn,Sb,Mo,P)の総量Xで規定される(1)式および(2)式を、No.8,9を除いて、満たしていた。
その後、上記仕上焼鈍後の鋼板は、870℃×30sの平坦化焼鈍を施した後、試験片を採取し、磁束密度B(磁化力800A/mでの磁束密度)と鉄損W17/50(50Hzの周波数で1.7Tの励磁を行った場合の鉄損)を、JIS C2550に記載の方法で測定した。
Then, the steel sheet 60vol% H 2 -40vol% N 2 , under an atmosphere of a dew point of 58 ° C., was subjected to decarburization annealing serving also as a primary recrystallization annealing of 835 ° C. × 100s, the annealing separator consisting mainly of MgO It was applied to the surface and held at a temperature of 900 ° C. for 50 hours to cause secondary recrystallization, and then finish annealing was performed at a temperature of 1200 ° C. for 5 hours. The atmosphere of the finish annealing was a nitrogen atmosphere at room temperature to 900 ° C. in the temperature raising process and 900 ° C. or lower in the cooling process, and a hydrogen atmosphere at other times.
At this time, the average heating rate from normal temperature to 750 ° C. in the process of raising the temperature of finish annealing is the average from 40 ° C./hr, 750 ° C. to 1050 ° C. after retention at 900 ° C. Temperature rise rate R h is 5 ° C / hr, average temperature rise rate from 1050 ° C to 1200 ° C is 15 ° C / s, and average cooling rate from 1200 ° C to 1000 ° C in the cooling process is 40 ° C / hr, from 1000 ° C. The average cooling rate R c up to 700 ° C. was 20 ° C./hr, and the average cooling rate below 700 ° C. was 40 ° C./hr. Incidentally, the average heating rate R h and the average cooling rate R c are defined by the total amount X of the segregating elements (Sn, Sb, Mo, P) contained in each slab shown in Table 2 (1). And Eq. (2) is expressed in No. Except for 8 and 9, it was satisfied.
After that, the steel sheet after the finish annealing was subjected to flattening annealing at 870 ° C. × 30 s, and then a test piece was sampled to obtain a magnetic flux density B 8 (magnetic flux density at a magnetization force of 800 A / m) and an iron loss W 17 /. 50 (iron loss when excited by 1.7 T at a frequency of 50 Hz) was measured by the method described in JIS C 2550.

得られた結果を表2に併記した。
この結果から、本発明の成分組成を満たす鋼素材を用いて、偏析元素の総量Xを考慮した本発明の平均昇温速度Rおよび平均冷却速度Rを満たす条件で仕上焼鈍を施した鋼板は、いずれも磁束密度と鉄損特性が優れていることがわかる。
The results obtained are also shown in Table 2.
From this result, a steel sheet subjected to finish annealing under the conditions of satisfying the average heating rate R h and the average cooling rate R c of the present invention in consideration of the total amount X of segregated elements using a steel material satisfying the composition of the present invention. It can be seen that both have excellent magnetic flux density and iron loss characteristics.

Figure 0006879320
Figure 0006879320

Claims (3)

C:0.02〜0.10mass%、Si:2.0〜5.0mass%、Mn:0.01〜1.00mass%、sol.Al:0.01〜0.04mass%、N:0.004〜0.020mass%、SおよびSeのうちから選ばれる1種または2種を合計で0.002〜0.040mass%の範囲で含有し、さらにSn:0.010〜0.200mass%、Sb:0.010〜0.200mass%、Mo:0.010〜0.150mass%およびP:0.010〜0.150mass%のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1250℃以上の温度に再加熱した後、熱間圧延して熱延板とし、熱延板焼鈍を施した後または施すことなく、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍し、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍した後、平坦化焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
上記鋼スラブは連続鋳造法で製造し、かつ、連続鋳造時に鋳型内電磁撹拌を適用して溶鋼に0.1m/s以上の旋回流速を発生させ、
上記仕上焼鈍の昇温過程における750℃から1050℃までの平均昇温速度をR(℃/hr)、仕上焼鈍の冷却過程における1000℃から700℃までの平均冷却速度をR(℃/hr)としたとき、上記Sn,Sb,MoおよびPの含有量の総量X(mass%)、R(℃/hr)およびR(℃/hr)が下記(1)式および(2)式を満たすとともに、上記仕上焼鈍の昇温過程における1050℃から1150℃までの間の平均昇温速度を15〜30℃/hrの範囲とすることを特徴とする方向性電磁鋼板の製造方法。

1/6X≦R≦1/X ・・・(1)
80X≦R≦400X ・・・(2)
C: 0.02 to 0.10 mass%, Si: 2.0 to 5.0 mass%, Mn: 0.01 to 1.00 mass%, sol. Al: 0.01 to 0.04 mass%, N: 0.004 to 0.020 mass%, one or two selected from S and Se are contained in the range of 0.002 to 0.040 mass% in total. Then, select from Sn: 0.010 to 0.200 mass%, Sb: 0.010 to 0.200 mass%, Mo: 0.010 to 0.150 mass% and P: 0.010 to 0.150 mass%. A steel slab containing one or more of the following types and having a component composition in which the balance is Fe and unavoidable impurities is reheated to a temperature of 1250 ° C. or higher, and then hot-rolled to obtain a hot-rolled plate. After or without plate annealing, one cold rolling or two or more cold rolling with intermediate annealing sandwiched between them to obtain a cold-rolled plate with the final plate thickness, and decarburization annealing that also serves as primary recrystallization annealing. In the method for manufacturing a directional electromagnetic steel sheet, which consists of a series of steps of applying an annealing separator to the surface of the steel sheet, finishing annealing, and then flattening and annealing.
The steel slab is manufactured by a continuous casting method, and electromagnetic stirring in the mold is applied during continuous casting to generate a swirling flow velocity of 0.1 m / s or more in the molten steel.
The average heating rate from 750 ° C to 1050 ° C in the finishing annealing heating process is R h (° C / hr), and the average cooling rate from 1000 ° C to 700 ° C in the finishing annealing cooling process is R c (° C / hr). When hr), the total contents X (mass%), R h (° C / hr) and R c (° C / hr) of the Sn, Sb, Mo and P contents are the following equations (1) and (2). A method for producing a directional electromagnetic steel plate, which satisfies the formula and sets the average heating rate between 1050 ° C. and 1150 ° C. in the temperature raising process of the finish annealing in the range of 15 to 30 ° C./hr.
Note 1 / 6X ≤ R h ≤ 1 / X ... (1)
80X ≤ R c ≤ 400X ... (2)
上記仕上焼鈍の昇温過程における750℃から1050℃までの間のいずれかの温度で、5hr以上保持することを特徴とする請求項に記載の方向性電磁鋼板の製造方法。 In any temperature until 1050 ° C. from 750 ° C. in the temperature elevation process of the final annealing method for producing a grain-oriented electrical steel sheet according to claim 1, characterized in that retaining least 5 hr. 上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、Bi:0.005〜0.50mass%、Te:0.005〜0.050mass%およびNb:10〜200ppmのうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。

In addition to the above component composition, the steel slab further contains Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, and Bi: 0. The invention according to claim 1 or 2 , wherein one or more selected from 005 to 0.50 mass%, Te: 0.005 to 0.050 mass% and Nb: 10 to 200 ppm are contained. Manufacturing method of grain-oriented electrical steel sheet.

JP2019036603A 2018-05-31 2019-02-28 Manufacturing method of grain-oriented electrical steel sheet Active JP6879320B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018104526 2018-05-31
JP2018104526 2018-05-31

Publications (2)

Publication Number Publication Date
JP2019210544A JP2019210544A (en) 2019-12-12
JP6879320B2 true JP6879320B2 (en) 2021-06-02

Family

ID=68846429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036603A Active JP6879320B2 (en) 2018-05-31 2019-02-28 Manufacturing method of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6879320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501521A (en) * 2020-11-30 2021-03-16 西安市康铖机械制造有限公司 Processing method of ultrahigh-strength aviation structural steel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603898B2 (en) * 1977-02-23 1985-01-31 新日本製鐵株式会社 Electromagnetic stirring method in continuous casting
JP4258166B2 (en) * 2002-04-09 2009-04-30 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP4241226B2 (en) * 2003-07-04 2009-03-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP4728724B2 (en) * 2005-07-21 2011-07-20 新日本製鐵株式会社 Continuous casting slab and manufacturing method thereof
JP5988026B2 (en) * 2011-07-28 2016-09-07 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6112050B2 (en) * 2014-03-17 2017-04-12 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN103911545A (en) * 2014-04-14 2014-07-09 国家电网公司 Preparation method of electrical steel strip with strong goss texture occupation rate and high magnetic induction orientation
DE102014105870A1 (en) * 2014-04-25 2015-10-29 Thyssenkrupp Ag Process and apparatus for thin slab continuous casting
JP6500630B2 (en) * 2014-10-27 2019-04-17 日本製鉄株式会社 Continuous casting method for molten steel and continuous cast slab

Also Published As

Publication number Publication date
JP2019210544A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
JP5712491B2 (en) Method for producing grain-oriented electrical steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JP6260513B2 (en) Method for producing grain-oriented electrical steel sheet
CA2880724A1 (en) Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP2014508858A (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6813143B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6879320B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6859935B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4258156B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2003193131A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP7463976B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4211447B2 (en) Method for producing grain-oriented electrical steel sheet
WO2023157938A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
JP6607176B2 (en) Method for producing grain-oriented electrical steel sheet
JP6702259B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R150 Certificate of patent or registration of utility model

Ref document number: 6879320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250