JP2000160306A - Non-oriented silicon steel sheet excellent in workability and its production - Google Patents

Non-oriented silicon steel sheet excellent in workability and its production

Info

Publication number
JP2000160306A
JP2000160306A JP33949898A JP33949898A JP2000160306A JP 2000160306 A JP2000160306 A JP 2000160306A JP 33949898 A JP33949898 A JP 33949898A JP 33949898 A JP33949898 A JP 33949898A JP 2000160306 A JP2000160306 A JP 2000160306A
Authority
JP
Japan
Prior art keywords
inclusions
steel sheet
steel
workability
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33949898A
Other languages
Japanese (ja)
Inventor
Mitsuyo Maeda
光代 前田
Takayuki Nishi
隆之 西
Hiroyoshi Yashiki
裕義 屋鋪
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33949898A priority Critical patent/JP2000160306A/en
Publication of JP2000160306A publication Critical patent/JP2000160306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a silicon steel sheet excellent in workability such as punchability, machinability or the like. SOLUTION: This steel sheet has a chemical compsn. composed of, by weight, <=0.01% C, 0.01 to 4.50% Si, 0.0001 to 4.00% sol.Al, 0.05 to 4.00% Mn, <=0.15% P, 0.005 to 0.035% S, and the balance Fe with inevitable impurities, in which inclusions in the steel sheet are composed of oxide inclusions, sulfide inclusions, and composite inclusions of both, the size of each inclusion is >=2 μm, 2 to 10 pieces of the inclusions form a group so as to be connected in a row, and the total of the number of the inclusions of >=2 μm grain size is controlled to >=10% to the number of the inclusions of >=0.1 μm grain size. As for the producing method, molten steel is subjected to vacuum treatment to control the contents of C, P and S to the ranges in the above chemical compsn., the content of dissolved oxygen is controlled to 0.01 to 0.07 wt.%, next, the contents of sol.Al and Si are controlled to the ranges in the above chemical compsn., then, the content of Mn is controlled to the range in the above chemical compsn., and, after that, casting, hot rolling, cold rolling and annealing are executed according to the conventional methods.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心と
して用いられる電磁鋼板に関し、特に回転機の回転子、
固定子として用いる場合の打抜き加工性、旋盤加工の切
削性に優れた無方向性電磁鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic steel sheet used as an iron core of electric equipment, and more particularly, to a rotor of a rotating machine,
The present invention relates to a non-oriented electrical steel sheet excellent in punching workability and lathe workability when used as a stator.

【0002】[0002]

【従来の技術】電磁鋼板は変圧器、安定器などの静止機
器や、電動機、発電機等の回転機の鉄心材料として用い
られる。このような材料には優れた磁気特性が要求され
るが、鉄心を製作する段階で、所定の形状に打抜くとき
の打ち抜き性および旋盤加工における切削性など、加工
性の良いことも要求される。しかしながらこれまで、無
方向性電磁鋼板における切削性は、打ち抜き性やかしめ
性と比較して重要視されることが少なかった。
2. Description of the Related Art Magnetic steel sheets are used as core materials for stationary equipment such as transformers and stabilizers, and for rotating machines such as electric motors and generators. Such a material is required to have excellent magnetic properties, but at the stage of manufacturing an iron core, it is also required to have good workability such as punchability when punching into a predetermined shape and machinability in lathe processing. . However, hitherto, the machinability of the non-oriented electrical steel sheet has been seldom regarded as important as compared with the punching property and the caulking property.

【0003】回転機の回転子、固定子は電磁鋼板を打ち
抜き、積層後、回転子−固定子間のエアギャップの寸法
精度を高めるため、旋盤による切削加工が行われる。と
くに回転子の鉄心は回転中の動的バランスが重要である
ため精度の高い切削を行うことが多い。切削性に劣る材
料を用いると、鉄心の製作段階で切削工具の取り替え頻
度が高くなり作業性や生産コストが低下する。
[0003] The rotor and the stator of the rotating machine are formed by punching out electromagnetic steel sheets, laminating them, and then performing cutting with a lathe in order to improve the dimensional accuracy of the air gap between the rotor and the stator. In particular, the rotor iron core often performs high-precision cutting because dynamic balance during rotation is important. If a material having poor machinability is used, the frequency of changing the cutting tool in the stage of manufacturing the iron core increases, and workability and production cost decrease.

【0004】また、切削性が劣る材料では、切削による
バリが発生しやすい。回転子や固定子には磁極を形成す
るための溝が設けられているが、バリはこの溝の縁部ま
たは端部で発生しやすい。切削バリを残したまま回転機
に組み込むと、鉄心の積層間で電気的な短絡を起こし鉄
損が増加したり、鉄心が過熱する恐れがある。あるい
は、バリがはがれ回転子−固定子間のエアギャップに巻
き込まれて積層の破損やコイルの絶縁破壊を生じたりす
る。そのため、組み立て前に切削バリを除去しなければ
ならないが、このバリ除去作業は余分な作業工数が発生
すること、バリ除去設備が必要なこと、ハンドリング作
業の安全が損なわれること等の問題がある。
On the other hand, in a material having poor machinability, burrs are easily generated by cutting. The rotor or the stator is provided with a groove for forming a magnetic pole, and burrs are easily generated at the edge or end of the groove. If the core is assembled into a rotating machine while cutting burrs are left, there is a risk that an electrical short circuit may occur between the laminations of the iron cores, resulting in an increase in iron loss or overheating of the iron core. Alternatively, the burrs are peeled off and are caught in the air gap between the rotor and the stator, causing damage to the lamination and dielectric breakdown of the coil. Therefore, it is necessary to remove cutting burrs before assembling. However, this deburring operation has problems such as extra work steps, necessity of a deburring facility, and impairment of handling safety. .

【0005】従って、切削が容易でバリが発生しにくい
電磁鋼板が求められている。この要請に対して例えば下
記の技術が提案されている。
Therefore, there is a need for an electromagnetic steel sheet which is easy to cut and hardly generates burrs. In response to this request, for example, the following technology has been proposed.

【0006】特公昭54−11769号公報には、電磁
鋼または電磁鋼板に黒鉛を添加することで切欠き効果、
潤滑効果が生じ、切削性が良くなるとしているが、黒鉛
添加は鋼板の磁気特性に悪影響を与えることから好まし
くない。
Japanese Patent Publication No. 54-1169 discloses a notch effect by adding graphite to an electromagnetic steel or an electromagnetic steel sheet.
It is stated that a lubricating effect is produced and the machinability is improved, but the addition of graphite is not preferable because it adversely affects the magnetic properties of the steel sheet.

【0007】特開平4−293724号公報には、鋼板
中にPを添加することにより、無方向性電磁鋼板の磁気
特性を悪化させずに切削性を改善するとしているが、P
添加による靭性低下を補償するため、極低C、極低S化
が必要であり脱C脱Sコストが増加すること、およびS
i+Al<1.5%の制約があり、電磁鋼板の基本成分
であるSi添加量の制約を受けるという問題がある。
Japanese Patent Application Laid-Open No. 4-293724 discloses that the addition of P to a steel sheet improves the machinability without deteriorating the magnetic properties of the non-oriented electrical steel sheet.
In order to compensate for the decrease in toughness due to the addition, extremely low C and extremely low S are required, and the cost of de-C and de-S increases, and
There is a restriction that i + Al <1.5%, and there is a problem that the addition amount of Si which is a basic component of the electromagnetic steel sheet is restricted.

【0008】特開平5−331602号公報には鋼板中
のMn量とAl量を規制することにより、鋼板の硬度を
調整して切削性を保持する技術が開示されているが、単
に鋼板の硬度を維持するだけでは十分な切削性が得られ
ない。
[0008] Japanese Patent Application Laid-Open No. 5-331602 discloses a technique in which the amount of Mn and Al in a steel sheet is regulated to adjust the hardness of the steel sheet to maintain the machinability. However, sufficient machinability cannot be obtained simply by maintaining the value.

【0009】[0009]

【発明が解決しようとする課題】前記の従来技術の問題
を解決するため、本発明の課題は、打抜き性と切削性に
優れ、かつ磁気特性に優れた電磁鋼板を提供することに
ある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, an object of the present invention is to provide an electromagnetic steel sheet which is excellent in punching and cutting properties and excellent in magnetic properties.

【0010】[0010]

【課題を解決するための手段】本発明者らは、打抜きと
切削加工を多用する回転子用の無方向性電磁鋼板につ
き、各種の製造条件で素材鋼を溶製し、各種の圧延、焼
鈍条件で試験材を作製した。これらの試験材について、
外周に切り欠き部のある回転子の形状に打ち抜き積層し
た試料を作成し、打抜きと切削試験を実施した。以下で
は、加工性というとき、打抜き性と切削性を総称してい
う。
Means for Solving the Problems The present inventors have prepared a non-oriented electrical steel sheet for a rotor that uses a lot of punching and cutting work by melting raw steel under various manufacturing conditions and performing various rolling and annealing processes. Test materials were prepared under the conditions. For these test materials,
A sample was punched and laminated in the shape of a rotor having a notch on the outer periphery, and punching and a cutting test were performed. Hereinafter, when referred to as workability, punchability and machinability are collectively referred to.

【0011】図1は加工性の良好な鋼板の介在物の形態
を示す模式図である。同図に示すように、加工性の良好
な鋼板では、介在物の粒径が2μm以上と粗大であり、
それらが列状に連なった群を成しており、その表面には
硫化物が付着した事例が多く観察された。同図から推定
されるように、この形態は製鋼工程で生成された介在物
が、圧延工程で破壊され、伸長されたものである。
FIG. 1 is a schematic view showing the form of inclusions in a steel sheet having good workability. As shown in the figure, in the steel sheet having good workability, the grain size of the inclusions is as large as 2 μm or more,
They formed a group of rows, and many cases where sulfides adhered to the surface were observed. As can be inferred from the figure, in this embodiment, the inclusions generated in the steel making process are broken and elongated in the rolling process.

【0012】ただし、極端に長く連なった列状介在物を
有するものは、加工性がよくても磁気特性が低下するこ
ともわかった。
However, it was also found that those having extremely long continuous line-shaped inclusions had poor magnetic properties even with good workability.

【0013】これに対して、同じような介在物の個数密
度の場合でも介在物の分布に方向性がなく、均一に分散
したものは加工性が劣ることがわかった。
On the other hand, it was found that even when the number density of the inclusions was the same, the distribution of the inclusions had no directionality, and the ones dispersed uniformly had poor workability.

【0014】すなわち、従来の電磁鋼板、あるいは一般
の鋼板では、不純物を極力低下させることに努力が払わ
れていたが、磁気特性を確保しつつ、加工性を改善する
ためには、適度な介在物を存在させて、かつ、その組成
と形態とをある範囲内に制御すればよいことを知見し
た。
That is, in conventional magnetic steel sheets or general steel sheets, efforts have been made to reduce impurities as much as possible. However, in order to improve workability while maintaining magnetic properties, a moderate amount of interposition is required. It has been found that it is only necessary to control the composition and form within a certain range in the presence of an object.

【0015】上記の知見に基づいて完成した本発明の要
旨は以下の(1) 〜(2) にある。 (1) 化学組成が重量%で、C:0.01%以下、Si:
0.01〜4.50%、sol.Al:0.0001〜4.
00%、Mn:0.05〜4.00%、P:0.15%
以下、S:0.005〜0.035:%、残部がFeお
よび不可避的不純物からなり、鋼板中の介在物が酸化物
系介在物と硫化物系介在物および両者の複合系介在物か
らなり、前記介在物の形態は、粒径2μm以上の介在物
の2個以上10個以下が列状に連なる群をなし、粒径2
μm以上の介在物個数の合計が粒径0.1μm以上の介
在物個数の10%以上であることを特徴とする加工性に
優れた無方向性電磁鋼板。
The gist of the present invention completed on the basis of the above findings is as follows (1) and (2). (1) Chemical composition by weight%, C: 0.01% or less, Si:
0.01-4.50%, sol.Al: 0.0001-4.
00%, Mn: 0.05 to 4.00%, P: 0.15%
Hereinafter, S: 0.005 to 0.035:%, the balance is Fe and unavoidable impurities, and the inclusions in the steel sheet are oxide-based inclusions, sulfide-based inclusions, and composite inclusions of both. The form of the inclusions is a group in which two to ten inclusions having a particle size of 2 μm or more are arranged in a row,
A non-oriented electrical steel sheet excellent in workability, characterized in that the total number of inclusions having a particle diameter of 0.1 μm or more is 10% or more of the number of inclusions having a particle diameter of 0.1 μm or more.

【0016】(2) 溶鋼を真空処理にてC:0.01重量
%以下、P:0.15重量%以下、S:0.005〜
0.035重量%、溶存酸素量を0.01〜0.07重
量%とし、次いで、sol.Al:0.001〜4.00重
量%、Si:0.01〜4.50重量%とした後、M
n:0.05〜4.00重量%とし、鋳造して鋼片と
し、該鋼片を熱間圧延および冷間圧延することを特徴と
する加工性に優れた無方向性電磁鋼板の製造方法。
(2) The molten steel is subjected to a vacuum treatment by C: 0.01% by weight or less, P: 0.15% by weight or less, S: 0.005 to
0.035% by weight, dissolved oxygen amount 0.01 to 0.07% by weight, then sol. Al: 0.001 to 4.00% by weight, Si: 0.01 to 4.50% by weight. Later, M
n: 0.05 to 4.00% by weight, a method for producing a non-oriented electrical steel sheet having excellent workability, comprising casting a steel piece and hot rolling and cold rolling the steel piece. .

【0017】[0017]

【発明の実施の形態】本発明の実施に際して、各要因や
条件を限定した理由を以下に述べる。なお、以下の%表
示は重量%を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting each factor and condition in implementing the present invention will be described below. In addition, the following% display means weight%.

【0018】(1)鋼の化学組成 C:0.01%以下、 Cは磁気特性を劣化させるので少ないほど好ましい。磁
気特性に対する悪影響を避けるために、その上限を0.
01%とする。C含有量の下限は特に規定しないが、脱
炭コストを考慮すると、0.003以上とするのが好ま
しい。より好ましくは0.005〜0.008%であ
る。
(1) Chemical composition of steel C: 0.01% or less C is preferable to be as small as possible because C deteriorates magnetic properties. The upper limit is set to 0.
01%. Although the lower limit of the C content is not particularly defined, it is preferably 0.003 or more in consideration of the decarburization cost. More preferably, it is 0.005 to 0.008%.

【0019】Si:0.01〜4.50%、 鋼を脱酸する際の常用成分であり、かつ、鋼の電気抵抗
を高めて鉄損を低減するために有効である。脱酸効果と
磁気特性を確保するために、Si含有量の下限を0.0
1%とする。他方、Si含有量が増すにつれて磁束密度
が低下し、圧延性が劣化するので、その上限を4.5%
とする。好ましくは0.03〜3.0%である。
Si: 0.01 to 4.50%, which is a commonly used component in deoxidizing steel and is effective for increasing the electrical resistance of steel and reducing iron loss. In order to secure the deoxidizing effect and the magnetic properties, the lower limit of the Si content is set to 0.0.
1%. On the other hand, as the Si content increases, the magnetic flux density decreases and the rollability deteriorates, so the upper limit is 4.5%.
And Preferably it is 0.03-3.0%.

【0020】Mn:0.05〜4.00%、 Sを硫化物として固定し、Sによる熱間脆性を防止する
ためにMnを0.05%以上含有させる。MnはSiと
同様に、鋼の電気抵抗を高めて渦電流損を低減するのに
有効であるが、含有量が増すにつれて磁束密度が低下
し、圧延性が劣化するので、その上限を4.00%とす
る。好ましくは0.10〜2.00%である。
Mn: 0.05 to 4.00%, S is fixed as sulfide, and Mn is contained in an amount of 0.05% or more to prevent hot brittleness due to S. Like Mn, Mn is effective in increasing the electrical resistance of steel to reduce eddy current loss, but as the content increases, the magnetic flux density decreases and the rollability deteriorates. 00%. Preferably it is 0.10-2.00%.

【0021】P:0.15%以下、 電気抵抗を高めて鉄損を改善し、鋼を硬くして打ち抜き
性を向上させる効果がある。このため、打ち抜き性を重
視するときはPを含有させてもよい。しかし、過度に含
有させると鋼を脆化させるので、その上限は0.15%
とする。好ましくは0.10%以下である。
P: 0.15% or less The effect of increasing electric resistance to improve iron loss and hardening steel to improve punchability. For this reason, when emphasizing the punching property, P may be contained. However, an excessive content will make the steel brittle, so the upper limit is 0.15%.
And Preferably it is 0.10% or less.

【0022】sol.Al:0.0001〜4.00%、 本発明でのAlは、健全な鋼を得るための溶鋼の脱酸剤
としての役割、介在物中のAl2 3 量を制御する役割
および鋼の電気抵抗を高めて鉄損を低減する役割を持っ
ている。Al添加により生じる脱酸生成物の一部は浮上
するが、残余は鋼中で酸化物系介在物を形成し、さらに
過剰のAlはsol.Alとして鋼中に残存する。
Sol. Al: 0.0001 to 4.00%, Al in the present invention functions as a deoxidizer for molten steel for obtaining a healthy steel, and controls the amount of Al 2 O 3 in inclusions. Has the role of increasing the electrical resistance of steel and reducing iron loss. Some of the deoxidation products generated by the addition of Al float, but the remainder forms oxide inclusions in the steel, and excess Al remains in the steel as sol.Al.

【0023】sol.Alが0%では有効な介在物としての
Al2 3 含有量を確保できないため、下限を0.00
01%とする。
If the sol.Al content is 0%, the content of Al 2 O 3 as an effective inclusion cannot be ensured, so the lower limit is 0.00.
01%.

【0024】一方、鋼中のsol.Al含有量が増加するに
つれて、磁束密度は低下し、圧延性は劣化するので、そ
の上限を4.00%とする。コスト等を考慮して好まし
くは0.0005〜2.00%である。
On the other hand, as the sol.Al content in the steel increases, the magnetic flux density decreases and the rollability deteriorates, so the upper limit is set to 4.00%. It is preferably 0.0005 to 2.00% in view of cost and the like.

【0025】SiとAlを同時に含む場合、冷間圧延性
の観点から、Al含有量を、Si+0.5sol.Al≦
4.5%の範囲とするのが望ましい。 S:0.005〜0.035%、 Sは磁気特性を劣化させる反面、鋼板の加工性を改善す
る作用がある。加工性を重視する場合にはSを0.00
5%以上含有させるのがよい。しかしその場合でも、S
含有量が過剰になると硫化物系介在物や析出物が増加
し、磁気特性を劣化させる作用が強くなりすぎるので、
その含有量は0.035%以下とする。
When Si and Al are simultaneously contained, from the viewpoint of cold rolling properties, the Al content is set to Si + 0.5 sol. Al ≦
It is desirable to be in the range of 4.5%. S: 0.005 to 0.035% S degrades the magnetic properties but has the effect of improving the workability of the steel sheet. When workability is important, S is 0.00
It is preferable to contain 5% or more. But even in that case, S
If the content is excessive, sulfide inclusions and precipitates increase, and the effect of deteriorating magnetic properties becomes too strong,
Its content should be 0.035% or less.

【0026】(2)介在物 介在物の存在形態は、鋼板の再結晶粒の成長挙動を通じ
て鋼板の磁気特性に大きく影響すると同時に、加工性に
も大きな影響を与える。本発明では、介在物を活用し
て、両方の特性を満足させ得る方法を見出した。
(2) Inclusions The presence form of the inclusions greatly affects the magnetic properties of the steel sheet through the growth behavior of recrystallized grains of the steel sheet, and also greatly affects the workability. In the present invention, a method has been found in which both properties can be satisfied by utilizing inclusions.

【0027】(a) 介在物の粒径 介在物の粒径は小さいほど結晶粒成長時に粒界をピンニ
ング(固定)しやすく、粒成長性に悪影響を与える。し
たがって、介在物の粒径は2μm以上であることが好ま
しい。ここで、粒径とは同一面積の円の直径換算とす
る。介在物の総体積が同一量であれば、介在物粒径が大
きい方が全介在物数は少なくなり、粒成長性には好まし
い。したがって、介在物粒径の上限は、鋼板の粒成長性
と相関のある磁気特性のグレードとの兼ね合いで決定さ
れることから、特に定めない。
(A) Particle size of inclusions The smaller the particle size of the inclusions, the easier it is to pin (fix) the grain boundaries during crystal grain growth, which adversely affects the grain growth. Therefore, the particle size of the inclusions is preferably 2 μm or more. Here, the particle size is equivalent to the diameter of a circle having the same area. If the total volume of the inclusions is the same, the larger the inclusion particle size, the smaller the total number of inclusions, which is preferable for the grain growth. Therefore, the upper limit of the particle size of the inclusions is not particularly defined because it is determined in consideration of the grade of the magnetic properties that is correlated with the grain growth of the steel sheet.

【0028】(b) 介在物の形態 加工性(打ち抜き性および切削性)向上における介在物
の役割は、加工工具が材料と接触するときに、介在物が
割れの起点となり、切り欠き効果を与えて、工具の剪断
を助長する働きをすることである。さらに、切削時にお
いては、硫化物系介在物は工具に潤滑効果を与えて、工
具摩耗を抑制する働きがある。
(B) Form of Inclusions The role of inclusions in improving the workability (punching and cutting properties) is that when the machining tool comes into contact with the material, the inclusions serve as starting points for cracking and provide a notch effect. And work to promote the shearing of the tool. Further, at the time of cutting, the sulfide-based inclusion has a function of giving a lubricating effect to the tool and suppressing tool wear.

【0029】発明者らの観察によれば、介在物の存在形
態には、粒子が個々独立に分散した形態と粒子が列状に
連なった形態とがある。加工性に好ましい介在物の形態
は、介在物が細かく均一に分散するよりも、群を形成す
る方が適している。これは、密集して群落状にあるより
も、適度に粗に分散して群を形成する方が、(a) 加工時
の工具の接触個所および面積が増加して、割れの起点サ
イトが増加すること、(b) 起点サイト間をクラックが伝
播しやすいこと、から介在物が単独で存在するよりも、
切欠き効果において相乗効果を発揮する。
According to the observations made by the inventors, the existence form of the inclusions includes a form in which the particles are individually dispersed and a form in which the particles are arranged in a row. The form of inclusions preferable for workability is more suitable for forming a group than for the inclusions being finely and uniformly dispersed. This is because it is more appropriate to form a group by dispersing it moderately coarsely than in a densely populated community. (A) The number of contact points and area of tools during processing increases, and the number of crack origin sites increases. (B) cracks are easily propagated between the starting sites,
It has a synergistic effect in the notch effect.

【0030】一方、連なった介在物個数が過度に長くな
ったものは鋼の粒成長性を阻害するため磁気特性が劣化
する。
On the other hand, if the number of continuous inclusions is excessively long, the grain growth of steel is impaired, so that the magnetic properties deteriorate.

【0031】発明者らの試験結果によれば、一群の列状
介在物の個数は10個以下であれば、磁気特性を劣化さ
せないことがわかった。
According to the test results of the inventors, it was found that the magnetic characteristics would not be deteriorated if the number of the group-shaped inclusions was 10 or less.

【0032】また、熱間圧延および冷間圧延後の鋼板に
2μm以上の粒径で2〜10個が連なった列状介在物群
を生成させるためには、溶鋼の凝固時点で鋼中介在物の
粒径が4〜15μm程度であればよいことがわかった。
Further, in order to form a group of 2 to 10 continuous inclusions having a grain size of 2 μm or more in the steel sheet after hot rolling and cold rolling, it is necessary to include inclusions in the steel at the time of solidification of the molten steel. It was found that the particle size of the particles had only to be about 4 to 15 μm.

【0033】介在物の存在形態に差違が出るのは、溶鋼
の凝固段階で細かい粒子が均一分散しているか、ある程
度の大きさの粒子がまばらに分散しているかの違いによ
ると考えられる。さらに、介在物が圧延による変形を受
けたときに、伸長されやすいものと、されにくいものが
あるためと考えられる。一般に、融点の高い粒子は熱間
圧延時に伸長されにくく、融点の低い粒子は熱間圧延時
に伸長されて、冷間圧延時に破壊されやすい。また、こ
の介在物粒子の中でも破壊されやすい粒子は細かく破壊
され細く長く伸長されると考えられる。一方、強度の高
い粒子は圧延によって破壊されず、伸長もしない。後述
するように、介在物は鋼片の凝固段階よりも前の、精錬
段階で決定される適切な介在物組成を持つように制御す
るのが望ましい。介在物の組成は機械的性質と密接に関
連しており、組成を制御することは加工によって介在物
の形態を制御することにつながるためである。
It is considered that the difference in the existence form of the inclusions is caused by whether fine particles are uniformly dispersed or particles of a certain size are sparsely dispersed in the solidification stage of the molten steel. Further, it is considered that when inclusions are deformed by rolling, some of the inclusions are easily elongated and others are not easily elongated. Generally, particles having a high melting point are less likely to elongate during hot rolling, while particles having a lower melting point are elongated during hot rolling and are easily broken during cold rolling. Further, among the inclusion particles, particles that are easily broken are considered to be finely broken and elongated finely. On the other hand, high strength particles are not destroyed by rolling and do not elongate. As described below, the inclusions are desirably controlled to have an appropriate inclusion composition determined in the refining stage, prior to the slab solidification stage. The composition of the inclusion is closely related to the mechanical properties, and controlling the composition is because the morphology of the inclusion is controlled by processing.

【0034】以上の観点から、2μm以上の粗大な介在
物が、2個以上10個以下の列状に連なった形態をとる
と、加工性と磁気特性を両立できる。
From the above viewpoints, when the large inclusions of 2 μm or more are arranged in a row of 2 or more and 10 or less, both workability and magnetic characteristics can be achieved.

【0035】介在物が列状に連なった状態とは、上述の
ように製鋼段階の介在物が圧延過程で延伸され分裂して
列状に連なった状態になったものを言い、粒径2μm以
上の介在物同志の間隔が2μm以下であるものを一群の
介在物とみなす。これは、介在物同志の間隔が2μmを
超えて離れたものは、もともと同じ製鋼介在物が破壊さ
れ伸長したものとは考えられないからである。
The state in which the inclusions are arranged in a row means that the inclusions in the steelmaking stage are stretched and split in the rolling process to be in a state of being arranged in a row as described above, and the particle size is 2 μm or more. The inclusions having an interval of 2 μm or less are regarded as a group of inclusions. This is because if the distance between the inclusions exceeds 2 μm, it is not considered that the same steelmaking inclusion was originally broken and elongated.

【0036】介在物の観察手段は、光学顕微鏡・走査型
電子顕微鏡により倍率が100倍〜1000倍程度で観
察するのが適している。顕微鏡観察の試片の研磨面は圧
延方向と平行にすると介在物の連なりがよく観察でき
る。
The means for observing inclusions is suitably observed at a magnification of about 100 to 1000 times with an optical microscope or a scanning electron microscope. When the polished surface of the specimen observed by a microscope is parallel to the rolling direction, a series of inclusions can be well observed.

【0037】顕微鏡視野内で、介在物が連なった状態を
とるときは、大部分の介在物がこのような形態となり、
個別に分散した介在物と連なった介在物とが混在するケ
ースはあまり見られない。観察上は、例えば400倍率
の視野内では最大50列群程度の連なった介在物が見ら
れるが、5列群以上あれば、列状介在物が生成している
と判定できる。
When the inclusions are connected in the visual field of the microscope, most of the inclusions have such a form.
It is rare to see a mixture of individually dispersed inclusions and continuous inclusions. On observation, for example, a series of inclusions in a group of about 50 rows can be seen at the maximum in a visual field of 400 magnification. However, if there are five or more groups, it can be determined that row-shaped inclusions are generated.

【0038】(c) 介在物の個数 本発明者らの研究によれば、磁気特性に影響する介在
物、すなわち、焼鈍過程で結晶成長をピンニングする介
在物は粒径0.1μm以上のものである。
(C) Number of Inclusions According to the study of the present inventors, inclusions that affect magnetic properties, that is, inclusions that pin the crystal growth during the annealing process, have a grain size of 0.1 μm or more. is there.

【0039】本発明に係る粒径2μm以上の列状に連な
った介在物数は、全介在物数(粒径0.1μm以上)の
うち、10%以上であれば、所定の特性を満足すること
ができる。
According to the present invention, if the number of inclusions in a row having a particle diameter of 2 μm or more is 10% or more of the total number of inclusions (particle diameter of 0.1 μm or more), predetermined characteristics are satisfied. be able to.

【0040】(d) 介在物の組成 本発明の化学組成における電磁鋼板で観察される介在物
は、酸化物系介在物、硫化物系介在物、および両者の複
合介在物がからなる。
(D) Inclusion Composition The inclusions observed in the magnetic steel sheet in the chemical composition of the present invention include oxide inclusions, sulfide inclusions, and composite inclusions of both.

【0041】本発明者らの研究によれば、加工性に優れ
た試験片では、硫化物系介在物が単体で存在するものも
あるが、殆どの硫化物系介在物は酸化物系介在物を核と
して、その上に析出している場合が多く観察されること
がわかった。つまり、酸化物が硫化物で被覆された介在
物は、打抜き工具・切削時工具に対する潤滑効果がある
と考えられる。従って、前述のように、適当なS含有量
を規定するのである。
According to the study of the present inventors, some test pieces excellent in workability have sulfide-based inclusions alone, but most of the sulfide-based inclusions are oxide-based inclusions. It has been found that a large number of nuclei are precipitated on the nuclei. In other words, it is considered that the inclusion in which the oxide is covered with the sulfide has a lubricating effect on the punching tool and the cutting tool. Therefore, as described above, an appropriate S content is defined.

【0042】上記の介在物形態を形成する介在物の組成
は、機械的性質・融点の関係からある特定組成であるこ
とが望ましい。つまり、融点がある程度高い介在物が鋳
造段階で粗大に析出していれば、鋼材を熱間圧延および
冷間圧延する時にこの介在物が適度に破壊され、伸長さ
れ、列状に連なった形態になるためである。
The composition of the inclusions forming the above-described inclusion morphology is desirably a specific composition from the viewpoint of mechanical properties and melting point. In other words, if inclusions with a relatively high melting point are coarsely precipitated during the casting stage, the inclusions are appropriately broken, stretched, and stretched in a row when hot rolling and cold rolling steel. It is because it becomes.

【0043】その組成例としては、酸化物系としてAl
2 3 、SiO2 、MnO、CaO、MgO、Ti
2 、ZrO2 などの1種または2種以上の介在物に、
MnS、CaS、ZrS、FeSなどの単体および2種
以上が複合した硫化物系介在物が複合析出したものが望
ましい。
An example of the composition is as follows.
2 O 3 , SiO 2 , MnO, CaO, MgO, Ti
One or more types of inclusions such as O 2 and ZrO 2
It is desirable that sulfide-based inclusions, such as MnS, CaS, ZrS, and FeS, which are a simple substance and two or more of them are compositely deposited, are deposited.

【0044】介在物の組成は、エネルギー分散型X線分
析法で分析できる。また、化学的な分析方法として、酸
化物成分は、臭素−メタノール法による抽出分離定量法
で、硫化物成分は定電位電解法で定量分析することがで
きる。
The composition of inclusions can be analyzed by energy dispersive X-ray analysis. In addition, as a chemical analysis method, the oxide component can be quantitatively analyzed by extraction separation and quantification by a bromine-methanol method, and the sulfide component can be quantitatively analyzed by a potentiostatic electrolysis method.

【0045】(3)製造方法 上記のように、本発明の電磁鋼板の素材鋼片中には、適
度に粒径の大きな介在物を分散させることが必要で、介
在物の種類は大きなものが得られ易くて圧延工程で適度
に破壊されるものが望ましく、硫化物、酸化物あるいは
それらの複合体を主体に析出させるのが好ましい。
(3) Manufacturing Method As described above, in the steel slab of the magnetic steel sheet of the present invention, it is necessary to disperse inclusions having a moderately large particle size, and the types of inclusions are large. Desirably, those which are easy to obtain and are appropriately broken in the rolling step are preferable, and sulfides, oxides or composites thereof are mainly deposited.

【0046】本発明の電磁鋼板の製造方法は以下のとお
りである。転炉や電気炉で溶製された溶鋼を真空処理に
てC:0.01重量%以下、P:0.15重量%以下、
S:0.015〜0.035重量%、溶存酸素量を0.
01〜0.07重量%とし、次いで、sol.Al:0.0
01〜4.00重量%、Si:0.01〜4.50重量
%に調整し、次いでMn:0.05〜4.00重量%と
する。
The method for producing the magnetic steel sheet of the present invention is as follows. C: 0.01% by weight or less, P: 0.15% by weight or less in vacuum processing of molten steel produced in a converter or an electric furnace,
S: 0.015 to 0.035% by weight;
0.01 to 0.07% by weight, and then sol.
The content is adjusted to 0.01 to 4.00% by weight and Si to 0.01 to 4.50% by weight, and then to Mn: 0.05 to 4.00% by weight.

【0047】本発明での真空処理の手段には特別な制約
はない。従来から一般的に用いられているRH脱ガス装
置、VODまたはタンク脱ガス装置など、溶鋼を0.0
1気圧以下の真空中で処理できる装置であればよい。
There is no special restriction on the means of vacuum processing in the present invention. Conventionally commonly used RH degassing equipment, VOD or tank degassing equipment, etc.
Any device can be used as long as it can be processed in a vacuum of 1 atm or less.

【0048】本発明の製造方法では、真空処理後のC:
0.01重量%以下、溶存酸素量が0.01〜0.07
%の範囲になるように真空度および処理時間を調整す
る。
In the production method of the present invention, C:
0.01% by weight or less, dissolved oxygen amount of 0.01 to 0.07
The degree of vacuum and the processing time are adjusted so as to be in the range of%.

【0049】この条件は、以後のAl、Siによる脱酸
処理によって鋼板中に粒径2μm以上の介在物を確保
し、かつ粒径2μm以上の介在物の個数が、粒径0.1
μm以上の介在物個数の10%以上とするためのもので
ある。
This condition is such that inclusions having a particle size of 2 μm or more are ensured in the steel sheet by the subsequent deoxidation treatment with Al and Si, and the number of the inclusions having a particle size of 2 μm or more is reduced to 0.1%.
This is for controlling the number of inclusions of at least 10 μm to at least 10%.

【0050】酸素濃度が0.01%未満であると、真空
処理によって炭素濃度を0.01%以下にするのが困難
である。また、後のAl、Si添加によっても鋼中にA
23 ,SiO2 等の介在物が生成するとしても、細
かい介在物が多数生成し、鋼板中に粒径2μm以上の介
在物を確保するのが困難になる。すなわち、粒径2μm
以上の介在物個数が粒径0.1μm以上の介在物個数の
10%未満となる。酸素濃度が0.07%を超えると、
Alおよび/またはSiによる真空下の脱酸処理に多大
な時間を要し、脱酸不十分となって介在物が多量に生成
し、磁気特性劣化の原因になる。好ましくは溶存酸素量
は0.02〜0.04%である。
When the oxygen concentration is less than 0.01%, it is difficult to reduce the carbon concentration to 0.01% or less by vacuum treatment. In addition, the addition of Al and Si in the steel
Even if inclusions such as l 2 O 3 and SiO 2 are formed, many fine inclusions are formed, and it becomes difficult to secure inclusions having a grain size of 2 μm or more in the steel sheet. That is, a particle size of 2 μm
The number of inclusions described above is less than 10% of the number of inclusions having a particle size of 0.1 μm or more. When the oxygen concentration exceeds 0.07%,
A large amount of time is required for the deoxidation treatment under a vacuum with Al and / or Si, and the deoxidation becomes insufficient, and a large amount of inclusions are generated, which causes deterioration of magnetic properties. Preferably, the amount of dissolved oxygen is 0.02 to 0.04%.

【0051】ここで、溶鋼中の溶存酸素量は溶鋼中に溶
解している酸素量であり、Siおよび/またはAlの添
加前に酸素濃淡電池の原理を応用した酸素センサーを用
いて溶鋼から直接測定できる。
Here, the amount of dissolved oxygen in the molten steel is the amount of oxygen dissolved in the molten steel. Before the addition of Si and / or Al, the amount of dissolved oxygen is directly measured from the molten steel using an oxygen sensor applying the principle of an oxygen concentration cell. Can be measured.

【0052】真空度は所定の時間内に脱炭できる程度の
水準に管理すればよいが、0.01気圧以下にするのが
好ましい。処理時間に余裕がある場合には0.05気圧
程度の真空度でもよい。
The degree of vacuum may be controlled to a level at which decarburization can be performed within a predetermined time, but is preferably set to 0.01 atm or less. If the processing time has a margin, the degree of vacuum may be about 0.05 atm.

【0053】次いで、真空下で、または真空処理後、A
l源、Si源を添加する。Al、Siは炭素と酸素の濃
度を上記のように調整した後に添加する。Al源、Si
源は別々に添加してもよいし、同時に添加しても構わな
い。事前に調整された酸素濃度によって、適度の大きさ
の鋼中介在物を得るには、Al源を添加した後に、Si
源を添加するのが望ましい。
Then, under vacuum or after vacuum treatment, A
1 source and Si source are added. Al and Si are added after adjusting the concentrations of carbon and oxygen as described above. Al source, Si
The sources may be added separately or simultaneously. In order to obtain moderately sized inclusions in the steel with the oxygen concentration adjusted in advance, the Si source is added after the addition of the Al source.
It is desirable to add a source.

【0054】次いで、Mn源を添加する。Al、Si添
加後にMn添加することにより、Mnが酸化してスラグ
に移行する量が少なくなり、Mnの歩留が向上し、Mn
含有量の調整も容易である。
Next, a Mn source is added. By adding Mn after adding Al and Si, the amount of Mn oxidized and transferred to slag is reduced, the yield of Mn is improved, and Mn is improved.
Adjustment of the content is also easy.

【0055】さらに、この方法でMn含有量を調整すれ
ば、Mn含有量は低い状態から徐々に高められるので、
融点を低下させる介在物中のMnO成分を抑制すること
ができる。すなわち、Mn成分の多くはSと結合して硫
化物となり、生成した硫化物は先に生成した酸化物系介
在物の周りを覆うように生成する。
Further, if the Mn content is adjusted by this method, the Mn content can be gradually increased from a low state.
MnO components in inclusions that lower the melting point can be suppressed. That is, most of the Mn component combines with S to form a sulfide, and the generated sulfide is generated so as to cover around the previously generated oxide-based inclusion.

【0056】本発明の方法により、通常の溶銑やスクラ
ップを主原料として製鋼すれば、鋼中のS量を特別に調
整する必要はない。ただし、打ち抜き性や切削性などの
加工性をより重視する場合には、Sを多く含有させる方
が望ましいので、AlとSiを添加した後、Mn添加の
前に、Fe−S等の硫黄を含有する合金鉄を添加しても
よい。これらAl源、Si源、S源、Mn源の添加を真
空槽内で行えば合金鉄の歩留まりが向上する。
According to the method of the present invention, if steel is produced using ordinary hot metal or scrap as a main raw material, there is no need to adjust the S content in the steel. However, in the case where emphasis is placed on workability such as punchability and machinability, it is desirable to contain a large amount of S. Therefore, after adding Al and Si, sulfur such as Fe-S is added before adding Mn. The contained ferromagnetic iron may be added. If the addition of these Al source, Si source, S source, and Mn source is performed in a vacuum chamber, the yield of ferroalloys is improved.

【0057】上記の化学組成と介在物組成を調整された
溶鋼は、連続鋳造法等により鋳片とされ、常法による熱
間圧延、冷間圧延および焼鈍などの工程を経て電磁鋼板
とされる。
The molten steel whose chemical composition and inclusion composition are adjusted as described above is made into a slab by a continuous casting method or the like, and is made into an electrical steel sheet through processes such as hot rolling, cold rolling and annealing by a conventional method. .

【0058】熱延条件は特に規定するものではないが、
加熱温度が高すぎると介在物が溶融して粗粒とならない
ため、加熱温度は1250℃以下が望ましく、さらには
1200℃以下とするのが望ましい。
Although the hot rolling conditions are not particularly specified,
If the heating temperature is too high, the inclusions do not melt and become coarse particles, so the heating temperature is desirably 1250 ° C or less, and more desirably 1200 ° C or less.

【0059】その後、酸洗、冷間圧延、あるいは必要に
応じて温間圧延、焼鈍、あるいは必要に応じて再冷間圧
延、再焼鈍を行う。
Thereafter, pickling, cold rolling, or, if necessary, warm rolling, annealing, or, if necessary, re-cold rolling and re-annealing are performed.

【0060】必要に応じて、熱延後に焼鈍を施してもよ
い。すべての焼鈍はバッチ焼鈍でも連続焼鈍でもよい
が、制御の容易な連続焼鈍が望ましい。最終の焼鈍温度
は所定の磁気特性を付与するため、750〜1100℃
とするのが望ましい。
If necessary, annealing may be performed after hot rolling. All anneals may be batch anneals or continuous anneals, but continuous anneals that are easy to control are desirable. The final annealing temperature is 750 to 1100 ° C. in order to provide predetermined magnetic properties.
It is desirable that

【0061】[0061]

【実施例】本発明が規定する化学組成範囲にある鋼と、
本発明が規定する化学組成範囲外の鋼を転炉−RH式真
空処理−連続鋳造の工程で製造した。表1にこれらの鋼
のレードル分析値を示す。
EXAMPLE A steel having a chemical composition range defined by the present invention;
Steel outside the chemical composition range specified by the present invention was produced in the steps of converter, RH type vacuum treatment, and continuous casting. Table 1 shows the ladle analysis values of these steels.

【0062】[0062]

【表1】 [Table 1]

【0063】これらの鋼は、RH脱ガス装置を用いて溶
鋼中の溶存酸素量と炭素濃度を調整した後、Al源、S
i源、S源、Mn源を添加して鋼の化学組成を調整し
た。溶鋼は連続鋳造で厚さ230mmのスラブとし、こ
れらのスラブを1120℃に加熱し、仕上げ温度を87
0〜890℃、巻き取り温度を660〜680℃で板厚
2.3mmに熱間圧延した試験片の鋼板を酸洗後、板厚
0.50mmに冷間圧延した。圧延後、850℃で1分
間均熱する連続焼鈍を施した。その後、通常の無方向性
電磁鋼板と同様の有機成分と無機成分を含有する複合組
成からなる表面絶縁コーティングを施した。
After adjusting the amount of dissolved oxygen and the carbon concentration in the molten steel by using an RH degassing apparatus, these steels were subjected to Al source, S
The chemical composition of the steel was adjusted by adding the i source, the S source, and the Mn source. The molten steel was continuously cast into slabs having a thickness of 230 mm, these slabs were heated to 1120 ° C., and the finishing temperature was 87
A steel plate of a test piece hot-rolled to a thickness of 2.3 mm at a temperature of 0 to 890 ° C. and a winding temperature of 660 to 680 ° C. was pickled and then cold-rolled to a thickness of 0.50 mm. After rolling, continuous annealing was performed at 850 ° C. for 1 minute. Thereafter, a surface insulating coating made of a composite composition containing an organic component and an inorganic component similar to that of a normal non-oriented electrical steel sheet was applied.

【0064】これらの鋼板の介在物の形態観察と組成分
析には、走査型顕微鏡(SEM) とエネルギー分散型X
線分析法を用いて、1鋼種につき倍率400倍で無作為
に抽出した60視野について、介在物の形態を観察し、
組成分析を行った。
For observing the morphology and analyzing the composition of these steel sheet inclusions, a scanning microscope (SEM) and an energy dispersive X-ray
Observation of inclusion morphology in 60 visual fields randomly extracted at a magnification of 400 per steel type using a line analysis method,
Composition analysis was performed.

【0065】鋼板の圧延方向と板幅方向から幅30m
m、長さ280mmの試験片をそれぞれ16枚づつ採取
し、JIS−C−2550に規定されているエプスタイ
ン試験法によって、鉄損(W15/50 )と磁束密度
(B50)を求めた。
The width is 30 m from the rolling direction and the width direction of the steel sheet.
16 test pieces each having a length of 280 mm and a length of 280 mm were obtained, and the iron loss (W 15/50 ) and the magnetic flux density (B 50 ) were determined by the Epstein test method specified in JIS-C-2550.

【0066】また、鋼板を円盤状に打ち抜いて積層した
後、溝切り加工した断続切削用の試験体を作製した。こ
の試験体を旋盤で切削し、切削性を評価した。切削試験
条件は切削速度:150m/min、送り:0.2mm
/rev、切り込み量:0.25mmとした。切削工具
はブレーカー付サーメットチップを使用した。
Further, a steel plate was punched out in a disk shape and laminated, and then a grooved-cut intermittent cutting test specimen was prepared. This test piece was cut with a lathe and the cutability was evaluated. Cutting test conditions are: cutting speed: 150 m / min, feed: 0.2 mm
/ Rev, cutting depth: 0.25 mm. The cutting tool used was a cermet chip with a breaker.

【0067】切削性は、工具摩耗をチップの平均摩耗量
で評価し、切削延べ長さ1kmあたりの磨耗量が100
μm未満のものを切削性良好(○)、100μm以上を
切削性不良(×)と判定した。
The cutting performance was evaluated by evaluating the tool wear by the average wear amount of the insert, and the wear amount per 1 km of the cutting total length was 100.
Those having a size of less than μm were judged as having good cutting properties (○), and those having 100 μm or more were judged as having poor cutting properties (×).

【0068】打ち抜き性についても評価した。打ち抜き
性については、クリアランス5%,8%,10%とした
コーナーR部0.12mmの20mm角ブランク3種を
同時に打ち抜けるSKD−11の金型により、エマルジ
ョン潤滑にて200回/minの打ち抜きを行い、打ち
抜きによるバリ発生の相対評価により判定した。70万
回以上の打ち抜きに対してバリの発生がなかったものを
打ち抜き性良好(○)、70万回未満でバリが発生した
ものを打ち抜き性不良(×)と判定した。
The punching property was also evaluated. With regard to the punching property, 200 times / min punching was performed by emulsion lubrication using a SKD-11 mold that simultaneously punches out three types of 20 mm square blanks having 0.12 mm corner radius with clearances of 5%, 8%, and 10%. Was performed, and the evaluation was made by relative evaluation of burr generation by punching. A sample having no burr after 700,000 times punching was judged as having good punching performance ((), and a sample having less than 700,000 times flashing was judged as poor punching property (x).

【0069】試験結果を表2に示す。Table 2 shows the test results.

【0070】[0070]

【表2】 [Table 2]

【0071】表2において、介在物の形態の欄の(○)
は列状に連なった形態の介在物が、いずれの顕微鏡視野
内でも5群以上見られ、これら列状介在物が2〜10個
連なったものが大部分(80%以上)を占めるめる場合
であり、(×)はこれにあてはまらない場合である。介
在物の列平均個数の欄は、2μm以上の介在物について
は列状となっていない場合も、列あたりの個数1個とし
て数え、列状になっているものは2μm未満の介在物も
含めて列あたりの個数を数え、介在物の合計数を列群の
合計数で除したものである。また、粒径の欄は列群ごと
に介在物の粒径の平均値を求め、すべての列群について
の平均粒径を求めたものである。
In Table 2, (O) in the column of the form of inclusions
In the case where five or more groups of inclusions in the form of a row are found in any of the microscope visual fields, 2 to 10 of these row-shaped inclusions occupy the majority (80% or more). Yes, (x) is when this is not the case. In the column of the average number of inclusions in the column, even if the inclusions of 2 μm or more are not in the form of a row, they are counted as one piece per row, and those in the row include inclusions of less than 2 μm. The total number of inclusions is divided by the total number of row groups. In the column of particle diameter, the average value of the particle diameters of the inclusions is calculated for each row group, and the average particle diameter is calculated for all the row groups.

【0072】同表に示すように、試験番号1〜9では、
化学組成および介在物形態が本発明範囲であり、磁気特
性は良好で、切削性・打ち抜き性も良好であった。
As shown in the table, in Test Nos. 1 to 9,
The chemical composition and inclusion morphology were within the scope of the present invention, and the magnetic properties were good, and the cutting and punching properties were also good.

【0073】試験番号10では、C量が本発明範囲より
高い。この試験体は切削性・打ち抜き性は良いが磁気特
性が劣っていた。
In Test No. 10, the C content was higher than the range of the present invention. This test specimen had good cutting and punching properties, but was inferior in magnetic properties.

【0074】試験番号11では、本発明範囲よりもSi
量が低いので鉄損が大きく、切削性が劣っていた。
In Test No. 11, Si was higher than the range of the present invention.
Since the amount was low, the iron loss was large and the machinability was poor.

【0075】試験番号12では、本発明範囲よりもSi
量が高いために、冷間圧延時に割れが発生して、調査試
料が採取できなかった。
In Test No. 12, Si was higher than the range of the present invention.
Due to the high amount, cracks occurred during cold rolling, and the investigation sample could not be collected.

【0076】試験番号13では、本発明範囲よりもMn
量が高く、介在物は15〜20個のの細かい粒子が列状
になった形態となり、介在物の規定から外れていた。ま
た、2μm以上の粒径の介在物の個数は0.1μm以上
の介在物個数のおよそ3%で、この点も本発明の介在物
の規定から外れていた。その結果、磁気特性は劣り、切
削性・打ち抜き性にも劣っていた。
In Test No. 13, Mn was larger than the range of the present invention.
The amount was high, and the inclusions were in the form of rows of 15 to 20 fine particles, deviating from the definition of inclusions. The number of inclusions having a particle size of 2 μm or more was about 3% of the number of inclusions having a particle size of 0.1 μm or more, and this point was also out of the range of the inclusions of the present invention. As a result, the magnetic properties were inferior, and the cutting and punching properties were also inferior.

【0077】試験番号14では、本発明範囲よりもP量
が高く、打ち抜き時に割れが発生した。
In Test No. 14, the P content was higher than the range of the present invention, and cracks occurred during punching.

【0078】試験番号15では、本発明範囲よりもS量
が高いために、加工性は良いが、結晶粒の成長性が悪
く、鉄損が劣っていた。
In Test No. 15, since the S content was higher than the range of the present invention, the workability was good, but the growth of crystal grains was poor and the iron loss was poor.

【0079】試験番号16では、本発明範囲よりもsol.
Al量が多く、磁気特性が劣っていた。
In Test No. 16, the sol.
The amount of Al was large and the magnetic properties were inferior.

【0080】試験番号17〜23では、鋼成分は本発明
範囲であるが、介在物の形態・介在物群の個数・介在物
粒径のうち、いずれかが本発明範囲を外れる鋼種であ
る。
In Test Nos. 17 to 23, the steel components fall within the scope of the present invention, but any of the form of inclusions, the number of inclusion groups, and the particle size of the inclusions fall outside the scope of the invention.

【0081】試験番号17では、列状に連なった介在物
群が少なく、切削性が劣っていた。
In Test No. 17, the number of inclusions arranged in a row was small and the machinability was poor.

【0082】試験番号18では、介在物群は列状である
が、一連の平均個数18程度で、本発明範囲よりも多い
ことから、結晶粒の成長性を抑制して鉄損が劣化したと
思われる。
In Test No. 18, although the inclusion group was in a row, the average number of the series was about 18, which was larger than the range of the present invention. Seem.

【0083】試験番号19では、介在物の形態が列状で
なく単体の介在物が分散した形態であった。また、粒径
0.1μm以上の介在物個数に対する2μm以上のもの
の個数比はおよそ4%であった。このため切削性が劣っ
ていた。また、粒成長性が抑制されたため、鉄損が劣っ
ていた。
In Test No. 19, the form of the inclusions was not a row but a form in which a single inclusion was dispersed. The ratio of the number of inclusions of 2 μm or more to the number of inclusions of 0.1 μm or more was about 4%. Therefore, the machinability was poor. In addition, since the grain growth was suppressed, the iron loss was inferior.

【0084】試験番号20では、本発明範囲よりも、介
在物群の個数が多く、介在物サイズも小さく、粒径0.
1μm以上の介在物個数に対する2μm以上のものの個
数比はおよそ4%であったことから、粒成長性が抑制さ
れて鉄損が劣っていた。
In Test No. 20, the number of inclusions was larger, the size of the inclusions was smaller, and the particle size was larger than the range of the present invention.
Since the number ratio of the inclusions of 2 μm or more to the number of inclusions of 1 μm or more was about 4%, the grain growth was suppressed and the iron loss was inferior.

【0085】試験番号21では、介在物のサイズは2μ
m以上であったが、列状に連なったものは少なく、切削
性・打ち抜き性とも劣っていた。
In Test No. 21, the size of the inclusion was 2 μm.
m or more, but few were arranged in a row, and the cutting and punching properties were poor.

【0086】試験番号13、19、20以外は粒径0.
1μm以上の介在物個数に対する2μm以上のものの個
数比は10〜15%であった。
Except for Test Nos. 13, 19 and 20, the particle size was 0.1.
The number ratio of inclusions of 2 μm or more to the number of inclusions of 1 μm or more was 10 to 15%.

【0087】[0087]

【発明の効果】本発明による無方向性電磁鋼板は、優れ
た磁気特性と打抜き性および切削性を示し、打ち抜き金
型・切削工具の寿命が長くなり、打ち抜きバリ・切削バ
リの発生もないため、作業能率が向上し、バリ除去作業
を省略することができる。本発明の製造方法によれば、
前記の無方向性電磁鋼板を安定して製造することができ
る。
The non-oriented electrical steel sheet according to the present invention exhibits excellent magnetic properties, punching properties and cutting properties, prolongs the life of punching dies and cutting tools, and eliminates the occurrence of punching burrs and cutting burrs. In addition, the work efficiency is improved, and the deburring work can be omitted. According to the production method of the present invention,
The non-oriented electrical steel sheet can be stably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加工性の良好な鋼板の介在物の形態を示す模式
図である。
FIG. 1 is a schematic diagram showing the form of inclusions in a steel sheet having good workability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 屋鋪 裕義 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 岡田 康孝 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 Fターム(参考) 4K033 AA01 CA08 CA09 5E041 AA02 AB19 CA04 HB19 NN01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyoshi Yasu 4-3-33 Kitahama, Chuo-ku, Osaka City Inside Sumitomo Metal Industries Co., Ltd. (72) Inventor Yasutaka Okada 4-5-33 Kitahama, Chuo-ku, Osaka-shi F-term in Sumitomo Metal Industries, Ltd. (reference) 4K033 AA01 CA08 CA09 5E041 AA02 AB19 CA04 HB19 NN01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が重量%で、C:0.01%以
下、Si:0.01〜4.50%、sol.Al:0.00
01〜4.00%、Mn:0.05〜4.00%、P:
0.15%以下、S:0.005〜0.035:%、残
部がFeおよび不可避的不純物からなり、鋼板中の介在
物が酸化物系介在物と硫化物系介在物および両者の複合
系介在物からなり、前記介在物の形態は、粒径2μm以
上の介在物の2個以上10個以下が列状に連なる群をな
し、粒径2μm以上の介在物個数の合計が粒径0.1μ
m以上の介在物個数の10%以上であることを特徴とす
る加工性に優れた無方向性電磁鋼板。
1. Chemical composition in weight%, C: 0.01% or less, Si: 0.01 to 4.50%, sol. Al: 0.00
01 to 4.00%, Mn: 0.05 to 4.00%, P:
0.15% or less, S: 0.005 to 0.035:%, the balance being Fe and unavoidable impurities, the inclusions in the steel sheet are oxide-based inclusions, sulfide-based inclusions, and composites of both. In the form of the inclusions, the inclusions form a group in which 2 to 10 inclusions having a particle size of 2 μm or more are arranged in a row, and the total number of the inclusions having a particle size of 2 μm or more is 0. 1μ
A non-oriented electrical steel sheet having excellent workability, characterized in that the number of inclusions is not less than 10%.
【請求項2】 溶鋼を真空処理にてC:0.01重量%
以下、P:0.15重量%以下、S:0.005〜0.
035重量%、溶存酸素量を0.01〜0.07重量%
とし、次いで、sol.Al:0.001〜4.00重量
%、Si:0.01〜4.50重量%とした後、Mn:
0.05〜4.00重量%とし、鋳造して鋼片とし、該
鋼片を熱間圧延および冷間圧延することを特徴とする加
工性に優れた無方向性電磁鋼板の製造方法。
2. The molten steel is subjected to a vacuum treatment to obtain C: 0.01% by weight.
Hereinafter, P: 0.15% by weight or less, S: 0.005 to 0.5%.
035% by weight, dissolved oxygen content 0.01 to 0.07% by weight
Then, after sol. Al: 0.001 to 4.00% by weight and Si: 0.01 to 4.50% by weight, Mn:
A method for producing a non-oriented electrical steel sheet excellent in workability, characterized in that the steel slab is cast into a slab, and the slab is hot-rolled and cold-rolled.
JP33949898A 1998-11-30 1998-11-30 Non-oriented silicon steel sheet excellent in workability and its production Pending JP2000160306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33949898A JP2000160306A (en) 1998-11-30 1998-11-30 Non-oriented silicon steel sheet excellent in workability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33949898A JP2000160306A (en) 1998-11-30 1998-11-30 Non-oriented silicon steel sheet excellent in workability and its production

Publications (1)

Publication Number Publication Date
JP2000160306A true JP2000160306A (en) 2000-06-13

Family

ID=18328050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33949898A Pending JP2000160306A (en) 1998-11-30 1998-11-30 Non-oriented silicon steel sheet excellent in workability and its production

Country Status (1)

Country Link
JP (1) JP2000160306A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267015A1 (en) * 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
WO2013038020A1 (en) * 2011-09-16 2013-03-21 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
JP2015061052A (en) * 2013-09-20 2015-03-30 太陽誘電株式会社 Magnetic material and electronic component using the same
CN108330397A (en) * 2018-05-10 2018-07-27 东北大学 A kind of preparation method of low-iron loss high-magnetic strength non-oriented silicon steel strip
CN108504932A (en) * 2018-05-10 2018-09-07 东北大学 A method of non-orientation silicon steel strip in razor-thin is prepared based on thin strap continuous casting
US10096414B2 (en) 2011-12-28 2018-10-09 Posco Non-oriented electrical steel sheet and method of manufacturing the same
JP2019099854A (en) * 2017-11-30 2019-06-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet
KR20190092499A (en) * 2017-01-16 2019-08-07 닛폰세이테츠 가부시키가이샤 Manufacturing method of non-oriented electrical steel sheet and non-oriented electrical steel sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267015A1 (en) * 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
WO2013038020A1 (en) * 2011-09-16 2013-03-21 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
US10096414B2 (en) 2011-12-28 2018-10-09 Posco Non-oriented electrical steel sheet and method of manufacturing the same
JP2015061052A (en) * 2013-09-20 2015-03-30 太陽誘電株式会社 Magnetic material and electronic component using the same
US11021771B2 (en) 2017-01-16 2021-06-01 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
CN110121567B (en) * 2017-01-16 2021-07-27 日本制铁株式会社 Non-oriented electromagnetic steel sheet and method for producing non-oriented electromagnetic steel sheet
KR102259136B1 (en) 2017-01-16 2021-06-01 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet
KR20190092499A (en) * 2017-01-16 2019-08-07 닛폰세이테츠 가부시키가이샤 Manufacturing method of non-oriented electrical steel sheet and non-oriented electrical steel sheet
CN110121567A (en) * 2017-01-16 2019-08-13 日本制铁株式会社 The manufacturing method of non-oriented electromagnetic steel sheet and non-oriented electromagnetic steel sheet
EP3569726A4 (en) * 2017-01-16 2020-06-03 Nippon Steel Corporation Non-oriented electromagnetic steel sheet and production method of non-oriented electromagnetic steel sheet
JP2019099854A (en) * 2017-11-30 2019-06-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet
CN108504932A (en) * 2018-05-10 2018-09-07 东北大学 A method of non-orientation silicon steel strip in razor-thin is prepared based on thin strap continuous casting
CN108330397A (en) * 2018-05-10 2018-07-27 东北大学 A kind of preparation method of low-iron loss high-magnetic strength non-oriented silicon steel strip

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
KR100956530B1 (en) Nonoriented electromagnetic steel sheet
JP6738056B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20180089500A (en) Non-oriented electric steel sheet and manufacturing method thereof
JP2012140676A (en) Non-oriented electromagnetic steel sheet and method for producing the same
JP2018204052A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2018154853A (en) Non-oriented electromagnetic steel sheet
JP2007186791A (en) High strength non-oriented electrical steel sheet and method for manufacture the same
JPWO2020137500A1 (en) Non-oriented electrical steel sheet
JP2008156737A (en) Non-oriented electrical steel sheet and its production method
JP2008240104A (en) High-strength non-oriented electromagnetic steel sheet and method for producing the same
JP2004197217A (en) Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor
JP2007051343A (en) Soft magnetic steel having excellent magnetic property in high magnetic field and excellent machinability, and soft magnetic steel component having excellent magnetic property in high magnetic field
JP2000160306A (en) Non-oriented silicon steel sheet excellent in workability and its production
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP2014177684A (en) Nonoriented electromagnetic steel sheet excellent in high frequency iron loss property
JP3852419B2 (en) Non-oriented electrical steel sheet
JP2006328461A (en) Soft magnetic steel
CN113574194B (en) Non-oriented electromagnetic steel sheet
JP2005060811A (en) High-tensile non-oriented magnetic steel sheet and its production method
JP2006328462A (en) Soft magnetic steel
EP4053302A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
JP7256361B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor
JP3823548B2 (en) Electrical steel sheet with excellent machinability and magnetic properties
JP2005344179A (en) High-strength non-oriented silicon steel sheet with excellent magnetic property and fatigue characteristic, and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726