JP5664287B2 - Method for producing high silicon steel sheet - Google Patents

Method for producing high silicon steel sheet Download PDF

Info

Publication number
JP5664287B2
JP5664287B2 JP2011017009A JP2011017009A JP5664287B2 JP 5664287 B2 JP5664287 B2 JP 5664287B2 JP 2011017009 A JP2011017009 A JP 2011017009A JP 2011017009 A JP2011017009 A JP 2011017009A JP 5664287 B2 JP5664287 B2 JP 5664287B2
Authority
JP
Japan
Prior art keywords
concentration
steel sheet
mass
steel plate
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011017009A
Other languages
Japanese (ja)
Other versions
JP2012158773A (en
Inventor
勝司 笠井
勝司 笠井
崇 土居
崇 土居
秀征 梅岡
秀征 梅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011017009A priority Critical patent/JP5664287B2/en
Publication of JP2012158773A publication Critical patent/JP2012158773A/en
Application granted granted Critical
Publication of JP5664287B2 publication Critical patent/JP5664287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、浸珪処理法による高珪素鋼板の製造方法に関する。   The present invention relates to a method for producing a high silicon steel sheet by a siliconization treatment method.

トランスやモーター等の鉄心には、鉄損が低く透磁率が高い等の優れた高周波磁気特性を有することから、高珪素鋼板が多用されている。特にSi濃度が6.5mass%では磁歪が0となり、最大透磁率のピークとなる等のより優れた高周波磁気特性を示すことが知られている。従来、このような高珪素鋼板の製造方法として、低珪素鋼を圧延により薄板とした後、鋼板表面からSiを浸透拡散させる、いわゆる浸珪処理法が知られている(例えば、特許文献1)。
一般に、鋼板の浸珪処理ではSi供給用の原料ガスとしてSiClが使用され、このSiClは鋼板と反応(SiCl+5Fe→FeSi+2FeCl)してSiが鋼板表層に浸透する。このようにして鋼板表層に浸透したSiは、SiClを含まない無酸化性ガス雰囲気中で鋼板を均熱処理することにより板厚方向に拡散される。
High-silicon steel plates are frequently used for iron cores such as transformers and motors because they have excellent high-frequency magnetic properties such as low iron loss and high magnetic permeability. In particular, it is known that when the Si concentration is 6.5 mass%, the magnetostriction is 0, and the high-frequency magnetic characteristics such as a peak of maximum permeability are exhibited. Conventionally, as a method for producing such a high silicon steel sheet, a so-called siliconization treatment method is known in which Si is permeated and diffused from the steel sheet surface after the low silicon steel is rolled into a thin sheet (for example, Patent Document 1). .
In general, SiCl 4 is used as a raw material gas for supplying Si in the siliconizing treatment of the steel sheet, and this SiCl 4 reacts with the steel sheet (SiCl 4 + 5Fe → Fe 3 Si + 2FeCl 2 ) and Si permeates the steel sheet surface layer. Thus Si penetrated into the steel sheet surface layer is diffused in the thickness direction by soaking the steel sheet in a non-oxidizing gas atmosphere containing no SiCl 4.

SiClを原料ガスとして鋼板を連続的に浸珪処理する場合、浸珪処理雰囲気中に含まれる酸素分(水分及び酸素)がSiClガスと反応してシリカが生成され、このシリカが炉内ハースロール等の鋼板に接触する部分に付着し、鋼板に押し疵を発生させるという問題がある。また、浸珪処理により製造される高珪素鋼板は、浸珪処理雰囲気中の水分や酸素によって鋼板表面や粒界が酸化され、この酸化により鋼板の加工性が著しく劣化するという問題もある。
このような浸珪処理雰囲気中に含まれる水分や酸素による問題を回避するため、素材鋼板に予め適量のCを添加しておき、このCを雰囲気中の酸素分と反応させること(すなわち、鋼板の脱炭反応を利用すること)により、浸珪反応が起こる鋼板表面付近に存在する水分及び酸素濃度を極限まで下げるという方法が考えられ、この方法を利用した高珪素鋼板の製造方法が特許文献2で提案されている。
When continuously siliciding a steel sheet using SiCl 4 as a raw material gas, the oxygen content (water and oxygen) contained in the silicidation atmosphere reacts with the SiCl 4 gas to produce silica, and this silica is generated in the furnace. There exists a problem of adhering to the part which contacts steel plates, such as a hearth roll, and generating a pushing rod in a steel plate. In addition, the high silicon steel sheet produced by the siliconization treatment has a problem that the surface and grain boundaries of the steel sheet are oxidized by moisture and oxygen in the atmosphere of the siliconization treatment, and the workability of the steel sheet is significantly deteriorated by this oxidation.
In order to avoid such problems due to moisture and oxygen contained in the siliconizing atmosphere, an appropriate amount of C is added to the raw steel plate in advance, and this C is allowed to react with the oxygen content in the atmosphere (ie, steel plate). By using this decarburization reaction), a method of reducing the moisture and oxygen concentration existing near the steel plate surface where the silicification reaction occurs to the limit is considered, and a method for producing a high silicon steel plate using this method is disclosed in Patent Literature 2 proposed.

特開昭62−227078号公報JP-A-62-227078 特開平08−209325号公報Japanese Patent Application Laid-Open No. 08-209325

しかし、特許文献2の方法のように、適量のCを添加した素材鋼板に浸珪処理を施した場合、鋼板の脱炭反応が予想どおりには進行せず、浸珪処理後の鋼板(製品)にCが高濃度に残留し、この高濃度のCが鋼板(製品)の磁気特性に悪影響を及ぼすという問題があることが判った。具体的には、浸珪処理後の鋼板のC濃度が高いと磁気時効が発生し、経時的に鉄損が劣化してしまう。特に高珪素鋼板は、高周波用途に使用されるため、経時的な磁気特性の劣化は高周波機器の破損や異常温度上昇などの弊害を発生させ、実用上大きな問題となる。   However, when the raw steel plate to which an appropriate amount of C is added as in the method of Patent Document 2, the decarburization reaction of the steel plate does not proceed as expected, and the steel plate after the siliconization treatment (product) C) remains in a high concentration, and this high concentration of C has a problem of adversely affecting the magnetic properties of the steel sheet (product). Specifically, when the C concentration of the steel plate after the siliconization treatment is high, magnetic aging occurs and the iron loss deteriorates with time. In particular, a high silicon steel sheet is used for high frequency applications, so that deterioration of magnetic characteristics over time causes problems such as breakage of high frequency equipment and abnormal temperature rise, which is a serious problem in practice.

このような高珪素鋼板の磁気時効の問題は、本質的には、特許文献2の方法を実施するかどうかに関わりなく、浸珪処理後の鋼板(製品)のC濃度が或るレベルを超えると生じる恐れがある。
したがって本発明の目的は、浸珪処理法により、磁気時効による鉄損の経時劣化を生じない高珪素鋼板を安定して製造することができる製造方法を提供することにある。
The problem of magnetic aging of such a high silicon steel sheet is essentially that the C concentration of the steel sheet (product) after siliconization exceeds a certain level regardless of whether or not the method of Patent Document 2 is performed. There is a risk of it.
Accordingly, an object of the present invention is to provide a production method capable of stably producing a high silicon steel sheet that does not cause deterioration with time of iron loss due to magnetic aging by a siliconization method.

本発明者らは、上記課題を解決するため、浸珪処理における鋼板中のCと雰囲気中の酸素分との反応(鋼板の脱炭反応)が阻害される要因とその対策について検討を重ねた結果、(i)浸珪処理時に鋼板中のS(硫黄)がCの移動を妨げ、鋼板の脱炭反応を阻害しており(すなわち、鋼板からCがうまく抜けない)、鋼板中のS濃度が高いほど脱炭反応を阻害する度合いが大きくなること、(ii)したがって、素材鋼板のS濃度とC濃度との関係を最適化することにより、浸珪処理後の鋼板のC濃度を問題ないレベルにすることができ、磁気時効による鉄損の経時劣化を生じない高珪素鋼板を安定的に製造できること、を見出した。   In order to solve the above-mentioned problems, the present inventors have repeatedly studied the factors that hinder the reaction (decarburization reaction of the steel sheet) between C in the steel sheet and the oxygen content in the atmosphere in the siliconization treatment, and countermeasures thereof. As a result, (i) S (sulfur) in the steel sheet hinders the movement of C during the silicidation treatment and inhibits the decarburization reaction of the steel sheet (that is, C does not escape well from the steel sheet). (Ii) Therefore, by optimizing the relationship between the S concentration and the C concentration of the material steel plate, there is no problem with the C concentration of the steel plate after the siliconization treatment. It has been found that a high silicon steel sheet can be stably produced without causing deterioration with time of iron loss due to magnetic aging.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
すなわち、素材鋼板を浸珪処理することにより、板厚方向の平均Si濃度が4.0〜7.0mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Si(mass%)が板厚t(mm)との関係で、2.0≦△Si/t≦40.0を満足する高珪素鋼板を製造する方法において、
素材鋼板のC濃度を浸珪処理後の鋼板の目標C濃度よりも高くしておき、浸珪処理雰囲気中に含まれる酸素分によって素材鋼板の脱炭反応を生じさせつつ、素材鋼板の浸珪処理を行うことで、目標C濃度の高珪素鋼板を製造する方法であり、
素材鋼板として、C濃度が40mass ppm超であって、C濃度[C](mass ppm)とS濃度[S](mass ppm)が下記(a)〜(c)のいずれかを満足する鋼板を用いるとともに、浸珪処理後の高珪素鋼板のC濃度を50mass ppm以下とすることを特徴とする高珪素鋼板の製造方法である。
(a)[S]≦30、[C]≦110
(b)30<[S]<100、[C]≦−0.857[S]+135.71
(c)100≦[S]、[C]≦50
The present invention has been made on the basis of such findings and has the following gist.
That is, by subjecting the material steel plate to a siliconization treatment, the average Si concentration in the plate thickness direction is 4.0 to 7.0 mass%, and the Si concentration (mass%) of the plate surface layer portion and the Si concentration of the plate thickness center portion In the method for producing a high silicon steel sheet satisfying 2.0 ≦ ΔSi / t ≦ 40.0, in which the deviation ΔSi (mass%) from (mass%) is related to the plate thickness t (mm),
The carbon concentration of the material steel plate is made higher than the target C concentration of the steel plate after the siliconization treatment, and the decarburization reaction of the material steel plate is caused by oxygen contained in the atmosphere of the siliconization treatment. It is a method of manufacturing a high silicon steel sheet with a target C concentration by performing processing,
A steel plate having a C concentration of more than 40 mass ppm and a C concentration [C] (mass ppm) and an S concentration [S] (mass ppm) satisfying any of the following (a) to (c): A method for producing a high silicon steel sheet, characterized in that the C concentration of the high silicon steel sheet after siliconization is 50 mass ppm or less .
(A) [S] ≦ 30, [C] ≦ 110
(B) 30 <[S] <100, [C] ≦ −0.857 [S] +135.71
(C) 100 ≦ [S], [C] ≦ 50

本発明の製造方法によれば、浸珪処理法により、磁気時効による鉄損の経時劣化を生じない高珪素鋼板を安定して製造することができる。   According to the manufacturing method of the present invention, a high silicon steel plate that does not cause deterioration with time of iron loss due to magnetic aging can be stably manufactured by a siliconization method.

鋼板の連続浸珪処理ラインを示す説明図Explanatory drawing showing a continuous siliconization treatment line for steel sheets 実施例1で製造された高珪素鋼板の磁気特性(鉄損の経時劣化の度合い)を、素材鋼板のC濃度とS濃度との関係で整理して示したグラフA graph showing the magnetic properties (degree of deterioration of iron loss with time) of the high-silicon steel plate manufactured in Example 1 in relation to the C concentration and S concentration of the raw steel plate. 実施例2で製造された高珪素鋼板の磁気特性(鉄損の経時劣化の度合い)を、素材鋼板のC濃度とS濃度との関係で整理して示したグラフA graph showing the magnetic characteristics (degree of deterioration of iron loss with time) of the high silicon steel plate manufactured in Example 2 in relation to the C concentration and S concentration of the raw steel plate.

本発明は、素材鋼板を浸珪処理することにより、板厚方向の平均Si濃度が4.0〜7.0mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Si(mass%)が鋼板の板厚t(mm)との関係で、2.0≦△Si/t≦40.0を満足する高珪素鋼板を製造する方法である。
ここで、製造される鋼板の板厚方向の平均Si濃度が4.0mass%未満では、高珪素鋼板としての十分な高周波磁気特性が得られず、一方、7.0mass%を超えると、脆化傾向が認められ、加工性が低下し、切板加工等の加工が困難となる場合がある。
In the present invention, by subjecting the raw steel plate to a siliconization treatment, the average Si concentration in the plate thickness direction is 4.0 to 7.0 mass%, and the Si concentration (mass%) of the plate surface layer portion and the plate thickness center portion A high silicon steel sheet satisfying 2.0 ≦ ΔSi / t ≦ 40.0 is manufactured in relation to the deviation ΔSi (mass%) from the Si concentration (mass%) and the plate thickness t (mm) of the steel sheet. Is the method.
Here, if the average Si concentration in the plate thickness direction of the steel plate to be produced is less than 4.0 mass%, sufficient high-frequency magnetic properties as a high silicon steel plate cannot be obtained, whereas if it exceeds 7.0 mass%, embrittlement occurs. A tendency is recognized, workability falls, and processing, such as a cutting board process, may become difficult.

鋼板を連続的に浸珪処理して高珪素鋼板を製造するために、通常、図1に示されるような、入側から加熱帯、浸珪処理帯、拡散均熱処理帯および冷却帯を備えた連続浸珪処理ラインが用いられる。
素材鋼板のSi濃度は4mass%未満(通常2.8〜3.8mass%程度)であり、この素材鋼板を加熱帯において処理温度まで連続的に加熱した後、浸珪処理帯でSiCl4と反応させることによりSiを鋼板表層部に浸透させ、次いで、拡散均熱処理帯でSiを板厚方向に拡散させるための熱処理を連続的に施した後、冷却帯で冷却することでコイル状の高珪素鋼板が製造される。通常、浸珪処理帯では、SiCl濃度が約5〜35mol%程度の処理ガスが供給され、鋼板は概ね露点−30℃以下、酸素濃度10ppm以下の雰囲気中で、1023〜1200℃程度の処理温度で浸珪処理される。また、拡散均熱処理帯では、SiCl4を含まない無酸化性ガス雰囲気中で700〜1250℃程度で熱処理される。浸珪処理直後の鋼板は、鋼板表層部が最大で14.5mass%のSi濃度であるのに対し、板厚中心部では素材鋼板とほぼ同じSi濃度であるという極端なSi濃度勾配を有しているが、拡散熱処理によりこのSi濃度勾配が徐々に均一な方向に変化する。
In order to produce a high silicon steel sheet by continuously siliconizing the steel sheet, it is usually equipped with a heating zone, a siliconized treatment zone, a diffusion soaking zone, and a cooling zone as shown in FIG. A continuous siliconization line is used.
The material steel sheet has a Si concentration of less than 4 mass% (usually about 2.8 to 3.8 mass%), and after this material steel sheet is continuously heated to the treatment temperature in the heating zone, it reacts with SiCl 4 in the siliconization treatment zone. Si is infiltrated into the surface layer of the steel sheet, and then a continuous heat treatment for diffusing Si in the thickness direction in the diffusion soaking zone is followed by cooling in the cooling zone to form coiled high silicon. A steel plate is produced. Usually, in the siliconized zone, a processing gas having a SiCl 4 concentration of about 5 to 35 mol% is supplied, and the steel sheet is processed at a temperature of about 1023 to 1200 ° C. in an atmosphere having a dew point of −30 ° C. or lower and an oxygen concentration of 10 ppm or lower. It is siliconized at temperature. In the diffusion soaking zone, heat treatment is performed at about 700 to 1250 ° C. in a non-oxidizing gas atmosphere containing no SiCl 4 . The steel sheet immediately after the siliconization treatment has an extreme Si concentration gradient in which the steel sheet surface layer portion has a maximum Si concentration of 14.5 mass%, whereas the center thickness of the steel plate has substantially the same Si concentration as the material steel plate. However, this Si concentration gradient gradually changes in a uniform direction by diffusion heat treatment.

上記のように拡散均熱処理帯では、浸珪処理帯での浸珪処理により鋼板表層部に浸透させたSiを板厚方向に拡散させるが、この拡散熱処理の時間により、Siの拡散の度合い、すなわち板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Si(mass%)が違ってくる。拡散熱処理によって鋼板表層部のSiを板厚方向で略均一に拡散させるには比較的長い時間を要するが、本発明が製造の対象とする2.0≦△Si/t≦40.0を満足する高珪素鋼板は、拡散熱処理時間を概ね0.1〜5.0分程度と比較的短くし、板厚方向でのSi濃度勾配を大きくした高珪素鋼板である。本発明は、このような2.0≦△Si/t≦40.0を満足する高珪素鋼板に関する知見に基づきなされたものである。   As described above, in the diffusion soaking zone, Si permeated into the steel sheet surface layer by the siliconization treatment in the siliconization zone is diffused in the thickness direction, but depending on the time of this diffusion heat treatment, the degree of diffusion of Si, That is, the deviation ΔSi (mass%) between the Si concentration (mass%) in the surface portion of the plate and the Si concentration (mass%) in the central portion of the thickness differs. Although it takes a relatively long time to diffuse Si in the surface portion of the steel sheet substantially uniformly in the thickness direction by diffusion heat treatment, the present invention satisfies 2.0 ≦ ΔSi / t ≦ 40.0, which is the object of manufacture. The high silicon steel sheet is a high silicon steel sheet having a relatively short diffusion heat treatment time of about 0.1 to 5.0 minutes and a large Si concentration gradient in the thickness direction. The present invention has been made on the basis of knowledge about such a high silicon steel sheet that satisfies 2.0 ≦ ΔSi / t ≦ 40.0.

本発明では、素材鋼板として、C濃度[C](mass ppm)とS濃度[S](mass ppm)が下記(a)〜(c)のいずれかを満足する鋼板を用いる。
(a)[S]≦30、[C]≦110
(b)30<[S]<100、[C]≦−0.857[S]+135.71
(c)100≦[S]、[C]≦50
鋼板中のS(硫黄)は、鋼板の浸珪処理時におけるCの移動を妨げることで鋼板の脱炭反応を阻害し、鋼板中のS濃度が高いほど脱炭反応を阻害する度合いが大きくなる。ここで、本発明が製造の対象とする2.0≦△Si/t≦40.0を満足する高珪素鋼板の場合には、浸珪処理後の鋼板(製品)のC濃度が50mass ppmを超えると、磁気時効による鉄損の劣化が生じる恐れがある。後述する実施例(図2、図3)の結果が示すように、素材鋼板のC濃度とS濃度を、上記(a)〜(c)のいずれかを満足する関係に最適化することにより、浸珪処理後の鋼板(製品)のC濃度が50mass ppm以下となり、磁気時効による鉄損の劣化を抑えることができる。すなわち、磁気時効による鉄損の経時劣化を生じない高珪素鋼板を製造することができる。
ここで、素材鋼板のC濃度が110mass ppmを超えると、通常の浸珪処理において、鋼板のC濃度を50mass ppm以下とすることが困難となるので、素材鋼板のC濃度は110mass ppm以下であることが好ましい。また、上述したように本発明の方法は、素材鋼板中のCの脱炭反応を利用するものであるため、素材鋼板中のC濃度10mass ppm以上、さらに望ましくは40mass ppm超であることが好ましい。
In the present invention, a steel plate having a C concentration [C] (mass ppm) and an S concentration [S] (mass ppm) satisfying any of the following (a) to (c) is used as the material steel plate.
(A) [S] ≦ 30, [C] ≦ 110
(B) 30 <[S] <100, [C] ≦ −0.857 [S] +135.71
(C) 100 ≦ [S], [C] ≦ 50
S (sulfur) in the steel sheet inhibits the decarburization reaction of the steel sheet by hindering the movement of C during the siliconizing treatment of the steel sheet, and the degree of inhibiting the decarburization reaction increases as the S concentration in the steel sheet increases. . Here, in the case of a high silicon steel plate satisfying 2.0 ≦ ΔSi / t ≦ 40.0, which is the object of manufacture of the present invention, the C concentration of the steel plate (product) after the siliconization treatment is 50 mass ppm. If exceeded, iron loss may deteriorate due to magnetic aging. As shown in the results of Examples (FIGS. 2 and 3) to be described later, by optimizing the C concentration and S concentration of the material steel plate to a relationship satisfying any of the above (a) to (c), The C concentration of the steel plate (product) after the siliconization treatment is 50 mass ppm or less, and deterioration of iron loss due to magnetic aging can be suppressed. That is, it is possible to manufacture a high silicon steel sheet that does not cause deterioration of iron loss with time due to magnetic aging.
Here, when the C concentration of the raw steel plate exceeds 110 mass ppm, it becomes difficult to set the C concentration of the steel plate to 50 mass ppm or less in a normal silicidation treatment. Therefore, the C concentration of the raw steel plate is 110 mass ppm or less. It is preferable. Moreover, since the method of the present invention utilizes the decarburization reaction of C in the raw steel plate as described above, it is preferable that the C concentration in the raw steel plate is 10 mass ppm or more, more desirably more than 40 mass ppm. .

素材鋼板の他の成分について、好ましい条件は以下のとおりである。
Mnの含有量が0.01mass%未満では固溶Sによる熱間脆性、冷間脆性の問題を生じるおそれがあり、一方、0.5mass%を超えるとMnによる固溶強化により鋼板が硬質化するおそれがあるので、Mnの含有量は0.01〜0.5mass%が好ましい。
Alの含有量が1.0mass%を超えると冷間圧延性が劣化するおそれがあるので、1.0mass%以下とすることが好ましい。
Nは磁気特性を劣化させる元素であるが、0.01mass%であれば実質的な影響は殆んどないため、0.01mass%以下とすることが好ましい。
Oは加工性と磁気特性を劣化させる元素であるが、0.01mass%以下であれば実質的な影響は殆んどないため、0.01mass%以下とすることが好ましい。
通常、素材鋼板は、熱間圧延、酸洗、冷間圧延を経て得られる薄鋼板であり、磁気特性と加工組み立ての観点から、一般に板厚0.03〜0.5mm程度のものが用いられる。
Preferred conditions for the other components of the material steel plate are as follows.
If the content of Mn is less than 0.01 mass%, there is a risk of causing problems of hot brittleness and cold brittleness due to the solid solution S. On the other hand, if it exceeds 0.5 mass%, the steel sheet is hardened due to solid solution strengthening by Mn. Since there exists a possibility, 0.01-0.5 mass% of content of Mn is preferable.
If the Al content exceeds 1.0 mass%, the cold rollability may be deteriorated, so it is preferable to set the content to 1.0 mass% or less.
N is an element that deteriorates the magnetic properties. However, if it is 0.01 mass%, there is almost no influence. Therefore, N is preferably 0.01 mass% or less.
O is an element that deteriorates workability and magnetic properties, but if it is 0.01 mass% or less, there is almost no substantial influence, so it is preferably 0.01 mass% or less.
Usually, a raw steel plate is a thin steel plate obtained through hot rolling, pickling, and cold rolling, and generally has a thickness of about 0.03 to 0.5 mm from the viewpoint of magnetic properties and work assembly. .

本発明の製造方法は、素材鋼板のC濃度を浸珪処理後の鋼板(高珪素鋼板)の目標C濃度よりも高くしておき、浸珪処理雰囲気中に含まれる酸素分によって素材鋼板の脱炭反応を生じさせつつ、素材鋼板の浸珪処理を行う方法に限定されるものではないが、この方法を用いる場合に特に有用である。この方法によれば、浸珪反応が起こる鋼板表面付近に存在する水分及び酸素濃度を極限まで下げることができ、その酸素分(水分及び酸素)がSiClガスと反応してシリカが生成されることを防止し、且つ水分や酸素によって鋼板表面や粒界が酸化されることも防止でき、これによって表面性状と加工性がともに優れた高珪素鋼板を得ることができる。 In the production method of the present invention, the C concentration of the raw steel plate is made higher than the target C concentration of the steel plate after the siliconization treatment (high silicon steel plate), and the raw steel plate is removed by the oxygen content contained in the siliconization atmosphere. Although it is not limited to the method of performing the silicidation process of a raw steel plate while causing a carbon reaction, it is particularly useful when using this method. According to this method, it is possible to reduce the moisture and oxygen concentrations existing near the steel plate surface where the silicification reaction occurs, and the oxygen content (moisture and oxygen) reacts with the SiCl 4 gas to generate silica. In addition, it is possible to prevent the steel sheet surface and grain boundaries from being oxidized by moisture and oxygen, thereby obtaining a high silicon steel sheet having both excellent surface properties and workability.

[実施例1]
図1に示すような連続浸珪処理ラインにおいて、板厚が0.10mm、Si濃度が3mass%の素材鋼板を連続浸珪処理し、板厚方向の表層Si濃度が6.5mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Siが0.5mass%(△Si/t=5.0)の高珪素鋼板を製造した。なお、素材鋼板中のC濃度(C含有量)とS濃度(S含有量)は図2に示す値であり、他の成分(Mn,Al,N,O)の含有量は、さきに述べた好ましい範囲内であった。連続浸珪処理ラインでは、浸珪処理帯において、N+SiCl雰囲気(露点:−30℃以下、酸素濃度:10ppm以下)中で1200℃で浸珪処理を行い、引き続き拡散均熱処理帯において、N雰囲気中で1230℃で拡散均熱処理を行った。
[Example 1]
In the continuous siliconization treatment line as shown in FIG. 1, a raw steel plate having a plate thickness of 0.10 mm and a Si concentration of 3 mass% is continuously siliconized, and the surface Si concentration in the plate thickness direction is 6.5 mass%. A high silicon steel sheet having a deviation ΔSi of 0.5 mass% (ΔSi / t = 5.0) between the Si concentration (mass%) of the surface layer portion of the plate and the Si concentration (mass%) of the central portion of the plate thickness was manufactured. . In addition, C density | concentration (C content) and S density | concentration (S content) in a raw steel plate are the values shown in FIG. 2, and content of other components (Mn, Al, N, O) is described above. It was within the preferable range. In the continuous siliconization treatment line, the siliconization treatment is performed at 1200 ° C. in a N 2 + SiCl 4 atmosphere (dew point: −30 ° C. or less, oxygen concentration: 10 ppm or less) in the siliconization treatment zone. Diffusion soaking was performed at 1230 ° C. in an N 2 atmosphere.

製造後の高珪素鋼板を200℃の雰囲気に100hr放置し、その前後の鉄損の増加率を測定することで鉄損の経時変化を調べ、下記の基準で評価した。なお、本実施例での鉄損は、W10/400(1T,400Hz)の条件とした。この試験結果を、素材鋼板のC濃度とS濃度との関係で整理したものを図2に示す。
○(良好):鉄損の経時増加率が8%以下
△(許容):鉄損の経時増加率が8%超10%以下
×(不良):鉄損の経時増加率が10%超
浸珪処理後の鋼板のC濃度は、“○”の結果となったものは全て50mass ppm以下となっており、また、“△”の結果となったものは全て50mass
ppm超55mass ppm以下、“×”の結果となったものは全て55mass ppm超となっていた。
The manufactured high silicon steel sheet was allowed to stand in an atmosphere of 200 ° C. for 100 hours, and the change rate of iron loss with time was measured by measuring the rate of increase in iron loss before and after that, and evaluated according to the following criteria. The iron loss in this example was W10 / 400 (1T, 400 Hz). FIG. 2 shows the results of the test arranged in relation to the C concentration and S concentration of the steel sheet.
○ (Good): Increase rate of iron loss with time is 8% or less △ (Acceptable): Increase rate of iron loss with time is more than 8% and 10% or less × (Poor): Increase rate with time of iron loss is more than 10% The C concentration of the steel sheet after the treatment is 50 mass ppm or less for all the results of “◯”, and 50 mass for all of the results of “△”.
All of the results exceeding “ppm” exceeding 55 ppm by mass were exceeding 55 mass ppm.

[実施例2]
図1に示すような連続浸珪処理ラインにおいて、板厚が0.2mm、Si濃度が3mass%の素材鋼板を連続浸珪処理し、板厚方向の表層Si濃度が6.5mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Siが2.0mass%(△Si/t=40)の高珪素鋼板を製造した。なお、素材鋼板中のC濃度(C含有量)とS濃度(S含有量)は図3に示す値であり、他の成分(Mn,Al,N,O)の含有量は、さきに述べた好ましい範囲内であった。連続浸珪処理ラインでは、浸珪処理帯において実施例1と同様のN+SiCl雰囲気中で1200℃で浸珪処理を行い、引き続き拡散均熱処理帯において、N雰囲気中で1200℃で拡散均熱処理を行った。
[Example 2]
In the continuous siliconization treatment line as shown in FIG. 1, a raw steel plate having a thickness of 0.2 mm and a Si concentration of 3 mass% is continuously siliconized, and the surface Si concentration in the thickness direction is 6.5 mass%. A high silicon steel sheet having a deviation ΔSi of 2.0 mass% (ΔSi / t = 40) between the Si concentration (mass%) of the surface layer portion of the plate and the Si concentration (mass%) of the central portion of the plate thickness was manufactured. In addition, C density | concentration (C content) and S density | concentration (S content) in a raw steel plate are the values shown in FIG. 3, and content of other components (Mn, Al, N, O) is described above. It was within the preferable range. In the continuous siliconization treatment line, the siliconization treatment is carried out at 1200 ° C. in the same N 2 + SiCl 4 atmosphere as in Example 1 in the siliconization treatment zone, followed by diffusion at 1200 ° C. in the N 2 atmosphere in the diffusion soaking zone. Soaking was performed.

製造後の高珪素鋼板を200℃の雰囲気に100hr放置し、その前後の鉄損の増加率を測定することで鉄損の経時変化を調べ、下記の基準で評価した。なお、本実施例での鉄損は、W10/400(1T,400Hz)の条件とした。この試験結果を、素材鋼板のC濃度とS濃度との関係で整理したものを図3に示す。
○(良好):鉄損の経時増加率が8%以下
△(許容):鉄損の経時増加率が8%超10%以下
×(不良):鉄損の経時増加率が10%超
浸珪処理後の鋼板のC濃度は、“○”の結果となったものは全て50mass ppm以下となっており、また、“△”の結果となったものは全て50mass
ppm超55mass ppm以下、“×”の結果となったものは全て55mass ppm超となっていた。
The manufactured high silicon steel sheet was allowed to stand in an atmosphere of 200 ° C. for 100 hours, and the change rate of iron loss with time was measured by measuring the rate of increase in iron loss before and after that, and evaluated according to the following criteria. The iron loss in this example was W10 / 400 (1T, 400 Hz). FIG. 3 shows the results of this test arranged in relation to the C concentration and S concentration of the steel sheet.
○ (Good): Increase rate of iron loss with time is 8% or less △ (Acceptable): Increase rate of iron loss with time is more than 8% and 10% or less × (Poor): Increase rate with time of iron loss is more than 10% The C concentration of the steel sheet after the treatment is 50 mass ppm or less for all the results of “◯”, and 50 mass for all of the results of “△”.
All of the results exceeding “ppm” exceeding 55 ppm by mass were exceeding 55 mass ppm.

Claims (1)

素材鋼板を浸珪処理することにより、板厚方向の平均Si濃度が4.0〜7.0mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Si(mass%)が板厚t(mm)との関係で、2.0≦△Si/t≦40.0を満足する高珪素鋼板を製造する方法において、
素材鋼板のC濃度を浸珪処理後の鋼板の目標C濃度よりも高くしておき、浸珪処理雰囲気中に含まれる酸素分によって素材鋼板の脱炭反応を生じさせつつ、素材鋼板の浸珪処理を行うことで、目標C濃度の高珪素鋼板を製造する方法であり、
素材鋼板として、C濃度が40mass ppm超であって、C濃度[C](mass ppm)とS濃度[S](mass ppm)が下記(a)〜(c)のいずれかを満足する鋼板を用いるとともに、浸珪処理後の高珪素鋼板のC濃度を50mass ppm以下とすることを特徴とする高珪素鋼板の製造方法。
(a)[S]≦30、[C]≦110
(b)30<[S]<100、[C]≦−0.857[S]+135.71
(c)100≦[S]、[C]≦50
By subjecting the material steel plate to a siliconization treatment, the average Si concentration in the plate thickness direction is 4.0 to 7.0 mass%, and the Si concentration (mass%) in the plate surface layer portion and the Si concentration in the plate thickness center portion (mass) %) In relation to the plate thickness t (mm), in a method for producing a high silicon steel sheet satisfying 2.0 ≦ ΔSi / t ≦ 40.0,
The carbon concentration of the material steel plate is made higher than the target C concentration of the steel plate after the siliconization treatment, and the decarburization reaction of the material steel plate is caused by oxygen contained in the atmosphere of the siliconization treatment. It is a method of manufacturing a high silicon steel sheet with a target C concentration by performing processing,
A steel plate having a C concentration of more than 40 mass ppm and a C concentration [C] (mass ppm) and an S concentration [S] (mass ppm) satisfying any of the following (a) to (c): A method for producing a high-silicon steel sheet, characterized by being used and the C concentration of the high-silicon steel sheet after siliconizing treatment being 50 mass ppm or less .
(A) [S] ≦ 30, [C] ≦ 110
(B) 30 <[S] <100, [C] ≦ −0.857 [S] +135.71
(C) 100 ≦ [S], [C] ≦ 50
JP2011017009A 2011-01-28 2011-01-28 Method for producing high silicon steel sheet Active JP5664287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017009A JP5664287B2 (en) 2011-01-28 2011-01-28 Method for producing high silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017009A JP5664287B2 (en) 2011-01-28 2011-01-28 Method for producing high silicon steel sheet

Publications (2)

Publication Number Publication Date
JP2012158773A JP2012158773A (en) 2012-08-23
JP5664287B2 true JP5664287B2 (en) 2015-02-04

Family

ID=46839547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017009A Active JP5664287B2 (en) 2011-01-28 2011-01-28 Method for producing high silicon steel sheet

Country Status (1)

Country Link
JP (1) JP5664287B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319522B2 (en) * 2016-03-31 2018-05-09 Jfeスチール株式会社 Electrical steel sheet and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541383B2 (en) * 1991-01-29 1996-10-09 日本鋼管株式会社 High silicon steel sheet with excellent soft magnetic properties
JP4073075B2 (en) * 1998-03-12 2008-04-09 Jfeスチール株式会社 Silicon steel sheet with low high-frequency iron loss W1 / 10k
JPH11293417A (en) * 1998-04-10 1999-10-26 Nkk Corp Silicon steel sheet excellent in magnetic aging property and low in residual magnetic flux density
JPH11293448A (en) * 1998-04-10 1999-10-26 Nkk Corp Production of silicon steel sheet using siliconizing method
JPH11286753A (en) * 1998-04-02 1999-10-19 Nkk Corp Silicon steel sheet stable and low in residual magnetic flux density
JPH11293415A (en) * 1998-04-10 1999-10-26 Nkk Corp Iron core low in residual magnetic flux density and excellent in workability and high frequency characteristic
JP5130993B2 (en) * 2008-03-28 2013-01-30 Jfeスチール株式会社 High frequency electrical steel sheet

Also Published As

Publication number Publication date
JP2012158773A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
US10026534B2 (en) Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
RU2537628C1 (en) Production of texture sheets from electrical steel
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2003096520A (en) Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP2019151935A (en) Hot rolled steel sheet for oriented electromagnetic steel sheet and manufacturing method therefor
JP5949813B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015175036A (en) Manufacturing method of oriented electromagnetic steel sheet
JP2009256713A (en) Method for manufacturing grain-oriented electrical steel sheet
JP5664286B2 (en) Method for producing high silicon steel sheet
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP5664287B2 (en) Method for producing high silicon steel sheet
JP2009197299A (en) Method for producing high silicon steel sheet
JP6209999B2 (en) Method for producing grain-oriented electrical steel sheet
JP3275712B2 (en) High silicon steel sheet excellent in workability and method for producing the same
JP2005240185A (en) High-silicon steel sheet excellent in high-frequency magnetic property and its production method
JP2010000524A (en) Method for manufacturing of cr-containing steel excellent in scale releasability
JP6209998B2 (en) Method for producing grain-oriented electrical steel sheet
JP6836318B2 (en) Directional electromagnetic steel sheet and its manufacturing method and heat-rolled sheet for grain-oriented electrical steel sheet and its manufacturing method
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3265946B2 (en) Method for producing high silicon steel sheet with excellent workability
KR100721819B1 (en) Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction
JP4304728B2 (en) High silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5664287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250