JPH11286753A - Silicon steel sheet stable and low in residual magnetic flux density - Google Patents

Silicon steel sheet stable and low in residual magnetic flux density

Info

Publication number
JPH11286753A
JPH11286753A JP10090230A JP9023098A JPH11286753A JP H11286753 A JPH11286753 A JP H11286753A JP 10090230 A JP10090230 A JP 10090230A JP 9023098 A JP9023098 A JP 9023098A JP H11286753 A JPH11286753 A JP H11286753A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
residual magnetic
concentration
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10090230A
Other languages
Japanese (ja)
Inventor
芳一 ▲高▼田
Yoshiichi Takada
Misao Namikawa
操 浪川
Hironori Ninomiya
弘憲 二宮
Katsuji Kasai
勝司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10090230A priority Critical patent/JPH11286753A/en
Publication of JPH11286753A publication Critical patent/JPH11286753A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicon steel sheet capable of obtaining stable, low residual magnetic flux density. SOLUTION: This silicon steel sheet has a stable and low residual magnetic flux density and has a compsn. contg., by weight, 0.001 to 0.02% C, 0.05 to 0.5% Mn, 0.01 to 0.01% P, 0.001 to 0.02% S, 0.001 to 0.06% sol.Al, 0.0001 to 0.01% N and Si by <=7% on the average, and in the concn. gradient of Si in the sheet thickness direction, the Si concn. in the surface layer is higher than the Si concn. in the sheet center part, the difference between the maximum and the minimum in the Si concn. is regulated to <=0.5 wt.%, and the average grain size is regulated to >=50 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏磁による突入電
流が問題となるトランス、リアクトル、変成器(CT)
やモータなどの鉄心として用いられる残留磁束密度の低
い珪素鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transformer, a reactor, and a transformer (CT) in which an inrush current due to magnetic bias becomes a problem.
The present invention relates to a silicon steel sheet having a low residual magnetic flux density used as an iron core of a motor or a motor.

【0002】[0002]

【従来の技術】トランス、モータ等の鉄心に使用される
珪素鋼板は磁束密度を高め、鉄損を低下させる方向で研
究が行われ、角形比の大きい材料が開発されてきた。そ
の結果、残留磁束密度が大きくなり、トランス等の機器
とした場合、偏磁によりさまざまな問題が発生してい
る。本発明者らは、偏磁の原因である残留磁束密度を低
下させるには板厚方向にSiの濃度勾配を形成すること
が有効なことを見出し、特開平9-184051号公報に開示し
た。本発明者らは、特開平9-184051号公報に開示された
材料について、更に鋭意研究を行った結果、低い残留磁
束密度を安定して得るためには、Siの濃度勾配を規定
するだけでは必ずしも十分ではないことを見出した。
2. Description of the Related Art Research has been conducted on silicon steel sheets used for iron cores of transformers, motors and the like in order to increase magnetic flux density and reduce iron loss, and materials having a large squareness ratio have been developed. As a result, the residual magnetic flux density increases, and in the case of a device such as a transformer, various problems occur due to the magnetic polarization. The present inventors have found that it is effective to form a Si concentration gradient in the thickness direction to reduce the residual magnetic flux density, which is a cause of magnetic bias, and disclosed it in Japanese Patent Application Laid-Open No. 9-184051. The present inventors have conducted further studies on the material disclosed in Japanese Patent Application Laid-Open No. 9-184051, and as a result, in order to stably obtain a low residual magnetic flux density, it is only necessary to define the Si concentration gradient. I found that it was not always enough.

【0003】なお、板厚方向にSiの濃度勾配を形成す
ることは特開昭62-227033 〜227036号公報、特開平4-24
6157号公報に開示されている。しかし、その目的は浸珪
法(CVD法)で製造する6.5%珪素鋼板の生産効率
の向上、鉄損の低減そして加工性の向上である。本発明
の対象とする低残留磁束密度特性については、全く触れ
られていない。
The formation of a Si concentration gradient in the thickness direction is disclosed in JP-A-62-227033-227036 and JP-A-4-24.
No. 6,157,157. However, its purpose is to improve the production efficiency of 6.5% silicon steel sheet manufactured by the siliconizing method (CVD method), reduce iron loss and improve workability. No mention is made of the low residual magnetic flux density characteristics targeted by the present invention.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたもので、その目的とするところは、従来
技術の問題点を解決し、安定して低残留磁束密度が得ら
れる珪素鋼板を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to solve the problems of the prior art and to obtain silicon having a low residual magnetic flux density stably. It is to provide a steel plate.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、 (1) 0.001wt%≦C≦0.02wt%、0.
05wt%≦Mn≦0.5wt%、0.001wt%≦
P≦0.01wt%、0.001wt%≦S≦0.02
wt%、0.001wt%≦sol.Al≦0.06wt%、
0.0001wt%≦N≦0.01wt%であり、Si
を平均7wt%以下含有する珪素鋼板であって、板厚方
向にSiの濃度勾配を有し、表層のSi濃度が板中心部
のSi濃度より高く、Si濃度の最大と最小の差が0.
5wt%以上であり平均結晶粒径が50μm以上である
ことを特徴とする残留磁束密度が安定し、低い珪素鋼
板。 (2) Si濃度の最大と最小の差が0.7wt%以上
であることを特徴とする(1)に記載の残留磁束密度が
安定し、低い珪素鋼板である。
That is, the present invention provides: (1) 0.001 wt% ≦ C ≦ 0.02 wt%;
05wt% ≦ Mn ≦ 0.5wt%, 0.001wt% ≦
P ≦ 0.01 wt%, 0.001 wt% ≦ S ≦ 0.02
wt%, 0.001wt% ≦ sol.Al ≦ 0.06wt%,
0.0001 wt% ≦ N ≦ 0.01 wt%, and Si
Steel sheet containing on average 7 wt% or less, having a Si concentration gradient in the thickness direction, the Si concentration in the surface layer being higher than the Si concentration in the center of the plate, and the difference between the maximum and the minimum of the Si concentration being 0.1%.
A silicon steel sheet having a stable and low residual magnetic flux density, characterized by being at least 5 wt% and having an average crystal grain size of at least 50 μm. (2) The silicon steel sheet according to (1), wherein the difference between the maximum and minimum of the Si concentration is 0.7 wt% or more, and the residual magnetic flux density is stable and low.

【0006】[0006]

【発明の実施の形態】以下本発明を詳細に説明する。本
発明者らは、先に述べたように、所定のSi濃度分布を
形成しても残留磁束密度が十分に低下しない原因を調査
した結果、平均結晶粒径が小さい場合に保持力が大きく
なり、残留磁束密度が増大することを見出し、本発明を
完成するに至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. As described above, the present inventors have investigated the cause of the fact that the residual magnetic flux density does not sufficiently decrease even if a predetermined Si concentration distribution is formed. As a result, when the average crystal grain size is small, the coercive force increases. The inventors have found that the residual magnetic flux density increases, and have completed the present invention.

【0007】そこで、本発明の組成の限定理由、濃度勾
配の限定理由、濃度差の限定理由、平均結晶粒径の限定
理由を説明する。 0.001wt%≦C≦0.02wt%、 Cは多量に含有されると磁気時効を引き起こし、また炭
化物の析出により粒径を小さくするため上限を0.02
wt%とする。下限は経済的に除去できる限度として
0.001wt%とする。
The reasons for limiting the composition of the present invention, the reasons for limiting the concentration gradient, the reasons for limiting the concentration difference, and the reasons for limiting the average crystal grain size will now be described. 0.001 wt% ≦ C ≦ 0.02 wt%, when C is contained in a large amount, magnetic aging is caused, and the upper limit is set to 0.02 to reduce the particle size due to precipitation of carbide.
wt%. The lower limit is 0.001 wt% as a limit that can be economically removed.

【0008】0.05wt%≦Mn≦0.5wt%、 Mnは多量に含有されると鋼板を脆くし、またMnSの
析出により粒径を小さくするため0.5wt%を上限と
する。ただし、低過ぎると、熱延工程で破断や表面キズ
を誘発するため0.05wt%を下限とする。
0.05 wt% ≦ Mn ≦ 0.5 wt%, if Mn is contained in a large amount, the upper limit is 0.5 wt% to make the steel sheet brittle and to reduce the grain size by precipitation of MnS. However, if it is too low, the lower limit is set to 0.05 wt% because breakage and surface flaws are induced in the hot rolling process.

【0009】 0.001wt%≦P≦0.01wt%、 Pは磁気特性から見ると好ましい元素であるが、多量に
含有されると鋼板の加工性を劣化させるため0.01w
t%を上限とする。下限は経済的に除去できる限度とし
て0.001wt%とする。
[0009] 0.001 wt% ≦ P ≦ 0.01 wt%, P is a preferable element from the viewpoint of magnetic properties. However, when P is contained in a large amount, the workability of the steel sheet is deteriorated, so that 0.01 w
t% is the upper limit. The lower limit is 0.001 wt% as a limit that can be economically removed.

【0010】 0.001wt%≦S≦0.02wt%、 Sは加工性を劣化させ、またMnSの析出により粒径を
小さくするため上限を0.02wt%とする必要があ
り、経済的に除去できる限度として0.001wt%を
下限とする。
[0010] 0.001 wt% ≦ S ≦ 0.02 wt%, S deteriorates workability, and it is necessary to set the upper limit to 0.02 wt% in order to reduce the particle size by precipitation of MnS, and it is economically removed. As a possible limit, the lower limit is 0.001 wt%.

【0011】 0.001wt%≦sol.Al≦0.06wt%、 sol.Alは同じく加工性を害し、またAlNの析出により
粒径を小さくするため上限を0.06wt%とする。ま
た、脱酸剤としての必要性から下限を0.001wt%
とする。
[0011] 0.001wt% ≦ sol.Al ≦ 0.06wt%, sol.Al also impairs workability, and the upper limit is made 0.06wt% in order to reduce the particle size by precipitation of AlN. Further, the lower limit is 0.001 wt% from the necessity as a deoxidizing agent.
And

【0012】 0.0001wt%≦N≦0.01wt% Nは多量に含有されると窒化物を形成して粒径を小さく
するため上限を0.01wt%とする必要がある。ま
た、製鋼技術の限界から0.0001wt%以下とする
ことが不可能なため、これを下限とする。
0.0001 wt% ≦ N ≦ 0.01 wt% When N is contained in a large amount, the upper limit needs to be 0.01 wt% in order to form a nitride and reduce the particle diameter. Further, it is impossible to set the content to 0.0001 wt% or less due to the limit of steelmaking technology, so this is set as the lower limit.

【0013】平均Si濃度:7wt%以下、 平均値Si濃度は7wt%を超えると、加工性が急激に
劣化するため、これを上限とする。
Average Si concentration: 7 wt% or less. If the average Si concentration exceeds 7 wt%, the workability is rapidly deteriorated.

【0014】Si濃度の最高と最小の差:0.5wt%
以上 Si濃度の最高と最小の差は低残留磁束密度特性を確保
するために必要であり、残留磁束密度を約0.5T以下
とするにはSi濃度の最大と最小の差を0.5wt%以
上、好ましくは0.7wt%以上とする。
Difference between maximum and minimum Si concentration: 0.5 wt%
The difference between the maximum and the minimum of the Si concentration is necessary to secure low residual magnetic flux density characteristics. To reduce the residual magnetic flux density to about 0.5 T or less, the difference between the maximum and the minimum of the Si concentration is 0.5 wt%. Or more, preferably 0.7 wt% or more.

【0015】なお、炭化物を形成するTi、Nb、V、
Mo、Cr等はできるだけ低いことが望ましい。 平均結晶粒径:50μm 以上 残留磁束密度を安定して0.5T以下とするために平均
結晶粒径を50μm 以上とする。平均結晶粒径が50μ
m未満では安定して0.5T以下とすることができな
い。
Incidentally, Ti, Nb, V, which form carbides,
It is desirable that Mo, Cr, etc. be as low as possible. Average crystal grain size: 50 μm or more In order to stably maintain the residual magnetic flux density at 0.5 T or less, the average crystal grain size is set to 50 μm or more. Average grain size is 50μ
If it is less than m, it cannot be stabilized to 0.5T or less.

【0016】本発明者らは、平均結晶粒径と残留磁束密
度の関係を調査した。図1は、平均Si濃度が4.0w
t%でSi濃度差が2.5wt%の鋼板の粒径と残留磁
束密度との関係を示す。粒径が50μm以下の場合、残
留磁束密度の値が大きくばらつき、充分な低残留磁束密
度化が達成できないことが分かる。
The present inventors have investigated the relationship between the average crystal grain size and the residual magnetic flux density. FIG. 1 shows that the average Si concentration is 4.0 w
4 shows the relationship between the grain size and the residual magnetic flux density of a steel sheet having a Si concentration difference of 2.5 wt% at t%. When the particle size is 50 μm or less, the value of the residual magnetic flux density varies greatly, and it can be seen that a sufficiently low residual magnetic flux density cannot be achieved.

【0017】平均結晶粒径は、熱処理温度、時間、鋼中
の析出物等により変化するので、本発明では、50μm
以上となるようにこれら製造条件を調整する。これらの
製造条件の調整は、当業者であれば容易に実施できる。
The average crystal grain size varies depending on the heat treatment temperature, time, precipitates in steel, and the like.
These manufacturing conditions are adjusted so as to be as described above. Those skilled in the art can easily adjust these manufacturing conditions.

【0018】本発明のSiの濃度勾配を持った材料は化
学気相蒸着(CVD、浸珪処理)法、物理気相蒸着(P
VD)法、クラッド技術、メッキ技術など種々の方法で
製造することが可能である。ここではCVD法での製造
方法の1例を説明する。まず、例えば3wt%珪素鋼の
冷間圧延コイルを通常の鋼板製造プロセスで製造する。
このコイルをCVD処理してSi濃度勾配を有する鋼板
とする。すなわち、非酸化性雰囲気中で1100℃以上
に加熱してSiCl4 ガスと反応させ表面に高濃度のS
i層を形成する。引続き拡散処理を行い、Siを鋼板内
部に必要量拡散させ目的とする平均Si量と濃度勾配を
有する本発明の鋼板を製造する。CVD、あるいは拡散
処理温度と時間は必要なSi濃度分布と平均結晶粒径が
50μm以上となる条件を選択する。
The material having a concentration gradient of Si of the present invention is obtained by chemical vapor deposition (CVD, siliconizing), physical vapor deposition (P).
It can be manufactured by various methods such as a VD) method, a cladding technique, and a plating technique. Here, one example of the manufacturing method by the CVD method will be described. First, a cold rolled coil of, for example, 3 wt% silicon steel is manufactured by a normal steel plate manufacturing process.
The coil is subjected to a CVD process to obtain a steel sheet having a Si concentration gradient. That is, it is heated to 1100 ° C. or more in a non-oxidizing atmosphere to react with the SiCl 4 gas and to form a high concentration S
An i-layer is formed. Subsequently, a diffusion treatment is performed to diffuse a required amount of Si into the inside of the steel sheet to produce a steel sheet of the present invention having a target average Si amount and a concentration gradient. The temperature or time of the CVD or diffusion treatment is selected so that the necessary Si concentration distribution and the average crystal grain size become 50 μm or more.

【0019】低残留磁束密度を実現するSiの濃度勾配
の態様としては幾つかのものが可能である。その代表と
して板厚断面のSi濃度分布の模式図を図2に示す。こ
れらはいずれも製造条件を制御することにより、所望の
ものを製造することができる。また、一般的にSi濃度
分布は板厚中心に対し対称の分布となるが、対称でなく
てもよい。これらの分布を持ち、かつSi濃度の最高と
最低の差が0.5wt%以上の時に低残留磁束密度が得
られる。
There are several possible embodiments of the concentration gradient of Si for realizing a low residual magnetic flux density. As a typical example, FIG. 2 shows a schematic diagram of the Si concentration distribution in the cross section of the plate thickness. Any of these can be manufactured as desired by controlling the manufacturing conditions. In general, the Si concentration distribution is symmetrical with respect to the center of the plate thickness, but need not be symmetrical. A low residual magnetic flux density can be obtained when these distributions are present and the difference between the highest and lowest Si concentrations is 0.5 wt% or more.

【0020】なお、本発明で平均Siとは全板厚に対す
るSi濃度の平均値を意味し、製品厚さのまま化学分析
すれば得られる値である。Si濃度の最高と最低は、全
板厚をEPMA分析して得られるSi濃度プロファイル
から決定される値である。また、元素濃度は製品での値
であり、残留磁束密度は直流で1.2T励磁後の値であ
る。
In the present invention, the average Si means the average value of the Si concentration with respect to the total thickness, and is a value obtained by performing chemical analysis with the product thickness. The highest and lowest Si concentrations are values determined from a Si concentration profile obtained by EPMA analysis of the entire plate thickness. The element concentration is a value in a product, and the residual magnetic flux density is a value after a DC excitation of 1.2 T.

【0021】[0021]

【実施例】表1に示す組成(Si以外は製品となった時
点での組成。SiはCVD処理前の組成)の板厚0.0
5〜0.5mmの鋼板を通常の鉄鋼製造プロセスで製造
した。これをCVD処理して種々の平均結晶粒径、Si
平均濃度および濃度分布を持つ鋼板を製造した。各条件
の鋼板は複数製造し各条件における最大の残留磁束密度
を表2に示す。これらの結果から本発明鋼板がが安定し
て低残留磁束密度特性を有することが分かる。
EXAMPLE The thickness of the composition shown in Table 1 (except for Si, the composition at the time of becoming a product; Si is the composition before the CVD process) is 0.0.
Steel sheets of 5-0.5 mm were manufactured by the usual steel making process. This is subjected to CVD treatment to obtain various average crystal grain sizes, Si
Steel sheets with average concentration and concentration distribution were produced. A plurality of steel sheets under each condition were manufactured, and the maximum residual magnetic flux density under each condition is shown in Table 2. From these results, it is understood that the steel sheet of the present invention has stable and low residual magnetic flux density characteristics.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明によれば、Siの濃度勾配ととも
に平均結晶粒径を規定したので、所望の低残留磁束密度
の珪素鋼板を安定して得ることができる顕著な効果を発
揮する。
According to the present invention, since the average crystal grain size is determined together with the Si concentration gradient, a remarkable effect of stably obtaining a silicon steel sheet having a desired low residual magnetic flux density is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平均Si濃度が4.0wt%で、Si濃度差が2.5wt%
の鋼板の平均結晶粒径と残留磁束密度との関係を示す
図。
Fig. 1 Average Si concentration is 4.0wt%, Si concentration difference is 2.5wt%
The figure which shows the relationship between the average crystal grain size of the steel plate of FIG.

【図2】(a)〜(f)は、それぞれ板厚断面のSi濃
度分布の模式図。
FIGS. 2A to 2F are schematic diagrams of Si concentration distribution in a cross section of a plate thickness.

フロントページの続き (72)発明者 笠井 勝司 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Continuation of the front page (72) Inventor Katsushi Kasai 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.001wt%≦C≦0.02wt
%、0.05wt%≦Mn≦0.5wt%、0.001
wt%≦P≦0.01wt%、0.001wt%≦S≦
0.02wt%、0.001wt%≦sol.Al≦0.06
wt%、0.0001wt%≦N≦0.01wt%で、
Siを平均7wt%以下含有する珪素鋼板であって、板
厚方向にSiの濃度勾配を有し、表層のSi濃度が板中
心部のSi濃度より高く、Si濃度の最大と最小の差が
0.5wt%以上であり、かつ平均結晶粒径が50μm
以上であることを特徴とする残留磁束密度が安定し、低
い珪素鋼板。
1. 0.001 wt% ≦ C ≦ 0.02 wt
%, 0.05 wt% ≦ Mn ≦ 0.5 wt%, 0.001
wt% ≦ P ≦ 0.01wt%, 0.001wt% ≦ S ≦
0.02 wt%, 0.001 wt% ≦ sol.Al ≦ 0.06
wt%, 0.0001wt% ≦ N ≦ 0.01wt%,
A silicon steel sheet containing 7 wt% or less of Si on average, having a Si concentration gradient in the thickness direction, the Si concentration in the surface layer being higher than the Si concentration in the center of the plate, and the difference between the maximum and the minimum of the Si concentration being 0. 0.5 wt% or more and the average crystal grain size is 50 μm
A silicon steel sheet having a stable and low residual magnetic flux density.
【請求項2】 Si濃度の最大と最小の差が0.7wt
%以上であることを特徴とする請求項1に記載の残留磁
束密度が安定し、低い珪素鋼板。
2. The difference between the maximum and minimum Si concentration is 0.7 wt.
%, Wherein the residual magnetic flux density is stable and low according to claim 1.
JP10090230A 1998-04-02 1998-04-02 Silicon steel sheet stable and low in residual magnetic flux density Pending JPH11286753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10090230A JPH11286753A (en) 1998-04-02 1998-04-02 Silicon steel sheet stable and low in residual magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10090230A JPH11286753A (en) 1998-04-02 1998-04-02 Silicon steel sheet stable and low in residual magnetic flux density

Publications (1)

Publication Number Publication Date
JPH11286753A true JPH11286753A (en) 1999-10-19

Family

ID=13992697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10090230A Pending JPH11286753A (en) 1998-04-02 1998-04-02 Silicon steel sheet stable and low in residual magnetic flux density

Country Status (1)

Country Link
JP (1) JPH11286753A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235529A (en) * 2008-03-28 2009-10-15 Jfe Steel Corp Electromagnetic steel sheet for high frequency
JP2012158772A (en) * 2011-01-28 2012-08-23 Jfe Steel Corp Method of manufacturing high-silicon steel sheet
JP2012158773A (en) * 2011-01-28 2012-08-23 Jfe Steel Corp Method of manufacturing high-silicon steel sheet
CN105679523A (en) * 2016-03-28 2016-06-15 安徽迪维乐普非晶器材有限公司 Manufacturing process of iron core
KR20180120717A (en) * 2016-03-31 2018-11-06 제이에프이 스틸 가부시키가이샤 ELECTRIC STEEL PLATES

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235529A (en) * 2008-03-28 2009-10-15 Jfe Steel Corp Electromagnetic steel sheet for high frequency
JP2012158772A (en) * 2011-01-28 2012-08-23 Jfe Steel Corp Method of manufacturing high-silicon steel sheet
JP2012158773A (en) * 2011-01-28 2012-08-23 Jfe Steel Corp Method of manufacturing high-silicon steel sheet
CN105679523A (en) * 2016-03-28 2016-06-15 安徽迪维乐普非晶器材有限公司 Manufacturing process of iron core
KR20180120717A (en) * 2016-03-31 2018-11-06 제이에프이 스틸 가부시키가이샤 ELECTRIC STEEL PLATES
CN108884535A (en) * 2016-03-31 2018-11-23 杰富意钢铁株式会社 Electromagnetic steel plate and its manufacturing method
EP3438314A4 (en) * 2016-03-31 2019-02-20 JFE Steel Corporation Electrical steel sheet and production method therefor
CN108884535B (en) * 2016-03-31 2020-08-18 杰富意钢铁株式会社 Electromagnetic steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
KR101445467B1 (en) Process for producing grain-oriented magnetic steel sheet
KR102129846B1 (en) Electronic steel sheet and its manufacturing method
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
JPH11286753A (en) Silicon steel sheet stable and low in residual magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR100332251B1 (en) Manufacturing method of unidirectional silicon steel sheet
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JPH0711026B2 (en) Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JP3890790B2 (en) High silicon steel sheet
JPH079040B2 (en) Manufacturing method of good electromagnetic thick plate with good machinability and uniform magnetic properties in the plate thickness direction
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JPH0776736A (en) Production of grain-oriented silicon steel sheet extremely excellent in glass film and magnetic characteristic
JP4192403B2 (en) Electrical steel sheet used under DC bias
JP3460569B2 (en) Silicon steel sheet with low residual magnetic flux density
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
JPH0565536A (en) Manufacture of high silicon steel sheet having high permeability
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JP2001192732A (en) Cold rolling method for obtaining grain oriented silicon steel sheet excellent in magnetic property
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP2779696B2 (en) Manufacturing method of grain-oriented high silicon steel sheet
JPH11293421A (en) High silicon steel sheet having small surface roughness and its production
WO1986002105A1 (en) Process for producing thin magnetic steel plate having high permeability