JP2012158772A - Method of manufacturing high-silicon steel sheet - Google Patents
Method of manufacturing high-silicon steel sheet Download PDFInfo
- Publication number
- JP2012158772A JP2012158772A JP2011016980A JP2011016980A JP2012158772A JP 2012158772 A JP2012158772 A JP 2012158772A JP 2011016980 A JP2011016980 A JP 2011016980A JP 2011016980 A JP2011016980 A JP 2011016980A JP 2012158772 A JP2012158772 A JP 2012158772A
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- steel sheet
- mass
- silicon steel
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 87
- 239000010959 steel Substances 0.000 claims abstract description 87
- 239000002344 surface layer Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 48
- 229910052742 iron Inorganic materials 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 15
- 230000006866 deterioration Effects 0.000 abstract description 10
- 230000032683 aging Effects 0.000 abstract description 9
- 238000005475 siliconizing Methods 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 239000012298 atmosphere Substances 0.000 description 13
- 229910003902 SiCl 4 Inorganic materials 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 238000002791 soaking Methods 0.000 description 8
- 238000005261 decarburization Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、浸珪処理法による高珪素鋼板の製造方法に関する。 The present invention relates to a method for producing a high silicon steel sheet by a siliconization treatment method.
トランスやモーター等の鉄心には、鉄損が低く透磁率が高い等の優れた高周波磁気特性を有することから、高珪素鋼板が多用されている。特にSi濃度が6.5mass%では磁歪が0となり、最大透磁率のピークとなる等のより優れた高周波磁気特性を示すことが知られている。従来、このような高珪素鋼板の製造方法として、低珪素鋼を圧延により薄板とした後、鋼板表面からSiを浸透拡散させる、いわゆる浸珪処理法が知られている(例えば、特許文献1)。
一般に、鋼板の浸珪処理ではSi供給用の原料ガスとしてSiCl4が使用され、このSiCl4は鋼板と反応(SiCl4+5Fe→Fe3Si+2FeCl2)してSiが鋼板表層に浸透する。このようにして鋼板表層に浸透したSiは、SiCl4を含まない無酸化性ガス雰囲気中で鋼板を均熱処理することにより板厚方向に拡散される。
High-silicon steel plates are frequently used for iron cores such as transformers and motors because they have excellent high-frequency magnetic properties such as low iron loss and high magnetic permeability. In particular, it is known that when the Si concentration is 6.5 mass%, the magnetostriction is 0, and the high-frequency magnetic characteristics such as a peak of maximum permeability are exhibited. Conventionally, as a method for producing such a high silicon steel sheet, a so-called siliconization treatment method is known in which Si is permeated and diffused from the steel sheet surface after the low silicon steel is rolled into a thin sheet (for example, Patent Document 1). .
In general, SiCl 4 is used as a raw material gas for supplying Si in the siliconizing treatment of the steel sheet, and this SiCl 4 reacts with the steel sheet (SiCl 4 + 5Fe → Fe 3 Si + 2FeCl 2 ) and Si permeates the steel sheet surface layer. Thus Si penetrated into the steel sheet surface layer is diffused in the thickness direction by soaking the steel sheet in a non-oxidizing gas atmosphere containing no SiCl 4.
SiCl4を原料ガスとして鋼板を連続的に浸珪処理する場合、浸珪処理雰囲気中に含まれる酸素分(水分及び酸素)がSiCl4ガスと反応してシリカが生成され、このシリカが炉内ハースロール等の鋼板に接触する部分に付着し、鋼板に押し疵を発生させるという問題がある。また、浸珪処理により製造される高珪素鋼板は、浸珪処理雰囲気中の水分や酸素によって鋼板表面や粒界が酸化され、この酸化により鋼板の加工性が著しく劣化するという問題もある。
このような浸珪処理雰囲気中に含まれる水分や酸素による問題を回避するため、素材鋼板に予め適量のCを添加しておき、このCを雰囲気中の酸素分と反応させること(すなわち、鋼板の脱炭反応を利用すること)により、浸珪反応が起こる鋼板表面付近に存在する水分及び酸素濃度を極限まで下げるという方法が考えられ、この方法を利用した高珪素鋼板の製造方法が特許文献2で提案されている。
When continuously siliciding a steel sheet using SiCl 4 as a raw material gas, the oxygen content (water and oxygen) contained in the silicidation atmosphere reacts with the SiCl 4 gas to produce silica, and this silica is generated in the furnace. There exists a problem of adhering to the part which contacts steel plates, such as a hearth roll, and generating a pushing rod in a steel plate. In addition, the high silicon steel sheet produced by the siliconization treatment has a problem that the surface and grain boundaries of the steel sheet are oxidized by moisture and oxygen in the atmosphere of the siliconization treatment, and the workability of the steel sheet is significantly deteriorated by this oxidation.
In order to avoid such problems due to moisture and oxygen contained in the siliconizing atmosphere, an appropriate amount of C is added to the raw steel plate in advance, and this C is allowed to react with the oxygen content in the atmosphere (ie, steel plate). By using this decarburization reaction), a method of reducing the moisture and oxygen concentration existing near the steel plate surface where the silicification reaction occurs to the limit is considered, and a method for producing a high silicon steel plate using this method is disclosed in Patent Literature 2 proposed.
しかし、特許文献2の方法のように、適量のCを添加した素材鋼板に浸珪処理を施した場合、鋼板の脱炭反応が予想どおりには進行せず、浸珪処理後の鋼板(製品)にCが高濃度に残留し、この高濃度のCが鋼板(製品)の磁気特性に悪影響を及ぼすという問題があることが判った。具体的には、浸珪処理後の鋼板のC濃度が高いと磁気時効が発生し、経時的に鉄損が劣化してしまう。特に高珪素鋼板は、高周波用途に使用されるため、経時的な磁気特性の劣化は高周波機器の破損や異常温度上昇などの弊害を発生させ、実用上大きな問題となる。 However, when the raw steel plate to which an appropriate amount of C is added as in the method of Patent Document 2, the decarburization reaction of the steel plate does not proceed as expected, and the steel plate after the siliconization treatment (product) C) remains in a high concentration, and this high concentration of C has a problem of adversely affecting the magnetic properties of the steel sheet (product). Specifically, when the C concentration of the steel plate after the siliconization treatment is high, magnetic aging occurs and the iron loss deteriorates with time. In particular, a high silicon steel sheet is used for high frequency applications, so that deterioration of magnetic characteristics over time causes problems such as breakage of high frequency equipment and abnormal temperature rise, which is a serious problem in practice.
このような高珪素鋼板の磁気時効の問題は、本質的には、特許文献2の方法を実施するかどうかに関わりなく、浸珪処理後の鋼板(製品)のC濃度が或るレベルを超えると生じる恐れがある。
したがって本発明の目的は、浸珪処理法により、磁気時効による鉄損の経時劣化を生じない高珪素鋼板を安定して製造することができる製造方法を提供することにある。
The problem of magnetic aging of such a high silicon steel sheet is essentially that the C concentration of the steel sheet (product) after siliconization exceeds a certain level regardless of whether or not the method of Patent Document 2 is performed. There is a risk that it will occur.
Accordingly, an object of the present invention is to provide a production method capable of stably producing a high silicon steel sheet that does not cause deterioration with time of iron loss due to magnetic aging by a siliconization method.
本発明者らは、上記課題を解決するため、浸珪処理における鋼板中のCと雰囲気中の酸素分との反応(鋼板の脱炭反応)が阻害される要因とその対策について検討を重ねた結果、(i)浸珪処理時に鋼板中のS(硫黄)がCの移動を妨げ、鋼板の脱炭反応を阻害しており(すなわち、鋼板からCがうまく抜けない)、鋼板中のS濃度が高いほど脱炭反応を阻害する度合いが大きくなること、(ii)したがって、素材鋼板のS濃度とC濃度との関係を最適化することにより、浸珪処理後の鋼板のC濃度を問題ないレベルにすることができ、磁気時効による鉄損の経時劣化を生じない高珪素鋼板を安定的に製造できること、を見出した。 In order to solve the above-mentioned problems, the present inventors have repeatedly studied the factors that hinder the reaction (decarburization reaction of the steel sheet) between C in the steel sheet and the oxygen content in the atmosphere in the siliconization treatment, and countermeasures thereof. As a result, (i) S (sulfur) in the steel sheet hinders the movement of C during silicidation treatment and inhibits the decarburization reaction of the steel sheet (that is, C does not escape well from the steel sheet), and the S concentration in the steel sheet (Ii) Therefore, by optimizing the relationship between the S concentration and the C concentration of the material steel plate, there is no problem with the C concentration of the steel plate after the siliconization treatment. It has been found that a high silicon steel sheet can be stably produced without causing deterioration with time of iron loss due to magnetic aging.
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]素材鋼板を浸珪処理することにより、板厚方向の平均Si濃度が4.0〜7.0mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Si(mass%)が板厚t(mm)との関係で、△Si/t<2.0を満足する高珪素鋼板を製造する方法において、
素材鋼板として、C濃度[C](mass ppm)とS濃度[S](mass ppm)が下記(a)〜(c)のいずれかを満足する鋼板を用いることを特徴とする高珪素鋼板の製造方法。
(a)[S]≦30、[C]≦120
(b)30<[S]<120、[C]≦−0.722[S]+141.66
(c)120≦[S]、[C]≦55
[2]上記[1]の製造方法において、浸珪処理後の高珪素鋼板のC濃度が55mass ppm以下であることを特徴とする高珪素鋼板の製造方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] By subjecting the material steel plate to a siliconization treatment, the average Si concentration in the plate thickness direction is 4.0 to 7.0 mass%, and the Si concentration (mass%) in the plate surface layer portion and Si in the plate thickness center portion In a method for producing a high silicon steel plate satisfying ΔSi / t <2.0, the deviation ΔSi (mass%) from the concentration (mass%) is related to the plate thickness t (mm).
A high silicon steel sheet characterized by using a steel sheet having a C concentration [C] (mass ppm) and an S concentration [S] (mass ppm) satisfying any of the following (a) to (c) as a raw steel plate: Production method.
(A) [S] ≦ 30, [C] ≦ 120
(B) 30 <[S] <120, [C] ≦ −0.722 [S] +141.66
(C) 120 ≦ [S], [C] ≦ 55
[2] The method for producing a high silicon steel sheet according to the above [1], wherein the C concentration of the high silicon steel sheet after the siliconization treatment is 55 mass ppm or less.
本発明の製造方法によれば、浸珪処理法により、磁気時効による鉄損の経時劣化を生じない高珪素鋼板を安定して製造することができる。 According to the manufacturing method of the present invention, a high silicon steel plate that does not cause deterioration with time of iron loss due to magnetic aging can be stably manufactured by a siliconization method.
本発明は、素材鋼板を浸珪処理することにより、板厚方向の平均Si濃度が4.0〜7.0mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Si(mass%)が鋼板の板厚t(mm)との関係で、△Si/t<2.0を満足する高珪素鋼板を製造する方法である。
ここで、製造される鋼板の板厚方向の平均Si濃度が4.0mass%未満では、高珪素鋼板としての十分な高周波磁気特性が得られず、一方、7.0mass%を超えると脆化傾向が認められ、加工性が低下し、切板加工等の加工が困難となる場合がある。
In the present invention, by subjecting the raw steel plate to a siliconization treatment, the average Si concentration in the plate thickness direction is 4.0 to 7.0 mass%, and the Si concentration (mass%) of the plate surface layer portion and the plate thickness center portion This is a method for producing a high silicon steel sheet satisfying ΔSi / t <2.0 in relation to the deviation ΔSi (mass%) from the Si concentration (mass%) and the plate thickness t (mm) of the steel sheet.
Here, if the average Si concentration in the plate thickness direction of the steel plate to be produced is less than 4.0 mass%, sufficient high-frequency magnetic properties as a high silicon steel plate cannot be obtained, while if it exceeds 7.0 mass%, the embrittlement tendency tends to occur. May be recognized, workability may be reduced, and processing such as cut plate processing may be difficult.
鋼板を連続的に浸珪処理して高珪素鋼板を製造するために、通常、図1に示されるような、入側から加熱帯、浸珪処理帯、拡散均熱処理帯および冷却帯を備えた連続浸珪処理ラインが用いられる。
素材鋼板のSi濃度は4mass%未満(通常2.8〜3.8mass%程度)であり、この素材鋼板を加熱帯において処理温度まで連続的に加熱した後、浸珪処理帯でSiCl4と反応させることによりSiを鋼板表層部に浸透させ、次いで、拡散均熱処理帯でSiを板厚方向に拡散させるための熱処理を連続的に施した後、冷却帯で冷却することでコイル状の高珪素鋼板が製造される。通常、浸珪処理帯では、SiCl4濃度が約5〜35mol%程度の処理ガスが供給され、鋼板は概ね露点−30℃以下、酸素濃度10ppm以下の雰囲気中で、1023〜1200℃程度の処理温度で浸珪処理される。また、拡散均熱処理帯では、SiCl4を含まない無酸化性ガス雰囲気中で700〜1250℃程度で熱処理される。浸珪処理直後の鋼板は、鋼板表層部が最大で14.5mass%のSi濃度であるのに対し、板厚中心部では素材鋼板とほぼ同じSi濃度であるという極端なSi濃度勾配を有しているが、拡散熱処理によりこのSi濃度勾配が徐々に均一な方向に変化する。
In order to produce a high silicon steel sheet by continuously siliconizing the steel sheet, it is usually equipped with a heating zone, a siliconized treatment zone, a diffusion soaking zone, and a cooling zone as shown in FIG. A continuous siliconization line is used.
The material steel sheet has a Si concentration of less than 4 mass% (usually about 2.8 to 3.8 mass%), and after this material steel sheet is continuously heated to the treatment temperature in the heating zone, it reacts with SiCl 4 in the siliconization treatment zone. Si is infiltrated into the surface layer of the steel sheet, and then a continuous heat treatment for diffusing Si in the thickness direction in the diffusion soaking zone is followed by cooling in the cooling zone to form coiled high silicon. A steel plate is produced. Usually, in the siliconized zone, a processing gas having a SiCl 4 concentration of about 5 to 35 mol% is supplied, and the steel sheet is processed at a temperature of about 1023 to 1200 ° C. in an atmosphere having a dew point of −30 ° C. or lower and an oxygen concentration of 10 ppm or lower. It is siliconized at temperature. In the diffusion soaking zone, heat treatment is performed at about 700 to 1250 ° C. in a non-oxidizing gas atmosphere containing no SiCl 4 . The steel sheet immediately after the siliconization treatment has an extreme Si concentration gradient in which the steel sheet surface layer portion has a maximum Si concentration of 14.5 mass%, whereas the center thickness of the steel plate has substantially the same Si concentration as the material steel plate. However, this Si concentration gradient gradually changes in a uniform direction by diffusion heat treatment.
上記のように拡散均熱処理帯では、浸珪処理帯での浸珪処理により鋼板表層部に浸透させたSiを板厚方向に拡散させるが、この拡散熱処理の時間により、Siの拡散の度合い、すなわち板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Si(mass%)が違ってくる。拡散熱処理によって鋼板表層部のSiを板厚方向で略均一に拡散させるには比較的長い時間を要するが、本発明が製造の対象とする△Si/t<2.0を満足する高珪素鋼板は、拡散熱処理時間を概ね0.5〜10分程度と比較的長くとり、板厚方向でのSi濃度勾配を小さくした高珪素鋼板である。本発明は、このような△Si/t<2.0を満足する高珪素鋼板に関する知見に基づきなされたものである。なお、本発明が製造の対象とする高珪素鋼板は、△Si/t=0の場合を含むが、拡散熱処理時間の制約から通常は△Si/t>0.1程度となる。 As described above, in the diffusion soaking zone, Si permeated into the steel sheet surface layer by the siliconization treatment in the siliconization zone is diffused in the thickness direction, but depending on the time of this diffusion heat treatment, the degree of diffusion of Si, That is, the deviation ΔSi (mass%) between the Si concentration (mass%) in the surface portion of the plate and the Si concentration (mass%) in the central portion of the thickness differs. Although a relatively long time is required for diffusing heat treatment to diffuse Si in the surface portion of the steel sheet substantially uniformly in the thickness direction, the high silicon steel sheet satisfying ΔSi / t <2.0, which is an object of the present invention. Is a high silicon steel sheet in which the diffusion heat treatment time is relatively long, approximately 0.5 to 10 minutes, and the Si concentration gradient in the sheet thickness direction is reduced. The present invention has been made on the basis of knowledge about such a high silicon steel sheet that satisfies ΔSi / t <2.0. The high silicon steel sheet to be manufactured by the present invention includes the case of ΔSi / t = 0, but usually ΔSi / t> 0.1 due to the limitation of the diffusion heat treatment time.
本発明では、素材鋼板として、C濃度[C](mass ppm)とS濃度[S](mass ppm)が下記(a)〜(c)のいずれかを満足する鋼板を用いる。
(a)[S]≦30、[C]≦120
(b)30<[S]<120、[C]≦−0.722[S]+141.66
(c)120≦[S]、[C]≦55
鋼板中のS(硫黄)は、鋼板の浸珪処理時におけるCの移動を妨げることで鋼板の脱炭反応を阻害し、鋼板中のS濃度が高いほど脱炭反応を阻害する度合いが大きくなる。ここで、本発明が製造の対象とする△Si/t<2.0を満足する高珪素鋼板の場合には、浸珪処理後の鋼板(製品)のC濃度が55mass ppmを超えると、磁気時効による鉄損の劣化が生じる恐れがある。後述する実施例(図2、図3)の結果が示すように、素材鋼板のC濃度とS濃度を、上記(a)〜(c)のいずれかを満足する関係に最適化することにより、浸珪処理後の鋼板(製品)のC濃度が55mass ppm以下となり、磁気時効による鉄損の劣化を抑えることができる。すなわち、磁気時効による鉄損の経時劣化を生じない高珪素鋼板を製造することができる。
ここで、素材鋼板のC濃度が120mass ppmを超えると、通常の浸珪処理において、鋼板のC濃度を55mass ppm以下とすることが困難となるので、素材鋼板のC濃度は120mass ppm以下であることが好ましい。また、上述したように本発明の方法は、素材鋼板中のCの脱炭反応を利用するものであるため、素材鋼板中のC濃度は10mass ppm以上、さらに望ましくは40mass ppm超であることが好ましい。
In the present invention, a steel plate having a C concentration [C] (mass ppm) and an S concentration [S] (mass ppm) satisfying any of the following (a) to (c) is used as the material steel plate.
(A) [S] ≦ 30, [C] ≦ 120
(B) 30 <[S] <120, [C] ≦ −0.722 [S] +141.66
(C) 120 ≦ [S], [C] ≦ 55
S (sulfur) in the steel sheet inhibits the decarburization reaction of the steel sheet by hindering the movement of C during the siliconizing treatment of the steel sheet, and the degree of inhibiting the decarburization reaction increases as the S concentration in the steel sheet increases. . Here, in the case of a high silicon steel plate satisfying ΔSi / t <2.0, which is the object of manufacture of the present invention, if the C concentration of the steel plate (product) after the siliconization treatment exceeds 55 mass ppm, Deterioration of iron loss due to aging may occur. As shown in the results of Examples (FIGS. 2 and 3) to be described later, by optimizing the C concentration and S concentration of the material steel plate to a relationship satisfying any of the above (a) to (c), The C concentration of the steel plate (product) after the siliconization treatment is 55 mass ppm or less, and deterioration of iron loss due to magnetic aging can be suppressed. That is, it is possible to manufacture a high silicon steel sheet that does not cause deterioration of iron loss with time due to magnetic aging.
Here, when the C concentration of the material steel plate exceeds 120 mass ppm, it becomes difficult to set the C concentration of the steel plate to 55 mass ppm or less in a normal silicidation treatment, so the C concentration of the material steel plate is 120 mass ppm or less. It is preferable. Further, as described above, since the method of the present invention uses the decarburization reaction of C in the raw steel plate, the C concentration in the raw steel plate is preferably 10 mass ppm or more, more preferably more than 40 mass ppm. preferable.
素材鋼板の他の成分について、好ましい条件は以下のとおりである。
Mnの含有量が0.01mass%未満では固溶Sによる熱間脆性、冷間脆性の問題を生じるおそれがあり、一方、0.5mass%を超えるとMnによる固溶強化により鋼板が硬質化するおそれがあるので、Mnの含有量は0.01〜0.5mass%が好ましい。
Alの含有量が1.0mass%を超えると冷間圧延性が劣化するおそれがあるので、1.0mass%以下とすることが好ましい。
Nは磁気特性を劣化させる元素であるが、0.01mass%であれば実質的な影響は殆んどないため、0.01mass%以下とすることが好ましい。
Oは加工性と磁気特性を劣化させる元素であるが、0.01mass%以下であれば実質的な影響は殆んどないため、0.01mass%以下とすることが好ましい。
通常、素材鋼板は、熱間圧延、酸洗、冷間圧延を経て得られる薄鋼板であり、磁気特性と加工組み立ての観点から、一般に板厚0.03〜0.5mm程度のものが用いられる。
Preferred conditions for the other components of the material steel plate are as follows.
If the content of Mn is less than 0.01 mass%, there is a risk of causing problems of hot brittleness and cold brittleness due to the solid solution S. On the other hand, if it exceeds 0.5 mass%, the steel sheet is hardened due to solid solution strengthening by Mn. Since there exists a possibility, 0.01-0.5 mass% of content of Mn is preferable.
If the Al content exceeds 1.0 mass%, the cold rollability may be deteriorated, so it is preferable to set the content to 1.0 mass% or less.
N is an element that deteriorates the magnetic properties. However, if it is 0.01 mass%, there is almost no influence. Therefore, N is preferably 0.01 mass% or less.
O is an element that deteriorates workability and magnetic properties, but if it is 0.01 mass% or less, there is almost no substantial influence, so it is preferably 0.01 mass% or less.
Usually, a raw steel plate is a thin steel plate obtained through hot rolling, pickling, and cold rolling, and generally has a thickness of about 0.03 to 0.5 mm from the viewpoint of magnetic properties and work assembly. .
本発明の製造方法は、素材鋼板のC濃度を浸珪処理後の鋼板(高珪素鋼板)の目標C濃度よりも高くしておき、浸珪処理雰囲気中に含まれる酸素分によって素材鋼板の脱炭反応を生じさせつつ、素材鋼板の浸珪処理を行う方法に限定されるものではないが、この方法を用いる場合に特に有用である。この方法によれば、浸珪反応が起こる鋼板表面付近に存在する水分及び酸素濃度を極限まで下げることができ、その酸素分(水分及び酸素)がSiCl4ガスと反応してシリカが生成されることを防止し、且つ水分や酸素によって鋼板表面や粒界が酸化されることも防止でき、これによって表面性状と加工性がともに優れた高珪素鋼板を得ることができる。 In the production method of the present invention, the C concentration of the raw steel plate is made higher than the target C concentration of the steel plate after the siliconization treatment (high silicon steel plate), and the raw steel plate is removed by the oxygen content contained in the siliconization atmosphere. Although it is not limited to the method of performing the silicidation process of a raw steel plate while causing a carbon reaction, it is particularly useful when using this method. According to this method, it is possible to reduce the moisture and oxygen concentrations existing near the steel plate surface where the silicification reaction occurs, and the oxygen content (moisture and oxygen) reacts with the SiCl 4 gas to generate silica. In addition, it is possible to prevent the steel sheet surface and grain boundaries from being oxidized by moisture and oxygen, thereby obtaining a high silicon steel sheet having both excellent surface properties and workability.
[実施例1]
図1に示すような連続浸珪処理ラインにおいて、板厚が0.10mm、Si濃度が3mass%の素材鋼板を連続浸珪処理し、板厚方向の平均Si濃度が6.5mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Siが0.02mass%(△Si/t=0.2)の高珪素鋼板を製造した。なお、素材鋼板中のC濃度(C含有量)とS濃度(S含有量)は図2に示す値であり、他の成分(Mn,Al,N,O)の含有量は、さきに述べた好ましい範囲内であった。連続浸珪処理ラインでは、浸珪処理帯において、N2+SiCl4雰囲気(露点:−30℃以下、酸素濃度:10ppm以下)中で1200℃で浸珪処理を行い、引き続き拡散均熱処理帯において、N2雰囲気中で1230℃で拡散均熱処理を行った。
[Example 1]
In the continuous siliconization treatment line as shown in FIG. 1, a raw steel plate having a plate thickness of 0.10 mm and a Si concentration of 3 mass% is continuously siliconized, and the average Si concentration in the plate thickness direction is 6.5 mass%. A high silicon steel sheet having a deviation ΔSi of 0.02 mass% (ΔSi / t = 0.2) between the Si concentration (mass%) of the surface layer portion of the plate and the Si concentration (mass%) of the central portion of the thickness was manufactured. . In addition, C density | concentration (C content) and S density | concentration (S content) in a raw steel plate are the values shown in FIG. 2, and content of other components (Mn, Al, N, O) is described above. It was within the preferable range. In the continuous siliconization treatment line, the siliconization treatment is performed at 1200 ° C. in a N 2 + SiCl 4 atmosphere (dew point: −30 ° C. or less, oxygen concentration: 10 ppm or less) in the siliconization treatment zone. Diffusion soaking was performed at 1230 ° C. in an N 2 atmosphere.
製造後の高珪素鋼板を200℃の雰囲気に100hr放置し、その前後の鉄損の増加率を測定することで鉄損の経時変化を調べ、下記の基準で評価した。なお、本実施例での鉄損は、W10/400(1T,400Hz)の条件とした。この試験結果を、素材鋼板のC濃度とS濃度との関係で整理したものを図2に示す。
○(良好):鉄損の経時増加率が8%以下
△(許容):鉄損の経時増加率が8%超10%以下
×(不良):鉄損の経時増加率が10%超
浸珪処理後の鋼板のC濃度は、“○”の結果となったものは全て55mass ppm以下となっており、また、“△”の結果となったものは全て55mass
ppm超60mass ppm以下、“×”の結果となったものは全て60mass ppm超となっていた。
The manufactured high silicon steel sheet was allowed to stand in an atmosphere of 200 ° C. for 100 hours, and the change rate of iron loss with time was measured by measuring the rate of increase in iron loss before and after that, and evaluated according to the following criteria. The iron loss in this example was W10 / 400 (1T, 400 Hz). FIG. 2 shows the results of the test arranged in relation to the C concentration and S concentration of the steel sheet.
○ (Good): Increase rate of iron loss with time is 8% or less △ (Acceptable): Increase rate of iron loss with time is more than 8% and 10% or less × (Poor): Increase rate with time of iron loss is more than 10% The C concentration of the steel sheet after the treatment was 55 mass ppm or less for all the results of “◯”, and 55 mass for all of the results of “△”.
All of the results exceeding “ppm” exceeding 60 ppm by mass and exceeding “×” were above 60 mass ppm.
[実施例2]
図1に示すような連続浸珪処理ラインにおいて、板厚が0.15mm、Si濃度が3mass%の素材鋼板を連続浸珪処理し、板厚方向の平均Si濃度が6.5mass%であって、板表層部のSi濃度(mass%)と板厚中心部のSi濃度(mass%)との偏差△Siが0.20mass%(△Si/t=1.3)の高珪素鋼板を製造した。なお、素材鋼板中のC濃度(C含有量)とS濃度(S含有量)は図3に示す値であり、他の成分(Mn,Al,N,O)の含有量は、さきに述べた好ましい範囲内であった。連続浸珪処理ラインでは、浸珪処理帯において実施例1と同様のN2+SiCl4雰囲気中で1200℃で浸珪処理を行い、引き続き拡散均熱処理帯において、N2雰囲気中で1230℃で拡散均熱処理を行った。
[Example 2]
In the continuous siliconization treatment line as shown in FIG. 1, a material steel plate having a thickness of 0.15 mm and a Si concentration of 3 mass% is continuously siliconized, and the average Si concentration in the thickness direction is 6.5 mass%. A high silicon steel sheet having a deviation ΔSi of 0.20 mass% (ΔSi / t = 1.3) between the Si concentration (mass%) of the surface layer portion of the plate and the Si concentration (mass%) of the central portion of the plate thickness was manufactured. . In addition, C density | concentration (C content) and S density | concentration (S content) in a raw steel plate are the values shown in FIG. 3, and content of other components (Mn, Al, N, O) is described above. It was within the preferable range. In the continuous siliconization treatment line, the siliconization treatment is performed at 1200 ° C. in the same N 2 + SiCl 4 atmosphere as in Example 1 in the siliconization treatment zone, followed by diffusion at 1230 ° C. in the N 2 atmosphere in the diffusion soaking zone. Soaking was performed.
製造後の高珪素鋼板を200℃の雰囲気に100hr放置し、その前後の鉄損の増加率を測定することで鉄損の経時変化を調べ、下記の基準で評価した。なお、本実施例での鉄損は、W10/400(1T,400Hz)の条件とした。この試験結果を、素材鋼板のC濃度とS濃度との関係で整理したものを図3に示す。
○(良好):鉄損の経時増加率が8%以下
△(許容):鉄損の経時増加率が8%超10%以下
×(不良):鉄損の経時増加率が10%超
浸珪処理後の鋼板のC濃度は、“○”の結果となったものは全て55mass ppm以下となっており、また、“△”の結果となったものは全て55mass
ppm超60mass ppm以下、“×”の結果となったものは全て60mass ppm超となっていた。
The manufactured high silicon steel sheet was allowed to stand in an atmosphere of 200 ° C. for 100 hours, and the change rate of iron loss with time was measured by measuring the rate of increase in iron loss before and after that, and evaluated according to the following criteria. The iron loss in this example was W10 / 400 (1T, 400 Hz). FIG. 3 shows the results of this test arranged in relation to the C concentration and S concentration of the steel sheet.
○ (Good): Increase rate of iron loss with time is 8% or less △ (Acceptable): Increase rate of iron loss with time is more than 8% and 10% or less × (Poor): Increase rate with time of iron loss is more than 10% The C concentration of the steel sheet after the treatment was 55 mass ppm or less for all the results of “◯”, and 55 mass for all of the results of “△”.
All of the results exceeding “ppm” exceeding 60 ppm by mass and exceeding “×” were above 60 mass ppm.
Claims (2)
素材鋼板として、C濃度[C](mass ppm)とS濃度[S](mass ppm)が下記(a)〜(c)のいずれかを満足する鋼板を用いることを特徴とする高珪素鋼板の製造方法。
(a)[S]≦30、[C]≦120
(b)30<[S]<120、[C]≦−0.722[S]+141.66
(c)120≦[S]、[C]≦55 By subjecting the material steel plate to a siliconization treatment, the average Si concentration in the plate thickness direction is 4.0 to 7.0 mass%, and the Si concentration (mass%) in the plate surface layer portion and the Si concentration in the plate thickness center portion (mass) %) In relation to the plate thickness t (mm), in the method for producing a high silicon steel sheet satisfying ΔSi / t <2.0,
A high silicon steel sheet characterized by using a steel sheet having a C concentration [C] (mass ppm) and an S concentration [S] (mass ppm) satisfying any of the following (a) to (c) as a raw steel plate: Production method.
(A) [S] ≦ 30, [C] ≦ 120
(B) 30 <[S] <120, [C] ≦ −0.722 [S] +141.66
(C) 120 ≦ [S], [C] ≦ 55
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011016980A JP5664286B2 (en) | 2011-01-28 | 2011-01-28 | Method for producing high silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011016980A JP5664286B2 (en) | 2011-01-28 | 2011-01-28 | Method for producing high silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012158772A true JP2012158772A (en) | 2012-08-23 |
JP5664286B2 JP5664286B2 (en) | 2015-02-04 |
Family
ID=46839546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011016980A Active JP5664286B2 (en) | 2011-01-28 | 2011-01-28 | Method for producing high silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5664286B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155259A (en) * | 2014-02-20 | 2015-08-27 | 株式会社デンソー | communication circuit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107923029B (en) * | 2015-09-08 | 2019-11-19 | 杰富意钢铁株式会社 | The manufacturing method of high silicon strip based on continuous siliconising method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04246157A (en) * | 1991-01-29 | 1992-09-02 | Nkk Corp | High silicon steel sheet excellent in soft-magnetic property |
JPH11286753A (en) * | 1998-04-02 | 1999-10-19 | Nkk Corp | Silicon steel sheet stable and low in residual magnetic flux density |
JPH11293448A (en) * | 1998-04-10 | 1999-10-26 | Nkk Corp | Production of silicon steel sheet using siliconizing method |
-
2011
- 2011-01-28 JP JP2011016980A patent/JP5664286B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04246157A (en) * | 1991-01-29 | 1992-09-02 | Nkk Corp | High silicon steel sheet excellent in soft-magnetic property |
JPH11286753A (en) * | 1998-04-02 | 1999-10-19 | Nkk Corp | Silicon steel sheet stable and low in residual magnetic flux density |
JPH11293448A (en) * | 1998-04-10 | 1999-10-26 | Nkk Corp | Production of silicon steel sheet using siliconizing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155259A (en) * | 2014-02-20 | 2015-08-27 | 株式会社デンソー | communication circuit |
Also Published As
Publication number | Publication date |
---|---|
JP5664286B2 (en) | 2015-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2537628C1 (en) | Production of texture sheets from electrical steel | |
JP5446377B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
EP2578706B1 (en) | Method of manufacturing grain-oriented electrical steel sheet | |
US10208372B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
JP6610789B2 (en) | Hot-rolled steel sheet for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
JP6350398B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2003096520A (en) | Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss | |
JP5757693B2 (en) | Low iron loss unidirectional electrical steel sheet manufacturing method | |
JP2014196558A (en) | Method of producing grain-oriented electrical steel sheet | |
JP5332134B2 (en) | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet | |
JP2009256713A (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP5664286B2 (en) | Method for producing high silicon steel sheet | |
JP5206017B2 (en) | Method for producing high silicon steel sheet | |
JP5068579B2 (en) | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet | |
JP5664287B2 (en) | Method for producing high silicon steel sheet | |
JP2005240185A (en) | High-silicon steel sheet excellent in high-frequency magnetic property and its production method | |
JP6209999B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3275712B2 (en) | High silicon steel sheet excellent in workability and method for producing the same | |
JP2017095771A (en) | Oriented electromagnetic steel sheet and manufacturing method therefor, hot rolled sheet for oriented electromagnetic steel sheet and manufacturing method therefor | |
JP6209998B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5904151B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6863310B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP3265946B2 (en) | Method for producing high silicon steel sheet with excellent workability | |
JP4304728B2 (en) | High silicon steel sheet | |
JP4272616B2 (en) | Method for producing grain-oriented electrical steel sheet without film defects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5664286 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |