JP4055474B2 - Multilayer circuit board manufacturing method - Google Patents

Multilayer circuit board manufacturing method Download PDF

Info

Publication number
JP4055474B2
JP4055474B2 JP2002153491A JP2002153491A JP4055474B2 JP 4055474 B2 JP4055474 B2 JP 4055474B2 JP 2002153491 A JP2002153491 A JP 2002153491A JP 2002153491 A JP2002153491 A JP 2002153491A JP 4055474 B2 JP4055474 B2 JP 4055474B2
Authority
JP
Japan
Prior art keywords
resistor
layer
wiring layer
circuit board
multilayer circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002153491A
Other languages
Japanese (ja)
Other versions
JP2003347739A (en
Inventor
龍雄 鈴木
Original Assignee
株式会社トッパンNecサーキットソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トッパンNecサーキットソリューションズ filed Critical 株式会社トッパンNecサーキットソリューションズ
Priority to JP2002153491A priority Critical patent/JP4055474B2/en
Publication of JP2003347739A publication Critical patent/JP2003347739A/en
Application granted granted Critical
Publication of JP4055474B2 publication Critical patent/JP4055474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、抵抗体を内蔵した多層回路板及びその製造方法に関する。
【0002】
【従来の技術】
近年、パーソナルコンピューター等に代表されるように、電子機器の小型化、薄型化が求められている。そのため、そのような電子機器等に用いられるプリント配線板も、小型化、薄型化のために、高密度、高精度の配線が求められ、最近では抵抗体等の回路部品を内蔵した多層回路板の開発も行われている。
高密度の配線を行うために、配線層の線幅も小さくなり、配線層間の接続に用いられるフィルドビアはより小さい穴径とすることが求められている。そして、ビア用孔の孔加工も、位置ずれを極力小さくするように高い精度の加工が求められている。そのような、高密度、高精度の配線層を有する多層回路板では、絶縁基材及び絶縁層が薄型化する傾向にあり、多層回路板の製造工程及び実装時の熱工程により、多層回路板に伸縮、反り等が発生し易いという問題を有しており、抵抗体等の回路部品を内蔵した多層回路板では、信頼性を損なうという問題が発生することがある。
【0003】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑み考案されたもので、信頼性を有する抵抗体内蔵の多層回路板及びその製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明に於いて上記問題を解決するために、まず請求項1においては、絶縁基材上に絶縁層を介して少なくとも2層以上の配線層が形成された抵抗体内蔵の多層プリント配線板であって、前記絶縁層がガラスクロス及び絶縁樹脂とで構成されていることを特徴とする多層回路板としたものである。
【0005】
また、請求項2においては、前記絶縁層にフィラーが混入されていることを特徴とする請求項1記載の多層回路板としたものである。
【0006】
また、請求項3においては、以下の工程を少なくとも備えることを特徴とする請求項1に記載の多層回路板の製造方法としたものである。
(a)絶縁基材11の両面に第1配線層21a及び第1配線層21bを形成する工程。
(b)絶縁基材11上の所定の第1配線層21a及び第1配線層21b間の配線電極上に抵抗体41aを形成する工程。
(c)抵抗体41a及び絶縁層31上にガラスクロス及び絶縁樹脂からなる絶縁層51を形成する工程。
(d)絶縁層51上に第2配線層81a及び第2配線層81bを形成する工程。
(e)(b)〜(d)の工程を必要回数繰り返して所望の多層回路板を作製する工程。
【0007】
さらにまた、請求項4においては、以下の工程を少なくとも備えることを特徴とする請求項2に記載の多層回路板の製造方法としたものである。
(a)絶縁基材11の両面に第1配線層及び第1配線層21bを形成する工程。
(b)絶縁基材11上の所定の第1配線層21a及び第1配線層21b間の配線電極上に抵抗体41aを形成する工程。
(c)抵抗体41a及び絶縁層31上にガラスクロス、フィラー及び絶縁樹脂からなる絶縁層61を形成する工程。
(d)絶縁層61上に第2配線層81a及び第2配線層81bを形成する工程。
(e)(b)〜(d)の工程を必要回数繰り返して所望の多層回路板を作製する工程。
【0008】
【発明の実施の形態】
以下本発明の実施の形態につき説明する。
図1(a)は、請求項1に係る本発明の多層回路板の一実施例を示す。
図1(b)は、請求項2に係る本発明の多層回路板の一実施例を示す。
請求項1に係る本発明の多層回路板は、図1(a)に示すように、第1配線層21a及び第1配線層21b間に抵抗体41aを形成し、第1配線層21a及び第1配線層21bと第2配線層81a及び第2配線層81b間にガラスクロスに絶縁樹脂を含浸させたプリプレグを積層して絶縁層51を形成した抵抗体内蔵の4層の多層回路板100で、絶縁層51にガラスクロス及び絶縁樹脂を用いることにより、多層回路板の製造工程及び実装時の熱工程により発生する多層回路板の伸縮、反り等を軽減させている。
【0009】
請求項2に係る本発明の多層回路板は、図1(b)に示すように、第1配線層21a及び第1配線層21b間に抵抗体41aを形成し、第1配線層21a及び第1配線層21bと第2配線層81a及び第2配線層81b間にガラスクロスにフィラー及び絶縁樹脂を含浸させたプリプレグを積層して絶縁層61を形成した抵抗体内蔵の4層の多層回路板200で、絶縁層61にガラスクロス、フィラー及び絶縁樹脂を用いることにより、絶縁層61にビア用孔をレーザー加工等により形成する際の加工適性を上げると同時に、多層回路板の製造工程及び実装時の熱工程により発生する多層回路板の伸縮、反り等を軽減させている。
【0010】
以下請求項1及び2に係る本発明の多層回路板の製造方法について説明する。請求項1に係る本発明の多層回路板の製造方法の一実施例を図2(a)〜(e)及び図3(f)〜(i)に示す。まず、ガラスクロスにエポキシ樹脂、もしくはビスマレイドトリアジン樹脂、もしくはポリイミド樹脂等を含浸させた絶縁基材11の両面に第1配線層21a及び第1配線層21bを形成する(図2(a)参照)。ここで、第1配線層21a及び第1配線層21bの形成方法は、サブトラクティブ法、セミアディティブ法、フルアディティブ法のいずれでも良い。
【0011】
次に、第1配線層21a及び第1配線層21bが形成された絶縁基材11の両面にプリプレグ絶縁フィルムを貼付し、加圧、加熱して、所定厚の絶縁層31を形成する。さらに、絶縁層31の所定位置をレーザー加工等により穴明け加工して開口部32を形成し、第1配線層21a及び第1配線層21b間の配線電極を露出させる(図2(b)参照)。
【0012】
次に、開口部32にカーボン、グラファイト等を樹脂に混入した抵抗ペーストをスクリーン印刷、ディスペンサー等で埋め込み、乾燥硬化して第1配線層21a及び第1配線層21b間の配線電極上に抵抗体41を形成する(図2(c)参照)。
【0013】
次に、抵抗体41の表面を研磨処理して、表面が平坦化された抵抗体41aを形成する(図2(d)参照)。
ここで、抵抗体の形成にあたっては、絶縁層に開口部を形成し、抵抗ペーストを埋め込む方法で説明したが、これは、バラツキの少ない抵抗体が得られる方法の一例である。第1配線層21a及び第1配線層21b間の配線電極上に直接抵抗ペーストをスクリーン印刷等でパターン化して形成する方法でも良い。
【0014】
次に、ガラスクロスにエポキシ等の絶縁樹脂を含浸させたプリプレグフィルムを絶縁層31及び抵抗体41上に積層し、加圧・加熱して絶縁層51を形成する(図2(e)参照)。
【0015】
次に、絶縁層51及び絶縁層31の所定位置をCO2レーザーにて穴明け加工して、ビア用孔52を形成する(図3(f)参照)。
【0016】
次に、絶縁層51及びビア用孔52内に無電解銅めっきにて薄膜導体層(特に図示せず)を形成し、薄膜導体層上に感光層を形成し、露光、現像等の一連のパターニング処理を行ってレジストパターン71を形成する(図3(g)参照)。
【0017】
次に、薄膜導体層をカソードにして電解銅めっきを行い、絶縁層51上に所定厚の導体層81及びビア用孔52にフィルドビア82を形成する(図3(h)参照)。
【0018】
次に、レジストパターン71を専用の剥離液で剥離し、レジストパターン下部にあった薄膜導体層を過硫酸アンモニウム水溶液でソフトエッチングして、第2配線層81a及び第2配線層81bを形成して、絶縁基材上11に第1配線層、抵抗体、絶縁層及び第2配線層が形成された4層の抵抗体内蔵の多層回路板100を得る(図3(i)参照)。
ここで、第2配線層81a及び第2配線層81bはセミアディティブ方式で作製したがこれに限定されるものではない。
さらに、必要に応じて、抵抗体、絶縁層及び配線層の作製工程を繰り返して所望の多層回路板を得ることができる。
【0019】
請求項2に係る本発明の多層回路板の製造方法の一実施例を図4(a)〜(e)及び図5(f)〜(i)に示す。まず、ガラスクロスにエポキシ樹脂、もしくはビスマレイドトリアジン樹脂、もしくはポリイミド樹脂等を含浸させた絶縁基材11の両面に第1配線層21a及び第1配線層21bを形成する(図4(a)参照)。ここで、第1配線層21a及び第1配線層21bの形成方法は、サブトラクティブ法、セミアディティブ法、フルアディティブ法のいずれでも良い。
【0020】
次に、第1配線層21a及び第1配線層21bが形成された絶縁基材11の両面にプリプレグ絶縁フィルムを積層し、加圧、加熱して、所定厚の絶縁層31を形成する。さらに、絶縁層31の所定位置をレーザー加工等により穴明け加工して開口部32を形成し、第1配線層21a及び第1配線層21b間の配線電極を露出させる(図4(b)参照)。
【0021】
次に、開口部32にカーボン、グラファイト等を樹脂に混入した抵抗ペーストをスクリーン印刷、ディスペンサー等で埋め込み、乾燥硬化して第1配線層21a及び第1配線層21b間の配線電極上に抵抗体41を形成する(図4(c)参照)。
【0022】
次に、抵抗体41の表面を研磨処理して、表面が平坦化された抵抗体41aを形成する(図4(d)参照)。
ここで、抵抗体の形成にあたっては、絶縁層に開口部を形成し、抵抗ペーストを埋め込む方法で説明したが、これは、バラツキの少ない抵抗体が得られる方法の一例である。第1配線層21a及び第1配線層21b間の配線電極上に直接抵抗ペーストをスクリーン印刷等でパターン化して形成する方法でも良い。
【0023】
次に、ガラスクロスにエポキシ等の絶縁樹脂及び水酸化アルミニウム、二酸化珪素等からなるフィラーを含浸させたプリプレグフィルムを絶縁層31及び抵抗体31上に積層し、加圧・加熱して絶縁層61を形成する(図4(e)参照)。
【0024】
次に、絶縁層61及び絶縁層31の所定位置をCO2レーザーにて穴明け加工して、ビア用孔62を形成する(図5(f)参照)。
【0025】
次に、絶縁層61及びビア用孔62内に無電解銅めっきにて薄膜導体層(特に図示せず)を形成し、薄膜導体層上に感光層を形成し、露光、現像等の一連のパターニング処理を行ってレジストパターン71を形成する(図5(g)参照)。
【0026】
次に、薄膜導体層をカソードにして電解銅めっきを行い、絶縁層61上に所定厚の導体層81及びビア用孔62にフィルドビア82を形成する(図5(h)参照)。
【0027】
次に、レジストパターン71を専用の剥離液で剥離し、レジストパターン下部にあった薄膜導体層を過硫酸アンモニウム水溶液でソフトエッチングして、第2配線層81a及び第2配線層81bを形成して、絶縁基材上11に第1配線層、抵抗体、絶縁層及び第2配線層が形成された4層の抵抗体内蔵の多層回路板200を得る(図5(i)参照)。
ここで、第2配線層81a及び第2配線層81bはセミアディティブ方式で作製したがこれに限定されるものではない。
さらに、必要に応じて、抵抗体、絶縁層及び配線層の作製工程を繰り返して所望の多層回路板を得ることができる。
【0028】
【発明の効果】
本発明の抵抗体内蔵の多層回路板は絶縁層がガラスクロス及び絶縁樹脂、もしくはガラスクロス、フィラー及び絶縁樹脂とで構成されているため、多層回路板の製造工程及び実装時の熱工程により発生する多層回路板の伸縮、反り等を軽減でき、信頼性のある多層回路板を得ることができる。
【図面の簡単な説明】
【図1】(a)は、請求項1に係る本発明の多層回路板の一実施例を示す模式平面図である。
(b)は、請求項2に係る本発明の多層回路板の一実施例を示す模式平面図である。
【図2】(a)〜(e)は、請求項1に係る本発明の多層回路板の製造方法における工程の一部を示す模式平面図である。
【図3】(f)〜(i)は、請求項1に係る本発明の多層回路板の製造方法における工程の一部を示す模式平面図である。
【図4】(a)〜(e)は、請求項2に係る本発明の多層回路板の製造方法における工程の一部を示す模式平面図である。
【図5】(f)〜(i)は、請求項2に係る本発明の多層回路板の製造方法における工程の一部を示す模式部分構成断面図である。
【符号の説明】
11……絶縁基材
21a、21b……第1配線層
31……絶縁層
32……開口部
41……抵抗体
41a……平坦化された抵抗体
51……ガラスクロス及び絶縁樹脂とで構成されている絶縁層
52……ビア用孔
61……ガラスクロス、フィラー及び絶縁樹脂とで構成されている絶縁層
71……レジストパターン
81……導体層
82……フィルドビア
100、200……多層回路板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer circuit board with a built-in resistor and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, as represented by personal computers and the like, there has been a demand for downsizing and thinning of electronic devices. For this reason, printed circuit boards used in such electronic devices are also required to have high-density and high-precision wiring for miniaturization and thinning, and recently, multilayer circuit boards incorporating circuit components such as resistors. Development is also underway.
In order to perform high-density wiring, the line width of the wiring layer is also reduced, and the filled via used for connection between the wiring layers is required to have a smaller hole diameter. In addition, high-precision processing is also required for hole processing of via holes so as to minimize positional deviation. In such a multilayer circuit board having a high-density, high-accuracy wiring layer, the insulating base material and the insulating layer tend to be thinned, and the multilayer circuit board is manufactured by the manufacturing process of the multilayer circuit board and the thermal process during mounting. There is a problem that expansion and contraction, warpage, and the like are likely to occur, and in a multilayer circuit board incorporating a circuit component such as a resistor, there is a problem that reliability is impaired.
[0003]
[Problems to be solved by the invention]
The present invention has been devised in view of the above problems, and an object thereof is to provide a reliable multilayer circuit board with a built-in resistor and a method for manufacturing the same.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems in the present invention, first, in claim 1, there is provided a multilayer printed wiring board with a built-in resistor in which at least two wiring layers are formed on an insulating substrate via an insulating layer. A multilayer circuit board is characterized in that the insulating layer is composed of glass cloth and insulating resin.
[0005]
According to a second aspect of the present invention, there is provided the multilayer circuit board according to the first aspect, wherein a filler is mixed in the insulating layer.
[0006]
According to a third aspect of the present invention, the multilayer circuit board manufacturing method according to the first aspect includes at least the following steps.
(A) A step of forming the first wiring layer 21a and the first wiring layer 21b on both surfaces of the insulating base material 11.
(B) A step of forming the resistor 41a on the wiring electrode between the predetermined first wiring layer 21a and the first wiring layer 21b on the insulating base material 11.
(C) A step of forming an insulating layer 51 made of glass cloth and insulating resin on the resistor 41a and the insulating layer 31.
(D) A step of forming the second wiring layer 81a and the second wiring layer 81b on the insulating layer 51.
(E) A step of producing a desired multilayer circuit board by repeating the steps (b) to (d) as many times as necessary.
[0007]
Furthermore, according to a fourth aspect of the invention, there is provided the multilayer circuit board manufacturing method according to the second aspect, comprising at least the following steps.
(A) A step of forming the first wiring layer and the first wiring layer 21b on both surfaces of the insulating base material 11.
(B) A step of forming the resistor 41a on the wiring electrode between the predetermined first wiring layer 21a and the first wiring layer 21b on the insulating base material 11.
(C) A step of forming an insulating layer 61 made of glass cloth, filler and insulating resin on the resistor 41a and the insulating layer 31.
(D) A step of forming the second wiring layer 81a and the second wiring layer 81b on the insulating layer 61.
(E) A step of producing a desired multilayer circuit board by repeating the steps (b) to (d) as many times as necessary.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1A shows an embodiment of a multilayer circuit board according to the first aspect of the present invention.
FIG. 1B shows an embodiment of the multilayer circuit board according to the second aspect of the present invention.
As shown in FIG. 1A, the multilayer circuit board according to the first aspect of the present invention includes a resistor 41a formed between the first wiring layer 21a and the first wiring layer 21b, and the first wiring layer 21a and the first wiring layer 21a. A four-layer multilayer circuit board 100 with a built-in resistor, in which an insulating layer 51 is formed by laminating a prepreg impregnated with a glass cloth between one wiring layer 21b, a second wiring layer 81a, and a second wiring layer 81b. By using a glass cloth and an insulating resin for the insulating layer 51, expansion / contraction, warpage, etc. of the multilayer circuit board generated by the manufacturing process of the multilayer circuit board and the thermal process at the time of mounting are reduced.
[0009]
As shown in FIG. 1B, the multilayer circuit board of the present invention according to claim 2 includes a resistor 41a formed between the first wiring layer 21a and the first wiring layer 21b, and the first wiring layer 21a and the first wiring layer 21a. A four-layer multilayer circuit board with a built-in resistor, in which an insulating layer 61 is formed by laminating a prepreg impregnated with a filler and an insulating resin in a glass cloth between one wiring layer 21b, the second wiring layer 81a, and the second wiring layer 81b In 200, by using glass cloth, filler, and insulating resin for the insulating layer 61, the processability when forming the via hole in the insulating layer 61 by laser processing or the like is improved, and at the same time, the manufacturing process and mounting of the multilayer circuit board This reduces the expansion and contraction, warpage, etc., of the multilayer circuit board caused by the heat process.
[0010]
A method for manufacturing the multilayer circuit board according to the first and second aspects of the present invention will be described below. An embodiment of the method for producing a multilayer circuit board according to the first aspect of the present invention is shown in FIGS. 2 (a) to 2 (e) and FIGS. 3 (f) to 3 (i). First, the first wiring layer 21a and the first wiring layer 21b are formed on both surfaces of the insulating base material 11 in which a glass cloth is impregnated with an epoxy resin, a bismaleide triazine resin, or a polyimide resin (see FIG. 2A). ). Here, the formation method of the first wiring layer 21a and the first wiring layer 21b may be any of a subtractive method, a semi-additive method, and a full additive method.
[0011]
Next, a prepreg insulating film is affixed to both surfaces of the insulating base material 11 on which the first wiring layer 21a and the first wiring layer 21b are formed, and pressurized and heated to form the insulating layer 31 having a predetermined thickness. Further, a predetermined position of the insulating layer 31 is drilled by laser processing or the like to form an opening 32 to expose the wiring electrode between the first wiring layer 21a and the first wiring layer 21b (see FIG. 2B). ).
[0012]
Next, a resistor paste in which carbon, graphite, or the like is mixed in the opening 32 is embedded by screen printing, a dispenser or the like, dried and cured, and a resistor is formed on the wiring electrode between the first wiring layer 21a and the first wiring layer 21b. 41 is formed (see FIG. 2C).
[0013]
Next, the surface of the resistor 41 is polished to form a resistor 41a having a flattened surface (see FIG. 2D).
Here, in the formation of the resistor, the method of forming the opening in the insulating layer and embedding the resistor paste has been described, but this is an example of a method for obtaining a resistor with little variation. A method may also be used in which a resistance paste is directly patterned on the wiring electrodes between the first wiring layer 21a and the first wiring layer 21b by screen printing or the like.
[0014]
Next, a prepreg film in which an insulating resin such as epoxy is impregnated into a glass cloth is laminated on the insulating layer 31 and the resistor 41, and pressurized and heated to form the insulating layer 51 (see FIG. 2 (e)). .
[0015]
Next, predetermined positions of the insulating layer 51 and the insulating layer 31 are drilled with a CO 2 laser to form via holes 52 (see FIG. 3F).
[0016]
Next, a thin film conductor layer (not shown) is formed by electroless copper plating in the insulating layer 51 and the via hole 52, a photosensitive layer is formed on the thin film conductor layer, and a series of exposure, development, and the like are performed. A resist pattern 71 is formed by performing a patterning process (see FIG. 3G).
[0017]
Next, electrolytic copper plating is performed using the thin film conductor layer as a cathode to form a conductor layer 81 having a predetermined thickness on the insulating layer 51 and a filled via 82 in the via hole 52 (see FIG. 3H).
[0018]
Next, the resist pattern 71 is stripped with a dedicated stripping solution, and the thin film conductor layer under the resist pattern is soft-etched with an aqueous ammonium persulfate solution to form the second wiring layer 81a and the second wiring layer 81b. A multilayer circuit board 100 having a four-layer resistor in which a first wiring layer, a resistor, an insulating layer, and a second wiring layer are formed on an insulating substrate 11 is obtained (see FIG. 3I).
Here, the second wiring layer 81a and the second wiring layer 81b are manufactured by a semi-additive method, but the present invention is not limited to this.
Furthermore, a desired multilayer circuit board can be obtained by repeating the steps of producing the resistor, the insulating layer, and the wiring layer as necessary.
[0019]
One embodiment of the method for producing a multilayer circuit board according to the second aspect of the present invention is shown in FIGS. 4 (a) to 4 (e) and FIGS. 5 (f) to 5 (i). First, the first wiring layer 21a and the first wiring layer 21b are formed on both surfaces of the insulating substrate 11 in which a glass cloth is impregnated with an epoxy resin, a bismaleide triazine resin, or a polyimide resin (see FIG. 4A). ). Here, the formation method of the first wiring layer 21a and the first wiring layer 21b may be any of a subtractive method, a semi-additive method, and a full additive method.
[0020]
Next, a prepreg insulating film is laminated on both surfaces of the insulating base material 11 on which the first wiring layer 21a and the first wiring layer 21b are formed, and pressurized and heated to form the insulating layer 31 having a predetermined thickness. Further, a predetermined position of the insulating layer 31 is drilled by laser processing or the like to form an opening 32 to expose the wiring electrode between the first wiring layer 21a and the first wiring layer 21b (see FIG. 4B). ).
[0021]
Next, a resistor paste in which carbon, graphite, or the like is mixed in the opening 32 is embedded by screen printing, a dispenser or the like, dried and cured, and a resistor is formed on the wiring electrode between the first wiring layer 21a and the first wiring layer 21b. 41 is formed (see FIG. 4C).
[0022]
Next, the surface of the resistor 41 is polished to form a resistor 41a having a flattened surface (see FIG. 4D).
Here, in the formation of the resistor, the method of forming the opening in the insulating layer and embedding the resistor paste has been described, but this is an example of a method for obtaining a resistor with little variation. A method may also be used in which a resistance paste is directly patterned on the wiring electrodes between the first wiring layer 21a and the first wiring layer 21b by screen printing or the like.
[0023]
Next, a prepreg film obtained by impregnating a glass cloth with an insulating resin such as epoxy and a filler made of aluminum hydroxide, silicon dioxide or the like is laminated on the insulating layer 31 and the resistor 31, and the insulating layer 61 is pressed and heated. (See FIG. 4E).
[0024]
Next, predetermined positions of the insulating layer 61 and the insulating layer 31 are drilled with a CO 2 laser to form via holes 62 (see FIG. 5F).
[0025]
Next, a thin film conductor layer (not shown) is formed in the insulating layer 61 and the via hole 62 by electroless copper plating, a photosensitive layer is formed on the thin film conductor layer, and a series of exposure, development, etc. A resist pattern 71 is formed by performing a patterning process (see FIG. 5G).
[0026]
Next, electrolytic copper plating is performed using the thin film conductor layer as a cathode, and a filled via 82 is formed in the conductor layer 81 and the via hole 62 on the insulating layer 61 (see FIG. 5H).
[0027]
Next, the resist pattern 71 is stripped with a dedicated stripping solution, and the thin film conductor layer under the resist pattern is soft-etched with an aqueous ammonium persulfate solution to form the second wiring layer 81a and the second wiring layer 81b. A multilayer circuit board 200 having a four-layered resistor in which a first wiring layer, a resistor, an insulating layer, and a second wiring layer are formed on an insulating substrate 11 is obtained (see FIG. 5I).
Here, the second wiring layer 81a and the second wiring layer 81b are manufactured by a semi-additive method, but the present invention is not limited to this.
Furthermore, a desired multilayer circuit board can be obtained by repeating the steps of producing the resistor, the insulating layer, and the wiring layer as necessary.
[0028]
【The invention's effect】
In the multilayer circuit board with a built-in resistor according to the present invention, the insulating layer is made of glass cloth and insulating resin, or glass cloth, filler, and insulating resin, and therefore it is generated by the manufacturing process of the multilayer circuit board and the heat process during mounting. The multilayer circuit board can be reduced in expansion and contraction, warpage, and the like, and a reliable multilayer circuit board can be obtained.
[Brief description of the drawings]
FIG. 1 (a) is a schematic plan view showing an embodiment of a multilayer circuit board according to the first aspect of the present invention.
(B) is a schematic plan view showing an embodiment of the multilayer circuit board according to the second aspect of the present invention.
FIGS. 2A to 2E are schematic plan views showing a part of steps in the method for manufacturing a multilayer circuit board according to the first aspect of the present invention. FIGS.
3 (f) to (i) are schematic plan views showing a part of steps in the method for manufacturing a multilayer circuit board according to the first aspect of the present invention.
4A to 4E are schematic plan views showing a part of steps in the method for manufacturing a multilayer circuit board according to the second aspect of the present invention.
5 (f) to (i) are schematic partial cross-sectional views showing a part of steps in the method for manufacturing a multilayer circuit board according to the second aspect of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Insulating base material 21a, 21b ... 1st wiring layer 31 ... Insulating layer 32 ... Opening 41 ... Resistor 41a ... Flattened resistor 51 ... Consists of glass cloth and insulating resin Insulating layer 52 ... Via hole 61 ... Insulating layer 71 composed of glass cloth, filler and insulating resin ... Resist pattern 81 ... Conductor layer 82 ... Filled via 100, 200 ... Multilayer circuit Board

Claims (2)

ガラスクロスに樹脂を含浸させた絶縁基材に抵抗体の両極用の配線電極を有する第1配線層を形成する第1の工程と、前記絶縁基材の両面に第1のプリプレグフィルムを貼付し、加圧、加熱して、第1の絶縁樹脂層を形成する第2の工程と、前記第1の絶縁樹脂層をレーザー穴明け加工することにより抵抗体埋め込み用の開口部を形成し、かつ、前記開口部に前記抵抗体の両極用の配線電極を露出させる第3の工程と、前記開口部に抵抗ペーストを埋め込、乾燥硬化させることで前記抵抗体の両極用の配線電極上に抵抗体を形成する第4の工程と、前記抵抗体の表面を研磨処理により平坦化した後、前記抵抗体と前記第1の絶縁樹脂層の表面にガラスクロスに絶縁樹脂を含浸させた第2のプリプレグフィルムを積層し加圧・加熱し第2の絶縁樹脂層を形成する第5の工程と、レーザ穴明け加工により前記第2の絶縁樹脂層と第1の絶縁樹脂層に前記第1配線層に達するビア用孔を形成する第6の工程と、銅めっきにより、前記第2の絶縁樹脂層の表面の第2配線層と前記ビア用孔内のフィルドビアを形成する第7の工程を有することを特徴とする多層回路板の製造方法。A first step of forming a first wiring layer having wiring electrodes for bipolar electrodes of a resistor on an insulating base material in which a glass cloth is impregnated with a resin; A second step of forming a first insulating resin layer by pressurization and heating, forming an opening for embedding the resistor by laser drilling the first insulating resin layer, and A third step of exposing the wiring electrode for the electrodes of the resistor in the opening, and a resistance paste on the wiring electrode for the electrodes of the resistor by embedding a resistance paste in the opening and drying and curing. A fourth step of forming a body, and a surface of the resistor is flattened by a polishing process, and then a surface of the resistor and the first insulating resin layer is impregnated with an insulating resin in a glass cloth Laminate prepreg film, pressurize and heat to make second insulation A fifth step of forming an oil layer; a sixth step of forming a via hole reaching the first wiring layer in the second insulating resin layer and the first insulating resin layer by laser drilling; A method for producing a multilayer circuit board, comprising: a seventh step of forming a second wiring layer on a surface of the second insulating resin layer and a filled via in the via hole by copper plating. 前記第2のプリプレグフィルムが、ガラスクロスに絶縁樹脂と、水酸化アルミニウム又は二酸化珪素のフィラー、を含浸させて成ることを特徴とする請求項1記載の多層回路板の製造方法。2. The method of manufacturing a multilayer circuit board according to claim 1, wherein the second prepreg film is formed by impregnating a glass cloth with an insulating resin and a filler of aluminum hydroxide or silicon dioxide.
JP2002153491A 2002-05-28 2002-05-28 Multilayer circuit board manufacturing method Expired - Fee Related JP4055474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153491A JP4055474B2 (en) 2002-05-28 2002-05-28 Multilayer circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153491A JP4055474B2 (en) 2002-05-28 2002-05-28 Multilayer circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2003347739A JP2003347739A (en) 2003-12-05
JP4055474B2 true JP4055474B2 (en) 2008-03-05

Family

ID=29770518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153491A Expired - Fee Related JP4055474B2 (en) 2002-05-28 2002-05-28 Multilayer circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP4055474B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059689A (en) * 2005-08-25 2007-03-08 Shinko Electric Ind Co Ltd Laminated structured including glass-cloth containing resin layer, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2003347739A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
US8261435B2 (en) Printed wiring board and method for manufacturing the same
US7935893B2 (en) Method of manufacturing printed wiring board with built-in electronic component
JP4192657B2 (en) Manufacturing method of build-up multilayer wiring board with built-in chip parts
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
KR100747022B1 (en) Imbedded circuit board and fabricating method therefore
US6599617B2 (en) Adhesion strength between conductive paste and lands of printed wiring board, and manufacturing method thereof
JPH11186698A (en) Manufacture of circuit board, and circuit board
JP2007288022A (en) Multilayer printed wiring board and its manufacturing method
KR100704920B1 (en) Pcb and it's manufacturing method used bump board
JP3674662B2 (en) Wiring board manufacturing method
KR100699237B1 (en) Manufacturing Method for Embedded Printed Circuit Board
JP4055474B2 (en) Multilayer circuit board manufacturing method
JP2003124632A (en) Multilayer printed wiring board and its manufacturing method
JPH1070363A (en) Method for manufacturing printed wiring board
JP4479180B2 (en) Multilayer circuit board manufacturing method
JP2003115661A (en) Method of manufacturing multilayer circuit board
JPH08264939A (en) Manufacture of printed wiring board
KR100658437B1 (en) Pcb and it's manufacturing method used bump board
JP4395959B2 (en) Method for manufacturing printed wiring board
JP2004134467A (en) Multilayered wiring board, material for it, and method of manufacturing it
JP4292397B2 (en) Wiring board manufacturing method
JP2002141637A (en) Printed-wiring board and its manufacturing method
JP2005109299A (en) Multilayer wiring board and its manufacturing method
JP2005045000A (en) Method for manufacturing multilayered printed wiring board with built-in passive element
KR20100053761A (en) Embedded pcb using unclad and embedded pcb manufactured thereby

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees