JP2005045000A - Method for manufacturing multilayered printed wiring board with built-in passive element - Google Patents

Method for manufacturing multilayered printed wiring board with built-in passive element Download PDF

Info

Publication number
JP2005045000A
JP2005045000A JP2003277364A JP2003277364A JP2005045000A JP 2005045000 A JP2005045000 A JP 2005045000A JP 2003277364 A JP2003277364 A JP 2003277364A JP 2003277364 A JP2003277364 A JP 2003277364A JP 2005045000 A JP2005045000 A JP 2005045000A
Authority
JP
Japan
Prior art keywords
passive element
forming
wiring board
printed wiring
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003277364A
Other languages
Japanese (ja)
Inventor
Hidekatsu Sekine
秀克 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003277364A priority Critical patent/JP2005045000A/en
Publication of JP2005045000A publication Critical patent/JP2005045000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing multilayered wiring board with built-in passive element by which the productivity of a multilayered printed wiring board with a built-in passive element can be improved by shortening the laser beam machining time at the time of forming an opening for forming the passive element by laser beam machining. <P>SOLUTION: The method of manufacturing the multilayered printed wiring board with the built-in passive element includes a step of forming a lower electrode 31a for passive element at least at a prescribed position of a circuit board 50, a step of forming a resin layer 51 having a weak alkali resistance on the lower electrode 31a, and a step of forming an insulating layer 61. The method also includes a step of forming the opening 62 by punching the insulating film 61 formed on the lower electrode 31a, a step of forming a dielectric layer 71 in the opening 62, and a step of forming the passive element 80 by forming an upper electrode 81 for passive element on the dielectric layer 71. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は各種電子機器に用いられるプリント配線板もしくはインターポーザーからなる多層プリント配線板の製造方法に係わり、さらに詳しくは、受動素子内蔵多層プリント配線板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer printed wiring board composed of a printed wiring board or an interposer used for various electronic devices, and more particularly to a method for manufacturing a multilayer printed wiring board with a built-in passive element.

最近のプリント配線板もしくはインターポーザーの薄型化、高密度化に伴い、受動素子をプリント配線板に内蔵した受動素子内蔵多層プリント配線板が提案されている(例えば、特許文献1参照)。   With recent thinning and high density of printed wiring boards or interposers, passive element built-in multilayer printed wiring boards in which passive elements are built into the printed wiring board have been proposed (for example, see Patent Document 1).

従来の受動素子内蔵多層プリント配線板の製造方法について以下に説明する。   A method for manufacturing a conventional multilayer printed wiring board with built-in passive elements will be described below.

受動素子内蔵多層プリント配線板の製造方法の一例を図2(a)〜(e)に示す。   An example of the manufacturing method of the multilayer printed wiring board with a built-in passive element is shown in FIGS.

まず、回路基板110の所定位置に受動素子用下部電極121を形成する(図2(a)参照)。   First, the passive element lower electrode 121 is formed at a predetermined position on the circuit board 110 (see FIG. 2A).

次に、絶縁性樹脂シートをラミネートする等の方法で絶縁層131を形成する(図2(b)参照)。   Next, the insulating layer 131 is formed by a method such as laminating an insulating resin sheet (see FIG. 2B).

次に、受動素子用下部電極121上の絶縁層131を炭酸ガスレーザー等により穴開け加工し、開口部132を形成し、過マンガン酸、水酸化ナトリウム等からなる強アルカリ溶液で残査処理する(図2(c)参照)。   Next, the insulating layer 131 on the passive element lower electrode 121 is perforated with a carbon dioxide laser or the like to form an opening 132, and a residual treatment is performed with a strong alkaline solution made of permanganic acid, sodium hydroxide, or the like. (See FIG. 2 (c)).

次に、受動素子用下部電極121上の開口部132内に誘電体ペーストもしくは抵抗ペーストをスクリーン印刷またはディスペンサー等で埋め込み、加熱硬化し、表面を研磨処理して受動素子層141を形成する(図2(d)参照)。   Next, a dielectric paste or a resistance paste is embedded in the opening 132 on the passive element lower electrode 121 by screen printing or a dispenser, and is cured by heating, and the surface is polished to form the passive element layer 141 (FIG. 2 (d)).

次に、受動素子層141上にセミアディティブ法等のプロセスで受動素子用上部電極122を形成し、キャパシタ素子もしくは抵抗素子等からなる受動素子140を形成し、受動素子内蔵プリント配線板を得る(図2(e)参照)。   Next, a passive element upper electrode 122 is formed on the passive element layer 141 by a process such as a semi-additive method, and a passive element 140 made of a capacitor element or a resistance element is formed to obtain a passive element built-in printed wiring board ( (Refer FIG.2 (e)).

上記のような受動素子内蔵多層プリント配線板の製造方法では、絶縁層131を炭酸ガスレーザーにより穴開け加工し、数百μmから数mm角の面積の開口部を形成する際、レーザービームを重ね照射して加工部の残渣樹脂を減少させるようにしているため、加工時間が長く生産性に欠けると言った問題がある。   In the manufacturing method of the multilayer printed wiring board with a built-in passive element as described above, the insulating layer 131 is punched with a carbon dioxide gas laser, and a laser beam is overlapped when forming an opening with an area of several hundred μm to several mm square. Irradiation reduces the residual resin in the processed part, so there is a problem that the processing time is long and productivity is insufficient.

例えば、240μmφの炭酸ガスレーザービームを500ショット/秒で加工する際、レーザービームの送りピッチはビーム径240μmの1/3の80μmに設定する必要があり、4mm角の開口部を形成した場合加工時間は約5秒となり、300mm角のプリント配線板に約300個の4mm角の開口部を形成した場合加工時間は約1500秒になる。UVーYAGレーザーの場合はその約10倍以上の15000秒以上となる。
特開2003−100553号公報
For example, when processing a carbon dioxide laser beam of 240 μmφ at 500 shots / second, the laser beam feed pitch must be set to 80 μm, which is 1/3 of the beam diameter of 240 μm, and processing is performed when a 4 mm square opening is formed. The time is about 5 seconds, and when about 300 4 mm square openings are formed on a 300 mm square printed wiring board, the processing time is about 1500 seconds. In the case of the UV-YAG laser, it is about 15000 seconds or more, which is about 10 times or more.
Japanese Patent Laid-Open No. 2003-100553

本発明は、上記問題点に鑑みなされたもので、受動素子形成用の開口部をレーザー加工で形成する際レーザー加工時間を短縮し、生産性の向上を図った受動素子内蔵多層プリント配線板の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems. When forming an opening for forming a passive element by laser processing, the laser processing time is shortened, and the multilayer printed wiring board with a built-in passive element is designed to improve productivity. An object is to provide a manufacturing method.

本発明に於いて上記課題を達成するために、受動素子内蔵多層プリント配線板の製造方法において、少なくとも以下の工程を備えていることを特徴とする受動素子内蔵多層プリント配線板の製造方法としたものである。
(a)回路基板50の所定位置に受動素子用下部電極31aを形成する工程。
(b)受動素子用下部電極31a上に耐アルカリ性の弱い樹脂層51を設ける工程。
(c)絶縁層61を形成する工程。
(d)受動素子用下部電極31a上の絶縁層61を穴開け加工して開口部62を形成する工程。
(e)開口部62に誘電体層71を形成する工程。
(f)誘電体層71上に受動素子用上部電極81を形成し、受動素子80を形成する工程。
In order to achieve the above object in the present invention, a method for manufacturing a multilayer printed wiring board with a built-in passive element includes the following steps in the method for manufacturing a multilayer printed wiring board with a built-in passive element. Is.
(A) A step of forming the passive element lower electrode 31 a at a predetermined position of the circuit board 50.
(B) The process of providing the resin layer 51 with weak alkali resistance on the lower electrode 31a for passive elements.
(C) A step of forming the insulating layer 61.
(D) A step of forming an opening 62 by drilling the insulating layer 61 on the passive element lower electrode 31a.
(E) A step of forming the dielectric layer 71 in the opening 62.
(F) A step of forming the passive element upper electrode 81 on the dielectric layer 71 and forming the passive element 80.

本発明の受動素子内蔵多層プリント配線板の製造法では、受動素子を形成するための開口部を形成する際、受動素子用下部電極上に耐アルカリ性に弱い樹脂層が形成されているため、レーザービームによるピッチ送りを従来の3倍に、加工時間として従来の1/9まで短縮でき、受動素子内蔵多層プリント配線板の生産性を向上させることができる。   In the method for manufacturing a multilayer printed wiring board with a built-in passive element according to the present invention, when forming an opening for forming a passive element, a resin layer weak in alkali resistance is formed on the lower electrode for the passive element. The pitch feed by the beam can be reduced to three times that of the prior art, and the processing time can be shortened to 1/9 of the conventional one, and the productivity of the multilayer printed wiring board with built-in passive elements can be improved.

以下本発明の実施の形態につき説明する。   Hereinafter, embodiments of the present invention will be described.

図1(a)〜(f)に、本発明の受動素子内蔵多層プリント配線板の製造方法の一実施例を示す。   1A to 1F show an embodiment of a method for producing a multilayer printed wiring board with a built-in passive element according to the present invention.

以下本発明の受動素子内蔵多層プリント配線板の製造方法について説明する。   Hereinafter, a method for producing a multilayer printed wiring board with a built-in passive element according to the present invention will be described.

ここで言う多層プリント配線板とはプリント配線板及びインターポーザー基板を総称して用いており、インターポーザー基板はICチップや半導体素子とプリント配線板との仲立ちをするもので、BGA基板、MCM基板、SCM基板等が含まれる。   The multilayer printed wiring board mentioned here is a generic term for a printed wiring board and an interposer board, and the interposer board is used to mediate between an IC chip or a semiconductor element and the printed wiring board, and is a BGA board or MCM board. , SCM substrates and the like.

まず、絶縁基材11の両面に第1配線層21a、21b、21c、21dを形成し、さらに絶縁層12を介して第2配線層31b、31c、31d及び受動素子用下部電極31aを形成して、4層の回路基板50を作製する(図1(a)参照)。   First, the first wiring layers 21a, 21b, 21c, and 21d are formed on both surfaces of the insulating base material 11, and the second wiring layers 31b, 31c, and 31d and the passive element lower electrode 31a are formed through the insulating layer 12. Thus, a four-layer circuit board 50 is manufactured (see FIG. 1A).

ここでは、受動素子を形成するベース基板を4層の回路基板を用いたが、このベース基板についてはいかなる回路基板でも使用でき、別に回路基板の配線層数に限定されるものではない。   Here, a four-layer circuit board is used as the base substrate for forming the passive elements. However, any circuit board can be used as the base substrate, and the number of wiring layers of the circuit board is not limited to this.

次に、受動素子用下部電極31a上に樹脂ペーストをスクリーン印刷で塗布し、加熱、硬化して、所定厚の耐アルカリ性に弱い樹脂層51を形成する(図1(b)参照)。   Next, a resin paste is applied on the passive element lower electrode 31a by screen printing, and heated and cured to form a resin layer 51 having a predetermined thickness and poor alkali resistance (see FIG. 1B).

耐アルカリ性に弱い樹脂層51は通常、カルボキシル基含有のアクリル系の樹脂が使用でき、膜厚は2μm前後が好適である。   As the resin layer 51 that is weak in alkali resistance, a carboxyl group-containing acrylic resin can be usually used, and the film thickness is preferably about 2 μm.

次に、エポキシ樹脂等からなる絶縁性樹脂シートをラミネートして絶縁層61を形成す
る(図1(c)参照)。
Next, an insulating resin sheet made of an epoxy resin or the like is laminated to form the insulating layer 61 (see FIG. 1C).

次に、受動素子用下部電極31a上の絶縁層61を炭酸ガスレーザー等により穴開け加工を行い開口部62を形成し、開口部62内を過マンガン酸、水酸化ナトリウム等からなる強アルカリ溶液で残査処理し、受動素子用下部電極31aを露出させる(図1(d)参照)。   Next, the insulating layer 61 on the passive element lower electrode 31a is drilled with a carbon dioxide laser or the like to form an opening 62, and the inside of the opening 62 is a strong alkaline solution made of permanganic acid, sodium hydroxide, or the like. The residual process is performed to expose the passive element lower electrode 31a (see FIG. 1D).

ここで、従来のレーザー加工による開口部の形成方法では、4mm角の開口部を例えば240μm径のレーザービームを用いてレーザー加工した場合、500ショット/秒、送りピッチ80ミクロンで5mm角の開口部の加工時間は5秒以上となり、300mm角のプリント配線板に、約300個の開口部を形成したとすると加工時間は、約1500秒となる。   Here, in the conventional method of forming an opening by laser processing, when a 4 mm square opening is laser processed using a laser beam having a diameter of 240 μm, for example, 500 shots / second, a 5 mm square opening with a feed pitch of 80 microns. The processing time is 5 seconds or more, and if about 300 openings are formed on a 300 mm square printed wiring board, the processing time is about 1500 seconds.

本発明の受動素子内蔵多層プリント配線板の製造方法による開口部の形成方法では、開口部を形成する受動素子用下部電極31a上に耐アルカリ性の弱い樹脂層51が形成されているため、例えば240μm径のレーザービームを用いてレーザー加工する際レーザービームの送りピッチはレーザービーム径と同じ240μmに設定でき、500ショット/秒、送りピッチ240μmで加工した場合5mm角の開口部の加工時間は約0.6秒となり、300mm角のプリント配線板に、約300個の開口部を形成したとすると加工時間は、約160秒となる。   In the method for forming an opening by the method for manufacturing a multilayer printed wiring board with a built-in passive element according to the present invention, since the resin layer 51 having weak alkali resistance is formed on the lower electrode 31a for the passive element that forms the opening, for example, 240 μm When laser processing is performed using a laser beam of a diameter, the feed pitch of the laser beam can be set to 240 μm, which is the same as the laser beam diameter, and when processing at 500 shots / second and a feed pitch of 240 μm, the processing time of a 5 mm square opening is about 0 .6 seconds, assuming that about 300 openings are formed on a 300 mm square printed wiring board, the processing time is about 160 seconds.

このように、本発明の加工方法を適用することにより、開口部の加工時間は、従来の約1/9となり、レーザー加工時間を短縮し、生産性を向上させることができる。   As described above, by applying the processing method of the present invention, the processing time of the opening becomes about 1/9 of the conventional one, and the laser processing time can be shortened and the productivity can be improved.

次に、誘電体ペーストもしくは抵抗ペーストをスクリーン印刷、またはディスペンサー等で開口部に埋め込み、乾燥硬化させて、表面研磨処理を行って、受動素子層71を形成する(図1(e)参照)。   Next, a dielectric paste or a resistance paste is embedded in the opening by screen printing or a dispenser or the like, dried and cured, and subjected to a surface polishing process to form the passive element layer 71 (see FIG. 1E).

次に、セミアディティブプロセス等にて受動素子用上部電極81を形成して、キャパシタ素子もしくは抵抗素子等の受動素子80を形成し、受動素子内蔵多層プリント配線板100を得る(図1(f)参照)。   Next, a passive element upper electrode 81 is formed by a semi-additive process or the like, and a passive element 80 such as a capacitor element or a resistance element is formed to obtain a passive element built-in multilayer printed wiring board 100 (FIG. 1F). reference).

以下実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

まず、不織ガラスにエポキシ樹脂を含浸させた銅張り積層板をパターニング処理して、第1配線層21a、21b、21c、21dを形成し、さらに、ビルドアッププロセスにて絶縁層12及び第2配線層31b、31c、31d及び受動素子用下部電極31aを形成して、4層の回路基板50を作製した(図1(a)参照)。   First, a copper-clad laminate obtained by impregnating a non-woven glass with an epoxy resin is subjected to patterning to form first wiring layers 21a, 21b, 21c, and 21d. Further, the insulating layer 12 and the second layer are formed by a build-up process. The wiring layers 31b, 31c, 31d and the passive element lower electrode 31a were formed to produce a four-layer circuit board 50 (see FIG. 1A).

次に、受動素子用下部電極31a上にアクリル系の樹脂ペーストをスクリーン印刷し、乾燥硬化し、2μm厚の耐アルカリ性に弱い樹脂層51をした(図1(b)参照)。   Next, an acrylic resin paste was screen-printed on the lower electrode 31a for passive elements, dried and cured, and a resin layer 51 having a thickness of 2 μm and weak against alkali resistance was formed (see FIG. 1B).

次に、エポキシ系の絶縁樹脂シートを真空加圧ラミネートし、絶縁層61を形成した(図1(c)参照)。   Next, an insulating insulating sheet 61 was formed by vacuum-pressure laminating an epoxy insulating resin sheet (see FIG. 1C).

次に、受動素子用下部電極31a上の絶縁層61を240μmφの炭酸ガスレーザービームを用いて240μmピッチで穴開け加工を行い、開口部62を形成し、開口部62内を過マンガン酸、水酸化ナトリウム等からなる強アルカリ溶液で約20分程残査処理し、受動素子用下部電極31aを露出させた(図1(d)参照)。   Next, the insulating layer 61 on the passive element lower electrode 31a is drilled at a pitch of 240 μm using a 240 μmφ carbon dioxide laser beam to form openings 62, and the inside of the openings 62 is permanganic acid, water Residue treatment was performed for about 20 minutes with a strong alkali solution made of sodium oxide or the like to expose the lower electrode 31a for the passive element (see FIG. 1D).

次に、エポキシ系樹脂にチタン酸バリウム粉等を高充填させた誘電体ペーストをディスぺンサーにて開口部62内に埋め込み、加熱硬化して、表面研磨処理を行って、誘電体層からなる受動素子層71を形成した(図1(e)参照)。   Next, a dielectric paste in which barium titanate powder or the like is highly filled in an epoxy resin is embedded in the opening 62 with a dispenser, heat-cured, and subjected to a surface polishing process to form a dielectric layer. A passive element layer 71 was formed (see FIG. 1E).

次に、絶縁層間の電気的接続用として、炭酸ガスレーザーにより、60μmφのビア用孔を形成し、過マンガン酸、水酸化ナトリウム等からなる強アルカリ溶液で約20分程度、ビア用孔の残査処理および絶縁層表面の粗面化処理を行い、還元処理を行って、無電解銅めっきにてめっき下地導電層(特に図示せず)を形成した。   Next, for electrical connection between the insulating layers, a via hole of 60 μmφ is formed by a carbon dioxide laser, and the via hole is left for about 20 minutes with a strong alkaline solution made of permanganic acid, sodium hydroxide, or the like. An inspection process and a roughening process on the surface of the insulating layer were performed, a reduction process was performed, and a plating base conductive layer (not shown) was formed by electroless copper plating.

次に、下地導電層上に感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って、めっきレジストパターン(特に図示せず)を形成した。   Next, a photosensitive layer was formed on the base conductive layer, and a series of patterning processes such as pattern exposure and development were performed to form a plating resist pattern (not shown).

次に、めっきレジストパターンをマスクにして電解銅めっきを行い、めっきレジストパターンを剥離して、めっきレジストパターン下部にあっためっき下地導電層を過硫酸アンモニウム水溶液等でソフトエッチングすることにより、受動素子用上部電極81を形成して、キャパシタ素子からなる受動素子80を形成し、受動素子内蔵多層プリント配線板100を得た(図1(f)参照)。   Next, electrolytic copper plating is performed using the plating resist pattern as a mask, the plating resist pattern is peeled off, and the plating base conductive layer under the plating resist pattern is soft etched with an aqueous solution of ammonium persulfate, etc. The upper electrode 81 was formed to form a passive element 80 made of a capacitor element, and a multilayer printed wiring board 100 with a built-in passive element was obtained (see FIG. 1 (f)).

(a)〜(f)は、本発明の受動素子内蔵多層プリント配線板の製造方法の一実施例を工程順に示す模式構成部分断面図である。(A)-(f) is typical structure fragmentary sectional view which shows one Example of the manufacturing method of the multilayer printed wiring board with a built-in passive element of this invention in process order. (a)〜(e)は、従来の受動素子内蔵多層プリント配線板の製造方法の一実施例を工程順に示す模式構成部分断面図である。(A)-(e) is a typical structure fragmentary sectional view which shows one Example of the manufacturing method of the conventional multilayer printed wiring board with a built-in passive element in order of a process.

符号の説明Explanation of symbols

11……絶縁基材
12……絶縁層
21a、21b、21c、21d……第1配線層
31a、121……受動素子用下部電極
31b、31c、31d……第2配線層
50、110……回路基板
51……耐アルカリ性に弱い樹脂層
61、131……絶縁層
62、132……開口部
71、141……受動素子層
80、140……受動素子
81、122……受動素子用上部電極
100……受動素子内蔵多層プリント配線板
11 ... Insulating substrate 12 ... Insulating layers 21a, 21b, 21c, 21d ... First wiring layers 31a, 121 ... Passive element lower electrodes 31b, 31c, 31d ... Second wiring layers 50, 110 ... Circuit board 51... Resin layers 61, 131... Insulating layers 62, 132... Openings 71 and 141... Passive element layers 80 and 140... Passive elements 81 and 122. 100 …… Multilayer printed wiring board with built-in passive elements

Claims (1)

受動素子内蔵多層プリント配線板の製造方法において、少なくとも以下の工程を備えていることを特徴とする受動素子内蔵多層プリント配線板の製造方法。
(a)回路基板(50)の所定位置に受動素子用下部電極(31a)を形成する工程。
(b)受動素子用下部電極(31a)上に耐アルカリ性の弱い樹脂層(51)を形成する工程。
(c)絶縁層(61)を形成する工程。
(d)受動素子用下部電極(31a)上の絶縁層(61)を穴開け加工して開口部(62)を形成する工程。
(e)開口部(62)に誘電体層(71)を形成する工程。
(f)誘電体層(71)上に受動素子用上部電極(81)を形成し、受動素子(80)を形成する工程。
In the manufacturing method of the multilayer printed wiring board with a built-in passive element, the manufacturing method of the multilayer printed wiring board with a built-in passive element characterized by including the following processes at least.
(A) A step of forming a passive element lower electrode (31a) at a predetermined position on the circuit board (50).
(B) A step of forming a resin layer (51) having low alkali resistance on the passive element lower electrode (31a).
(C) A step of forming an insulating layer (61).
(D) A step of drilling the insulating layer (61) on the passive element lower electrode (31a) to form the opening (62).
(E) A step of forming a dielectric layer (71) in the opening (62).
(F) A step of forming a passive element upper electrode (81) on the dielectric layer (71) to form a passive element (80).
JP2003277364A 2003-07-22 2003-07-22 Method for manufacturing multilayered printed wiring board with built-in passive element Pending JP2005045000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277364A JP2005045000A (en) 2003-07-22 2003-07-22 Method for manufacturing multilayered printed wiring board with built-in passive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277364A JP2005045000A (en) 2003-07-22 2003-07-22 Method for manufacturing multilayered printed wiring board with built-in passive element

Publications (1)

Publication Number Publication Date
JP2005045000A true JP2005045000A (en) 2005-02-17

Family

ID=34264104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277364A Pending JP2005045000A (en) 2003-07-22 2003-07-22 Method for manufacturing multilayered printed wiring board with built-in passive element

Country Status (1)

Country Link
JP (1) JP2005045000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554187B2 (en) 2005-06-10 2009-06-30 Nec System Technology, Ltd. Connecting structure, printed substrate, circuit, circuit package and method of forming connecting structure
KR20160116836A (en) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 Printed circuit board
CN111345121A (en) * 2017-12-11 2020-06-26 凸版印刷株式会社 Glass wiring board, method for manufacturing the same, and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554187B2 (en) 2005-06-10 2009-06-30 Nec System Technology, Ltd. Connecting structure, printed substrate, circuit, circuit package and method of forming connecting structure
KR20160116836A (en) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 Printed circuit board
KR102357544B1 (en) * 2015-03-31 2022-02-04 엘지이노텍 주식회사 Printed circuit board
CN111345121A (en) * 2017-12-11 2020-06-26 凸版印刷株式会社 Glass wiring board, method for manufacturing the same, and semiconductor device

Similar Documents

Publication Publication Date Title
US5258094A (en) Method for producing multilayer printed wiring boards
KR100834591B1 (en) Double sided wiring board, double sided wiring board manufacturing method, and multilayer wiring board
JP2007081409A (en) Printed circuit board having fine pattern and method for manufacturing the same
JP2013211431A (en) Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board
KR101811940B1 (en) Manufacture method of a multilayer circuit board formed with a fine via
KR100648971B1 (en) Manufacturing method for embedded printed circuit board
KR20010009975A (en) Method of producing a multi-layer printed-circuit board
JP4314263B2 (en) Via hole having minute hole land and method for forming the same
KR20070034766A (en) Full Layer Inner Via Printed Circuit Board Using Peel Plating and Its Manufacturing Method
US20090178840A1 (en) Pcb and manufacturing method thereof
JP2005045000A (en) Method for manufacturing multilayered printed wiring board with built-in passive element
JP2006165242A (en) Printed-wiring board and its manufacturing method
JP6502106B2 (en) Method of manufacturing printed wiring board
JP2002134918A (en) Method for manufacturing multilayer printed wiring board
JP4802402B2 (en) High-density multilayer build-up wiring board and manufacturing method thereof
JP2005045163A (en) Method for manufacturing multilayer circuit board
JP6598694B2 (en) Thick copper circuit board and manufacturing method thereof
KR100630913B1 (en) Making method of Printed circuit board
JPH098458A (en) Printed-wiring board and manufacture thereof
JP2004152935A (en) Printed wiring board
JP4451238B2 (en) Manufacturing method of component-embedded substrate and component-embedded substrate
JP2005108941A (en) Multilayer wiring board and its manufacturing method
JP2001250882A (en) Multilayer circuit substrate
JPH11191482A (en) Manufacture of printed wiring board
JP4055474B2 (en) Multilayer circuit board manufacturing method