JP2013211431A - Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board - Google Patents

Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board Download PDF

Info

Publication number
JP2013211431A
JP2013211431A JP2012081079A JP2012081079A JP2013211431A JP 2013211431 A JP2013211431 A JP 2013211431A JP 2012081079 A JP2012081079 A JP 2012081079A JP 2012081079 A JP2012081079 A JP 2012081079A JP 2013211431 A JP2013211431 A JP 2013211431A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
built
component
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081079A
Other languages
Japanese (ja)
Inventor
Toshiyuki Shima
利幸 島
Mitsuaki Kamata
光昭 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Circuit Solutions Inc
Original Assignee
NEC Toppan Circuit Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Inc filed Critical NEC Toppan Circuit Solutions Inc
Priority to JP2012081079A priority Critical patent/JP2013211431A/en
Publication of JP2013211431A publication Critical patent/JP2013211431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a component built-in printed wiring board having high long term reliability, in which a chip component can be held surely without increasing the manufacturing cost.SOLUTION: The electronic component to be built in a printed wiring board, in which the surface of an electrode terminal is formed of copper and the electrode terminal is coated with resin, is manufactured. A hole is formed in an organic resin substrate added with a glass material, and the electronic component to be built in a printed wiring board is inserted into the hole. Subsequently, a prepreg of semi-cured resin is hot pressed and hardened thus holding the electronic component to be built in a printed wiring board surely, without causing poor adhesion to the prepreg due to oxidation of the electrode terminal.

Description

本発明は、多層の配線層を有し、チップ部品を内蔵した部品内蔵印刷配線板の製造方法および、部品内蔵印刷配線板の製造方法に適合した印刷配線板内蔵用電子部品に関する。   The present invention relates to a method for manufacturing a component-embedded printed wiring board having a multilayer wiring layer and incorporating a chip component, and a printed wiring board-embedded electronic component suitable for the method for manufacturing a component-embedded printed wiring board.

近年、半導体実装技術の発展により半導体装置を実装する印刷配線板においては、高密度、高精度の配線層を有する多層の印刷配線板が要求されている。高密度を実現する一つの方法として、集積回路チップや受動部品のチップ部品を内蔵した部品内蔵印刷配線板が開発されている。   2. Description of the Related Art In recent years, a printed wiring board on which a semiconductor device is mounted has been required due to the development of semiconductor mounting technology, and a multilayer printed wiring board having a high-density and high-precision wiring layer is required. As one method for realizing high density, a component-embedded printed wiring board incorporating an integrated circuit chip or a passive component chip component has been developed.

従来技術における部品内蔵印刷配線板の製造方法は、特許文献1の技術では、コア主面で開口する収容穴部のあるコア基板と、少なくとも前記部品側面が樹脂被覆層で覆われ、部品裏面は樹脂被覆層で覆われていない部品がある。コア主面と部品主面を同じ側に向け、かつ収容穴部の内壁面と部品側面とを向かいあわせた状態で、部品を収容穴部内に収容し、層間絶縁層及び導体層をコア主面及び部品主面上にして積層する。収容穴部の内壁面と部品側面を覆う樹脂被覆層の表面との隙間を、コア主面に接する層間絶縁層の一部で埋めることで、部品を固定する。   In the prior art, the method for manufacturing a component-embedded printed wiring board is disclosed in Patent Document 1, in which a core substrate having an accommodation hole opening in the core main surface and at least the component side surface is covered with a resin coating layer, Some parts are not covered with a resin coating layer. With the core main surface and the component main surface facing the same side and with the inner wall surface of the receiving hole and the side of the component facing each other, the component is received in the receiving hole, and the interlayer insulating layer and conductor layer are placed on the core main surface. And laminated on the main surface of the component. The component is fixed by filling a gap between the inner wall surface of the accommodation hole and the surface of the resin coating layer covering the side surface of the component with a part of the interlayer insulating layer in contact with the core main surface.

絶縁被覆層の厚さは、200μm以上800μm以下で、部品の収容穴部への収容及び、収容穴部と部品間の隙間へ充填する樹脂量の観点から、絶縁被覆層500μmが適している。   The thickness of the insulating coating layer is 200 μm or more and 800 μm or less, and the insulating coating layer of 500 μm is suitable from the viewpoint of housing the component in the housing hole and filling the gap between the housing hole and the component.

特許文献2の技術では、コア裏面にて開口する収容穴部のあるコア基板と、部品裏面上に複数の突設導体がある部品があり、少なくとも部品裏面を樹脂被覆層が覆い、かつ部品の突起導体表面を覆わない。コア裏面と部品裏面とを同じ側に向けた状態で、収容穴部内に部品を収容する。収容後、収容穴部の内壁面と部品側面を樹脂で埋め、部品を固定する。複数の突設導体の頂部の表面と、コア裏面上に形成された導体層の表面を、研磨することで同じ高さに合わせる。   In the technology of Patent Document 2, there is a core substrate having a receiving hole portion opened on the back surface of the core, and a component having a plurality of protruding conductors on the component back surface, and at least the component back surface is covered with a resin coating layer, Do not cover the protruding conductor surface. The component is accommodated in the accommodating hole with the core back surface and the component back surface facing the same side. After the housing, the inner wall surface of the housing hole and the side surface of the component are filled with resin, and the component is fixed. The top surface of the plurality of projecting conductors and the surface of the conductor layer formed on the back surface of the core are ground to the same height.

特開2008−270776号公報JP 2008-270776 A 特開2008−306173号公報JP 2008-306173 A

特許文献1の部品内蔵印刷配線板の技術には以下の問題があった。   The technique of the printed wiring board with built-in components of Patent Document 1 has the following problems.

(問題点1)部品裏面は樹脂被覆層で覆われておらず、部品裏面側電極端子が酸化する問題があった。特に部品電極端子が銅の部品で、顕著に電極端子の酸化が発生する。部品電極端子が酸化した場合、部品内蔵時に部品周囲の樹脂等との密着が不十分なため、積層剥離の起点になるなど、部品内蔵印刷配線板として不良になる問題があった。   (Problem 1) The back surface of the component is not covered with the resin coating layer, and there is a problem that the electrode terminal on the back surface side of the component is oxidized. In particular, when the component electrode terminal is a copper component, the electrode terminal is significantly oxidized. When the component electrode terminal is oxidized, there is a problem that it becomes defective as a printed wiring board with a built-in component such as a starting point of delamination due to insufficient adhesion with resin around the component when the component is built in.

(問題点2)絶縁被覆層の厚さは、200μm以上800μm以下で、一般的に内蔵に用いる0603チップ部品、0402チップ部品の寸法と比較してかなり厚く、絶縁被覆層があることで、チップ部品寸法が更に大幅に大きくなる。そのため、絶縁被覆層のない通常のチップ部品内蔵の場合とは、収容穴部の寸法などの内蔵するための諸条件を変更し
なければならない問題があった。部品寸法が大きくなると、寸法ばらつきも大きくなるため、内蔵時の位置決め精度が悪くなり、部品内蔵印刷配線板の製造歩留まりが悪化する問題があった。
(Problem 2) The thickness of the insulating coating layer is 200 μm or more and 800 μm or less, and is considerably thicker than the dimensions of the 0603 chip component and 0402 chip component generally used for internal use. The part dimensions are further greatly increased. For this reason, there is a problem in that various conditions for incorporation, such as the dimensions of the accommodation hole, must be changed from the case of incorporating a normal chip component without an insulating coating layer. When the component size is increased, the dimensional variation also increases, so that the positioning accuracy at the time of built-in deteriorates, and the manufacturing yield of the component built-in printed wiring board deteriorates.

特許文献2の部品内蔵印刷配線板の技術には以下の問題があった。すなわち、特許文献1と同じく、部品裏面は樹脂被覆層で覆われておらず、部品裏面側電極端子が酸化する問題があった。特に部品電極端子が銅の部品で、顕著に電極端子の酸化が発生する。部品電極端子が酸化した場合、部品内蔵時に部品周囲の樹脂等との密着が不十分なため、積層剥離の起点になるなど、部品内蔵印刷配線板として不良になる問題があった。   The technology of the printed wiring board with a built-in component disclosed in Patent Document 2 has the following problems. That is, similarly to Patent Document 1, there is a problem that the back surface of the component is not covered with the resin coating layer, and the electrode terminal on the back surface side of the component is oxidized. In particular, when the component electrode terminal is a copper component, the electrode terminal is significantly oxidized. When the component electrode terminal is oxidized, there is a problem that it becomes defective as a printed wiring board with a built-in component such as a starting point of delamination due to insufficient adhesion with resin around the component when the component is built in.

本発明は上記問題に鑑み考案されたもので、製造コストを上昇させずに、優れた量産性を有し、且つ、チップ部品と部品周囲の樹脂等との密着を確保し、高い長期信頼性を有する部品内蔵印刷配線板を得ることを課題とする。   The present invention was devised in view of the above problems, has an excellent mass productivity without increasing the manufacturing cost, and ensures close contact between the chip component and the resin around the component, and has high long-term reliability. It is an object to obtain a component built-in printed wiring board having the following.

本発明は、上記課題を解決するために、電極端子の表面が銅で形成され、前記電極端子が樹脂で被覆されていることを特徴とする印刷配線板内蔵用電子部品である。   In order to solve the above-mentioned problems, the present invention is an electronic component with a built-in printed wiring board, wherein the surface of the electrode terminal is made of copper and the electrode terminal is covered with a resin.

また、本発明は、上記の印刷配線板内蔵用電子部品であって、前記電極端子が、厚さが1μm以上で30μm以下の樹脂で被覆されていることを特徴とする印刷配線板内蔵用電子部品である。   The present invention is also the above-described printed wiring board built-in electronic component, wherein the electrode terminal is coated with a resin having a thickness of 1 μm or more and 30 μm or less. It is a part.

また、本発明は、上記の印刷配線板内蔵用電子部品であって、前記電極端子の表面が、平均粗さRaが180nm以上400nm以下で粗化されていることを特徴とする印刷配線板内蔵用電子部品である。   Further, the present invention is the above-described electronic component for incorporating a printed wiring board, wherein the surface of the electrode terminal is roughened with an average roughness Ra of 180 nm or more and 400 nm or less. Electronic parts.

また、本発明は、電極端子の表面が銅で形成され、前記電極端子が厚さが1μm以上で30μm以下の樹脂で被覆された印刷配線板内蔵用電子部品を製造する工程と、ガラス材入り有機樹脂基板に空孔を形成し、該空孔の四隅を前記印刷配線板内蔵用電子部品の4つの角から間隙を開けて形成し、該空孔の四辺部分を該空孔内に前記印刷配線板内蔵用電子部品の寸法より狭い間隙になるよう内側に突出させた形に形成する工程と、前記印刷配線板内蔵用電子部品を前記空孔の四辺部分の内側に突出させた壁面に摩擦させて挿入することで、前記四辺部分と前記印刷配線板内蔵用電子部品を被覆する前記樹脂の外形面とを密着させて前記印刷配線板内蔵用電子部品を保持する工程を有することを特徴とする部品内蔵印刷配線板の製造方法である。   In addition, the present invention provides a process for manufacturing an electronic component with a built-in printed wiring board in which a surface of an electrode terminal is formed of copper and the electrode terminal is coated with a resin having a thickness of 1 μm or more and 30 μm or less; Holes are formed in the organic resin substrate, and the four corners of the holes are formed with gaps from the four corners of the printed circuit board built-in electronic component, and the four sides of the holes are printed in the holes. A process of forming the printed circuit board built-in electronic component in a shape that protrudes inward so that the gap is narrower than the size of the electronic component built in the wiring board, and friction on the wall surface projecting inside the four sides of the hole A step of holding the printed wiring board built-in electronic component by bringing the four sides into close contact with the outer surface of the resin covering the printed wiring board built-in electronic component. This is a method of manufacturing a component-embedded printed wiring board.

また、本発明は、上記の部品内蔵印刷配線板の製造方法であって、前記印刷配線板内蔵用電子部品を保持する工程の後に、前記ガラス材入り有機樹脂基板と前記印刷配線板内蔵用電子部品を上下から層間絶縁樹脂層で覆う工程と、レーザ穴あけにより、前記層間絶縁樹脂層及び前記印刷配線板内蔵用電子部品を被覆した前記樹脂とを貫通して前記電極端子に達する穴を形成し該穴に金属めっきすることで部品電極接続バイアホールを形成する工程を有することを特徴とする部品内蔵印刷配線板の製造方法である。   Further, the present invention is a method of manufacturing the above-described component built-in printed wiring board, wherein after the step of holding the printed wiring board built-in electronic component, the glass-filled organic resin substrate and the printed wiring board built-in electronic A step of covering the component with an interlayer insulating resin layer from above and below and forming a hole reaching the electrode terminal through the interlayer insulating resin layer and the resin covering the printed wiring board built-in electronic component by laser drilling. A method of manufacturing a component built-in printed wiring board, comprising: forming a component electrode connection via hole by metal plating in the hole.

また、本発明は、上記の部品内蔵印刷配線板の製造方法であって、前記電極端子の表面を、湿式バレル研磨を行うことで、平均粗さRaが180nm以上400nm以下の平均粗さで粗化する工程を有することを特徴とする部品内蔵印刷配線板の製造方法である。   Further, the present invention is a method for manufacturing the above-described component built-in printed wiring board, wherein the surface of the electrode terminal is subjected to wet barrel polishing so that the average roughness Ra is 180 nm or more and 400 nm or less. It is the manufacturing method of the component built-in printed wiring board characterized by having a process to convert.

本発明の部品内蔵印刷配線板10の製造方法では、チップサイズが小さな0603サイズのチップ部品や0402サイズのチップ部品であっても、そのチップ部品の電極端子5
1とそれ以外の表面の全面に樹脂52を被覆した印刷配線板内蔵用電子部品50を製造する。そして、部品内蔵印刷配線板10に、空孔31を、空孔31の四辺部分31bを空孔31内へ円弧状または円弧に類似した形に突出させた形に空孔31を形成し、その空孔31内への円弧状または円弧に類似した形の突出部分の間隙を印刷配線板内蔵用電子部品50の寸法より狭く形成する。
In the manufacturing method of the component built-in printed wiring board 10 of the present invention, even if the chip size is a 0603 size chip component or a 0402 size chip component, the electrode terminal 5 of the chip component is used.
The printed wiring board built-in electronic component 50 in which the entire surface of 1 and other surfaces is coated with the resin 52 is manufactured. Then, the holes 31 are formed in the component-embedded printed wiring board 10 in such a manner that the holes 31 and the four side portions 31b of the holes 31 protrude into the holes 31 in an arc shape or a shape similar to an arc, The gap of the protruding portion having a circular arc shape similar to the circular arc into the air hole 31 is formed to be narrower than the dimension of the electronic component 50 for incorporating the printed wiring board.

それにより、印刷配線板内蔵用電子部品50を、部品内蔵印刷配線板10の空孔31に挿入する際に、空孔31内の四辺部分31bの側壁面と印刷配線板内蔵用電子部品50の樹脂52を摩擦させて、印刷配線板内蔵用電子部品50に被覆された樹脂52の一部と、空孔31内の四辺部分31bの側壁面の材料の一部を削り取らせ、削られた樹脂52の形と削られた四辺部分31bの形とが平行に密着させる。それにより、その密着面で、印刷配線板内蔵用電子部品50が、部品内蔵印刷配線板10の空孔31内の四辺部分31bの側壁面で強固に保持される効果がある。   As a result, when the electronic component 50 with a built-in printed wiring board is inserted into the hole 31 of the printed wiring board 10 with a built-in component, the side wall surfaces of the four side portions 31b in the hole 31 and the electronic component 50 with a built-in printed wiring board. By rubbing the resin 52, a part of the resin 52 covered with the printed wiring board built-in electronic component 50 and a part of the material of the side wall surface of the four side portion 31 b in the hole 31 are scraped off. The shape of 52 and the shape of the cut four-sided portion 31b are brought into close contact in parallel. Accordingly, there is an effect that the printed wiring board built-in electronic component 50 is firmly held by the side wall surfaces of the four side portions 31b in the air holes 31 of the component built-in printed wiring board 10 at the contact surface.

また、印刷配線板内蔵用電子部品50の特に電極端子51が既に樹脂52が被覆されているので、印刷配線板内蔵用電子部品50と部品内蔵印刷配線板10の空孔31の間の空間に充填する充填樹脂との親和性が高く完全に密着し充填できる効果がある。これにより、隙間を無くし、高い長期信頼性を有する部品内蔵印刷配線板10を得られる効果がある。   In addition, since the electrode terminal 51 of the printed wiring board built-in electronic component 50 is already covered with the resin 52, the space between the printed wiring board built-in electronic component 50 and the hole 31 of the component built-in printed wiring board 10 is provided. Affinity with the filling resin to be filled is high, and there is an effect that it can be completely adhered and filled. As a result, there is an effect of eliminating the gap and obtaining the component built-in printed wiring board 10 having high long-term reliability.

このように、本発明により、部品内蔵印刷配線板10の空孔31に埋め込んで用いる専用の印刷配線板内蔵用電子部品50が、その電極端子51を1μm以上30μm以下の適度な厚さの硬化した樹脂52で被覆して保護することで、電極端子51の酸化を長期にわたって防止できる効果がある。   As described above, according to the present invention, the dedicated printed wiring board built-in electronic component 50 used by being embedded in the hole 31 of the component built-in printed wiring board 10 has its electrode terminal 51 cured to an appropriate thickness of 1 μm to 30 μm. By covering and protecting with the resin 52, the oxidation of the electrode terminal 51 can be prevented over a long period of time.

また、1μm以上30μm以下の適度な厚さの硬化した樹脂52で被覆した印刷配線板内蔵用電子部品50としたことで、印刷配線板内蔵用電子部品50が一般的に内蔵に用いる小さな0603サイズのチップ部品や0402サイズのチップ部品であっても部品の寸法に比べて十分に薄い。そのため、絶縁被覆層のない通常のチップ部品内蔵における収容穴部の寸法などの内蔵するための諸条件を変更する必要が無く、部品内蔵印刷配線板10の量産性が高くできる印刷配線板内蔵用電子部品50が得られる効果がある。   In addition, since the printed wiring board built-in electronic component 50 is coated with a cured resin 52 having an appropriate thickness of 1 μm or more and 30 μm or less, the printed wiring board built-in electronic component 50 is generally used in a small 0603 size. Even a chip part of 0402 size or a chip part of 0402 size is sufficiently thinner than the dimensions of the part. Therefore, it is not necessary to change various conditions for incorporation, such as the dimensions of the accommodation hole portion in the normal chip component built-in without an insulating coating layer, and the built-in printed circuit board 10 that can increase the mass productivity of the component built-in printed wiring board 10 There is an effect that the electronic component 50 is obtained.

本発明の第1の実施形態の印刷配線板内蔵用電子部品の製造方法を説明する側断面図である。It is a sectional side view explaining the manufacturing method of the electronic component for built-in printed wiring boards of the 1st Embodiment of this invention. 本発明の第1の実施形態の部品内蔵印刷配線板の製造方法を説明する側断面図である(その1)。It is a sectional side view explaining the manufacturing method of the component built-in printed wiring board of the 1st Embodiment of this invention (the 1). 本発明の第1の実施形態の部品内蔵印刷配線板の製造方法を説明する側断面図である(その2)。It is a sectional side view explaining the manufacturing method of the component built-in printed wiring board of the 1st Embodiment of this invention (the 2). (j)本発明の第1の実施形態の部品内蔵印刷配線板に形成した空孔を示す平面図である。(k)部品内蔵印刷配線板に形成した空孔の側断面図である。(J) It is a top view which shows the void | hole formed in the component built-in printed wiring board of the 1st Embodiment of this invention. (K) It is a sectional side view of the void | hole formed in the component built-in printed wiring board. 本発明の第1の実施形態の部品内蔵印刷配線板の製造方法を説明する側断面図である(その3)。It is a sectional side view explaining the manufacturing method of the component built-in printed wiring board of the 1st Embodiment of this invention (the 3). 本発明の第1の実施形態の部品内蔵印刷配線板の製造方法を説明する側断面図である(その4)。It is a sectional side view explaining the manufacturing method of the component built-in printed wiring board of the 1st Embodiment of this invention (the 4). (a)本発明の第1の実施形態の部品内蔵印刷配線板の平面の断面図である。(b)本発明の第1の実施形態の部品内蔵印刷配線板の側断面図である。(A) It is sectional drawing of the plane of the component built-in printed wiring board of the 1st Embodiment of this invention. (B) It is side sectional drawing of the component built-in printed wiring board of the 1st Embodiment of this invention. 本発明の第2の実施形態の部品内蔵印刷配線板の製造方法を説明する側断面図である(その1)。It is a sectional side view explaining the manufacturing method of the component built-in printed wiring board of the 2nd Embodiment of this invention (the 1). 本発明の第2の実施形態の部品内蔵印刷配線板の製造方法を説明する側断面図である(その2)。It is a sectional side view explaining the manufacturing method of the component built-in printed wiring board of the 2nd Embodiment of this invention (the 2). 本発明の第2の実施形態の部品内蔵印刷配線板の製造方法を説明する側断面図である(その2)。It is a sectional side view explaining the manufacturing method of the component built-in printed wiring board of the 2nd Embodiment of this invention (the 2). (m)本発明の第2の実施形態の部品内蔵印刷配線板の側断面図である。(n)本発明の第2の実施形態の部品内蔵印刷配線板の平面の断面図である。(M) It is a sectional side view of the component built-in printed wiring board of the 2nd Embodiment of this invention. (N) It is sectional drawing of the plane of the component built-in printed wiring board of the 2nd Embodiment of this invention.

以下、本発明の実施形態について、図面を参照して説明する。
<第1の実施形態>
本実施形態では、図1に示すように、印刷配線板の製造に先立ち、印刷配線板内蔵用電子部品50を製造する。以下では先ず、図1の側断面図を参照して印刷配線板内蔵用電子部品50の製造方法を説明する。印刷配線板内蔵用電子部品50は、例えばチップサイズが0603サイズ(縦0.6mm、横0.3mm、高さ0.6mm等のサイズ)のチップコンデンサ等のチップ部品で、図1(a)の側断面図のように、銅の電極端子51を有するチップ部品から以下の様に製造する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
In the present embodiment, as shown in FIG. 1, the printed wiring board built-in electronic component 50 is manufactured prior to manufacturing the printed wiring board. In the following, first, a method for manufacturing the electronic component 50 with a built-in printed wiring board will be described with reference to the side sectional view of FIG. The printed wiring board built-in electronic component 50 is a chip component such as a chip capacitor having a chip size of 0603 (length 0.6 mm, width 0.3 mm, height 0.6 mm, etc.), for example, as shown in FIG. As shown in the sectional side view of FIG. 1, the chip parts having the copper electrode terminals 51 are manufactured as follows.

(印刷配線板内蔵用電子部品の製造方法)
先ず、図1(b)の側断面図のように、印刷配線板内蔵用電子部品50の銅の電極端子51の表面を粗化処理する。粗化処理は、電極端子51の表面の平均粗さを適切な値に制御するために、湿式バレル研磨を行うことが望ましい。それにより形成する粗化表面の粗度は、JIS B0601に規定される平均粗さRaで180nm以上400nm以下に形成することが望ましい。平均粗さRaが180nmより小さいと電極端子51と樹脂52との密着力が弱くなる。また、平均粗さRaが400nmより大きくなると、樹脂52が気泡を噛み込み、電極端子51を樹脂52で満遍なく覆えなくなるためである。
(Manufacturing method of electronic components for embedded printed wiring boards)
First, as shown in the sectional side view of FIG. 1B, the surface of the copper electrode terminal 51 of the printed wiring board built-in electronic component 50 is roughened. In the roughening treatment, wet barrel polishing is desirably performed in order to control the average roughness of the surface of the electrode terminal 51 to an appropriate value. As a result, the roughness of the roughened surface formed is desirably 180 nm or more and 400 nm or less with an average roughness Ra specified in JIS B0601. When the average roughness Ra is smaller than 180 nm, the adhesion between the electrode terminal 51 and the resin 52 becomes weak. Further, when the average roughness Ra is larger than 400 nm, the resin 52 bites the bubbles, and the electrode terminals 51 cannot be covered evenly with the resin 52.

その他の粗化処理として、電極端子51の材料の銅の酸化還元処理による黒化処理を用いることもできる。あるいは、希硫酸と過酸化水素混合溶液によるソフトエッチング処理などの化学的粗化処理を用いることもできる。   As another roughening treatment, a blackening treatment by a copper oxidation-reduction treatment of the material of the electrode terminal 51 can be used. Alternatively, a chemical roughening process such as a soft etching process using a mixed solution of dilute sulfuric acid and hydrogen peroxide can be used.

あるいは、銅の電極端子51の表面を物理的な粗化処理せずに、銅の電極端子51と、その上に形成する樹脂52との密着性を化学的に向上させるイミダゾール銅(II)錯体、グリコール酸、塩化カリウムからなる処理液であるメック社製メックエッチボンドなどを用いることが可能である。   Alternatively, an imidazole copper (II) complex that chemically improves the adhesion between the copper electrode terminal 51 and the resin 52 formed thereon without physically roughening the surface of the copper electrode terminal 51. Further, it is possible to use MEC etch bond manufactured by MEC, which is a treatment liquid composed of glycolic acid and potassium chloride.

次に、図1(c)のように、印刷配線板内蔵用電子部品50を、その電極端子51と、それ以外の部品本体部分50bとの全体を樹脂52で被覆する。被覆に用いる樹脂52は、熱硬化性樹脂や紫外線硬化型樹脂を用い、特に、エポキシ樹脂及びエポキシ樹脂と他の樹脂の混合物の樹脂52が望ましい。樹脂52のその他の材料としては、アクリル樹脂、ポリイミド樹脂、PPE樹脂を主成分とする樹脂52を用いることができる。また、樹脂52には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどのフィラーを混合させても良い。   Next, as shown in FIG. 1C, the printed wiring board built-in electronic component 50 is covered with a resin 52 on the entire electrode terminals 51 and other component main body portions 50 b. As the resin 52 used for coating, a thermosetting resin or an ultraviolet curable resin is used, and in particular, a resin 52 which is an epoxy resin and a mixture of an epoxy resin and another resin is desirable. As another material of the resin 52, a resin 52 mainly composed of an acrylic resin, a polyimide resin, or a PPE resin can be used. Further, the resin 52 may be mixed with a filler such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide.

印刷配線板内蔵用電子部品50に樹脂52を被覆する方法は、印刷配線板内蔵用電子部品50に対し塗布またはスプレーなどの方法で実施する。その際に、樹脂52が硬化する際の膨張・収縮により生じる応力によって印刷配線板内蔵用電子部品50を破壊しないように、軟質の樹脂52で被覆することが望ましい。樹脂52を塗布またはスプレーなどにより被覆した後は、熱硬化性樹脂であれば高温槽で硬化させ、紫外線硬化型樹脂であれば紫外線照射後、更に高温槽で硬化させる。   The method of coating the printed wiring board built-in electronic component 50 with the resin 52 is performed by coating or spraying the printed wiring board built-in electronic component 50. At this time, it is desirable to cover the printed wiring board built-in electronic component 50 with a soft resin 52 so that the stress generated by expansion and contraction when the resin 52 is cured is not destroyed. After coating the resin 52 by coating or spraying, if it is a thermosetting resin, it is cured in a high temperature bath, and if it is an ultraviolet curable resin, it is further cured in a high temperature bath after irradiation with ultraviolet rays.

樹脂52を被覆する厚さは、1μm以上で30μm以下の厚さで被覆することが望まし
い。樹脂52の厚さを30μmよりも厚くすると、樹脂52の厚さによって内蔵用電子部品50が厚くなり、それを埋め込んだ部分の部品内蔵印刷配線板10の厚さが厚くなる問題が生じる。樹脂52の厚さが1μmよりも小さいと、電極端子51の酸化保護膜としての機能は十分だが、樹脂52にピンホール発生時に電極端子51を満遍なく覆えなくなり、結果的に電極端子51の酸化を防ぐことができなくなる問題がある。
The thickness of the resin 52 is preferably 1 μm or more and 30 μm or less. If the thickness of the resin 52 is greater than 30 μm, the built-in electronic component 50 becomes thicker due to the thickness of the resin 52, and there is a problem that the thickness of the embedded component printed wiring board 10 is increased. If the thickness of the resin 52 is less than 1 μm, the function of the electrode terminal 51 as an oxidation protection film is sufficient, but the resin terminal 52 cannot be covered evenly when a pinhole occurs in the resin 52, and as a result, the electrode terminal 51 is oxidized. There is a problem that cannot be prevented.

本実施形態は、印刷配線板内蔵用電子部品50の電極端子51の全面を樹脂52で覆ったため、部品の電極端子51の酸化を防止できる効果がある。それにより、部品内蔵時に部品周囲の樹脂等との密着力を強く維持できる効果があり、印刷配線板内蔵用電子部品50の電極端子51から積層剥離を起こすことを少なくできる効果がある。   In this embodiment, since the entire surface of the electrode terminal 51 of the printed wiring board built-in electronic component 50 is covered with the resin 52, the oxidation of the electrode terminal 51 of the component can be prevented. Accordingly, there is an effect that it is possible to strongly maintain the adhesive force with the resin around the component when the component is embedded, and it is possible to reduce the occurrence of delamination from the electrode terminal 51 of the electronic component 50 for embedded printed wiring board.

本実施形態は、印刷配線板内蔵用電子部品50の電極端子51の全面を覆う樹脂52の厚さを30μm以下にすることで、一般的に内蔵に用いる0603チップ部品、0402チップ部品の寸法に比べても十分に薄い。そのため、絶縁被覆層のない通常のチップ部品内蔵における収容穴部の寸法などの内蔵するための諸条件を変更する必要が無いので、部品内蔵印刷配線板10の量産性が高い効果がある。   In the present embodiment, the thickness of the resin 52 covering the entire surface of the electrode terminal 51 of the printed wiring board built-in electronic component 50 is set to 30 μm or less, so that the dimensions of the 0603 chip component and 0402 chip component generally used for the built-in are reduced. Compared to thin enough. For this reason, it is not necessary to change various conditions for incorporation, such as the dimensions of the receiving hole in the case of incorporating a normal chip component without an insulating coating layer, and therefore the mass productivity of the component built-in printed wiring board 10 is high.

(部品内蔵印刷配線板の製造方法)
以下で、図2から図6を参照して、本発明の第1の実施形態の部品内蔵印刷配線板10の製造方法を説明する。
(Manufacturing method of printed wiring board with built-in components)
Below, with reference to FIGS. 2-6, the manufacturing method of the component built-in printed wiring board 10 of the 1st Embodiment of this invention is demonstrated.

(内層配線板の製造方法)
先ず、部品内蔵印刷配線板10を構成するガラス材入り有機樹脂コア基板30の製造方法を説明する。
(Inner layer wiring board manufacturing method)
First, the manufacturing method of the organic resin core board | substrate 30 containing a glass material which comprises the component built-in printed wiring board 10 is demonstrated.

(工程1)
図2(a)のように、空孔31を形成する素材として、ガラス繊維あるいはガラスフィラー入りのエポキシ樹脂又はポリイミド樹脂等のガラス材入り有機樹脂基板1の両面に薄銅箔2aを有する両面銅張基板2を準備する。
(Process 1)
As shown in FIG. 2A, double-sided copper having thin copper foils 2a on both sides of glass fiber or organic resin substrate 1 containing glass material such as epoxy resin or polyimide resin containing glass filler as a material for forming air holes 31. A tension substrate 2 is prepared.

有機樹脂基板1として、更に以下を使用できる。ガラス繊維入りビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)材、ガラス繊維入りPPE樹脂材が使用できる。   The following can be further used as the organic resin substrate 1. A glass fiber-containing bismaleimide-triazine resin (hereinafter referred to as BT resin) material and a glass fiber-containing PPE resin material can be used.

この補強材としては、ガラス繊維に替えて以下を使用できる。アラミド不織布、アラミド繊維、ポリエステル繊維が使用できる。   As the reinforcing material, the following can be used instead of glass fiber. Aramid nonwoven fabric, aramid fiber, and polyester fiber can be used.

(工程2)
次に、図2(b)のように、炭酸ガスレーザやUV−YAGレーザなどのレーザ穴あけ装置を用いて穴あけ用レーザ光を照射することで、両面銅張基板2の一方の表面に、薄銅箔2aを貫通してガラス材入り有機樹脂基板1に直径が80μmの開口をあけ、他方の側の表面の開口がそれより約30μm程度小さい直径50μmの円錐台状の壁面を有するインナーバイアホール用貫通孔3aを穿孔する。
(Process 2)
Next, as shown in FIG. 2B, thin copper is applied to one surface of the double-sided copper-clad substrate 2 by irradiating laser light for drilling using a laser drilling device such as a carbon dioxide laser or UV-YAG laser. For an inner via hole having an opening with a diameter of 80 μm in the glass-filled organic resin substrate 1 penetrating the foil 2a and having a frustoconical wall with a diameter of 50 μm, the opening on the other side being about 30 μm smaller than the opening. The through hole 3a is drilled.

(工程3)
次に、両面銅張基板2の全面に触媒核を付与し、更に、無電解銅めっき浴に浸漬することで、厚さ0.1μmから数μmの無電解銅めっき皮膜を形成する。次に、図2(c)のように、平滑剤を添加した電解銅めっき液を用い、めっき浴を良く攪拌して、両面銅張基板2の両面における銅めっき浴の流動速度を速くして電解銅めっきする。それにより、平滑剤は、両面銅張基板2の両面への銅めっき層の成長を抑制する一方、インナーバイアホール用貫通孔3aを埋める電解銅めっきの層の成長が抑制されない。そのため、インナーバイアホール用貫通孔3aを電解銅めっきで充填したインナーバイアホール3が形成される一方、両面銅張基板2の第1の両面に形成される銅めっき層の厚さを、インナーバイアホール用貫通孔3aの半径よりも薄く形成することができる。
(Process 3)
Next, catalyst nuclei are imparted to the entire surface of the double-sided copper-clad substrate 2 and further immersed in an electroless copper plating bath to form an electroless copper plating film having a thickness of 0.1 μm to several μm. Next, as shown in FIG. 2 (c), using an electrolytic copper plating solution to which a smoothing agent is added, the plating bath is well stirred, and the flow rate of the copper plating bath on both sides of the double-sided copper-clad substrate 2 is increased. Electrolytic copper plating. Thereby, the smoothing agent suppresses the growth of the copper plating layer on both surfaces of the double-sided copper-clad substrate 2, while the growth of the electrolytic copper plating layer filling the through hole 3a for the inner via hole is not suppressed. Therefore, the inner via hole 3 is formed by filling the inner via hole through hole 3a with electrolytic copper plating, while the thickness of the copper plating layer formed on the first both surfaces of the double-sided copper-clad substrate 2 is set to the inner via hole 3a. It can be formed thinner than the radius of the hole through hole 3a.

以上の処理により、インナーバイアホール用貫通孔3aを銅めっきで埋め込んだインナーバイアホール3を形成し、両面銅張基板2の両面にインナーバイアホール用貫通孔3aの半径の4割の厚さの約16μmの厚さの銅めっき層を形成する。   By the above processing, the inner via hole 3 is formed by embedding the inner via hole through hole 3a with copper plating, and the both sides of the double-sided copper-clad board 2 are 40% thicker than the radius of the inner via hole through hole 3a. A copper plating layer having a thickness of about 16 μm is formed.

(工程4)
次に、図2(d)のように、両面銅張基板2の銅めっき層に感光性レジスト、例えばドライフィルムのエッチングレジストをロールラミネートで貼り付け、露光・現像し回路パターン以外の部分を露出させる。露出した部分の銅を、エッチングで除去する。エッチング液として、塩化第二鉄水溶液などが使用できる。ドライフィルムのエッチングレジストを剥離し、インナーバイアホール3のランドと配線パターン(図示せず)を形成する。
(Process 4)
Next, as shown in FIG. 2D, a photosensitive resist, for example, a dry film etching resist is attached to the copper plating layer of the double-sided copper-clad substrate 2 by roll lamination, and exposed and developed to expose portions other than the circuit pattern. Let The exposed portion of copper is removed by etching. An aqueous ferric chloride solution or the like can be used as an etching solution. The etching resist of the dry film is peeled off, and the land of the inner via hole 3 and a wiring pattern (not shown) are formed.

次にインナーバイアホール3のランドと配線パターン表面に粗化処理を行う。粗化処理としては、銅の酸化還元処理による黒化処理、もしくは、希硫酸と過酸化水素混合溶液によるソフトエッチング処理などの化学的粗化処理あるいは機械的粗化処理を行う。   Next, a roughening process is performed on the land of the inner via hole 3 and the surface of the wiring pattern. As the roughening treatment, a chemical roughening treatment or a mechanical roughening treatment such as a blackening treatment by oxidation-reduction treatment of copper or a soft etching treatment using a mixed solution of dilute sulfuric acid and hydrogen peroxide is performed.

(工程5)
次に、図2(e)のように、その基板の両面に、ガラス繊維又はガラスフィラー入りの、半硬化エポキシ樹脂又はポリイミド樹脂などのプリプレグ21と、その外側に薄銅箔22を積層し、加熱・加圧してプリプレグ21を硬化させて硬化樹脂層21aを形成し、図3(f)のようなガラス材入り有機樹脂コア基板30を製造する。このガラス材入り有機樹脂コア基板30の板厚は、その中に内蔵する最も厚い印刷配線板内蔵用電子部品50の厚さと同等か、あるいは、それ以上の板厚に形成する。
(Process 5)
Next, as shown in FIG. 2 (e), a prepreg 21 such as a semi-cured epoxy resin or a polyimide resin containing glass fiber or glass filler is laminated on both sides of the substrate, and a thin copper foil 22 is laminated on the outside thereof. The prepreg 21 is cured by heating and pressing to form a cured resin layer 21a, and an organic resin core substrate 30 with a glass material as shown in FIG. The thickness of the glass resin-containing organic resin core substrate 30 is equal to or greater than the thickness of the thickest printed wiring board built-in electronic component 50 built therein.

更に、プリプレグとして以下を使用できる。ガラス繊維入りビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)材、ガラス繊維入りPPE樹脂材。
この補強材としては、ガラス繊維に替えて以下を使用できる。アラミド不織布、アラミド繊維、ポリエステル繊維が使用できる。
Furthermore, the following can be used as a prepreg. Glass fiber-containing bismaleimide-triazine resin (hereinafter referred to as BT resin) material, glass fiber-containing PPE resin material.
As the reinforcing material, the following can be used instead of glass fiber. Aramid nonwoven fabric, aramid fiber, and polyester fiber can be used.

層間絶縁層の樹脂材料として、以下などの有機樹脂を使用することができる。また、これらの樹脂単独でも、複数樹脂を混合しあるいは化合物を作成するなどの樹脂の組み合わせも使用できる。エポキシ樹脂、BT樹脂、ポリイミド、PPE、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、PPS樹脂、PPO樹脂が使用できる。   The following organic resins can be used as the resin material for the interlayer insulating layer. In addition, these resins can be used alone, or a combination of resins such as mixing a plurality of resins or preparing a compound can be used. Epoxy resin, BT resin, polyimide, PPE, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester resin, melamine resin, urea resin, PPS resin, and PPO resin can be used.

樹脂に充填材を添加したものも使用できる。充填材としては、以下の無機充填材が使用できる。シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタン。無機充填材に替えて、以下の有機充填材を使用しても良いし、有機無機混合充填材としても良い。フェノール樹脂、ポリメタクリル酸重合体が使用できる。   What added the filler to resin can also be used. As the filler, the following inorganic fillers can be used. Silica, barium sulfate, talc, clay, glass, calcium carbonate, titanium oxide. Instead of the inorganic filler, the following organic filler may be used, or an organic-inorganic mixed filler may be used. A phenol resin or a polymethacrylic acid polymer can be used.

(工程6)
次に、図3(g)のように、レーザ穴あけ装置を用いて穴あけ用レーザ光をそのガラス材入り有機樹脂コア基板30の表面からインナーバイアホール3めがけて照射して、薄銅箔22と、硬化樹脂層21aとを貫通してインナーバイアホール3に達するバイアホール用穴23aを形成する。そのバイアホール用穴23aの直径は、50μm〜150μm程度に形成する。
(Step 6)
Next, as shown in FIG. 3G, a laser drilling device is used to irradiate a laser beam for drilling toward the inner via hole 3 from the surface of the organic resin core substrate 30 containing the glass material. Then, a via hole 23a that penetrates through the cured resin layer 21a and reaches the inner via hole 3 is formed. The via hole 23a has a diameter of about 50 μm to 150 μm.

(工程7)
次に、その基板をデスミア液に浸漬することで、バイアホール用穴23aのデスミア処理を行う。このデスミア処理は、強アルカリにより樹脂を膨潤させ、その後、クロム酸、過マンガン酸塩水溶液などの酸化剤を使用して樹脂を分解除去する。また研磨材によるウェットブラスト処理やプラズマ処理にて除去しても良い。次に、無電解銅めっき液に基板を浸漬し、そのバイアホール用穴23aの壁面に無電解銅めっき皮膜を形成する。
(Step 7)
Next, the substrate is immersed in a desmear solution to perform a desmear process on the via hole 23a. In the desmear treatment, the resin is swollen with a strong alkali, and then the resin is decomposed and removed using an oxidizing agent such as chromic acid or a permanganate aqueous solution. Further, it may be removed by wet blasting or plasma treatment with an abrasive. Next, the substrate is immersed in an electroless copper plating solution, and an electroless copper plating film is formed on the wall surface of the via hole 23a.

(工程8)
次に、図3(h)のように、その基板の下地の薄銅箔22に電解銅めっき装置の陰極を接続して、基板を電解銅めっき浴に浸漬し基板の全面に電解銅めっきするパネルめっき処理を行う。それにより、基板のバイアホール用穴23aを銅めっきで柱状に充填してブラインドバイアホール23を形成する。
(Process 8)
Next, as shown in FIG. 3 (h), the cathode of the electrolytic copper plating apparatus is connected to the thin copper foil 22 underlying the substrate, and the substrate is immersed in an electrolytic copper plating bath and electrolytic copper plating is performed on the entire surface of the substrate. Perform panel plating. Thereby, the via hole 23a of the substrate is filled in a columnar shape by copper plating to form the blind via hole 23.

(工程9)
次に、図3(i)のように、エッチングレジストパターンで基板の表面の銅めっき層を保護する。例えばドライフィルムの感光性エッチングレジストをロールラミネートで貼り付け、露光・現像し回路パターン以外の部分を露出させる。露出した部分の銅を、エッチングで除去する。エッチング液として、塩化第二鉄水溶液などが使用できる。ドライフィルムのエッチングレジストを剥離する。それにより、硬化樹脂層21a中の柱状のブラインドバイアホール23の表面にランド23bを形成し、また、その他の配線パターンを形成する。
(Step 9)
Next, as shown in FIG. 3I, the copper plating layer on the surface of the substrate is protected with an etching resist pattern. For example, a photosensitive film etching resist for dry film is attached by roll lamination, and exposed and developed to expose portions other than the circuit pattern. The exposed portion of copper is removed by etching. An aqueous ferric chloride solution or the like can be used as an etching solution. Strip the dry film etching resist. Thereby, lands 23b are formed on the surfaces of the columnar blind via holes 23 in the cured resin layer 21a, and other wiring patterns are formed.

特に、基板の下面側の配線パターンは、印刷配線板内蔵用電子部品50の電極端子51が設置される位置に直径が30μmから60μmのランド開口穴23dを有する部品支持ランド23cのパターンを形成する。このランド開口穴23dの径は、後の工程13におけるレーザ穴あけ加工の際に、そのレーザ穴あけによって、ランド開口穴23dの周囲の部品支持ランド23cの銅の面も露出させられる大きさに形成する。また、部品支持ランド23cの形は、図4(j)のように、レーザアブレーション加工で形成する空孔31の領域からはみだす形に形成する。また、部品支持ランド23cは対応する電極端子51毎に分離して作成する。   In particular, the wiring pattern on the lower surface side of the substrate forms a pattern of component support lands 23c having land opening holes 23d having a diameter of 30 μm to 60 μm at positions where the electrode terminals 51 of the printed circuit board built-in electronic component 50 are installed. . The diameter of the land opening hole 23d is formed such that the copper surface of the component support land 23c around the land opening hole 23d is exposed by the laser drilling when laser drilling is performed in the subsequent step 13. . Further, the shape of the component support land 23c is formed so as to protrude from the region of the hole 31 formed by laser ablation as shown in FIG. 4 (j). Also, the component support land 23c is created separately for each corresponding electrode terminal 51.

ここで、このガラス材入り有機樹脂コア基板30は、ガラス材入り有機樹脂基板1自体をガラス材入り有機樹脂コア基板30として用いても良い。また、ガラス材入り有機樹脂コア基板30は、各層がインナーバイアホール3やブラインドバイアホール23で接続されていれば、より高密度配線が可能となり好ましい。   Here, the glass resin-containing organic resin core substrate 30 may use the glass material-containing organic resin substrate 1 itself as the glass material-containing organic resin core substrate 30. In addition, it is preferable that the organic resin core substrate 30 with glass material is capable of higher-density wiring if each layer is connected by the inner via hole 3 or the blind via hole 23.

(チップ部品の内蔵方法)
次に、以下で説明するように、ガラス材入り有機樹脂コア基板30に空孔31を形成して印刷配線板内蔵用電子部品50を内蔵して更に層間絶縁樹脂層40を形成して部品内蔵印刷配線板10を製造する。
(Chip component integration method)
Next, as described below, a hole 31 is formed in the organic resin core substrate 30 with glass material, the printed wiring board built-in electronic component 50 is built in, and the interlayer insulating resin layer 40 is further formed to incorporate the component. The printed wiring board 10 is manufactured.

(工程10)
図4(j)の平面図と図4(k)の側面図のように、下面に部品支持ランド23cの配線パターンが形成されたガラス材入り有機樹脂コア基板30に、上面側から下面に向けて、炭酸ガスレーザやUV−YAGレーザなどのレーザアブレーション用レーザ光Lを照射して加工することで、印刷配線板内蔵用電子部品50を収納する空孔31を形成する。その空孔31の外側にはコア基板30の配線基板部32を残す。図4(k)の側面図のように、その空孔31の(下面側)底面に、有機樹脂コア基板30の下面の部品支持ランド23cの内側の面(上面)を露出させる。また、部品支持ランド23cのランド開口穴23dにはレーザアブレーション用レーザ光Lを貫通させて孔を形成する。部品支持ランド2
3cは、レーザアブレーション加工で形成する空孔31の領域からはみだす形に形成されているので、そのはみ出した部分が有機樹脂コア基板30の下面に密着して有機樹脂コア基板30と一体となっている。
(Process 10)
As shown in the plan view of FIG. 4 (j) and the side view of FIG. 4 (k), the glass-filled organic resin core substrate 30 with the wiring pattern of the component support lands 23c formed on the lower surface is directed from the upper surface side to the lower surface. Then, by irradiating and processing laser ablation laser light L such as a carbon dioxide laser or a UV-YAG laser, a hole 31 for accommodating the electronic component 50 for built-in printed wiring board is formed. The wiring board portion 32 of the core board 30 is left outside the hole 31. As shown in the side view of FIG. 4K, the inner surface (upper surface) of the component support land 23 c on the lower surface of the organic resin core substrate 30 is exposed on the bottom surface (lower surface side) of the hole 31. Further, a laser ablation laser beam L is passed through the land opening hole 23d of the component support land 23c to form a hole. Parts support land 2
3c is formed so as to protrude from the region of the hole 31 formed by laser ablation, so that the protruding portion is in close contact with the lower surface of the organic resin core substrate 30 and integrated with the organic resin core substrate 30. Yes.

(空孔の形状)
また、図4(j)のように、この空孔31の平面視の形状は、空孔31の4つの四隅部分31aを、空孔31に挿入する印刷配線板内蔵用電子部品50の4つの角から間隙を開けるように、印刷配線板内蔵用電子部品50の外形よりも10μm以上大きく形成する。好ましくは、四隅部分31aを印刷配線板内蔵用電子部品50の外形よりも20μm以上大きく形成する。
(Hole shape)
Further, as shown in FIG. 4 (j), the shape of the hole 31 in plan view is that the four four corner portions 31 a of the hole 31 are inserted into the four printed circuit board built-in electronic components 50 into which the holes 31 are inserted. It is formed to be 10 μm or more larger than the outer shape of the printed wiring board built-in electronic component 50 so as to open a gap from the corner. Preferably, the four corner portions 31a are formed to be larger than the outer shape of the printed wiring board built-in electronic component 50 by 20 μm or more.

そして、図4(j)に示す平面視のように、空孔31の四辺部分31bを空孔31内へ、円弧状または円弧に類似した形に突出させる。その空孔31の四辺部分31bの間隙は、空孔31に挿入する印刷配線板内蔵用電子部品50の外形寸法より微小量小さい値から、印刷配線板内蔵用電子部品50の外形寸法より30μm程度大きい値までの範囲内の寸法に形成する。   Then, as shown in a plan view of FIG. 4J, the four side portions 31b of the hole 31 are projected into the hole 31 in an arc shape or a shape similar to an arc. The gap between the four side portions 31b of the holes 31 is about 30 μm smaller than the outer dimension of the printed wiring board built-in electronic component 50 from a value smaller than the outer dimension of the printed wiring board built-in electronic component 50 inserted into the hole 31. Form dimensions within the range up to a large value.

(工程11)
次に、この基板上の銅パターンの表面に粗化処理を行う。粗化処理としては、銅の酸化還元処理による黒化処理、もしくは、希硫酸と過酸化水素混合溶液によるソフトエッチング処理などの化学的粗化処理あるいは機械的粗化処理を行う。
(Step 11)
Next, a roughening process is performed on the surface of the copper pattern on the substrate. As the roughening treatment, a chemical roughening treatment or a mechanical roughening treatment such as a blackening treatment by oxidation-reduction treatment of copper or a soft etching treatment using a mixed solution of dilute sulfuric acid and hydrogen peroxide is performed.

(工程12)
次に、図5(l)のように、印刷配線板内蔵用電子部品50を、ガラス材入り有機樹脂コア基板30の上面側から空孔31に挿入し、部品支持ランド23cに印刷配線板内蔵用電子部品50を接触させ、部品支持ランド23cによって、下側から印刷配線板内蔵用電子部品50を支えさせる。
(Step 12)
Next, as shown in FIG. 5L, the printed wiring board built-in electronic component 50 is inserted into the hole 31 from the upper surface side of the glass-filled organic resin core substrate 30, and the printed wiring board is built in the component support land 23c. The electronic component 50 is brought into contact, and the printed wiring board built-in electronic component 50 is supported from below by the component support land 23c.

この部品支持ランド23cが下側から印刷配線板内蔵用電子部品50を支えることで、印刷配線板内蔵用電子部品50を確実に保持し部品の脱落を防止できる効果がある。   The component support land 23c supports the printed wiring board built-in electronic component 50 from the lower side, so that there is an effect that the printed wiring board built-in electronic component 50 can be securely held and the component can be prevented from falling off.

また、その印刷配線板内蔵用電子部品50の挿入の際に、印刷配線板内蔵用電子部品50が、空孔31内の四辺部分31bの側壁面と摩擦し、印刷配線板内蔵用電子部品50に被覆された樹脂52の一部が削り取られるとともに、空孔31内の四辺部分31bの側壁面の材料の一部を削り取る。それにより、印刷配線板内蔵用電子部品50の挿入の際に印刷配線板内蔵用電子部品50の削られた樹脂52の形と削られた四辺部分31bの形とが平行に密着して形成される。このように互いの接触部分に密着した形が形成されることで、その密着面で、印刷配線板内蔵用電子部品50が、部品内蔵印刷配線板10の空孔31内の四辺部分31bの側壁面で強固に保持される効果がある。   In addition, when the electronic component 50 with a built-in printed wiring board is inserted, the electronic component 50 with a built-in printed wiring board rubs against the side wall surfaces of the four side portions 31 b in the holes 31, and the electronic component 50 with a built-in printed wiring board. A part of the resin 52 covered with is scraped off, and a part of the material of the side wall surface of the four side portion 31b in the hole 31 is scraped off. Thus, when the printed wiring board built-in electronic component 50 is inserted, the shape of the shaved resin 52 of the printed wiring board built-in electronic component 50 and the shape of the shaved four-side portion 31b are formed in close contact with each other. The In this way, by forming a shape in close contact with each other, the printed circuit board built-in electronic component 50 is formed on the contact surface side of the four-side portion 31b in the hole 31 of the component built-in printed circuit board 10. There is an effect of being firmly held by the wall surface.

(工程13)
次に、図5(n)のように、印刷配線板内蔵用電子部品50を空孔31に保持したガラス材入り有機樹脂コア基板30の両面に、回路パターン間への埋め込み性、及び積層後の表面平滑性に優れた動的粘弾性(DMA)のガラス転移温度における溶融粘度が5000Pa・s以下のプリプレグ40aの厚さ40μmのシートと厚さ12μmの薄銅箔40bを組み合わせ、加熱加圧することによりプリプレグ40aを真空積層プレス装置で加熱・加圧することで硬化させて、図6(o)のように層間絶縁樹脂層40を形成する。
(Step 13)
Next, as shown in FIG. 5 (n), the embedding property between the circuit patterns on the both surfaces of the glass-filled organic resin core substrate 30 in which the printed wiring board built-in electronic component 50 is held in the holes 31, and after lamination. A 40 μm thick sheet of prepreg 40a having a melt viscosity of 5000 Pa · s or less at a glass transition temperature of dynamic viscoelasticity (DMA) excellent in surface smoothness and a thin copper foil 40b of 12 μm thickness are combined and heated and pressed. Thus, the prepreg 40a is cured by heating and pressurizing with a vacuum laminating press to form an interlayer insulating resin layer 40 as shown in FIG.

(変形例1)
この層間絶縁樹脂層40の形成方法の変形例として、プリプレグ40aと薄銅箔40b
を積層するかわりに、例えば厚さ40μmのエポキシ樹脂等の層間絶縁層のシートをコア基板30の両面にロールラミネートして熱圧着することで層間絶縁樹脂層40を形成することもできる。
(Modification 1)
As a modification of the method of forming the interlayer insulating resin layer 40, a prepreg 40a and a thin copper foil 40b are used.
For example, the interlayer insulating resin layer 40 may be formed by roll laminating sheets of an interlayer insulating layer such as an epoxy resin having a thickness of 40 μm on both surfaces of the core substrate 30 and thermocompression bonding.

プリプレグ40aや層間絶縁層のシートの材料としては、ガラス繊維入りエポキシ樹脂材、ガラス繊維入りビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)材、ガラス繊維入りポリイミド樹脂材、ガラス繊維入りPPE樹脂材などの材料を用いることができる。   Examples of the material for the prepreg 40a and the interlayer insulating sheet include glass fiber-containing epoxy resin material, glass fiber-containing bismaleimide-triazine resin (hereinafter referred to as BT resin) material, glass fiber-containing polyimide resin material, and glass fiber-containing PPE resin. A material such as a material can be used.

その材料中に入れる補強材は、詳しくは、ガラス繊維、又はアラミド不織布、アラミド繊維、ポリエステル繊維などの繊維材料を用いることもできる。また、その材料中の樹脂材料には、エポキシ樹脂、BT樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂、フェノール樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリフェニレンオキサイド(PPO)樹脂などの有機樹脂を使用することができる。また、これらの樹脂単独でも、複数樹脂を混合しあるいは化合物を作成するなどの樹脂の組み合わせも使用できる。   Specifically, the reinforcing material put into the material may be a glass fiber or a fiber material such as an aramid nonwoven fabric, an aramid fiber, or a polyester fiber. In addition, the resin material in the material includes epoxy resin, BT resin, polyimide resin, polyphenylene ether (PPE) resin, phenol resin, polytetrafluoroethylene (PTFE) resin, silicon resin, polybutadiene resin, polyester resin, melamine resin. Organic resins such as urea resin, polyphenylene sulfide (PPS) resin, and polyphenylene oxide (PPO) resin can be used. In addition, these resins can be used alone, or a combination of resins such as mixing a plurality of resins or preparing a compound can be used.

樹脂に充填材を添加したものも使用できる。充填材としては、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタン等が使用できる。また、無機充填材に替えて、フェノール樹脂やポリメタクリル酸重合体などの有機充填材を使用しても良いし、有機無機混合充填材を使用してもよい。   What added the filler to resin can also be used. As the filler, silica, barium sulfate, talc, clay, glass, calcium carbonate, titanium oxide and the like can be used. Moreover, it may replace with an inorganic filler and may use organic fillers, such as a phenol resin and a polymethacrylic acid polymer, and may use an organic inorganic mixed filler.

本実施形態は、このように、ガラス材入り有機樹脂コア基板30の両面にプリプレグ40aと薄銅箔40bを積層して一度の工程で加熱・硬化させて層間絶縁樹脂層40を両面に形成するので、製造コストを低減できる効果がある。また、ガラス材入り有機樹脂コア基板30の両面に積層する層間絶縁樹脂層40の厚さは、ベースプレートを用いる従来技術におけるベースプレートの厚さより十分薄く形成できるので、板厚の薄い部品内蔵印刷配線板10を製造できる効果がある。   In this embodiment, as described above, the prepreg 40a and the thin copper foil 40b are laminated on both surfaces of the organic resin core substrate 30 with glass material, and the interlayer insulating resin layer 40 is formed on both surfaces by heating and curing in one step. Therefore, there is an effect that the manufacturing cost can be reduced. Moreover, since the thickness of the interlayer insulating resin layer 40 laminated on both surfaces of the organic resin core substrate 30 with glass material can be formed sufficiently thinner than the thickness of the base plate in the prior art using the base plate, the component built-in printed wiring board with a thin plate thickness 10 can be produced.

(工程14)
次に、図6(p)のように、レーザ穴あけ装置を用いて、層間絶縁樹脂層40の表面から、UV−YAGレーザやエキシマレーザなどの紫外線レーザや、炭酸ガスレーザなどの赤外線レーザ等の穴あけ用レーザ光で薄銅箔40bと、硬化したプリプレグ40aとを貫通する穴あけ加工により、バイアホール用穴41aと部品電極上側接続バイアホール用穴42aと部品電極下側接続バイアホール用穴43aを形成する。
(Step 14)
Next, as shown in FIG. 6 (p), using a laser drilling device, drilling from the surface of the interlayer insulating resin layer 40 using an ultraviolet laser such as a UV-YAG laser or an excimer laser or an infrared laser such as a carbon dioxide laser. Via hole 41a, component electrode upper connection via hole 42a, and component electrode lower connection via hole 43a are formed by drilling through thin copper foil 40b and hardened prepreg 40a with laser light for use. To do.

印刷配線板内蔵用電子部品50の電極端子の上側の層間絶縁樹脂層40及び樹脂52には、穴あけ用レーザ光により、直径が40μmから200μmの穴で、印刷配線板内蔵用電子部品50の電極端子51を露出させる部品電極上側接続バイアホール用穴42aを形成する。   The interlayer insulating resin layer 40 and the resin 52 on the upper side of the electrode terminal of the printed wiring board built-in electronic component 50 are formed with holes having a diameter of 40 μm to 200 μm by the drilling laser beam. A component electrode upper connection via hole 42a for exposing the terminal 51 is formed.

そして、印刷配線板内蔵用電子部品50の電極端子51の下側の樹脂52と層間絶縁樹脂層40には、穴あけ用レーザ光により部品電極下側接続バイアホール用穴43aを形成する。部品電極下側接続バイアホール用穴43aは、直径が40μmから200μmの穴で、部品支持ランド23cの銅の面を露出させるとともに、直径が0.03mmから0.06mmのランド開口穴23dを貫通して、ランド開口穴23dに充填された絶縁樹脂に穴開けして電極端子51を露出させる穴を形成する。   Then, component electrode lower connection via hole holes 43a are formed in the lower resin 52 and the interlayer insulating resin layer 40 of the electrode terminals 51 of the printed wiring board built-in electronic component 50 by a drilling laser beam. The component electrode lower connection via hole 43a has a diameter of 40 μm to 200 μm, exposes the copper surface of the component support land 23c, and penetrates the land opening hole 23d having a diameter of 0.03 mm to 0.06 mm. Then, holes are formed in the insulating resin filled in the land opening holes 23d to expose the electrode terminals 51.

(工程15)
レーザ光にてバイアホール用穴41aと部品電極上側接続バイアホール用穴42aと部品電極下側接続バイアホール用穴43aを形成すると、それらのバイアホール用穴の底に薄い樹脂膜が残る場合があり、その場合はデスミア処理を行う。すなわち、その基板をデスミア液に浸漬することで、バイアホール用穴41aと部品電極上側接続バイアホール用穴42aと部品電極下側接続バイアホール用穴43aのデスミア処理を行う。このデスミア処理は、強アルカリにより樹脂を膨潤させ、その後、クロム酸、過マンガン酸塩水溶液などの酸化剤を使用して樹脂を分解除去する。また研磨材によるウェットブラスト処理やプラズマ処理にて除去してもよい。
(Step 15)
When the via hole 41a, the component electrode upper connection via hole 42a, and the component electrode lower connection via hole 43a are formed by laser light, a thin resin film may remain at the bottom of the via hole. Yes, in that case, desmear processing is performed. That is, by immersing the substrate in a desmear solution, a desmear process is performed on the via hole hole 41a, the component electrode upper connection via hole hole 42a, and the component electrode lower connection via hole hole 43a. In the desmear treatment, the resin is swollen with a strong alkali, and then the resin is decomposed and removed using an oxidizing agent such as chromic acid or a permanganate aqueous solution. Alternatively, it may be removed by wet blasting with an abrasive or plasma treatment.

また、層間絶縁樹脂層40がエポキシ樹脂等の層間絶縁層のシートを熱圧着して形成されて層間絶縁樹脂層40の絶縁樹脂層の表面が露出している場合、必要に応じて層間絶縁樹脂層40の絶縁樹脂層の表面を粗化する。一般的には、熱硬化性樹脂や熱可塑性樹脂の層間絶縁層のシートを使用した場合、クロム酸、過マンガン酸塩の水溶液などの酸化剤による表面粗化処理などのウェットプロセスや、プラズマ処理やアッシング処理などのドライプロセスが有効である。   Further, when the interlayer insulating resin layer 40 is formed by thermocompression bonding a sheet of an interlayer insulating layer such as an epoxy resin and the surface of the insulating resin layer of the interlayer insulating resin layer 40 is exposed, the interlayer insulating resin is used as necessary. The surface of the insulating resin layer of the layer 40 is roughened. In general, when a sheet of an interlayer insulating layer of thermosetting resin or thermoplastic resin is used, wet processes such as surface roughening with an oxidizing agent such as an aqueous solution of chromic acid or permanganate, or plasma treatment And dry processes such as ashing are effective.

(工程16)
次に、無電解銅めっき液に基板を浸漬することで、そのバイアホール用穴41aと部品電極上側接続バイアホール用穴42aと部品電極下側接続バイアホール用穴43aの壁面に無電解銅めっき皮膜を形成する。
(Step 16)
Next, by immersing the substrate in an electroless copper plating solution, electroless copper plating is performed on the wall surfaces of the via hole hole 41a, the component electrode upper connection via hole hole 42a, and the component electrode lower connection via hole hole 43a. Form a film.

(工程17)
次に、図6(q)のように、その基板の下地の薄銅箔40bに電解銅めっき装置の陰極を接続して、基板を電解銅めっき浴に浸漬し基板の全面に例えば厚さ15μmの電解銅めっきするパネルめっき処理を行う。それにより、基板のバイアホール用穴41aおよび部品電極上側接続バイアホール用穴42aと部品電極下側接続バイアホール用穴43aを銅めっきで柱状に充填してブラインドバイアホール41および部品電極上側接続バイアホール42と部品電極下側接続バイアホール43を形成する。
(Step 17)
Next, as shown in FIG. 6 (q), the cathode of the electrolytic copper plating apparatus is connected to the thin copper foil 40b underlying the substrate, and the substrate is immersed in an electrolytic copper plating bath to have a thickness of, for example, 15 μm. A panel plating process for electrolytic copper plating is performed. As a result, the via hole 41a, the component electrode upper connection via hole 42a and the component electrode lower connection via hole 43a of the substrate are filled in a columnar shape with copper plating to form the blind via hole 41 and the component electrode upper connection via. Holes 42 and component electrode lower connection via holes 43 are formed.

(工程18)
次に、図6(r)のように、エッチングレジストパターンで基板の表面の銅めっき層を保護する。例えばドライフィルムの感光性エッチングレジストをロールラミネートで貼り付け、露光・現像し回路パターン以外の部分を露出させる。露出した部分の銅を、エッチングで除去する。エッチング液として、塩化第二鉄水溶液などが使用できる。ドライフィルムのエッチングレジストを剥離する。それにより、層間絶縁樹脂層40中に、バイアホール用ランド23bに達して接続する柱状のブラインドバイアホール41と、印刷配線板内蔵用電子部品50の電極端子51に達して接続する部品電極上側接続バイアホール42に接続する配線パターン44を形成し、部品電極下側接続バイアホール43に接続する配線パターン45を形成する。
(Step 18)
Next, as shown in FIG. 6 (r), the copper plating layer on the surface of the substrate is protected with an etching resist pattern. For example, a photosensitive film etching resist for dry film is attached by roll lamination, and exposed and developed to expose portions other than the circuit pattern. The exposed portion of copper is removed by etching. An aqueous ferric chloride solution or the like can be used as an etching solution. Strip the dry film etching resist. Thereby, in the interlayer insulating resin layer 40, the columnar blind via hole 41 connected to the via hole land 23b and the component electrode upper side connection connected to the electrode terminal 51 of the printed circuit board built-in electronic component 50 are connected. A wiring pattern 44 connected to the via hole 42 is formed, and a wiring pattern 45 connected to the component electrode lower connection via hole 43 is formed.

図7に、この部品内蔵印刷配線板10の平面図(断面)と側断面図を示す。図7に示すように、第1の実施形態の部品内蔵印刷配線板10は、ガラス繊維又はガラスフィラー入りエポキシ樹脂、及び、ガラス繊維又はガラスフィラー入りポリイミド樹脂などから成るガラス材入り有機樹脂基板1を中心に持ち、その有機樹脂層中に電解銅めっきで形成したインナーバイアホール3を有する。そして、印刷配線板内蔵用電子部品50の電極端子51の上側に部品電極上側接続バイアホール42を有し、その部品電極上側接続バイアホール42を基板の上面に形成した配線パターン44に接続し、更に、印刷配線板内蔵用電子部品50の電極端子51の下側に部品電極下側接続バイアホール43を有し、その部品電極下側接続バイアホール43を基板の下面に形成した配線パターン45に接続する。   FIG. 7 shows a plan view (cross section) and a side sectional view of the component built-in printed wiring board 10. As shown in FIG. 7, the component built-in printed wiring board 10 according to the first embodiment includes a glass material-containing organic resin substrate 1 made of glass fiber or glass filler epoxy resin and glass fiber or glass filler polyimide resin. And an inner via hole 3 formed by electrolytic copper plating in the organic resin layer. The printed circuit board built-in electronic component 50 has a component electrode upper connection via hole 42 on the upper side of the electrode terminal 51, and the component electrode upper connection via hole 42 is connected to the wiring pattern 44 formed on the upper surface of the substrate. Further, the wiring electrode 45 has a component electrode lower connection via hole 43 below the electrode terminal 51 of the printed wiring board built-in electronic component 50, and the component electrode lower connection via hole 43 is formed on the lower surface of the substrate. Connecting.

本実施形態では、こうして、印刷配線板内蔵用電子部品50の電極端子51の位置に基板の上面から下面までを上から下まで導通する配線構造を有する。   In this embodiment, in this way, a wiring structure is provided that conducts from the upper surface to the lower surface of the substrate from the top to the bottom at the position of the electrode terminal 51 of the printed wiring board built-in electronic component 50.

この配線構造の部分である、部品電極上側接続バイアホール42と部品電極下側接続バイアホール43は、印刷配線板内蔵用電子部品50の電極端子51に達する部品電極接続バイアホール用穴42aに金属めっきして形成するため、金属めっきで印刷配線板内蔵用電子部品50の電極端子51と強固に電気接続させることができ、印刷配線板内蔵用電子部品50の電極端子51との電気接続の信頼性を高くできる効果がある。   The component electrode upper connection via hole 42 and the component electrode lower connection via hole 43, which are parts of the wiring structure, are formed in the component electrode connection via hole hole 42 a that reaches the electrode terminal 51 of the printed wiring board built-in electronic component 50. Since it is formed by plating, it can be firmly electrically connected to the electrode terminal 51 of the electronic component 50 with a built-in printed wiring board by metal plating, and the electrical connection with the electrode terminal 51 of the electronic component 50 with a built-in printed wiring board is reliable. There is an effect that can increase the nature.

印刷配線板内蔵用電子部品50の電極端子51の上下のいづれか。または両方から電極端子5に接続することが可能で、配線の自由度を高める効果がある。   Either the top or bottom of the electrode terminal 51 of the electronic component 50 for embedded printed wiring board. Or it is possible to connect to the electrode terminal 5 from both, and there is an effect of increasing the degree of freedom of wiring.

なお、この工程18で形成された図7の構成の基板を完成品とすることもでき、また、この基板の表面にソルダーレジストを印刷した基板を製造しても良い。あるいは、この基板に更に層間絶縁樹脂層と配線パターンを積み上げた基板を製造しても良い。   It should be noted that the substrate having the configuration shown in FIG. 7 formed in step 18 may be a finished product, or a substrate having a solder resist printed on the surface of the substrate may be manufactured. Alternatively, a substrate in which an interlayer insulating resin layer and a wiring pattern are further stacked on this substrate may be manufactured.

<第2の実施形態>
次に、図8〜図11を参照して、第2の実施形態の部品内蔵印刷配線板10と、その製造法について説明する。第2の実施形態では、ガラス材入り有機樹脂コア基板30として、ガラス繊維あるいはガラスフィラー入りのエポキシ樹脂又はポリイミド樹脂等の基材の両面に35μm銅箔1aが積層された銅張積層板から成るガラス材入り有機樹脂基板1をそのまま用いる。ガラス材入り有機樹脂基板1の材料としては、FR−4等のガラス繊維入りエポキシ樹脂材、ガラス繊維入りビスマレイミド−トリアジン樹脂(以下、BT樹脂と称す)材、ガラス繊維入りポリイミド樹脂材、ガラス繊維入りPPE樹脂材などの材料を用いることができる。
<Second Embodiment>
Next, the component built-in printed wiring board 10 according to the second embodiment and the manufacturing method thereof will be described with reference to FIGS. In the second embodiment, the organic resin core substrate 30 with glass material is composed of a copper-clad laminate in which 35 μm copper foil 1a is laminated on both surfaces of a substrate such as glass fiber or glass filler-containing epoxy resin or polyimide resin. The organic resin substrate 1 with glass material is used as it is. As a material of the organic resin substrate 1 with glass material, epoxy resin material with glass fiber such as FR-4, bismaleimide-triazine resin (hereinafter referred to as BT resin) material with glass fiber, polyimide resin material with glass fiber, glass A material such as a PPE resin material containing fibers can be used.

その材料中に入れる補強材は、ガラス繊維の他に、又はアラミド不織布、アラミド繊維、ポリエステル繊維などの繊維材料を用いることもできる。   The reinforcing material put into the material may be a glass material or a fiber material such as an aramid nonwoven fabric, an aramid fiber, or a polyester fiber.

(工程1)
図8(a)のように、ガラス材入り有機樹脂基板1を用いたガラス材入り有機樹脂コア基板30の所定の位置に、ドリルを用いてスルーホール下穴4aを形成する。スルーホール下穴4aの側面にドリルの回転による摩擦熱で樹脂が溶着する場合があり、その場合はデスミア処理を行う。このデスミア処理は、強アルカリにより樹脂を膨潤させ、その後、クロム酸、過マンガン酸塩水溶液などの酸化剤を使用して樹脂を分解除去する。また研磨材によるウェットブラスト処理やプラズマ処理にて除去してもよい。
(Process 1)
As shown in FIG. 8A, a through-hole prepared hole 4a is formed using a drill at a predetermined position of the glass-filled organic resin core substrate 30 using the glass-filled organic resin substrate 1. In some cases, resin is deposited on the side surface of the through-hole pilot hole 4a by frictional heat generated by the rotation of the drill. In this case, desmear treatment is performed. In the desmear treatment, the resin is swollen with a strong alkali, and then the resin is decomposed and removed using an oxidizing agent such as chromic acid or a permanganate aqueous solution. Alternatively, it may be removed by wet blasting with an abrasive or plasma treatment.

(工程2)
次に、図8(b)のように、スルーホール下穴4aの壁面に無電解銅めっきを施し、めっきの厚付けとして電解銅めっきを施し、スルホール下穴の内壁面にはスルーホールめっき壁面4を形成し基板の上下の銅箔1aと電気接続する。また、基板の上下面の銅箔1aの外側に電解銅めっき層4bを重ねて形成する。スルーホールめっき壁面4には例えば、15μm厚の銅めっきの層を形成する。
(Process 2)
Next, as shown in FIG. 8 (b), electroless copper plating is applied to the wall surface of the through hole pilot hole 4a, and electrolytic copper plating is applied as a plating thickness, and the through hole plating wall surface is applied to the inner wall surface of the through hole pilot hole. 4 is formed and electrically connected to the upper and lower copper foils 1a of the substrate. Moreover, the electrolytic copper plating layer 4b is formed on the outer side of the copper foil 1a on the upper and lower surfaces of the substrate. For example, a copper plating layer having a thickness of 15 μm is formed on the through-hole plating wall surface 4.

(工程3)
次に、図8(c)のように、スルーホールめっき壁面4で囲まれた空間に穴埋め材5を充填する。穴埋め材5は、以下の有機樹脂が使用できる。または、これらを組み合わせても使用できる。すなわち、穴埋め材5の成分としては、エポキシ樹脂、BT樹脂、ポリイミド樹脂、PPE樹脂、フェノール樹脂、PTFE樹脂、珪素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、カルド樹脂などの有機樹脂を用いることができる。また、樹脂に充填材を添加したものも使用できる。充填材としては、シリカ、硫酸バリウム、タルク、クレー、ガラス、カーボン、銅などの金属類などの無機充填材が使用できる。無機充填材に替えて、有機充填材を使用しても良いし、有機無機混合充填材としてもよい。また、銅ペースト、銀ペーストなどの金属ペーストを充填しても良い。
(Process 3)
Next, as shown in FIG. 8C, the hole filling material 5 is filled into the space surrounded by the through-hole plating wall surface 4. The following organic resin can be used for the hole filling material 5. Or they can be used in combination. That is, as a component of the hole filling material 5, organic resin such as epoxy resin, BT resin, polyimide resin, PPE resin, phenol resin, PTFE resin, silicon resin, polybutadiene resin, polyester resin, melamine resin, urea resin, cardo resin, etc. Can be used. Moreover, what added the filler to resin can also be used. As the filler, inorganic fillers such as silica, barium sulfate, talc, clay, glass, carbon, copper and other metals can be used. Instead of the inorganic filler, an organic filler may be used, or an organic-inorganic mixed filler may be used. Further, a metal paste such as a copper paste or a silver paste may be filled.

穴埋め材5は、基板の上下面の電解銅めっき層4b上に付着することがあり、電解銅めっき層4bの表面の面位置より盛り上がることもあるため、これらを研磨剤を用いたベルトサンダー法、バフ研磨法で除去する。更に次工程の無電解銅めっきが密着できるよう、強アルカリによりガラス材入り有機樹脂基板1の樹脂を膨潤させ、その後、クロム酸、過マンガン酸塩水溶液などの酸化剤を使用して樹脂を分解、粗化する。   The hole filling material 5 may adhere to the upper and lower surfaces of the electrolytic copper plating layer 4b on the substrate and may rise from the surface position of the surface of the electrolytic copper plating layer 4b. Remove by buffing. Further, the resin of the glass-filled organic resin substrate 1 is swollen with strong alkali so that the electroless copper plating in the next step can be adhered, and then the resin is decomposed using an oxidizing agent such as chromic acid or permanganate aqueous solution. , Roughen.

(工程4)
次に、図8(d)のように、この基板の上下面に更に無電解銅めっきを施した上、電解銅めっき層6を形成する。電解銅めっき層6の厚さは、例えば10μmとする。これにより、スルーホールめっき壁面4を、その上下端と電気接続する電解銅めっき層4bを介して、上下の電解銅めっき層6へ電気接続させることができる。
(Process 4)
Next, as shown in FIG. 8D, the upper and lower surfaces of the substrate are further subjected to electroless copper plating, and the electrolytic copper plating layer 6 is formed. The thickness of the electrolytic copper plating layer 6 is, for example, 10 μm. Thereby, the through-hole plating wall surface 4 can be electrically connected to the upper and lower electrolytic copper plating layers 6 via the electrolytic copper plating layer 4b electrically connected to the upper and lower ends thereof.

(工程5)
次に、基板の上下面に、感光性レジスト、例えばドライフィルムのエッチングレジストをロールラミネートで貼り付け、露光・現像し回路パターン以外の部分を露出させる。露出した部分の銅を、エッチングで除去する。エッチング液として、塩化第二鉄水溶液などが使用できる。ドライフィルムのエッチングレジストを剥離し、図8(e)のように配線パターン7を形成する。
(Process 5)
Next, a photosensitive resist, for example, a dry film etching resist is attached to the upper and lower surfaces of the substrate by roll lamination, and exposure and development are performed to expose portions other than the circuit pattern. The exposed portion of copper is removed by etching. An aqueous ferric chloride solution or the like can be used as an etching solution. The etching resist of the dry film is peeled off to form a wiring pattern 7 as shown in FIG.

(工程6)
図9(f)のように、この配線パターン7を形成したことによって露出したガラス材入り有機樹脂基板1に、金型、又は、炭酸ガスレーザ等で略矩形状にくり貫くことで空孔31を形成する。空孔31は、印刷配線板内蔵用電子部品50よりやや小さい寸法とする。それにより、空孔31に挿入した印刷配線板内蔵用電子部品50がガラス材入り有機樹脂基板1の応力で固定できる効果がある。
(Step 6)
As shown in FIG. 9 (f), the holes 31 are formed by punching the organic resin substrate 1 with glass material exposed by forming the wiring pattern 7 into a substantially rectangular shape with a mold or a carbon dioxide laser. Form. The holes 31 have dimensions slightly smaller than the printed wiring board built-in electronic component 50. Thus, the printed wiring board built-in electronic component 50 inserted into the hole 31 can be fixed by the stress of the glass-filled organic resin substrate 1.

(工程7)
次に、図9(g)のように、印刷配線板内蔵用電子部品50を、ガラス材入り有機樹脂コア基板30の上面側から空孔31に挿入し、印刷配線板内蔵用電子部品50を、空孔31内の四辺部分31bの側壁面と摩擦させる。その際に、印刷配線板内蔵用電子部品50に被覆された樹脂52の一部が削り取られるとともに、空孔31内の四辺部分31bの側壁面の材料の一部を削り取る。それにより、印刷配線板内蔵用電子部品50の挿入の際に印刷配線板内蔵用電子部品50の削られた樹脂52の形と削られた四辺部分31bの形とが平行に密着して形成される。
(Step 7)
Next, as shown in FIG. 9G, the printed wiring board built-in electronic component 50 is inserted into the hole 31 from the upper surface side of the glass-filled organic resin core substrate 30, and the printed wiring board built-in electronic component 50 is inserted. Then, friction is caused with the side wall surfaces of the four side portions 31b in the holes 31. At that time, a part of the resin 52 covered with the printed wiring board built-in electronic component 50 is scraped off, and a part of the material of the side wall surface of the four side portion 31 b in the hole 31 is scraped off. Thus, when the printed wiring board built-in electronic component 50 is inserted, the shape of the shaved resin 52 of the printed wiring board built-in electronic component 50 and the shape of the shaved four-side portion 31b are formed in close contact with each other. The

ここで、印刷配線板内蔵用電子部品50を空孔31内の四辺部分31bの側壁面と摩擦する際に、その印刷配線板内蔵用電子部品50から樹脂52が削られても印刷配線板内蔵用電子部品50の表面に樹脂52を残して空孔31内の四辺部分31bとの密着性を良くするために、樹脂52の厚さを1μm以上30μm以下にするが、特に、樹脂52の厚さを10μm以上30μm以下にすることが、樹脂52が削られても印刷配線板内蔵用電子部品50の表面に樹脂52の一部を残すために、望ましい。   Here, when the printed wiring board built-in electronic component 50 is rubbed against the side wall surface of the four-side portion 31b in the hole 31, the printed wiring board built-in electronic component 50 is embedded even if the resin 52 is scraped off. In order to leave the resin 52 on the surface of the electronic component 50 and improve the adhesion with the four side portions 31b in the holes 31, the thickness of the resin 52 is set to 1 μm or more and 30 μm or less. It is desirable that the thickness be 10 μm or more and 30 μm or less in order to leave a part of the resin 52 on the surface of the printed wiring board built-in electronic component 50 even if the resin 52 is scraped.

(変形例2)
工程7の変形例2として、印刷配線板内蔵用電子部品50を被覆する樹脂52を熱可塑性樹脂で形成しておく。そして、印刷配線板内蔵用電子部品50を空孔31内に設置する
際に赤外線で加熱して、その樹脂52を変形し易く軟化させた上で空孔31内に、四辺部分31bの側壁面と密着させて設置する。印刷配線板内蔵用電子部品50を空孔31内に設置する際に加熱されて軟化した樹脂52が、その印刷配線板内蔵用電子部品50の設置後に冷却されて再び硬化することで、空孔31内に印刷配線板内蔵用電子部品50を強固に保持できる効果がある。
(Modification 2)
As Modification 2 of Step 7, a resin 52 that covers the printed wiring board built-in electronic component 50 is formed of a thermoplastic resin. When the printed wiring board built-in electronic component 50 is installed in the hole 31, the resin 52 is heated by infrared rays to soften the resin 52 easily and then the side wall surface of the four-side portion 31 b is formed in the hole 31. Install in close contact with. The resin 52 heated and softened when the printed wiring board built-in electronic component 50 is installed in the hole 31 is cooled and hardened again after the printed wiring board built-in electronic component 50 is installed. There is an effect that the printed wiring board built-in electronic component 50 can be firmly held in the circuit board 31.

(変形例3)
変形例3として、樹脂52に紫外線硬化型樹脂を用いることができる。印刷配線板内蔵用電子部品50を空孔31内に設置する際に紫外線を照射して紫外線硬化型樹脂から成る樹脂52を硬化させることで、空孔31内に印刷配線板内蔵用電子部品50を強固に保持できる効果がある。
(Modification 3)
As a third modification, an ultraviolet curable resin can be used for the resin 52. When the printed wiring board built-in electronic component 50 is installed in the hole 31, the resin 52 made of ultraviolet curable resin is cured by irradiating ultraviolet rays, so that the printed wiring board built-in electronic component 50 is placed in the hole 31. Can be held firmly.

このように、印刷配線板内蔵用電子部品50と空孔31内の四辺部分31bの側壁面との接触部分が密着した構造が形成される。それにより、その密着面によって印刷配線板内蔵用電子部品50が、部品内蔵印刷配線板10の空孔31内の四辺部分31bの側壁面で強固に保持される効果がある。   Thus, a structure is formed in which the contact portions between the printed wiring board built-in electronic component 50 and the side wall surfaces of the four side portions 31b in the holes 31 are in close contact. Thus, the printed wiring board built-in electronic component 50 is firmly held by the close contact surfaces on the side wall surfaces of the four side portions 31b in the air holes 31 of the component built-in printed wiring board 10.

(工程8)
次に、第1の実施形態の工程13と同様にして、図9(h)から図10(i)のようにして、層間絶縁樹脂層40をロールラミネートまたは積層プレスで熱圧着させる。例えば厚さ40μmエポキシ樹脂をロールラミネートする。ガラス繊維入りエポキシ樹脂のプリプレグ40aを使う場合は厚さ12μmの薄銅箔40bを重ね合わせ真空積層プレスで熱圧着させる。
(Process 8)
Next, as in step 13 of the first embodiment, as shown in FIGS. 9H to 10I, the interlayer insulating resin layer 40 is thermocompression bonded by roll lamination or lamination press. For example, a 40 μm thick epoxy resin is roll laminated. When using a glass fiber epoxy resin prepreg 40a, a thin copper foil 40b having a thickness of 12 μm is superposed and thermocompression bonded by a vacuum lamination press.

(工程9)
次に、第1の実施形態の工程14と同様にして、図10(j)のようにして、内層回路の層間接続ためのバイアホール用穴41aと部品電極上側接続バイアホール用穴42aと部品電極下側接続バイアホール用穴43aをレーザ法で形成する。これらのバイアホール用穴は、層間絶縁樹脂層40だけでなく、樹脂52にも同時に形成する。
(Step 9)
Next, in the same manner as in step 14 of the first embodiment, as shown in FIG. 10 (j), a via hole 41a for connecting the inner layer circuit, a component electrode upper connection via hole 42a, and a component The electrode lower connection via hole 43a is formed by a laser method. These via hole holes are formed not only in the interlayer insulating resin layer 40 but also in the resin 52 at the same time.

(工程10〜12)
次に、第1の実施形態の工程15〜工程17と同様にして、図10(k)のようにして、デスミア処理と無電解銅めっき処理と電解銅めっき処理を行い、基板のバイアホール用穴41aおよび部品電極上側接続バイアホール用穴42aと部品電極下側接続バイアホール用穴43aを銅めっきで柱状に充填してブラインドバイアホール41および部品電極上側接続バイアホール42と部品電極下側接続バイアホール43を形成する。
(Steps 10 to 12)
Next, in the same manner as in Step 15 to Step 17 of the first embodiment, desmear treatment, electroless copper plating treatment and electrolytic copper plating treatment are performed as shown in FIG. The hole 41a and the component electrode upper connection via hole hole 42a and the component electrode lower connection via hole hole 43a are filled in a columnar shape by copper plating to connect the blind via hole 41 and the component electrode upper connection via hole 42 to the component electrode lower connection. A via hole 43 is formed.

(工程13)
次に、第1の実施形態の工程18と同様にして、図10(l)のようにして、感光性レジスト、例えばドライフィルムのエッチングレジストをロールラミネートで貼り付け、露光・現像して配線パターン44と45以外の部分を露出させる。露出した部分の銅を、エッチングで除去する。エッチング液として、塩化第二鉄水溶液などが使用できる。ドライフィルムのエッチングレジストを剥離し、図10(l)に示す配線パターン44と45を形成する。
(Step 13)
Next, in the same manner as in step 18 of the first embodiment, as shown in FIG. 10L, a photosensitive resist, for example, an etching resist of a dry film is attached by roll lamination, and exposed and developed to form a wiring pattern. Parts other than 44 and 45 are exposed. The exposed portion of copper is removed by etching. An aqueous ferric chloride solution or the like can be used as an etching solution. The etching resist of the dry film is peeled off to form wiring patterns 44 and 45 shown in FIG.

(工程14)
また、更に、工程8〜工程13の処理を繰り返して、この基板の外側面に層間絶縁樹脂層と配線パターンを積み上げた基板を製造しても良い。
(Step 14)
Furthermore, the process of process 8-process 13 may be repeated, and the board | substrate which piled up the interlayer insulation resin layer and the wiring pattern on the outer surface of this board | substrate may be manufactured.

(工程15)
図11(m)に示すように、ソルダーレジスト60を形成する。ソルダーレジスト60の前処理として、電解銅めっき表面の粗化処理に例えば
イミダゾール銅(II)錯体、グリコール酸、塩化カリウムからなる処理液であるメック社製メックエッチボンドなどを施す。次に、感光性液状ソルダーレジストをスプレーコート、ロールコート、カーテンコート、スクリーン法で約20μm厚に塗布し乾燥、または感光性ドライフィルム・ソルダーレジストをロールラミネートで貼り付ける。そして、ソルダーレジストを露光・現像し、パッド部分を開口させ、高温槽で加熱・硬化させる。
(Step 15)
As shown in FIG. 11 (m), a solder resist 60 is formed. As a pretreatment of the solder resist 60, a roughening treatment of the surface of the electrolytic copper plating is performed by, for example, MEC etch bond manufactured by MEC, which is a treatment liquid composed of imidazole copper (II) complex, glycolic acid, and potassium chloride. Next, a photosensitive liquid solder resist is applied to a thickness of about 20 μm by spray coating, roll coating, curtain coating or screen method, and dried, or a photosensitive dry film / solder resist is applied by roll lamination. Then, the solder resist is exposed and developed, the pad portion is opened, and heated and cured in a high temperature bath.

次に、外部接続端子とするソルダーレジストの開口部61に、無電解ニッケルめっきを3μm以上形成し、その上に無電解金めっきを0.03μm以上形成する。無電解金めっきは1μm以上のこともある。更にその上にはんだをプリコートしても良い。無電解ニッケルめっきの代わりに電解ニッケルめっきを3μm以上形成し、その上に電解金めっきを0.5μm以上形成しても良い。金属めっき以外に、四国化成工業株式会社製タフエースのような水溶性防錆有機被膜を形成しても良い。   Next, 3 μm or more of electroless nickel plating is formed in the opening 61 of the solder resist serving as the external connection terminal, and 0.03 μm or more of electroless gold plating is formed thereon. Electroless gold plating may be 1 μm or more. Furthermore, solder may be precoated thereon. Instead of electroless nickel plating, electrolytic nickel plating may be formed to 3 μm or more, and electrolytic gold plating may be formed thereon to 0.5 μm or more. In addition to metal plating, a water-soluble rust-proof organic film such as Toughace made by Shikoku Kasei Kogyo Co., Ltd. may be formed.

(工程16)
次に、外形加工し、部品内蔵印刷配線板10の個片を製造する。
(Step 16)
Next, the outer shape is processed to produce individual pieces of the component built-in printed wiring board 10.

図11(n)に、この部品内蔵印刷配線板10の平面図(断面)を示す。図11に示すように、第2の実施形態の部品内蔵印刷配線板10は、ガラス材入り有機樹脂コア基板30を導通して上面の配線パターン44から下面の配線パターン45を接続するスルーホールめっき壁面4とブラインドバイアホール41から成る配線構造を有する。   FIG. 11 (n) shows a plan view (cross section) of the component built-in printed wiring board 10. As shown in FIG. 11, the component built-in printed wiring board 10 of the second embodiment is a through-hole plating that conducts a glass-filled organic resin core substrate 30 and connects the upper wiring pattern 44 to the lower wiring pattern 45. The wiring structure includes a wall surface 4 and a blind via hole 41.

また、第1の実施形態と同様に、印刷配線板内蔵用電子部品50の電極端子51の上側に部品電極上側接続バイアホール42を有し、その部品電極上側接続バイアホール42を基板の上面に形成した配線パターン44に接続し、更に、印刷配線板内蔵用電子部品50の電極端子51の下側に部品電極下側接続バイアホール43を有し、その部品電極下側接続バイアホール43を基板の下面に形成した配線パターン45に接続する。こうして、印刷配線板内蔵用電子部品50の電極端子51の位置に基板の上面または下面のどちらからも接続可能な配線構造を有する。   Similarly to the first embodiment, a component electrode upper connection via hole 42 is provided above the electrode terminal 51 of the printed wiring board built-in electronic component 50, and the component electrode upper connection via hole 42 is formed on the upper surface of the substrate. Connected to the formed wiring pattern 44, and further has a component electrode lower connection via hole 43 below the electrode terminal 51 of the printed wiring board built-in electronic component 50, and the component electrode lower connection via hole 43 is formed on the substrate. Are connected to the wiring pattern 45 formed on the lower surface. Thus, a wiring structure is provided that can be connected to the electrode terminal 51 of the printed wiring board built-in electronic component 50 from either the upper surface or the lower surface of the substrate.

1・・・・・ガラス材入り有機樹脂基板
1a・・・・銅箔
2・・・・・両面銅張基板
2a・・・・薄銅箔
3・・・・・インナーバイアホール
3a・・・・インナーバイアホール用貫通孔
3b・・・・部品設置用ランド
3c・・・・部品端子用ランド
3d・・・・ランド開口穴
4・・・・・スルーホールめっき壁面
4a・・・・スルーホール下穴
4b・・・・電解銅めっき層
5・・・・・穴埋め材
6・・・・・電解銅めっき層
7・・・・・配線パターン
10・・・・部品内蔵印刷配線板
21・・・・プリプレグ
21a・・・硬化樹脂層
22・・・・薄銅箔
23・・・・ブラインドバイアホール
23a・・・バイアホール用穴
23b・・・バイアホール用ランド
23c・・・部品支持ランド
23d・・・ランド開口穴
30・・・・ガラス材入り有機樹脂コア基板
31・・・・空孔
31a・・・四隅部分
31b・・・四辺部分
32・・・・配線基板部
40・・・・層間絶縁樹脂層
40a・・・プリプレグ
40b・・・薄銅箔
41・・・・ブラインドバイアホール
41a・・・・バイアホール用穴
42・・・・部品電極上側接続バイアホール
42a・・・部品電極上側接続バイアホール用穴
43・・・・部品電極下側接続バイアホール
43a・・・部品電極下側接続バイアホール用穴
44・・・・配線パターン
45・・・・配線パターン
50・・・・印刷配線板内蔵用電子部品
50b・・・部品本体部分
51・・・・電極端子
52・・・・樹脂
60・・・・ソルダーレジスト
61・・・・ソルダーレジストの開口部
L・・・・・レーザアブレーション用レーザ光
DESCRIPTION OF SYMBOLS 1 ... Organic resin board | substrate 1a with glass material ... Copper foil 2 ... Double-sided copper clad board 2a ... Thin copper foil 3 ... Inner via hole 3a ...・ Through hole 3b for inner via hole .... Land 3c for component installation .... Land 3d for component terminal .... Land opening hole 4 .... Through hole plating wall surface 4a .... Through hole Prepared hole 4b ... Electrolytic copper plating layer 5 ... Hole filling material 6 ... Electrolytic copper plating layer 7 ... Wiring pattern 10 ... Printed wiring board 21 with built-in components ... .... Prepreg 21a ... Hardened resin layer 22 ... Thin copper foil 23 ... Blind via hole 23a ... Via hole hole 23b ... Via hole land 23c ... Component support land 23d ... Land opening hole 30 ... With glass material Resin core substrate 31... Hole 31a... Four corner portions 31b... Four side portions 32... Wiring substrate portion 40 ... Interlayer insulating resin layer 40a ... Prepreg 40b ... Thin copper Foil 41 ... Blind via hole 41a ... Via hole 42 ... Component electrode upper connection via hole 42a ... Component electrode upper connection via hole 43 ... Lower part electrode Connection via hole 43a... Component electrode lower connection via hole 44... Wiring pattern 45... Wiring pattern 50. .... Electrode terminal 52 ... Resin 60 ... Solder resist 61 ... Solder resist opening L ... Laser light for laser ablation

Claims (6)

電極端子の表面が銅で形成され、前記電極端子が樹脂で被覆されていることを特徴とする印刷配線板内蔵用電子部品。   A printed wiring board built-in electronic component, wherein the surface of the electrode terminal is made of copper, and the electrode terminal is covered with a resin. 請求項1記載の印刷配線板内蔵用電子部品であって、前記電極端子が、厚さが1μm以上で30μm以下の樹脂で被覆されていることを特徴とする印刷配線板内蔵用電子部品。   2. The printed wiring board built-in electronic component according to claim 1, wherein the electrode terminal is coated with a resin having a thickness of 1 μm or more and 30 μm or less. 請求項1又は2に記載の印刷配線板内蔵用電子部品であって、前記電極端子の表面が、平均粗さRaが180nm以上400nm以下で粗化されていることを特徴とする印刷配線板内蔵用電子部品。   3. The printed wiring board built-in electronic component according to claim 1 or 2, wherein the surface of the electrode terminal is roughened with an average roughness Ra of 180 nm or more and 400 nm or less. Electronic parts. 電極端子の表面が銅で形成され、前記電極端子が厚さが1μm以上で30μm以下の樹脂で被覆された印刷配線板内蔵用電子部品を製造する工程と、ガラス材入り有機樹脂基板に空孔を形成し、該空孔の四隅を前記印刷配線板内蔵用電子部品の4つの角から間隙を開けて形成し、該空孔の四辺部分を該空孔内に前記印刷配線板内蔵用電子部品の寸法より狭い間隙になるよう内側に突出させた形に形成する工程と、前記印刷配線板内蔵用電子部品を前記空孔の四辺部分の内側に突出させた壁面に摩擦させて挿入することで、前記四辺部分と前記印刷配線板内蔵用電子部品を被覆する前記樹脂の外形面とを密着させて前記印刷配線板内蔵用電子部品を保持する工程を有することを特徴とする部品内蔵印刷配線板の製造方法。   A step of manufacturing an electronic component for embedded printed wiring board in which the surface of the electrode terminal is formed of copper and the electrode terminal is coated with a resin having a thickness of 1 μm or more and 30 μm or less; And the four corners of the hole are formed with gaps from four corners of the printed wiring board built-in electronic component, and the four sides of the hole are formed in the hole. And forming the printed circuit board built-in electronic component so as to have a gap narrower than the size of the above, and frictionally inserting the printed wiring board built-in electronic component into the wall surface projecting inside the four sides of the hole. A printed wiring board with a built-in component comprising the step of holding the printed electronic component with a built-in printed wiring board by bringing the four side portions into close contact with the outer surface of the resin covering the printed electronic component with a built-in printed wiring board Manufacturing method. 請求項4記載の部品内蔵印刷配線板の製造方法であって、前記印刷配線板内蔵用電子部品を保持する工程の後に、前記ガラス材入り有機樹脂基板と前記印刷配線板内蔵用電子部品を上下から層間絶縁樹脂層で覆う工程と、レーザ穴あけにより、前記層間絶縁樹脂層及び前記印刷配線板内蔵用電子部品を被覆した前記樹脂とを貫通して前記電極端子に達する穴を形成し該穴に金属めっきすることで部品電極接続バイアホールを形成する工程を有することを特徴とする部品内蔵印刷配線板の製造方法。   5. The method for manufacturing a printed wiring board with a built-in component according to claim 4, wherein the glass-filled organic resin substrate and the electronic component with a built-in printed wiring board are moved up and down after the step of holding the electronic component with a built-in printed wiring board. Forming a hole reaching the electrode terminal through the interlayer insulating resin layer and the resin covering the printed circuit board built-in electronic component by laser drilling and covering with an interlayer insulating resin layer A method of manufacturing a component built-in printed wiring board, comprising: forming a component electrode connection via hole by metal plating. 請求項4又は5に記載の部品内蔵印刷配線板の製造方法であって、前記電極端子の表面を、湿式バレル研磨を行うことで、平均粗さRaが180nm以上400nm以下の平均粗さで粗化する工程を有することを特徴とする部品内蔵印刷配線板の製造方法。   It is a manufacturing method of the component built-in printed wiring board of Claim 4 or 5, Comprising: The surface roughness of the said electrode terminal is roughened by the average roughness Ra of 180 nm or more and 400 nm or less by performing wet barrel polishing. The manufacturing method of the component built-in printed wiring board characterized by having a process to make.
JP2012081079A 2012-03-30 2012-03-30 Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board Pending JP2013211431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081079A JP2013211431A (en) 2012-03-30 2012-03-30 Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081079A JP2013211431A (en) 2012-03-30 2012-03-30 Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board

Publications (1)

Publication Number Publication Date
JP2013211431A true JP2013211431A (en) 2013-10-10

Family

ID=49529020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081079A Pending JP2013211431A (en) 2012-03-30 2012-03-30 Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board

Country Status (1)

Country Link
JP (1) JP2013211431A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162559A (en) * 2014-02-27 2015-09-07 京セラサーキットソリューションズ株式会社 Printed-circuit board and manufacturing method thereof
JP2016012698A (en) * 2014-06-30 2016-01-21 京セラサーキットソリューションズ株式会社 Manufacturing method of wiring board
WO2016080141A1 (en) * 2014-11-17 2016-05-26 株式会社村田製作所 Component-embedded substrate and method for manufacturing component-embedded substrate
KR20160090637A (en) * 2015-01-22 2016-08-01 삼성전기주식회사 Printed circuit board and method of manufacturing the same
JP2017069523A (en) * 2015-10-02 2017-04-06 株式会社村田製作所 Inductor component, package component and switching regulator
JP2018078150A (en) * 2016-11-07 2018-05-17 Koa株式会社 Substrate-inner layer chip resistor and component built-in type circuit substrate
JP2018078152A (en) * 2016-11-07 2018-05-17 Koa株式会社 Chip resistor
JP2018088496A (en) * 2016-11-29 2018-06-07 Koa株式会社 Electronic component and mounting method of electronic component
JP2019192920A (en) * 2019-05-31 2019-10-31 株式会社村田製作所 Inductor component, package component, and switching regulator
WO2021009865A1 (en) * 2019-07-17 2021-01-21 株式会社メイコー High-density multilayer substrate and method for manufacturing same
CN114175860A (en) * 2019-08-08 2022-03-11 株式会社村田制作所 Resin multilayer substrate and method for manufacturing resin multilayer substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969468A (en) * 1995-08-31 1997-03-11 Mitsubishi Materials Corp Chip-type electronic part
JP2006073763A (en) * 2004-09-01 2006-03-16 Denso Corp Manufacturing method for multilayer board
JP2010123865A (en) * 2008-11-21 2010-06-03 Murata Mfg Co Ltd Ceramic electronic component and component built-in substrate
JP2011109274A (en) * 2009-11-13 2011-06-02 Murata Mfg Co Ltd Method of manufacturing chip component
JP2011124257A (en) * 2009-12-08 2011-06-23 Ngk Spark Plug Co Ltd Component built in wiring board, method of manufacturing the same, and the wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969468A (en) * 1995-08-31 1997-03-11 Mitsubishi Materials Corp Chip-type electronic part
JP2006073763A (en) * 2004-09-01 2006-03-16 Denso Corp Manufacturing method for multilayer board
JP2010123865A (en) * 2008-11-21 2010-06-03 Murata Mfg Co Ltd Ceramic electronic component and component built-in substrate
JP2011109274A (en) * 2009-11-13 2011-06-02 Murata Mfg Co Ltd Method of manufacturing chip component
JP2011124257A (en) * 2009-12-08 2011-06-23 Ngk Spark Plug Co Ltd Component built in wiring board, method of manufacturing the same, and the wiring board

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162559A (en) * 2014-02-27 2015-09-07 京セラサーキットソリューションズ株式会社 Printed-circuit board and manufacturing method thereof
JP2016012698A (en) * 2014-06-30 2016-01-21 京セラサーキットソリューションズ株式会社 Manufacturing method of wiring board
US10231342B2 (en) 2014-11-17 2019-03-12 Murata Manufacturing Co., Ltd. Component built-in substrate
WO2016080141A1 (en) * 2014-11-17 2016-05-26 株式会社村田製作所 Component-embedded substrate and method for manufacturing component-embedded substrate
JPWO2016080141A1 (en) * 2014-11-17 2017-04-27 株式会社村田製作所 Component built-in substrate and method for manufacturing component built-in substrate
KR20160090637A (en) * 2015-01-22 2016-08-01 삼성전기주식회사 Printed circuit board and method of manufacturing the same
KR102139755B1 (en) * 2015-01-22 2020-07-31 삼성전기주식회사 Printed circuit board and method of manufacturing the same
JP2017069523A (en) * 2015-10-02 2017-04-06 株式会社村田製作所 Inductor component, package component and switching regulator
US10715041B2 (en) 2015-10-02 2020-07-14 Murata Manufacturing Co., Ltd. Inductor component, package component, and switching regulator
US11876449B2 (en) 2015-10-02 2024-01-16 Murata Manufacturing Co., Ltd. Inductor component, package component, and switching regulator
JP2018078152A (en) * 2016-11-07 2018-05-17 Koa株式会社 Chip resistor
JP2018078150A (en) * 2016-11-07 2018-05-17 Koa株式会社 Substrate-inner layer chip resistor and component built-in type circuit substrate
JP2018088496A (en) * 2016-11-29 2018-06-07 Koa株式会社 Electronic component and mounting method of electronic component
JP2019192920A (en) * 2019-05-31 2019-10-31 株式会社村田製作所 Inductor component, package component, and switching regulator
WO2021009865A1 (en) * 2019-07-17 2021-01-21 株式会社メイコー High-density multilayer substrate and method for manufacturing same
JPWO2021009865A1 (en) * 2019-07-17 2021-09-13 株式会社メイコー High-density multilayer substrate and its manufacturing method
CN114175860A (en) * 2019-08-08 2022-03-11 株式会社村田制作所 Resin multilayer substrate and method for manufacturing resin multilayer substrate

Similar Documents

Publication Publication Date Title
JP2013211431A (en) Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board
JP5001395B2 (en) Wiring board and method of manufacturing wiring board
KR100965339B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP5855905B2 (en) Multilayer wiring board and manufacturing method thereof
JP5955023B2 (en) Printed wiring board with built-in component and manufacturing method thereof
WO2009101723A1 (en) Method for manufacturing substrate with built-in electronic component
KR20080096985A (en) Carrier member for transmitting circuits, coreless printed circuit board using the said carrier member, and methods of manufacturing the same
JP2006032887A (en) Method for manufacturing passive element chip built-in type printed circuit board
JP2009260204A (en) Printed circuit board and method of manufacturing the same
JP2012060096A (en) Embedded ball grid array substrate and its manufacturing method
JPH1154934A (en) Multilayered printed wiring board and its manufacture
KR20060026683A (en) Method for manufacturing package substrate using a electroless ni plating
JP2012216575A (en) Component built-in printed circuit board and manufacturing method thereof
WO2014041601A1 (en) Method for manufacturing embedded component substrate, and embedded component substrate manufactured using this method
KR100722599B1 (en) All layer inner via hall printed circuit board and the manufacturing method that utilize the fill plating
JP2007150171A (en) Manufacturing method for wiring board
JP6460439B2 (en) Printed wiring board and manufacturing method thereof
JP2002134918A (en) Method for manufacturing multilayer printed wiring board
KR100651422B1 (en) Method for fabricating the multi layer using Layup Process
JP2010129997A (en) Printed-circuit board with embedded pattern, and its manufacturing method
JP2010010488A (en) Manufacturing method of wiring board, and wiring board
JP6598694B2 (en) Thick copper circuit board and manufacturing method thereof
JP2004152935A (en) Printed wiring board
JP2015222805A (en) Printed-circuit board and manufacturing method thereof
KR100789521B1 (en) Fabricating method of multi layer printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151026