JP4046651B2 - 空気調和装置及び空気調和装置の制御方法 - Google Patents

空気調和装置及び空気調和装置の制御方法 Download PDF

Info

Publication number
JP4046651B2
JP4046651B2 JP2003172816A JP2003172816A JP4046651B2 JP 4046651 B2 JP4046651 B2 JP 4046651B2 JP 2003172816 A JP2003172816 A JP 2003172816A JP 2003172816 A JP2003172816 A JP 2003172816A JP 4046651 B2 JP4046651 B2 JP 4046651B2
Authority
JP
Japan
Prior art keywords
pressure
compressor
heat exchanger
outdoor heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003172816A
Other languages
English (en)
Other versions
JP2005009726A (ja
Inventor
和伸 大川
亮太 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003172816A priority Critical patent/JP4046651B2/ja
Publication of JP2005009726A publication Critical patent/JP2005009726A/ja
Application granted granted Critical
Publication of JP4046651B2 publication Critical patent/JP4046651B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンを駆動源とする複数台の圧縮機を有する室外ユニットと室内ユニットとが高圧ガス管、低圧ガス管及び液管を有するユニット配管により接続された空気調和装置及び空気調和装置の制御方法に関する。
【0002】
【従来の技術】
一般に、複数台の圧縮機及び室外熱交換器を有する室外ユニットと、室内熱交換器を有する複数台の室内ユニットとが高圧ガス管、低圧ガス管及び液管を有するユニット間配管で接続され、室内ユニット毎に冷房運転或いは暖房運転を行えるように構成された空気調和装置が知られている(例えば、特許文献1参照。)。
【0003】
この種の空気調和装置において、上記複数台の圧縮機は、エンジンを駆動源とし、エンジンに直結された第1の圧縮機及びエンジンにクラッチを介して接離される第2の圧縮機で構成されるものが知られている。
【0004】
そして、上記空気調和装置では、室内ユニットの負荷に応じて、凝縮器として機能している室外熱交換器を蒸発器させ、或いは蒸発器として機能している室外熱交換器を凝縮器として機能させる制御を行っている。
【0005】
【特許文献1】
特許第2765970号公報
【0006】
【発明が解決しようとする課題】
上記空気調和装置において、凝縮器として機能している室外熱交換器を蒸発器として機能させる際は、室外熱交換器の冷媒出入口を閉鎖し、室外熱交換器に隣設した室外ファンにより室外熱交換器内の冷媒を外気温程度にまで冷却する制御を行っている。そして、室外熱交換器を蒸発器に切り替えた直後は、通常の運転時の蒸発器の冷媒出口圧力(例えば、0.5MPa)よりも高い圧力の冷媒が圧縮機に戻されることがある。
【0007】
従って、圧縮機の吐出冷媒圧力が上昇するような条件の下で室内ユニット側の負荷に応じて室外熱交換器を凝縮器から蒸発器に切り替える場合、圧縮機の吸込冷媒圧力が上昇するので、圧縮機の吐出冷媒圧力が、全ての圧縮機を停止させる制御を行う圧縮機停止の圧力(例えば、2.8MPa)にまで上昇することがあるという問題がある。
【0008】
このように、圧縮機の吐出冷媒圧力が圧縮機停止の圧力以上となった場合、圧縮機を保護するために、全ての圧縮機を所定時間(例えば、3分間)停止させる制御を行っているが、この全ての圧縮機を停止させている所定時間内は、空調運転ができなくなってしまい、空調性が低いものとなってしまうという問題がある。更に、所定時間経過後、圧縮機の運転が再開されても、再び、冷媒回路における最適な熱バランスを実現するまでに時間がかかってしまい、空調性が低いものとなってしまうという問題がある。
【0009】
本発明の目的は、上述の事情を考慮してなされたものであり、凝縮器として機能している室外熱交換器を蒸発器として機能させる際に、圧縮機の吐出冷媒圧力が圧縮機停止の圧力にまで上昇するのを回避し、空調性を確保することができる空気調和装置及び空気調和装置の制御方法を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、エンジンに直結された第1の圧縮機及び前記エンジンにクラッチを介して接離される第2の圧縮機並びに室外熱交換器を有する室外ユニットと、室内熱交換器を有する複数台の室内ユニットとがユニット間配管により接続され、前記室外熱交換器の一端が、前記第1及び第2の圧縮機の冷媒吐出管と冷媒吸込管とに択一に接続され、前記ユニット間配管が、前記冷媒吐出管に接続された高圧ガス管と、前記冷媒吸込管に接続された低圧ガス管と、前記室外熱交換の他端に接続された液管とを有して構成され、前記各室内ユニットは、前記室内熱交換器の一端が前記高圧ガス管と前記低圧ガス管に弁ユニットを介して択一に接続され、他端が前記液管に接続され、前記複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置において、前記複数台の室内ユニットの冷房運転と暖房運転を混在して運転している間、前記複数台の室内ユニットの冷暖房負荷の変動に対応して、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えると共に、この切り替え時には、前記第1の圧縮機の運転を継続しつつ前記クラッチをオフして前記第2の圧縮機の運転を停止した後、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えることを特徴とするものである。
請求項2に記載の発明は、請求項1に記載の発明において、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに前記クラッチをオフする場合、前記エンジンの回転数を所定回転数以下に制限する第1の制御手段と、前記第1の制御手段により前記エンジンの回転数が前記所定回転数以下に制限された状態で、前記クラッチをオフにする第2の制御手段とを備えたことを特徴とするものである。
【0011】
請求項に記載の発明は、請求項1又は2に記載の発明において、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに前記クラッチがオフ状態である場合、前記第1の圧縮機及び前記第2の圧縮機の冷媒の吐出側における吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する圧力判断手段と、前記圧力判断手段による判断の結果、前記吐出冷媒圧力が、前記所定圧力以上である場合、前記エンジンの回転数を前記所定回転数以下に制限する第3の制御手段とを備え、前記エンジンの回転数が前記所定回転数以下に制限されている状態の間に、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えることを特徴とするものである。
【0012】
請求項に記載の発明は、請求項1に記載の発明において、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに、前記第1の圧縮機及び前記第2の圧縮機の冷媒の吐出側における吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する圧力判断手段と、前記圧力判断手段による判断の結果、前記吐出冷媒圧力が、前記所定圧力以上である場合、前記エンジンの回転数を所定回転数以下に制限する第1の制御手段と、前記第1の制御手段により前記エンジンの回転数が前記所定回転数以下に制限され、且つ、前記クラッチがオン状態である場合、前記クラッチをオフにする第2の制御手段とを備えたことを特徴とするものである。
【0013】
請求項に記載の発明は、エンジンに直結された第1の圧縮機及び前記エンジンにクラッチを介して接離される第2の圧縮機並びに室外熱交換器を有する室外ユニットと、室内熱交換器を有する複数台の室内ユニットとがユニット間配管により接続され、前記室外熱交換器の一端が、前記第1及び第2の圧縮機の冷媒吐出管と冷媒吸込管とに択一に接続され、前記ユニット間配管が、前記冷媒吐出管に接続された高圧ガス管と、前記冷媒吸込管に接続された低圧ガス管と、前記室外熱交換の他端に接続された液管とを有して構成され、前記各室内ユニットは、前記室内熱交換器の一端が前記高圧ガス管と前記低圧ガス管に弁ユニットを介して択一に接続され、他端が前記液管に接続され、前記複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置の制御方法において、前記複数台の室内ユニットの冷房運転と暖房運転を混在して運転している間、前記複数台の室内ユニットの冷暖房負荷の変動に対応して、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えると共に、この切り替え時には、前記第1の圧縮機の運転を継続しつつ前記クラッチをオフして前記第2の圧縮機の運転を停止した後、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替える過程を有することを特徴とするものである。
請求項6に記載の発明は、請求項5に記載の発明において、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに前記クラッチをオフする場合、前記エンジンの回転数を所定回転数以下に制限する第1の制御過程と、前記第1の制御過程において前記エンジンの回転数が前記所定回転数以下に制限された状態で、前記クラッチをオフにする第2の制御過程とを備えたことを特徴とするものである。
【0014】
請求項に記載の発明は、請求項5又は6に記載の発明において、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに前記クラッチがオフ状態である場合、前記第1の圧縮機及び前記第2の圧縮機の冷媒の吐出側における吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する圧力判断過程と、前記圧力判断過程における判断の結果、前記吐出冷媒圧力が、前記所定圧力以上である場合、前記エンジンの回転数を前記所定回転数以下に制限する第3の制御過程とを備え、前記エンジンの回転数が前記所定回転数以下に制限されている状態の間に、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えることを特徴とするものである。
【0015】
請求項に記載の発明は、請求項5に記載の発明において、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに、前記第1の圧縮機及び前記第2の圧縮機の冷媒の吐出側における吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する圧力判断過程と、前記圧力判断過程における判断の結果、前記吐出冷媒圧力が、前記所定圧力以上である場合、前記エンジンの回転数を所定回転数以下に制限する第1の制御過程と、前記第1の制御過程において前記エンジンの回転数が前記所定回転数以下に制限され、且つ、前記クラッチがオン状態である場合、前記クラッチをオフにする第2の制御過程とを備えたことを特徴とするものである。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0017】
[1]第1の実施の形態
図1は、本発明に係る空気調和装置の第1の実施の形態を示す冷媒回路図等である。この空気調和装置50は、室外ユニット1と複数台(本実施の形態では、2台)の室内ユニット2a,2bとを有して構成される。
【0018】
室外ユニット1は、圧縮機3及び室外熱交換器4を備えている。圧縮機3は、図2に示すように、並列に接続された複数台(本実施の形態では、2台)の圧縮機(第1の圧縮機3a及び第2の圧縮機3b)を備えている。本実施の形態では、圧縮機3は、第1の圧縮機3a及び第2の圧縮機3bから成るツインコンプレッサである。第1の圧縮機3aと第2の圧縮機3bとは、最大容量(定格容量)が同じものである。
【0019】
圧縮機3a,3bは、エンジンとしてのガスエンジン30を駆動源としている。第1の圧縮機3aは、ガスエンジン30に直結される。また、第2の圧縮機3bは、ガスエンジンにクラッチ31を介して接離される。具体的に説明すると、ガスエンジン30には、エンジンプーリ32が接続され、第1の圧縮機3aには、第1のプーリ33が接続され、第2の圧縮機3bには、クラッチ31を介して第2のプーリ34が接続される。そして、エンジンプーリ32、第1のプーリ33及び第2のプーリ34にはベルト35が巻回されている。
【0020】
第1の圧縮機3aは、空気調和装置50の運転動作時は、常時、ガスエンジン30により駆動される。また、第2の圧縮機3bは、クラッチ31がオン状態(入り状態)のときのみガスエンジン30により駆動される。つまり、クラッチ31がオン状態(入り状態)のとき、第1の圧縮機3a及び第2の圧縮機3bの2台がガスエンジン30により駆動され、クラッチ31がオフ状態(切り状態)のとき、第1の圧縮機3aの1台のみがガスエンジン30により駆動される。
【0021】
室外熱交換器4には、図1に示すように、室外ファン5が隣接して配置されている。室外熱交換器4は、複数台(本実施の形態では、2台)の室外熱交換器4a,4bから成り、第1の室外熱交換器4aと第2の室外熱交換器4bは、並列接続されている。本実施の形態では、第1の室外熱交換器4aと第2の室外熱交換器4bとは、熱交換容量(定格熱交換容量)が異なる。つまり、第2の室外熱交換器4bは、第1の室外熱交換器4aよりも熱交換容量(定格熱交換容量)が小さい。ここで、定格熱交換容量とは、熱交換器の最大熱交換容量のことである。
【0022】
また、室内ユニット2a,2bは、室内熱交換器6a,6b及び室内電子膨張弁18a,18bを備えている。室内熱交換器6a,6bのそれぞれには、室内ファン9a,9bのそれぞれが隣接して配置される。
【0023】
そして、室外ユニット1と室内ユニット2a,2bとが、高圧ガス管11、低圧ガス管12及び液管13を有するユニット間配管10により接続されて、空気調和装置50は、室内ユニット2a,2bを同時に冷房運転もしくは暖房運転可能とし、または、冷房運転と暖房運転とを混在して実施可能とする。つまり、室内ユニット2a,2b毎に冷房運転或いは暖房運転を行えるように構成されている。
【0024】
室外ユニット1では、室外熱交換器4の一端が、圧縮機3の冷媒吐出管7と冷媒吸込管8とに、択一に分岐して接続されている。
【0025】
具体的には、第1の室外熱交換器4aの一端が、圧縮機3の冷媒吐出管7に吐出側電磁弁21aを介して接続されるとともに、圧縮機3の冷媒吸込管8に吸込側電磁弁22aを介して接続される。また、第2の室外熱交換器4bの一端が、圧縮機3の冷媒吐出管7に吐出側電磁弁21bを介して接続されるとともに、圧縮機3の冷媒吸込管8に吸込側電磁弁22bを介して接続される。
【0026】
そして、ユニット間配管10の高圧ガス管11は、圧縮機3の冷媒吐出管7に接続される。また、低圧ガス管12は、圧縮機3の冷媒吸込管8に接続される。また、液管13は、室外電子膨張弁27a,27bのそれぞれを介して室外熱交換器4a,4bのそれぞれの他端に接続される。
【0027】
冷媒吸込管8には、アキュムレータ24が配設され、冷媒吐出管7には、オイルセパレータ25が配設されている。また、冷媒吐出管7と冷媒吸込管8とをバイパスする高低圧バイパス弁(電動弁)23が設けられている。また、液管13には、レシーバタンク26が配設されている。
【0028】
上記室内ユニット2aの室内熱交換器6aは、その一端が、高圧ガス分岐管14aを介して高圧ガス管11に接続されるとともに、低圧ガス分岐管15aを介して低圧ガス管12に接続される。また、室内ユニット2bの室内熱交換器6bは、その一端が、高圧ガス分岐管14bを介して高圧ガス管11に接続されるとともに、低圧ガス分岐管15bを介して低圧ガス管12に接続される。
【0029】
高圧ガス分岐管14a,14bのそれぞれに、第1開閉弁(第1電磁開閉弁)16a,16bが配設される。また、低圧ガス分岐管15a,15bのそれぞれに、第2開閉弁(第2電磁開閉弁)17a,17bが配設される。
【0030】
また、上記室内ユニット2a,2bのそれぞれの室内熱交換器6a,6bは、それらの他端が、室内電子膨張弁18aを配設した液分岐管19a、室内電子膨張弁18bを配設した液分岐管19bを介して液管13にそれぞれ接続される。
【0031】
第1開閉弁16a,16b、第2開閉弁17a,17bのそれぞれは、電磁弁ユニット20a,20bのそれぞれに格納されている。
【0032】
圧縮機3の冷媒吐出管7には、圧縮機3の吐出冷媒圧力を検出するための圧力センサ41が設けられている。
【0033】
室外ユニット1には、空気調和装置50全体を制御する制御装置40が備えられている。
【0034】
具体的には、制御装置40は、圧縮機3の容量、室外電子膨張弁27a,27bの弁開度、吐出側電磁弁21a,21bの弁開閉、吸込側電磁弁22a,22bの弁開閉、室外ファン5の回転数、及び高低圧バイパス弁23の開度等を制御する。また、制御装置40は、室内電子膨張弁18a,18bの弁開度、電磁弁ユニット20a,20b及び室内ファン9a,9b等を制御する。
【0035】
圧縮機3の容量は、ガスエンジン30(図2)の回転数、及び圧縮機3a,3bの運転台数で制御される。つまり、制御装置40は、ガスエンジン30の回転数、及び圧縮機3a,3bの運転台数(即ち、クラッチ31のオンオフ)を制御することにより、圧縮機3の容量を制御する。
【0036】
図3は、圧縮機3の容量制御を示すグラフである。ここで、第1の圧縮機3a、第2の圧縮機3bの最大容量をP(例えば、10馬力)、第1の圧縮機3a、第2の圧縮機3bを最大容量Pで運転する場合のガスエンジン30の回転数をr(例えば、2800rpm)とする。
【0037】
圧縮機3に要求される容量が第1の圧縮機3aの最大容量Pよりも小さい場合、制御装置40は、クラッチ31をオフにし、第1の圧縮機3aの容量が要求される容量となるように、ガスエンジン30の回転数を制御する。このように、クラッチ31がオフ状態のときのガスエンジン30の回転数に対する圧縮機3の容量は、図3中、直線C0のような関係にある。
【0038】
次に、圧縮機3に要求される容量が、容量Pである場合、制御装置40は、ガスエンジン30の回転数をr/2(例えば、1400rpm)に設定し、且つ、クラッチ31をオンにする。
【0039】
そして、圧縮機3に要求される容量が第1の圧縮機3aの最大容量Pよりも大きい場合、制御装置40は、クラッチ31はオンに保持し、第1の圧縮機3aと第2の圧縮機3bとの合計容量が要求される容量となるように、ガスエンジン30の回転数を制御する。このように、クラッチ31がオン状態のときのガスエンジン30の回転数に対する圧縮機3の容量は、図3中、直線C1のような関係にある。
【0040】
ここで、ガスエンジン30の回転数がクラッチ31をオンオフ操作するには高すぎる場合、クラッチ31の磨耗や損傷等の不具合が生じてしまうことがある。従って、クラッチ31のオンオフ操作を行う場合、制御装置40は、ガスエンジン30の回転数を所定回転数r0(例えば、1200rpm)以下に制限し、クラッチ31のオンオフ操作を行うようにしている。これによって、クラッチ31の寿命を延ばすことができる。
【0041】
特に、クラッチ31のオンオフ操作は、ガスエンジン30の回転数が、所定回転数r0よりも小さく、且つ、空調性を損なわない第2の所定回転数r1(例えば、800rpm)以上であるのが好ましい。つまり、クラッチ31のオンオフ操作は、ガスエンジン30の回転数が、第2の所定回転数r1以上であり、所定回転数r0以下であるのが好ましい。
【0042】
図1中、室外電子膨張弁27a,27bおよび室内電子膨張弁18a,18bは、例えば不図示のステッピングモータによって弁開度が調整される。そして、例えば、ステッピングモータへ入力されるパルス(ステップ)が、例えば、20ステップのときが全閉、480ステップのときが全開となるように設定されている。
【0043】
また、制御装置40は、冷媒吐出管7の吐出冷媒圧力を検出する(吐出冷媒圧力検出手段)。具体的には、制御装置40は、圧力センサ41により冷媒吐出管7の吐出冷媒圧力を検出している。
【0044】
そして、制御装置40は、この検出した吐出冷媒圧力が圧縮機3を停止させる圧力(圧縮機停止の圧力)以上となる場合、圧縮機3を所定時間(例えば、3分間)停止させる制御を行っている。つまり、冷媒吐出管7の吐出冷媒圧力が圧縮機停止の圧力以上となる状態のまま圧縮機3の運転を継続した場合、空気調和装置50を構成する各種機器(特に、圧縮機3)が破損する恐れがあるためである。圧縮機停止の圧力は、例えば、2.8MPaである。このように、吐出冷媒圧力が圧縮機停止の圧力以上となる場合、圧縮機3が所定時間に亘って停止するので、空気調和装置50を構成する各種機器(特に、圧縮機3)が破損するのを回避することができる。
【0045】
次に空気調和装置50の運転動作を説明する。
【0046】
(A)全室内ユニット2a,2bを同時に冷房運転する場合は、高圧ガス管11が休止状態におかれる。
【0047】
この場合、制御装置40は、吐出側電磁弁21a,21bを開くとともに吸込側電磁弁22a,22bを閉じ、且つ電磁弁ユニット20a,20bの第1開閉弁16a,16bを閉じるとともに、第2開閉弁17a,17bを開く。更に、制御装置40は、室外電子膨張弁27a,27bを略全開(全開を含む)に制御するとともに、室内電子膨張弁18a,18bの開度を制御する。つまり、室外熱交換器4a,4bを凝縮器として機能させるとともに、室内熱交換器6a,6bを蒸発器として機能させている。
【0048】
これにより、圧縮機3から吐出された冷媒は、冷媒吐出管7、オイルセパレータ25、吐出側電磁弁21a,21b、室外熱交換器4a,4bへと順次流れ、室外熱交換器4a,4bで凝縮液化する。凝縮液化した冷媒は、室外電子膨張弁27a,27b及びレシーバタンク26を通過し、液管13と液分岐管19a,19bを経て各室ユニット2a,2bの室内電子膨張弁18a,18bに分配され、ここで減圧される。
【0049】
しかる後、室内電子膨張弁18a,18bで減圧された冷媒は、各室内熱交換器6a,6bで蒸発気化した後、それぞれ第2開閉弁17a,17bを流れ、低圧ガス管12、冷媒吸込管8、アキュムレータ24を順次経て圧縮機3に吸入される。
【0050】
このように、蒸発器として機能する各室内熱交換器6a,6bで全室内ユニット2a,2bが同時に冷房運転される。
【0051】
(B)全室内ユニット2a,2bを同時に暖房運転する場合は、低圧ガス管12が休止状態におかれる。
【0052】
この場合、制御装置40は、吐出側電磁弁21a,21bを閉じるとともに、吸込側電磁弁22a,22bを開き、且つ電磁弁ユニット20a,20bの第1開閉弁16a,16bを開くとともに、第2開閉弁17a,17bを閉じる。更に、制御装置40は、室内電子膨張弁18a,18bを略全開(全開を含む)に制御するとともに、室外電子膨張弁27a,27bの開度を制御する。つまり、室外熱交換器4a,4bを蒸発器として機能させるとともに、室内熱交換器6a,6bを凝縮器として機能させている。
【0053】
これにより、圧縮機3から吐出された冷媒は、冷媒吐出管7、オイルセパレータ25、高圧ガス管11を順次経て高圧ガス分岐管14a,14bに分配された後、第1開閉弁16a,16b、室内熱交換器6a,6bへと流れ、ここでそれぞれ凝縮液化する。
【0054】
凝縮液化した冷媒は、液分岐管19a,19bを経て液管13で合流される。
【0055】
しかる後、液管13の液冷媒は、レシーバタンク26を通過し、各室外電子膨張弁27a,27bで減圧された後、各室外熱交換器4a,4bで蒸発気化する。この蒸発気化した冷媒は、吸込側電磁弁22a,22b、冷媒吸込管8、アキュムレータ24を順次経て圧縮機3に吸入される。このように凝縮器として機能する各室内熱交換器6a,6bで、全室内ユニット2a,2bが同時に暖房運転される。
【0056】
(C)次に、例えば室内ユニット2aを冷房運転し、室内ユニット2bを暖房運転する場合は、ユニット間配管10のうち、全ての冷媒管11,12,13が使用される。まず、室内ユニット2a側の冷房負荷が室内ユニット2b側の暖房負荷よりも大きい場合について説明する。
【0057】
この場合、制御装置40は、吐出側電磁弁21a,21bを開くとともに吸込側電磁弁22a,22bを閉じ、且つ、冷房運転する室内ユニット2aの電磁弁ユニット20aにおける第1開閉弁16aを閉じるとともに、第2開閉弁17aを開き、且つ暖房運転する室内ユニット2bの電磁弁ユニット20bにおける第1開閉弁16bを開くとともに、第2開閉弁17bとを閉じる。更に、制御装置40は、室外電子膨張弁27a,27b及び室内電子膨張弁18bを略全開(全開を含む)に制御するとともに、室内電子膨張弁18aの開度を制御する。つまり、室外熱交換器4a,4b及び室内熱交換器6bを凝縮器として機能させるとともに、室内熱交換器6aを蒸発器として機能させている。
【0058】
すると、圧縮機3から吐出され、冷媒吐出管7及びオイルセパレータ25を通過した冷媒の一部が、吐出側電磁弁21a,21bを経て室外熱交換器4a,4bに流れるとともに、残りの冷媒が高圧ガス管11を経て暖房運転する室内ユニット2bの電磁弁ユニット20bにおける第1開閉弁16b、室内熱交換器6bへと流れる。これによって、冷媒が室外熱交換器4a,4b及び室内熱交換器6bで凝縮液化される。
【0059】
そして、室外熱交換器4a,4b及び室内熱交換器6bで凝縮液化された冷媒は、液管13を経て室内ユニット2aの室内電子膨張弁18aで減圧された後、室内熱交換器6aで蒸発気化される。しかる後、冷媒は、第2開閉弁17aを流れて低圧ガス管12、冷媒吸込管8、アキュムレータ24を順次経て圧縮機3に吸入される。このように、凝縮器として機能する室内熱交換器6bで室内ユニット2bが暖房運転され、蒸発器として機能する室内熱交換器6aで室内ユニット2aが冷房運転される。
【0060】
(D)次に、室内ユニット2b側の暖房負荷が室内ユニット2a側の冷房負荷よりも大きい場合について説明する。
【0061】
この場合、制御装置40は、吐出側電磁弁21a,21bを閉じるとともに吸込側電磁弁22a,22bを開き、且つ冷房運転する室内ユニット2aの電磁弁ユニット20aにおける第1開閉弁16aを閉じるとともに、第2開閉弁17aを開き、且つ暖房運転する室内ユニット2bの電磁弁ユニット20bにおける第1開閉弁16bを開くとともに、第2開閉弁17bを閉じる。更に、制御装置40は、室内電子膨張弁18bを略全開(全開を含む)に制御するとともに、室外電子膨張弁27a,27b及び室内電子膨張弁18aの開度を制御する。つまり、室内熱交換器6bを凝縮器として機能させるとともに、室外熱交換器4a,4b及び室内熱交換器6aを蒸発器として機能させている。
【0062】
すると、圧縮機3から吐出された冷媒は、冷媒吐出管7、高圧ガス管11を順次経て第1開閉弁16bを通過して室内熱交換器6bで凝縮液化される。
【0063】
そして、この液化された冷媒は、略全開された室内電子膨張弁18bを経て液管13に流れる。この液管中の液冷媒の一部が、室内電子膨張弁18aで減圧された後に室内熱交換器6bで、且つ、残りの液冷媒が室外電子膨張弁27a,27bで減圧された後に室外熱交換器4a,4bでそれぞれ蒸発気化され、冷媒吸込管8、アキュムレータ24を順次経て圧縮機3に吸入される。このように、凝縮器として機能する室内熱交換器6bで室内ユニット2bが暖房運転され、蒸発器として機能する室内熱交換器6aで室内ユニット2aが冷房運転される。
【0064】
以上の如く、冷房運転する室内ユニット2a側の冷房負荷が、暖房運転する室内ユニット2b側の暖房負荷よりも大きいときは、室外熱交換器4a,4bを凝縮器として機能させる。一方、冷房する室内ユニット2a側の冷房負荷が、暖房する室内ユニット2b側の暖房負荷よりも小さいときは、室外熱交換器4a,4bを蒸発器として機能させる。従って、任意の室内ユニット2a,2bを自由に冷暖房することができる。
【0065】
(E)上記(A)〜(D)に示した運転状態において、室内ユニット2a,2b側の冷房負荷と暖房負荷との差が第1のしきい値を下回る場合、制御装置40は、第1の室外熱交換器4aを凝縮器或いは蒸発器に機能させ、且つ、第2の室外熱交換器4bを休止状態にする制御を行う。
【0066】
そして、室内ユニット2a,2b側の冷房負荷と暖房負荷との差が第1のしきい値よりも小さい第2のしきい値を下回る場合、制御装置40は、第1の室外熱交換器4aを休止状態にし、且つ、第2の室外熱交換器4bを凝縮器或いは蒸発器として機能させる制御を行う。
【0067】
第1の室外熱交換器4aを休止させる場合、制御装置40は、室外電子膨張弁27aを略全閉(全閉を含む。)に制御するとともに、吐出側電磁弁21a及び吸込側電磁弁22aを閉弁する制御を行う。また、第2の室外熱交換器4bを休止させる場合、制御装置40は、室外電子膨張弁27bを略全閉(全閉を含む。)に制御するとともに、吐出側電磁弁21b及び吸込側電磁弁22bを閉弁する制御を行う。
【0068】
尚、上記(A)に示した運転状態おいて、室内ユニット2a,2bは、冷房運転を行っているので、暖房負荷は0である。また、上記(B)に示した運転状態おいて、室内ユニット2a,2bは、暖房運転を行っているので、冷房負荷は0である。
【0069】
(F)更に、室内ユニット2a,2bの冷房負荷と暖房負荷とが同じ場合、制御装置40は、第1の室外熱交換器4a及び第2の室外熱交換器4bを休止させる。つまり、制御装置40は、室外電子膨張弁27a及び27bを略全閉(全閉を含む。)に制御するとともに、吐出側電磁弁21a,21b及び吸込側電磁弁22a、22bを閉弁する制御を行う。
【0070】
ところで、上記(C)に示す運転状態から上記(D)に示す運転状態に切り替える際、即ち、室内ユニット2a,2bの空調負荷が変化して凝縮器として機能している室外熱交換器4を蒸発器として機能させる際、制御装置40は、吐出側電磁弁21a,21b及び吸込側電磁弁22a,22bを閉弁制御し、室外電子膨張弁27a,27bを略全閉(全閉を含む。)に制御することで室外熱交換器4a,4bの冷媒出入口を閉鎖し、室外熱交換器4a,4bに隣接配置した室外ファン5により室外熱交換器4a,4b内の冷媒を外気温(例えば、20℃)程度にまで冷却する制御を行う。この室外熱交換器4a,4bの冷媒出入口を閉鎖し、室外熱交換器4a,4bに隣接配置した室外ファン5により室外熱交換器4a,4b内の冷媒を外気温(例えば、20℃)程度にまで冷却する制御は、予め設定された熱交換器冷却期間内に行われる。つまり、この熱交換器冷却期間は、室外熱交換器4a,4bの冷媒出入口を閉鎖してから、室外熱交換器4a,4bを蒸発器として機能させる制御を行うまでの期間である。
【0071】
次いで、制御装置40は、吸込側電磁弁22a,22bを開弁制御するとともに、室外電子膨張弁27a,27bの開度を制御することで、室外熱交換器4a,4bを蒸発器として機能させる制御を行う。
【0072】
ここで、通常、蒸発器として機能している室外熱交換器4a,4bの冷媒出口の冷媒圧力は、外気温の飽和圧力よりも低い圧力(例えば、0.5MPa)にまで低下していることになるが、室外熱交換器4a,4bの機能を蒸発器に切り替えた直後、室外熱交換器4a,4bの冷媒出口の冷媒圧力は、外気温の飽和圧力程度である。
【0073】
仮に、室外熱交換器4a,4bの機能を蒸発器に切り替えた直後、室内ユニット2a,2b側の空調負荷に応じて圧縮機3の容量を制御した場合、吸込冷媒圧力が急上昇するので、圧縮機3の冷媒吐出管7における吐出冷媒圧力が急激に上昇し、吐出冷媒圧力が圧縮機停止の圧力(例えば、2.8MPa)に至り、圧縮機3を所定時間(例えば、3分間)停止させる制御に移行してしまうことになる。
【0074】
本実施の形態では、室内ユニット2a,2b側の空調負荷が変化して凝縮器として機能している室外熱交換器4を蒸発器として機能させる際、制御装置40は、圧縮機3の吐出冷媒圧力が、圧縮機停止の圧力に至らないように、圧縮機3の容量を制御するものである。
【0075】
以下、凝縮器として機能している室外熱交換器4を蒸発器として機能させる際の制御装置40の動作について、図4に示す制御フローチャートを参照しながら説明する。ここで、凝縮器として機能している室外熱交換器4を蒸発器として機能させる際とは、室外熱交換器4が凝縮器として機能しており、熱交換器冷却期間に移行する直前、熱交換器冷却期間、及び室外熱交換器4a,4bを蒸発器として機能させる制御を行ってから冷媒の熱バランスが安定するまでの過渡期間を含んでいる。
【0076】
まず、制御装置40は、室外熱交換器4が凝縮器として機能しており、熱交換器冷却期間に移行する直前に、クラッチ31がオン状態であるか否かを判断する(ステップS1)。
【0077】
クラッチ31がオン状態である場合(ステップS1;Yes)、制御装置40は、ガスエンジン30の回転数を所定回転数r0(例えば、1200rpm)以下に制限する(ステップS2)。つまり、クラッチ31をオンオフ操作できる所定回転数r0にまでガスエンジン30の回転数を低下させている。ここで、ガスエンジン30の回転数は、所定回転数r0よりも小さく空調性を損なわない値である第2の所定回転数r1(例えば、800rpm)以上であるのが好ましい。つまり、ガスエンジン30の回転数は、第2の所定回転数r1以上であり、所定回転数r0以下であるのが好ましい。
【0078】
次に、制御装置40は、ガスエンジン30の回転数が所定回転数r0以下に制限された状態で、クラッチ31をオフにする(ステップS3)。
【0079】
つまり、制御装置40は、圧縮機3の容量を、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量以下に制限すべく、ガスエンジン30の回転数を所定回転数r0以下にし、且つ、クラッチ31をオフにしている。圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量は、圧縮機3の最大容量2×Pの半分以下に設定するのが好ましい。更に、クラッチ31のオフにする関係上、ガスエンジン30の回転数を所定回転数r0以下に設定するのが好ましいので、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量は、クラッチ31がオフ状態であり、且つ、ガスエンジン30の回転数が所定回転数r0のときの圧縮機3の容量に設定するのがより好ましい。
【0080】
このように、本実施の形態では、室外熱交換器4が凝縮器として機能しており、熱交換器冷却期間に移行する直前にクラッチ31がオン状態の場合、ガスエンジン30の回転数を所定回転数r0以下にし、且つ、クラッチ31をオフにしている。
【0081】
そして、制御装置40は、吐出側電磁弁21a,21b及び吸込側電磁弁22a,22bを閉弁制御し、室外電子膨張弁27a,27bを略全閉(全閉を含む。)に制御することで室外熱交換器4a,4bの冷媒出入口を閉鎖し、室外熱交換器4a,4bに隣接配置した室外ファン5により室外熱交換器4a,4b内の冷媒を外気温(例えば、20℃)程度にまで冷却させる。
【0082】
次に、制御装置40は、室外熱交換器4a,4bを蒸発器として機能させるべく、吸込側電磁弁22a,22bを開弁制御し、室外電子膨張弁27a,27bの開度を制御する。ここで、圧縮機3の容量は、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量以下に制限されているので、圧縮機3が所定時間(例えば、3分間)に亘って停止する制御に移行することはない。これによって、圧縮機3が所定時間に亘って停止する制御に移行するのを回避できるので、室外熱交換器4a,4bを蒸発器として機能させた後、速やかに冷媒の熱バランスを回復することができ、空調性を確保することができる。
【0083】
ここで、制御装置40は、室外熱交換器4a,4bを蒸発器として機能させる制御を行ってから冷媒の熱バランスが安定するまでの過渡期間が経過した場合、室内ユニット2a,2b側の空調負荷に応じて圧縮機3の容量(つまり、ガスエンジン30の回転数、及びクラッチ31のオンオフ)を制御する。
【0084】
次に、ステップS1において、クラッチ31がオフ状態である場合(ステップS1;No)、まず、制御装置40は、熱交換器冷却期間に亘って室外熱交換器4a,4bの冷媒出入口を閉鎖し、室外熱交換器4a,4bに隣接配置した室外ファン5により室外熱交換器4a,4b内の冷媒を外気温程度にまで冷却させる。
【0085】
次に、熱交換器冷却期間経過後、制御装置40は、室外熱交換器4a,4bを蒸発器として機能させるべく、吸込側電磁弁22a,22bを開弁制御し、室外電子膨張弁27a,27bの開度を制御する。そして、制御装置40は、室外熱交換器4a,4bを蒸発器として機能させる制御を行ってから冷媒の熱バランスが安定するまでの過渡期間中、第1の圧縮機3a及び第2の圧縮機3bの冷媒の吐出側における冷媒吐出管7の吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する(ステップS4)。この所定圧力は、圧縮機停止の圧力(例えば、2.8MPa)よりも低い値(例えば、1.5MPa)に設定されている。
【0086】
吐出冷媒圧力が、所定圧力以上である場合(ステップS4;Yes)、制御装置40は、ガスエンジン30の回転数を所定回転数r0以下に制限する(ステップS5)。
【0087】
つまり、制御装置40は、圧縮機3の容量を、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量以下に制限すべく、ガスエンジン30の回転数を所定回転数r0以下に設定している。ここで、ガスエンジン30の回転数は、所定回転数r0よりも小さく空調性を損なわない値である第2の所定回転数r1(例えば、800rpm)以上であるのが好ましい。つまり、ガスエンジン30の回転数は、第2の所定回転数r1以上であり、所定回転数r0以下であるのが好ましい。
【0088】
ここで、圧縮機3の容量が、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量以下に制限されるので、圧縮機3が所定時間に亘って停止する制御に移行することはない。これによって、圧縮機3が所定時間に亘って停止する制御に移行するのを回避できるので、室外熱交換器4a,4bを蒸発器として機能させた後、速やかに冷媒の熱バランスを回復することができ、空調性を確保することができる。
【0089】
ステップS4において、吐出冷媒圧力が、所定圧力未満である場合(ステップS4;No)、吐出冷媒圧力が、圧縮機停止の圧力に至ることはないので、制御装置40は、ガスエンジン30の回転数を所定回転数以下に制限する制御は行わない。
【0090】
過渡期間経過後、制御装置40は、室内ユニット2a,2b側の空調負荷に応じて圧縮機3の容量(つまり、ガスエンジン30の回転数、及びクラッチ31のオンオフ)を制御する。
【0091】
以上、第1の実施の形態によれば、凝縮器として機能している室外熱交換器4a,4bを蒸発器として機能させる際に、クラッチ31がオン状態である場合、クラッチ31をオンオフ操作できる所定回転数r0以下にガスエンジン30の回転数を制限し、ガスエンジン30の回転数が所定回転数r0以下に制限された状態で、クラッチ31をオフにすることから、クラッチ31の長寿命化を図ることができる。更に、圧縮機3が所定時間に亘って停止する制御に移行するのを回避できるので、冷媒の熱バランスを回復することができ、空調性を確保することができる。
【0092】
また、第1の実施の形態によれば、凝縮器として機能している室外熱交換器4a,4bを蒸発器として機能させる際に、クラッチ31がオフ状態である場合、第1の圧縮機3a及び第2の圧縮機3bの冷媒の吐出側における冷媒吐出管7の吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断し、この判断の結果、吐出冷媒圧力が所定圧力以上である場合、ガスエンジン30の回転数を所定回転数r0以下に制限することから、圧縮機3が所定時間に亘って停止する制御に移行するのを回避できるので、冷媒の熱バランスを回復することができ、空調性を確保することができる。
【0093】
[2]第2の実施の形態
図5は、第2の実施の形態を示し、凝縮器として機能している室外熱交換器を蒸発器として機能させる際の制御装置の動作を示すフローチャートである。第1の実施の形態と異なる点は、凝縮器として機能している室外熱交換器4を蒸発器として機能させる際の制御装置による制御である。尚、空気調和装置の構成は、第1の実施の形態における図1及び図2と同様である。
【0094】
以下、凝縮器として機能している室外熱交換器4を蒸発器として機能させる際の制御装置140の動作について、図5に示す制御フローチャートを参照しながら説明する。ここで、凝縮器として機能している室外熱交換器4を蒸発器として機能させる際とは、上記第1の実施の形態と同様に、室外熱交換器4が凝縮器として機能しており、熱交換器冷却期間に移行する直前、熱交換器冷却期間、及び室外熱交換器4a,4bを蒸発器として機能させる制御を行ってから冷媒の熱バランスが安定するまでの過渡期間を含んでいる。
【0095】
まず、制御装置140は、室外熱交換器4が凝縮器として機能しており、熱交換器冷却期間に移行する直前に、クラッチ31がオン状態であるか否かを判断する(ステップS11)。
【0096】
クラッチ31がオン状態である場合(ステップS11;Yes)、まず、制御装置140は、熱交換器冷却期間に亘って室外熱交換器4a,4bの冷媒出入口を閉鎖し、室外熱交換器4a,4bに隣接配置した室外ファン5により室外熱交換器4a,4b内の冷媒を外気温(例えば、20℃)程度にまで冷却させる。
【0097】
次に、熱交換器冷却期間経過後、制御装置140は、室外熱交換器4a,4bを蒸発器として機能させるべく、吸込側電磁弁22a,22bを開弁制御し、室外電子膨張弁27a,27bの開度を制御する。そして、制御装置140は、室外熱交換器4a,4bを蒸発器として機能させる制御を行ってから冷媒の熱バランスが安定するまでの過渡期間中、第1の圧縮機3a及び第2の圧縮機3bの冷媒の吐出側における冷媒吐出管7の吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する(ステップS12)。この所定圧力は、圧縮機停止の圧力(例えば、2.8MPa)よりも低い値(例えば、1.5MPa)に設定されている。
【0098】
吐出冷媒圧力が、所定圧力以上である場合(ステップS12;Yes)、制御装置140は、ガスエンジン30の回転数を所定回転数r0(例えば、1200rpm)以下に制限する(ステップS13)。つまり、クラッチ31をオンオフ操作できる所定回転数r0にまでガスエンジン30の回転数を低下させている。ここで、ガスエンジン30の回転数は、所定回転数r0よりも小さく空調性を損なわない値である第2の所定回転数r1(例えば、800rpm)以上であるのが好ましい。つまり、ガスエンジン30の回転数は、第2の所定回転数r1以上であり、所定回転数r0以下であるのが好ましい。
【0099】
次に、制御装置140は、ガスエンジン30の回転数が所定回転数r0以下に制限された状態で、クラッチ31をオフにする(ステップS14)。
【0100】
つまり、制御装置140は、圧縮機3の容量を、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量以下に制限すべく、ガスエンジン30の回転数を所定回転数r0以下にし、且つ、クラッチ31をオフにしている。圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量は、圧縮機3の最大容量2×Pの半分以下に設定するのが好ましい。更に、クラッチ31のオフにする関係上、ガスエンジン30の回転数を所定回転数r0以下に設定するのが好ましいので、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量は、クラッチ31がオフ状態であり、且つ、ガスエンジン30の回転数が所定回転数r0のときの圧縮機3の容量に設定するのがより好ましい。
【0101】
ここで、圧縮機3の容量が、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量以下に制限されるので、圧縮機3が所定時間に亘って停止する制御に移行することはない。これによって、圧縮機3が所定時間に亘って停止する制御に移行するのを回避できるので、室外熱交換器4a,4bを蒸発器として機能させた後、速やかに冷媒の熱バランスを回復することができ、空調性を確保することができる。
【0102】
ステップS12において、吐出冷媒圧力が、所定圧力未満である場合(ステップS12;No)、吐出冷媒圧力が、圧縮機停止の圧力(例えば、2.8MPa)に至ることはないので、制御装置140は、ガスエンジン30の回転数を所定回転数以下に制限する制御、及びクラッチ31をオフにする制御は行わない。
【0103】
次に、ステップS11において、クラッチ31がオフ状態である場合(ステップS11;No)、まず、制御装置140は、熱交換器冷却期間に亘って室外熱交換器4a,4bの冷媒出入口を閉鎖し、室外熱交換器4a,4bに隣接配置した室外ファン5により室外熱交換器4a,4b内の冷媒を外気温(例えば、20℃)程度にまで冷却させる。
【0104】
次に、熱交換器冷却期間経過後、制御装置140は、室外熱交換器4a,4bを蒸発器として機能させるべく、吸込側電磁弁22a,22bを開弁制御し、室外電子膨張弁27a,27bの開度を制御する。そして、制御装置140は、室外熱交換器4a,4bを蒸発器として機能させる制御を行ってから冷媒の熱バランスが安定するまでの過渡期間中、第1の圧縮機3a及び第2の圧縮機3bの冷媒の吐出側における冷媒吐出管7の吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する(ステップS15)。この所定圧力は、圧縮機停止の圧力よりも低い値に設定されている。
【0105】
吐出冷媒圧力が、所定圧力以上である場合(ステップS15;Yes)、制御装置140は、ガスエンジン30の回転数を所定回転数r0以下に制限する(ステップS16)。
【0106】
つまり、制御装置140は、圧縮機3の容量を、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量以下に制限すべく、ガスエンジン30の回転数を所定回転数r0以下に設定している。ここで、ガスエンジン30の回転数は、所定回転数r0よりも小さく空調性を損なわない値である第2の所定回転数r1以上であるのが好ましい。つまり、ガスエンジン30の回転数は、第2の所定回転数r1以上であり、所定回転数r0以下であるのが好ましい。
【0107】
ここで、圧縮機3の容量が、圧縮機3の吐出冷媒圧力が圧縮機停止の圧力に至らない所定容量以下に制限されるので、圧縮機3が所定時間に亘って停止する制御に移行することはない。これによって、圧縮機3が所定時間に亘って停止する制御に移行するのを回避できるので、室外熱交換器4a,4bを蒸発器として機能させた後、速やかに冷媒の熱バランスを回復することができ、空調性を確保することができる。
【0108】
ステップS15において、吐出冷媒圧力が、所定圧力未満である場合(ステップS15;No)、吐出冷媒圧力が、圧縮機停止の圧力に至ることはないので、制御装置140は、ガスエンジン30の回転数を所定回転数以下に制限する制御は行わない。
【0109】
以上、クラッチ31のオンオフの状態にかかわらず、ステップS12或いはS15において、圧縮機3の吐出冷媒圧力が所定圧力以上であるか否かが判断されることとなる。
【0110】
そして、吐出冷媒圧力が所定圧力以上である場合、ガスエンジン30の回転数が所定回転数r0以下に制限され、更に、クラッチ31がオン状態である場合は、クラッチ31がオフに制御されることとなる。
【0111】
過渡期間経過後、制御装置140は、室内ユニット2a,2b側の空調負荷に応じて圧縮機3の容量(つまり、ガスエンジン30の回転数、及びクラッチ31のオンオフ)を制御する。
【0112】
以上、第2の実施の形態によれば、吐出冷媒圧力が所定圧力以上である場合、ガスエンジン30の回転数を所定回転数以下に制限し、更に、クラッチ31がオン状態である場合は、クラッチ31をオフにする制御を行うので、クラッチ31の長寿命化を図ることができ、また、圧縮機3が所定時間に亘って停止する制御に移行するのを回避できるので、冷媒の熱バランスを回復することができ、空調性を確保することができる。
【0113】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0114】
例えば、上記実施の形態では、第1の圧縮機が1台、第2の圧縮機が1台の場合について説明したが、第1の圧縮機が複数台の場合であってもよいし、第2の圧縮機が複数台の場合であってもよい。
【0115】
また、上記実施の形態では、冷媒吐出管に圧力センサを設け、吐出冷媒圧力を検出する場合について説明したが、冷媒吐出管に温度センサを設け、この温度センサによる温度検出結果に基づいて吐出冷媒圧力を算出するようにしてもよい。
【0116】
また、上記実施の形態では、室外熱交換器が複数台の場合について説明したが、室外熱交換器が1台の場合であってもよい。
【0117】
また、上記実施の形態では、複数台の室外熱交換器全てが、凝縮器として機能しており、複数台の室外熱交換器全てを蒸発器として機能させる場合について説明したが、休止状態の室外熱交換器があってもよい。
【0118】
【発明の効果】
本発明によれば、凝縮器として機能している室外熱交換器を蒸発器として機能させる際に、圧縮機の吐出冷媒圧力が圧縮機停止の圧力にまで上昇するのを回避することができ、空調性を確保することができる。
【図面の簡単な説明】
【図1】本発明による空気調和装置の第1及び第2の実施の形態を示す冷媒回路図等である。
【図2】圧縮機の駆動系を示すブロック図である。
【図3】圧縮機の容量制御を示すグラフである。
【図4】第1の実施の形態における凝縮器として機能している室外熱交換器を蒸発器として機能させる際の制御装置の動作を示すフローチャートである。
【図5】第2の実施の形態における凝縮器として機能している室外熱交換器を蒸発器として機能させる際の制御装置の動作を示すフローチャートである。
【符号の説明】
1 室外ユニット
2a,2b 室内ユニット
3 圧縮機
3a 第1の圧縮機
3b 第2の圧縮機
4 室外熱交換器
10 ユニット間配管
11 高圧ガス管
12 低圧ガス管
13 液管
30 ガスエンジン(エンジン)
31 クラッチ
40 制御装置(第1の制御手段、第2の制御手段、第3の制御手段、圧力判断手段)
50 空気調和装置
140 制御装置(圧力判断手段、第1の制御手段、第2の制御手段)

Claims (8)

  1. エンジンに直結された第1の圧縮機及び前記エンジンにクラッチを介して接離される第2の圧縮機並びに室外熱交換器を有する室外ユニットと、
    室内熱交換器を有する複数台の室内ユニットとがユニット間配管により接続され、
    前記室外熱交換器の一端が、前記第1及び第2の圧縮機の冷媒吐出管と冷媒吸込管とに択一に接続され、
    前記ユニット間配管が、前記冷媒吐出管に接続された高圧ガス管と、前記冷媒吸込管に接続された低圧ガス管と、前記室外熱交換の他端に接続された液管とを有して構成され、
    前記各室内ユニットは、前記室内熱交換器の一端が前記高圧ガス管と前記低圧ガス管に弁ユニットを介して択一に接続され、他端が前記液管に接続され、
    前記複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置において、
    前記複数台の室内ユニットの冷房運転と暖房運転を混在して運転している間、前記複数台の室内ユニットの冷暖房負荷の変動に対応して、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えると共に、この切り替え時には、前記第1の圧縮機の運転を継続しつつ前記クラッチをオフして前記第2の圧縮機の運転を停止した後、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替える
    ことを特徴とする空気調和装置。
  2. 請求項1に記載の空気調和装置において、
    凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに前記クラッチをオフする場合、前記エンジンの回転数を所定回転数以下に制限する第1の制御手段と、
    前記第1の制御手段により前記エンジンの回転数が前記所定回転数以下に制限された状態で、前記クラッチをオフにする第2の制御手段と
    を備えたことを特徴とする空気調和装置。
  3. 請求項1又は2に記載の空気調和装置において、
    凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに前記クラッチがオフ状態である場合、前記第1の圧縮機及び前記第2の圧縮機の冷媒の吐出側における吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する圧力判断手段と、
    前記圧力判断手段による判断の結果、前記吐出冷媒圧力が、前記所定圧力以上である場合、前記エンジンの回転数を前記所定回転数以下に制限する第3の制御手段とを備え、
    前記エンジンの回転数が前記所定回転数以下に制限されている状態の間に、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替える
    ことを特徴とする空気調和装置。
  4. 請求項1に記載の空気調和装置において、
    凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに、前記第1の圧縮機及び前記第2の圧縮機の冷媒の吐出側における吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する圧力判断手段と、
    前記圧力判断手段による判断の結果、前記吐出冷媒圧力が、前記所定圧力以上である場合、前記エンジンの回転数を所定回転数以下に制限する第1の制御手段と、
    前記第1の制御手段により前記エンジンの回転数が前記所定回転数以下に制限され、且つ、前記クラッチがオン状態である場合、前記クラッチをオフにする第2の制御手段とを備えたことを特徴とする空気調和装置。
  5. エンジンに直結された第1の圧縮機及び前記エンジンにクラッチを介して接離される第2の圧縮機並びに室外熱交換器を有する室外ユニットと、
    室内熱交換器を有する複数台の室内ユニットとがユニット間配管により接続され、
    前記室外熱交換器の一端が、前記第1及び第2の圧縮機の冷媒吐出管と冷媒吸込管とに択一に接続され、
    前記ユニット間配管が、前記冷媒吐出管に接続された高圧ガス管と、前記冷媒吸込管に接続された低圧ガス管と、前記室外熱交換の他端に接続された液管とを有して構成され、
    前記各室内ユニットは、前記室内熱交換器の一端が前記高圧ガス管と前記低圧ガス管に弁ユニットを介して択一に接続され、他端が前記液管に接続され、
    前記複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置の制御方法において、
    前記複数台の室内ユニットの冷房運転と暖房運転を混在して運転している間、前記複数台の室内ユニットの冷暖房負荷の変動に対応して、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えると共に、この切り替え時には、前記第1の圧縮機の運転を継続しつつ前記クラッチをオフして前記第2の圧縮機の運転を停止した後、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替える過程を有する
    ことを特徴とする空気調和装置の制御方法。
  6. 請求項5に記載の空気調和装置の制御方法において、
    凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに前記クラッチをオフする場合、前記エンジンの回転数を所定回転数以下に制限する第1の制御過程と、
    前記第1の制御過程において前記エンジンの回転数が前記所定回転数以下に制限された状態で、前記クラッチをオフにする第2の制御過程と
    を備えたことを特徴とする空気調和装置の制御方法。
  7. 請求項5又は6に記載の空気調和装置の制御方法において、
    凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに前記クラッチがオフ状態である場合、前記第1の圧縮機及び前記第2の圧縮機の冷媒の吐出側における吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する圧力判断過程と、
    前記圧力判断過程における判断の結果、前記吐出冷媒圧力が、前記所定圧力以上である場合、前記エンジンの回転数を前記所定回転数以下に制限する第3の制御過程とを備え、
    前記エンジンの回転数が前記所定回転数以下に制限されている状態の間に、凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替える
    ことを特徴とする空気調和装置の制御方法。
  8. 請求項5に記載の空気調和装置の制御方法において、
    凝縮器として機能している前記室外熱交換器を蒸発器として機能するように切り替えるときに、前記第1の圧縮機及び前記第2の圧縮機の冷媒の吐出側における吐出冷媒圧力が、圧縮機停止の圧力に至るのが予測される所定圧力以上であるか否かを判断する圧力判断過程と、
    前記圧力判断過程における判断の結果、前記吐出冷媒圧力が、前記所定圧力以上である場合、前記エンジンの回転数を所定回転数以下に制限する第1の制御過程と、
    前記第1の制御過程において前記エンジンの回転数が前記所定回転数以下に制限され、且つ、前記クラッチがオン状態である場合、前記クラッチをオフにする第2の制御過程とを備えたことを特徴とする空気調和装置の制御方法。
JP2003172816A 2003-06-18 2003-06-18 空気調和装置及び空気調和装置の制御方法 Expired - Fee Related JP4046651B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172816A JP4046651B2 (ja) 2003-06-18 2003-06-18 空気調和装置及び空気調和装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172816A JP4046651B2 (ja) 2003-06-18 2003-06-18 空気調和装置及び空気調和装置の制御方法

Publications (2)

Publication Number Publication Date
JP2005009726A JP2005009726A (ja) 2005-01-13
JP4046651B2 true JP4046651B2 (ja) 2008-02-13

Family

ID=34096808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172816A Expired - Fee Related JP4046651B2 (ja) 2003-06-18 2003-06-18 空気調和装置及び空気調和装置の制御方法

Country Status (1)

Country Link
JP (1) JP4046651B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585422B2 (ja) * 2005-10-20 2010-11-24 三菱重工業株式会社 ガスヒートポンプ式空気調和装置
JP4887763B2 (ja) * 2005-12-01 2012-02-29 アイシン精機株式会社 エンジン駆動式空気調和装置
JP6181553B2 (ja) * 2013-12-27 2017-08-16 ヤンマー株式会社 エンジン駆動ヒートポンプ

Also Published As

Publication number Publication date
JP2005009726A (ja) 2005-01-13

Similar Documents

Publication Publication Date Title
JP5402027B2 (ja) 空気調和機
JP3574447B2 (ja) 空気調和機の起動制御システム及びその制御方法
WO2017141899A1 (ja) 冷凍装置
JP2010175190A (ja) 空気調和機
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
EP3546850B1 (en) Refrigeration device
JP2018169064A (ja) エンジン駆動式空気調和装置
JP5173857B2 (ja) 空気調和装置
JP3263579B2 (ja) 多室型冷暖房装置及びその運転方法
EP2075518A2 (en) Air conditioner
JP3750520B2 (ja) 冷凍装置
JP4046651B2 (ja) 空気調和装置及び空気調和装置の制御方法
US11512876B2 (en) Refrigeration apparatus
JP5517891B2 (ja) 空気調和装置
JP4086719B2 (ja) 空気調和装置及び空気調和装置の制御方法
JP2009264612A (ja) 冷凍装置
JP2021162252A (ja) 空気調和装置
JP4169521B2 (ja) 空気調和装置
JP6784118B2 (ja) 冷凍装置
JP4585422B2 (ja) ガスヒートポンプ式空気調和装置
JP4067428B2 (ja) 空気調和装置及び空気調和装置の制御方法
JP2005291558A (ja) 空気調和装置
JP2004286253A (ja) 冷媒高圧回避方法およびそれを用いた空気調和システム
JP3932921B2 (ja) エンジン駆動式冷凍サイクル装置及び空調装置
JP2000154950A (ja) エンジン駆動式ヒートポンプサイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees