JP4038940B2 - Ozone-dissolved water production equipment - Google Patents

Ozone-dissolved water production equipment Download PDF

Info

Publication number
JP4038940B2
JP4038940B2 JP21129099A JP21129099A JP4038940B2 JP 4038940 B2 JP4038940 B2 JP 4038940B2 JP 21129099 A JP21129099 A JP 21129099A JP 21129099 A JP21129099 A JP 21129099A JP 4038940 B2 JP4038940 B2 JP 4038940B2
Authority
JP
Japan
Prior art keywords
ozone
ultrapure water
palladium
exchange resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21129099A
Other languages
Japanese (ja)
Other versions
JP2001044162A (en
Inventor
博志 森田
治 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP21129099A priority Critical patent/JP4038940B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to PCT/JP2000/001823 priority patent/WO2000064568A1/en
Priority to EP00911349A priority patent/EP1188473A4/en
Priority to US09/958,890 priority patent/US6464867B1/en
Priority to CNB008077045A priority patent/CN1192817C/en
Priority to KR1020017013187A priority patent/KR100687361B1/en
Priority to TW089107895A priority patent/TW500691B/en
Publication of JP2001044162A publication Critical patent/JP2001044162A/en
Application granted granted Critical
Publication of JP4038940B2 publication Critical patent/JP4038940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オゾン溶解水の製造装置に関する。さらに詳しくは、本発明は、超純水中に含まれる微量のオゾン分解性物質を除去し、オゾン溶解水を長距離送給してもオゾン濃度の低下が少なく、溶存オゾンの残存率の高いオゾン溶解水を得ることができるオゾン溶解水の製造装置に関する。
【0002】
【従来の技術】
半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料の表面から異物を除去することは、製品の品質と歩留まりを確保する上で極めて重要であり、この目的のためにウェット洗浄が広く行われている。有機物汚染や金属汚染の除去には、強い酸化力を有する洗浄液の適用が有効であり、従来、硫酸と過酸化水素の混合液(SPM洗浄液)や、塩酸と過酸化水素と超純水の混合液(SC2洗浄液)などによる高温洗浄が採用されていた。
近年、洗浄工程の簡略化、省資源化、室温化が求められるようになり、溶存オゾン濃度が数mg/リットル程度でありながら、極めて強い酸化力を発揮して、電子材料表面の有機物汚染や金属汚染を効果的に除去するオゾン溶解水が、ウェット洗浄に使われるようになってきた。オゾン溶解水は、溶存オゾンが分解すると、単なる高純度の水に戻る点に特長があるが、溶存オゾンは経時的に自己分解して酸素ガスとなるために、オゾン濃度の維持管理が困難であり、長距離配管による送給は困難とされていた。このために、オゾン溶解水は洗浄装置の近傍で製造され、直ちに使用されていた。
これに対し、本発明者らは、先に、オゾン含有ガスと超純水とを送給配管内で混合しつつ送給することにより、オゾン濃度の低下が抑制され、長距離送給が可能となるこを見いだし、図1に示すオゾン溶解水の供給装置を提案した。すなわち、酸素ガス容器1と窒素ガス容器2から、無声放電方式のオゾン発生器3に酸素ガスと微量の窒素ガスの混合ガスを送って、オゾンと酸素ガスの混合ガスを製造し、オゾン溶解装置4において、イオン交換装置、膜装置、紫外線照射装置などを用いて製造された超純水中に、エジェクター、ポンプなどを用いて送り込む。オゾンと酸素ガスの混合ガスは、超純水と混合して気液混合状態となり、オゾンが水中に溶解してオゾン溶解水が生成し、さらに気液混合状態のまま気液混合流体送給配管5の中を流れる。水中に溶解したオゾンは、自己分解により酸素ガスとなるが、自己分解によるオゾンの減少分は、気相中のオゾンが水相中に溶解することにより補われるので、水中のオゾン濃度をほぼ一定に保つことができる。オゾン溶解水は、分岐管6から取り出され、気液分離されたのちユースポイント7で消費される。分岐管から取り出されなかった余剰のオゾン溶解水は、気液分離器8に導き、気相と水相に分離する。次いで、オゾン分解装置9及び10において気相及び水相中のオゾンを分解したのち、気相は排ガスとして大気開放し、水相は排水として回収し、必要な処理を行って再利用する。
このオゾン溶解水の供給装置によれば、オゾン溶解水を長距離送給しても、送給中におけるオゾン濃度の変動が少なく、ユースポイントにほぼ一定した濃度のオゾン溶解水を供給することができる。しかし、この装置は、オゾン溶解水中のオゾンの自己分解による減少を気相中のオゾンの溶解により補うために、過剰のオゾンが必要である。このために、オゾン溶解水中におけるオゾンの分解が少なく、オゾン溶解水を長距離送給しても、送給中におけるオゾン濃度の低下が少なく、溶存オゾンの残存率の高いオゾン溶解水が求められるようになった。
【0003】
【発明が解決しようとする課題】
本発明は、超純水中に含まれる微量のオゾン分解性物質を除去し、オゾン溶解水を長距離送給してもオゾン濃度の低下が少なく、溶存オゾンの残存率の高いオゾン溶解水を得ることができるオゾン溶解水の製造装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、オゾン溶解水の原水とする超純水中にオゾンの分解を促進する微量物質が存在し、該微量物質は、酸化還元触媒と接触させることにより、効果的に除去し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)(A)超純水が供給される超純水供給配管、(B)超純水供給配管に連結し、超純水中に存在するOHラジカル、Hラジカルを除去するためのパラジウム担持樹脂からなる酸化還元触媒と超純水を接触させる触媒反応部であるパラジウム担持樹脂とイオン交換樹脂を共存させた触媒充填塔、(C)該触媒充填塔を経た超純水をろ過するろ過装置、(D)ろ過装置から排出される超純水にオゾンを溶解させるオゾン溶解装置を有することを特徴とするオゾン溶解水の製造装置、
(2)触媒充填塔が、パラジウム担持樹脂とカチオン交換樹脂又はパラジウム担持樹脂とカチオン交換樹脂とアニオン交換樹脂を混合状態又は積層状態で充填したものである第(1)項記載のオゾン溶解水の製造装置、
(3)触媒充填塔が、パラジウム担持樹脂塔とカチオン交換樹脂塔をこの順に直列に接続したものである第(1)項記載のオゾン溶解水の製造装置、及び、
(4)触媒充填塔が、パラジウム担持樹脂塔とカチオン交換樹脂塔とアニオン交換樹脂塔をこの順に直列に接続したものである第(1)項記載のオゾン溶解水の製造装置、
を提供するものである。
さらに、本発明の好ましい態様として、
(5)触媒充填塔の前段に、超純水送給ポンプを有する第(1)項記載のオゾン溶解水の製造装置、
(6)超純水送給ポンプが、ブースターポンプである第(5)項記載のオゾン溶解水の製造装置、
(7)触媒充填塔が、パラジウム担持樹脂塔と、カチオン交換樹脂とアニオン交換樹脂の混床塔をこの順に直列に接続したものである第(1)項記載のオゾン溶解水の製造装置、
(8)ろ過装置が、限外ろ過膜(UF)、精密ろ過膜(MF)又は逆浸透膜(RO)を備えた装置である第(1)項記載のオゾン溶解水の製造装置、
(9)オゾン溶解装置が、超純水とオゾン含有ガスを直接接触させるエジェクターである第(1)項記載のオゾン溶解水の製造装置、
(10)エジェクターの後段に気液分離器を有する第(9)項記載のオゾン溶解水の製造装置、
(11)オゾン溶解装置が、フッ素樹脂製の気体透過膜モジュールである第(1)項記載のオゾン溶解水の製造装置、及び、
(12)薬液供給装置を有し、ろ過装置の前段又は後段に薬液注入点を設けた第(1)項記載のオゾン溶解水の製造装置、
を挙げることができる。
【0005】
【発明の実施の形態】
本発明のオゾン溶解水の製造装置は、(A)超純水が供給される超純水供給配管、(B)超純水供給配管に連結し、超純水を酸化還元触媒と接触させる触媒反応部、(C)触媒反応部を経た超純水をろ過するろ過装置、(D)ろ過装置から排出される超純水にオゾンを溶解させるオゾン溶解装置を有する。
図2は、本発明装置の一態様の工程系統図である。本態様においては、超純水は超純水送給ポンプ11により超純水供給配管12に供給される。超純水送給ポンプに特に制限はなく、例えば、ピストンポンプ、プランジャーポンプ、ブースターポンプ、タービンポンプ、ボリュートポンプなどを挙げることができる。これらの中で、ブースターポンプを好適に用いることができる。実用的なオゾン溶解水の製造装置とするためには、超純水にある程度の圧力を与えることが重要である。エジェクターを用いてオゾン含有ガスを超純水通水配管中に引き込む場合には、特に供給水圧を高めておくことが必要である。装置へ供給する超純水の圧力が十分高い場合には特別な手だての必要はないが、そうでない場合の方が多いので、装置入口に超純水の水圧を高めるための超純水送給ポンプを設置することが好ましい。供給される超純水の圧力は、0.2〜0.5MPaであることが好ましい。
本発明装置において、超純水供給配管12は、超純水を酸化還元触媒と接触させる触媒反応部13に連結される。本発明装置において使用する酸化還元触媒に特に制限はなく、例えば、白金触媒、銀触媒、パラジウム触媒などを挙げることができる。これらの中で、パラジウム触媒を特に好適に使用することができる。パラジウム触媒は、金属パラジウム、酸化パラジウム、水素化パラジウムなどのほかに、イオン交換樹脂、アルミナ、活性炭、ゼオライトなどの担体にパラジウムを担持させた触媒を用いることができる。パラジウム触媒の形状に特に制限はなく、例えば、粉末状、粒状、ペレット状など、いずれの形状でも使用することができる。粉末状の触媒は、反応槽を設けて反応槽に適当量を添加することができ、あるいは、反応塔などに充填して流動床として通水処理することもできる。粒状又はペレット状の触媒は、反応塔などに充填して触媒充填塔とし、連続的に通水処理することができる。
【0006】
パラジウム担持触媒の場合、パラジウムの担持量は0.1〜10重量%であることが好ましい。パラジウム担持触媒の中で、アニオン交換樹脂にパラジウムを担持させたパラジウム担持樹脂は、少ないパラジウムの担持量で優れた効果を発揮するので、特に好適に使用することができる。アニオン交換樹脂にパラジウムを担持させたパラジウム担持樹脂は、アニオン交換樹脂を反応塔に充填し、塩化パラジウムの酸性溶液を通水することにより調製することができる。さらに、この反応塔にホルマリンなどの還元剤を加えて還元することにより、金属パラジウムを担持した触媒とすることができる。超純水を触媒反応部において酸化還元触媒と接触させることにより、超純水中に含まれるオゾンの分解を促進する微量物質を除去することができる。オゾンの分解を促進する微量物質としては、例えば、超純水製造システム中の紫外線照射装置で発生する水の分解生成物であるOHラジカル、Hラジカルなどが考えられる。
本発明装置においては、触媒充填塔にパラジウム担持樹脂とイオン交換樹脂を共存させることができる。パラジウム担持樹脂とイオン交換樹脂の共存の態様に特に制限はなく、例えば、触媒充填塔にパラジウム担持樹脂とカチオン交換樹脂又はパラジウム担持樹脂とカチオン交換樹脂とアニオン交換樹脂を混合状態又は積層状態で充填することができ、パラジウム担持樹脂塔とカチオン交換樹脂塔をこの順に直列に接続することもでき、パラジウム担持触媒塔とカチオン交換樹脂塔とアニオン交換樹脂塔をこの順に直列に接続することもでき、あるいは、パラジウム担持触媒塔と、カチオン交換樹脂とアニオン交換樹脂の混床塔をこの順に直列に接続することもできる。パラジウム担持樹脂とイオン交換樹脂を共存させることにより、パラジウム担持樹脂から極微量のパラジウムイオンが溶出するとしてもイオン交換樹脂で捕捉することができ、また、超純水送給ポンプからイオン成分が溶出するとしてもイオン交換樹脂で捕捉することができ、超純水の高純度を維持することができる。
【0007】
本発明装置において、触媒反応部を経た超純水は、ろ過装置14においてろ過される。ろ過装置に使用するろ過膜に特に制限はなく、例えば、限外ろ過膜(UF)、精密ろ過膜(MF)、逆浸透膜(RO)などを挙げることができる。ろ過装置を用いて超純水をろ過することにより、超純水送給ポンプ、パラジウム担持樹脂、カチオン交換樹脂、アニオン交換樹脂などに由来する微粒子を除去して、超純水の高純度を維持することができる。
本発明装置においては、ろ過装置から排出される超純水に、オゾン溶解装置15において、オゾン発生器16において発生させたオゾン含有ガスを供給し、オゾンを溶解させる。使用するオゾン溶解装置に特に制限はなく、例えば、フッ素樹脂製の耐オゾン性を有する気体透過膜モジュールや、エジェクター、ガス溶解用ポンプなどのオゾン含有ガスを吸い込ませる装置、バブリング装置などを挙げることができる。これらの中で、エジェクターは装置が簡便であり好適に用いることができる。エジェクターの後段にインラインミキサーを設け、気泡の微細化を行うことにより、オゾンの溶解を促進することができる。オゾン溶解装置として、エジェクターやガス溶解用ポンプを使用する場合には、オゾン溶解水とオゾン含有ガスとの気液混合状態となるので、後段に気液分離器17を設けて余剰ガスを分離し、気泡を含まないオゾン溶解水を得ることが好ましい。オゾン溶解装置と気液分離器の間に適当な容量を持たせて通水時間を与えることにより、オゾンの溶解を促進するとともに、微細気泡の合一を促進して気液分離を容易にすることができる。
本発明装置において使用するオゾン発生器に特に制限はなく、例えば、水を電解してオゾンと酸素ガスの混合ガスを生成する装置、酸素ガスを原料として無声放電や沿面放電などによりオゾンと酸素ガスの混合ガスを生成する装置などを挙げることができる。高純度のオゾン溶解水を得るためには、オゾン発生器とオゾン溶解装置の間に、オゾン含有ガス中の微粒子を捕捉するフィルターを装着することが好ましい。
【0008】
本発明装置においては、薬液槽18と薬注ポンプ19を備え、ろ過装置の前段又は後段に薬液注入点を設けて、酸、アルカリなどの薬液を注入することができる。薬注ポンプの代わりに、窒素ガスなどの不活性ガスにより圧送することもできる。酸を注入してpHを下げることにより、溶存オゾンの分解を抑制することができる。この場合、オゾン溶解装置の上流側で酸を注入しておくことが、溶存オゾン濃度維持の面から好ましい。アルカリを注入してpHを上げることにより、オゾン溶解水の洗浄効果を高めることができる。アルカリとしては、例えば、アンモニア、水酸化テトラメチルアンモニウムなどを挙げることができる。本発明装置を用いて製造されたオゾン溶解水は、配管に設けた計器20により、溶存オゾン濃度、pHなどを測定することができる。測定された溶存オゾン濃度、pHなどに基づいて、超純水へのオゾン含有ガスの供給量や、薬液注入量を調整し、オゾン溶解水の水質を管理することができる。本発明装置において、オゾン溶解装置とその後段は、接液部及び接ガス部が、すべて耐オゾン性の材料で構成されることが好ましい。耐オゾン性の材料としては、例えば、フッ素樹脂、石英、表面を不働態化した金属などを挙げることができる。
図3は、本発明装置の(A)超純水供給配管の他の態様の工程系統図である。本態様においては、超純水貯槽21を設けるとともに、超純水供給配管12を分岐して超純水返送配管22を設けている。超純水返送配管を設けて超純水を超純水貯槽に返送することにより、超純水の使用量にかかわらず超純水送給ポンプ11を常に一定の条件で運転することができるので、超純水の使用量が変動しても供給する超純水の圧力を一定に保つことができる。
【0009】
図4は、本発明装置の(B)触媒反応部の他の態様の工程系統図である。本態様においては、触媒充填塔13に、パラジウム担持樹脂23、カチオン交換樹脂24及びアニオン交換樹脂25が、この順に積層状態で充填されている。図5は、本発明装置の(B)触媒反応部の他の態様の工程系統図である。本態様においては、触媒充填塔が、パラジウム担持樹脂塔26とカチオン交換樹脂とアニオン交換樹脂の混床塔27からなり、両者がこの順に直列に接続されている。
図6は、本発明装置の(D)オゾン溶解装置の他の態様の工程系統図である。本態様においては、超純水とオゾン含有ガスがエジェクター28において直接接触し、インラインミキサー29においてオゾン含有ガスが微細な気泡となって超純水中に分散し、溶解促進兼気泡合一促進部30に滞留してオゾンの溶解が進むとともに、微細に分散した気泡が再び合一して大きい気泡となり、気液分離器17において余剰ガスが分離され、気泡を含まないオゾン溶解水が得られる。図7は、本発明装置の(D)オゾン溶解装置の他の態様の工程系統図である。本態様においては、耐オゾン性を有するフッ素樹脂製の気体透過膜31を備えた気体透過膜モジュール32が用いられ、オゾン含有ガスは気体透過膜を介して超純水中に溶解する。
本発明のオゾン溶解水の製造装置を用いることにより、超純水中に含まれるオゾンの分解を促進する微量物質を除去し、ポンプ、触媒担持樹脂、イオン交換樹脂などから発生する可能性のあるイオンや微粒子も除去することができるので、オゾン溶解水を長距離送給してもオゾン濃度の低下が少なく、溶存オゾンの残存率が高く、イオンや微粒子などを含まない高い水質のオゾン溶解水を得ることができる。
【0010】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
比較例1
従来より、紫外線照射装置、混床式イオン交換樹脂塔及び限外ろ過装置を備えたサブシステムを用いて、TOC濃度2.0μg/リットルの一次純水10m3/hを処理して、TOC濃度0.5μg/リットルの超純水を得ていた。紫外線照射装置[日本フォトサイエンス(株)、AUV−4800TC]は、紫外線ランプ24本を備えたもので、全消費電力4kWである。また、混床式イオン交換樹脂塔は、強塩基性アニオン交換樹脂[ダウエックス(株)、550A]65リットルと強酸性カチオン交換樹脂[ダウエックス(株)、650C]35リットルを充填したものである。
この超純水のうち1m3/hをオゾン溶解水用に分岐し、酸素ガスの無声放電方式で製造したオゾン濃度160g/m3のオゾン含有ガス125リットル/h、すなわちオゾンとして20g/hをエジェクターを介して供給し、オゾン溶解水を製造した。エジェクターから50mの離れた位置でオゾン溶解水送給配管からオゾン溶解水をサンプリングし、そのオゾン濃度を測定したところ5mg/リットルであった。
実施例1
混床式イオン交換樹脂塔の最上部に、パラジウム1重量%担持アニオン交換樹脂5リットル、すなわち、層高としてイオン交換樹脂の5%分を積んだ以外は、比較例1と同じ操作を行った。
得られた超純水のTOC濃度は0.5μg/リットルで、比較例1と同じであった。エジェクターから50mの離れた位置でサンプリングしたオゾン溶解水のオゾン濃度は、9mg/リットルであった。
実施例2
超純水をオゾン溶解水用に1m3/h分岐した分岐点の下流側に、実施例1と同じパラジウム1重量%担持アニオン交換樹脂1リットルを充填したパラジウム担持樹脂塔と限外ろ過装置を設置して超純水を通水した以外は、比較例1と同じ操作を行った。
エジェクターから50mの離れた位置でサンプリングしたオゾン溶解水のオゾン濃度は、10mg/リットルであった。
比較例1及び実施例1〜2の結果から、オゾン溶解装置の前段にパラジウム担持アニオン交換樹脂を充填した触媒反応部を設け、超純水をパラジウム担持アニオン交換樹脂と接触させ、触媒反応部を経た超純水をろ過装置を用いてろ過することにより、高い水質のオゾン溶解水が得られ、このオゾン溶解水は長距離送給してもオゾン溶解水中におけるオゾンの分解が抑制され、オゾンの残存率が高いことが分かる。
【0011】
【発明の効果】
本発明のオゾン溶解水の製造装置を用いることにより、超純水中に含まれるオゾンの分解を促進する微量物質を除去し、ポンプ、触媒担持樹脂、イオン交換樹脂などから発生するイオンや微粒子も除去することができるので、オゾン溶解水を長距離送給してもオゾン濃度の低下が少なく、溶存オゾンの残存率が高く、イオンや微粒子などを含まない高い水質のオゾン溶解水を得ることができる。また、オゾン溶解水の製造に必要なオゾンの量を節減することができる。
【図面の簡単な説明】
【図1】図1は、オゾン溶解水をオゾン含有ガスとの気液混合状態で送給するオゾン溶解水供給装置の工程系統図である。
【図2】図2は、本発明装置の一態様の工程系統図である。
【図3】図3は、本発明装置の(A)超純水供給配管の他の態様の工程系統図である。
【図4】図4は、本発明装置の(B)触媒反応部の他の態様の工程系統図である。
【図5】図5は、本発明装置の(B)触媒反応部の他の態様の工程系統図である。
【図6】図6は、本発明装置の(D)オゾン溶解装置の他の態様の工程系統図である。
【図7】図7は、本発明装置の(D)オゾン溶解装置の他の態様の工程系統図である。
【符号の説明】
1 酸素ガス容器
2 窒素ガス容器
3 オゾン発生器
4 オゾン溶解装置
5 気液混合流体送給配管
6 分岐管
7 ユースポイント
8 気液分離器
9 オゾン分解装置
10 オゾン分解装置
11 超純水送給ポンプ
12 超純水供給配管
13 触媒反応部
14 ろ過装置
15 オゾン溶解装置
16 オゾン発生器
17 気液分離器
18 薬液槽
19 薬注ポンプ
20 計器
21 超純水貯槽
22 超純水返送配管
23 パラジウム担持樹脂
24 カチオン交換樹脂
25 アニオン交換樹脂
26 パラジウム担持樹脂塔
27 混床塔
28 エジェクター
29 インラインミキサー
30 溶解促進兼気泡合一促進部
31 気体透過膜
32 気体透過膜モジュール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for producing ozone-dissolved water. More specifically, the present invention removes a trace amount of ozone-decomposable substances contained in ultrapure water, and even if ozone-dissolved water is fed over a long distance, there is little decrease in ozone concentration, and the residual rate of dissolved ozone is high. The present invention relates to an apparatus for producing ozone-dissolved water capable of obtaining ozone-dissolved water.
[0002]
[Prior art]
Removing foreign materials from the surface of electronic materials such as silicon substrates for semiconductors, glass substrates for liquid crystals, quartz substrates for photomasks, etc. is extremely important for ensuring product quality and yield. Cleaning is widely performed. In order to remove organic contamination and metal contamination, it is effective to apply a cleaning solution with strong oxidizing power. Conventionally, a mixture of sulfuric acid and hydrogen peroxide (SPM cleaning solution), and a mixture of hydrochloric acid, hydrogen peroxide, and ultrapure water High temperature cleaning using a liquid (SC2 cleaning liquid) or the like has been adopted.
In recent years, there has been a demand for simplification of the cleaning process, resource saving, and room temperature, and even though the dissolved ozone concentration is about several mg / liter, it exerts extremely strong oxidizing power, causing organic matter contamination on the surface of electronic materials. Ozone-dissolved water that effectively removes metal contamination has been used for wet cleaning. Ozone-dissolved water is characterized in that when dissolved ozone decomposes, it simply returns to high-purity water. However, because dissolved ozone self-decomposes over time to produce oxygen gas, it is difficult to maintain and maintain the ozone concentration. Therefore, it was considered difficult to feed by long-distance piping. For this reason, ozone-dissolved water was produced in the vicinity of the cleaning device and used immediately.
On the other hand, the present inventors previously suppressed the decrease in ozone concentration by feeding the ozone-containing gas and ultrapure water while mixing them in the feed pipe, enabling long-distance feeding. As a result, the ozone dissolved water supply device shown in FIG. 1 was proposed. That is, a mixed gas of oxygen gas and a small amount of nitrogen gas is sent from the oxygen gas container 1 and the nitrogen gas container 2 to the silent discharge type ozone generator 3 to produce a mixed gas of ozone and oxygen gas. 4, it is fed into ultrapure water produced using an ion exchange device, a membrane device, an ultraviolet irradiation device or the like, using an ejector, a pump, or the like. The mixed gas of ozone and oxygen gas is mixed with ultrapure water to become a gas-liquid mixed state, ozone is dissolved in water to generate ozone-dissolved water, and further, the gas-liquid mixed fluid supply pipe is left in the gas-liquid mixed state Flowing through 5. Ozone dissolved in water becomes oxygen gas due to self-decomposition, but the decrease in ozone due to self-decomposition is compensated for by dissolving ozone in the gas phase into the water phase, so the ozone concentration in water is almost constant. Can be kept in. The ozone-dissolved water is taken out from the branch pipe 6 and separated at the use point 7 after being separated into gas and liquid. Excess ozone-dissolved water that has not been removed from the branch pipe is guided to the gas-liquid separator 8 and separated into a gas phase and an aqueous phase. Next, after decomposing ozone in the gas phase and the aqueous phase in the ozonolysis apparatuses 9 and 10, the gas phase is opened to the atmosphere as exhaust gas, and the water phase is recovered as waste water, subjected to necessary treatment and reused.
According to this ozone-dissolved water supply device, even when ozone-dissolved water is supplied over a long distance, ozone concentration fluctuation during the supply is small, and ozone-dissolved water having a substantially constant concentration can be supplied to the use point. it can. However, this apparatus requires an excess amount of ozone in order to compensate the decrease due to the self-decomposition of ozone in the ozone-dissolved water by dissolving ozone in the gas phase. For this reason, there is little ozone decomposition in ozone-dissolved water, and even if ozone-dissolved water is fed over a long distance, ozone-dissolved water with a low residual ozone residual rate is required with little decrease in ozone concentration during delivery. It became so.
[0003]
[Problems to be solved by the invention]
The present invention removes a trace amount of ozone-decomposable substances contained in ultrapure water, and reduces ozone concentration even when ozone-dissolved water is fed over a long distance, and ozone-dissolved water with a high residual rate of dissolved ozone. The object of the present invention is to provide a device for producing ozone-dissolved water that can be obtained.
[0004]
[Means for Solving the Problems]
As a result of intensive research to solve the above-mentioned problems, the present inventors have found that there is a trace substance that promotes the decomposition of ozone in ultrapure water that is the raw water of ozone-dissolved water. It has been found that it can be effectively removed by contacting with a reduction catalyst, and the present invention has been completed based on this finding.
That is, the present invention
(1) (A) ultrapure water supply pipe ultrapure water is supplied, (B) said ligated into ultrapure water supply pipe, OH radicals present in the ultrapure water, palladium for the removal of H radicals A catalyst packed tower in which a palladium-supported resin and an ion exchange resin coexisting with a redox catalyst comprising a supported resin and ultrapure water are contacted; and (C) a filtration for filtering ultrapure water passing through the catalyst packed tower Apparatus, (D) an ozone-dissolved water production apparatus characterized by having an ozone-dissolving apparatus that dissolves ozone in ultrapure water discharged from the filtration apparatus,
(2) The ozone-dissolved water according to item (1), wherein the catalyst packed tower is packed with a palladium-supported resin and a cation exchange resin or a palladium-supported resin, a cation exchange resin, and an anion exchange resin in a mixed state or a laminated state. Manufacturing equipment,
(3) The apparatus for producing ozone-dissolved water according to (1), wherein the catalyst packed tower is a palladium-supported resin tower and a cation exchange resin tower connected in series in this order;
(4) The apparatus for producing ozone-dissolved water according to (1), wherein the catalyst packed tower is a palladium-supported resin tower, a cation exchange resin tower, and an anion exchange resin tower connected in series in this order;
Is to provide.
Furthermore, as a preferred embodiment of the present invention,
(5) The apparatus for producing ozone-dissolved water according to (1), which has an ultrapure water feed pump in the front stage of the catalyst packed tower,
(6) The apparatus for producing ozone-dissolved water according to (5), wherein the ultrapure water feed pump is a booster pump,
(7) The apparatus for producing ozone-dissolved water according to item (1), wherein the catalyst packed tower is a palladium-supported resin tower and a mixed bed tower of a cation exchange resin and an anion exchange resin connected in series in this order.
(8) The apparatus for producing ozone-dissolved water according to (1), wherein the filtration device is a device provided with an ultrafiltration membrane (UF), a microfiltration membrane (MF) or a reverse osmosis membrane (RO),
(9) The apparatus for producing ozone-dissolved water according to item (1), wherein the ozone-dissolving apparatus is an ejector that directly contacts ultrapure water and an ozone-containing gas.
(10) The apparatus for producing ozone-dissolved water according to (9), which has a gas-liquid separator in the latter stage of the ejector,
(11) The apparatus for producing ozone-dissolved water according to item (1), wherein the ozone dissolving device is a gas permeable membrane module made of a fluororesin, and
(12) A device for producing ozone-dissolved water as set forth in (1), which has a chemical solution supply device and is provided with a chemical solution injection point in the preceding stage or subsequent stage of the filtration device,
Can be mentioned.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The apparatus for producing ozone-dissolved water of the present invention includes (A) an ultrapure water supply pipe to which ultrapure water is supplied, and (B) a catalyst that is connected to the ultrapure water supply pipe and makes the ultrapure water contact with a redox catalyst. A reaction unit, (C) a filtration device that filters the ultrapure water that has passed through the catalyst reaction unit, and (D) an ozone dissolution device that dissolves ozone in the ultrapure water discharged from the filtration device.
FIG. 2 is a process flow diagram of one embodiment of the apparatus of the present invention. In this embodiment, the ultrapure water is supplied to the ultrapure water supply pipe 12 by the ultrapure water feed pump 11. There is no restriction | limiting in particular in an ultrapure water feed pump, For example, a piston pump, a plunger pump, a booster pump, a turbine pump, a volute pump etc. can be mentioned. Among these, a booster pump can be suitably used. In order to obtain a practical ozone-dissolved water production apparatus, it is important to apply a certain amount of pressure to ultrapure water. When the ozone-containing gas is drawn into the ultrapure water passage pipe using the ejector, it is particularly necessary to increase the supply water pressure. If the pressure of ultrapure water supplied to the equipment is sufficiently high, there is no need for special measures, but there are more cases where this is not the case, so ultrapure water feed to increase the pressure of ultrapure water at the equipment inlet It is preferable to install a pump. The pressure of the supplied ultrapure water is preferably 0.2 to 0.5 MPa.
In the apparatus of the present invention, the ultrapure water supply pipe 12 is connected to a catalyst reaction unit 13 that brings ultrapure water into contact with a redox catalyst. There is no restriction | limiting in particular in the oxidation reduction catalyst used in this invention apparatus, For example, a platinum catalyst, a silver catalyst, a palladium catalyst etc. can be mentioned. Among these, a palladium catalyst can be particularly preferably used. As the palladium catalyst, in addition to metal palladium, palladium oxide, palladium hydride and the like, a catalyst in which palladium is supported on a carrier such as an ion exchange resin, alumina, activated carbon, or zeolite can be used. There is no restriction | limiting in particular in the shape of a palladium catalyst, For example, any shape, such as a powder form, a granular form, and a pellet form, can be used. An appropriate amount of the powdered catalyst can be added to the reaction tank provided in the reaction tank, or the catalyst can be filled in a reaction tower or the like and passed through as a fluidized bed. The granular or pellet-shaped catalyst can be packed in a reaction tower or the like to form a catalyst-packed tower, which can be continuously subjected to water flow treatment.
[0006]
In the case of a palladium supported catalyst, the supported amount of palladium is preferably 0.1 to 10% by weight. Among the palladium-supported catalysts, a palladium-supported resin in which palladium is supported on an anion exchange resin exhibits an excellent effect with a small amount of supported palladium, and can be particularly preferably used. A palladium-supported resin in which palladium is supported on an anion exchange resin can be prepared by filling an anion exchange resin in a reaction tower and passing an acidic solution of palladium chloride through water. Furthermore, by adding a reducing agent such as formalin to the reaction tower for reduction, a catalyst carrying metal palladium can be obtained. By bringing ultrapure water into contact with the oxidation-reduction catalyst in the catalytic reaction part, trace substances that promote the decomposition of ozone contained in the ultrapure water can be removed. Examples of trace substances that promote the decomposition of ozone include OH radicals and H radicals that are decomposition products of water generated by an ultraviolet irradiation device in an ultrapure water production system.
In the apparatus of the present invention, the palladium-carrying resin and the ion exchange resin can coexist in the catalyst packed tower. There are no particular restrictions on the coexistence of the palladium-supported resin and the ion-exchange resin. For example, the catalyst-packed tower is packed with a palladium-supported resin and a cation-exchange resin or a palladium-supported resin, a cation-exchange resin, and an anion-exchange resin in a mixed state or a stacked state. The palladium-supported resin tower and the cation exchange resin tower can be connected in series in this order, and the palladium-supported catalyst tower, the cation exchange resin tower and the anion exchange resin tower can be connected in series in this order, Alternatively, a palladium-supported catalyst tower and a mixed bed tower of a cation exchange resin and an anion exchange resin can be connected in series in this order. By coexisting a palladium-carrying resin and an ion exchange resin, even if a very small amount of palladium ion is eluted from the palladium-carrying resin, it can be captured by the ion exchange resin, and ion components are eluted from the ultrapure water feed pump. Even so, it can be captured by an ion exchange resin, and the high purity of ultrapure water can be maintained.
[0007]
In the apparatus of the present invention, ultrapure water that has passed through the catalytic reaction section is filtered by the filtering device 14. There is no restriction | limiting in particular in the filtration membrane used for a filtration apparatus, For example, an ultrafiltration membrane (UF), a microfiltration membrane (MF), a reverse osmosis membrane (RO) etc. can be mentioned. By filtering ultrapure water using a filtration device, the ultrapure water feed pump, palladium-carrying resin, cation exchange resin, anion exchange resin and other fine particles are removed to maintain the high purity of ultrapure water. can do.
In the apparatus of the present invention, the ozone-containing gas generated in the ozone generator 16 in the ozone dissolving device 15 is supplied to the ultrapure water discharged from the filtering device to dissolve the ozone. There is no particular limitation on the ozone dissolving device to be used, for example, a gas-permeable membrane module made of fluororesin having ozone resistance, a device for sucking ozone-containing gas such as an ejector, a gas dissolving pump, a bubbling device, etc. Can do. Among these, the ejector has a simple apparatus and can be preferably used. Dissolution of ozone can be promoted by providing an in-line mixer at the subsequent stage of the ejector and making the bubbles finer. When an ejector or a gas dissolving pump is used as the ozone dissolving device, it is in a gas-liquid mixed state of ozone-dissolved water and ozone-containing gas, so a gas-liquid separator 17 is provided in the subsequent stage to separate excess gas. It is preferable to obtain ozone-dissolved water that does not contain bubbles. Providing a proper capacity between the ozone dissolver and the gas-liquid separator to allow water passage time, thereby facilitating the dissolution of ozone and facilitating gas-liquid separation by promoting coalescence of fine bubbles. be able to.
There is no particular limitation on the ozone generator used in the apparatus of the present invention, for example, an apparatus for electrolyzing water to generate a mixed gas of ozone and oxygen gas, ozone and oxygen gas by silent discharge or creeping discharge using oxygen gas as a raw material An apparatus for generating a mixed gas of In order to obtain high-purity ozone-dissolved water, it is preferable to install a filter for capturing fine particles in the ozone-containing gas between the ozone generator and the ozone dissolver.
[0008]
In the device of the present invention, a chemical solution tank 18 and a chemical injection pump 19 are provided, and a chemical solution injection point is provided before or after the filtration device to inject a chemical solution such as acid or alkali. Instead of the chemical injection pump, it can be pumped by an inert gas such as nitrogen gas. The decomposition of dissolved ozone can be suppressed by injecting an acid to lower the pH. In this case, it is preferable from the aspect of maintaining the dissolved ozone concentration to inject the acid upstream of the ozone dissolving device. The cleaning effect of ozone-dissolved water can be enhanced by increasing the pH by injecting alkali. Examples of the alkali include ammonia and tetramethylammonium hydroxide. The ozone-dissolved water produced by using the apparatus of the present invention can measure the dissolved ozone concentration, pH, and the like with the instrument 20 provided in the pipe. Based on the measured dissolved ozone concentration, pH, etc., the amount of ozone-containing gas supplied to ultrapure water and the amount of chemical solution injected can be adjusted to manage the quality of ozone-dissolved water. In the apparatus according to the present invention, it is preferable that the wetted part and the wetted part of the ozone dissolving apparatus and the subsequent stage are all made of an ozone resistant material. Examples of the ozone-resistant material include fluororesin, quartz, and metal whose surface is passivated.
FIG. 3 is a process flow diagram of another aspect of (A) ultrapure water supply piping of the apparatus of the present invention. In this embodiment, the ultrapure water storage tank 21 is provided, and the ultrapure water supply pipe 12 is branched to provide the ultrapure water return pipe 22. By providing ultrapure water return piping and returning ultrapure water to the ultrapure water storage tank, the ultrapure water feed pump 11 can always be operated under constant conditions regardless of the amount of ultrapure water used. Even if the amount of ultrapure water used varies, the pressure of the ultrapure water supplied can be kept constant.
[0009]
FIG. 4 is a process flow diagram of another aspect of the (B) catalytic reaction section of the apparatus of the present invention. In this embodiment, the catalyst-packed tower 13 is packed with a palladium-supported resin 23, a cation exchange resin 24, and an anion exchange resin 25 in this order in a laminated state. FIG. 5 is a process flow diagram of another aspect of the (B) catalytic reaction section of the apparatus of the present invention. In this embodiment, the catalyst packed tower includes a palladium-supported resin tower 26, a mixed bed tower 27 of a cation exchange resin and an anion exchange resin, and both are connected in series in this order.
FIG. 6 is a process flow diagram of another aspect of the (D) ozone dissolving apparatus of the apparatus of the present invention. In this embodiment, the ultrapure water and the ozone-containing gas are in direct contact with each other at the ejector 28, and the ozone-containing gas is dispersed in the ultrapure water in the in-line mixer 29 and is dissolved in the ultrapure water. As the ozone stays at 30 and the dissolution of ozone proceeds, the finely dispersed bubbles recombine to form large bubbles, and the gas-liquid separator 17 separates the surplus gas to obtain ozone-dissolved water that does not contain bubbles. FIG. 7 is a process flow diagram of another aspect of the (D) ozone dissolving apparatus of the apparatus of the present invention. In this embodiment, a gas permeable membrane module 32 provided with a gas permeable membrane 31 made of fluorine resin having ozone resistance is used, and the ozone-containing gas is dissolved in ultrapure water through the gas permeable membrane.
By using the ozone-dissolved water production apparatus of the present invention, trace substances that promote the decomposition of ozone contained in ultrapure water can be removed and generated from pumps, catalyst-carrying resins, ion exchange resins, etc. Since ions and fine particles can also be removed, even if ozone-dissolved water is fed over long distances, the ozone concentration does not decrease much, the residual rate of dissolved ozone is high, and high-quality ozone-dissolved water that does not contain ions or fine particles Can be obtained.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Comparative Example 1
Conventionally, using a subsystem equipped with an ultraviolet irradiation device, a mixed bed type ion exchange resin tower and an ultrafiltration device, a TOC concentration of 2.0 μg / liter of primary pure water 10 m 3 / h was treated to produce a TOC concentration. 0.5 μg / liter of ultrapure water was obtained. The ultraviolet irradiation device [Nippon Photo Science Co., Ltd., AUV-4800TC] is equipped with 24 ultraviolet lamps and has a total power consumption of 4 kW. The mixed bed ion exchange resin tower is filled with 65 liters of strongly basic anion exchange resin [Dawex Co., Ltd., 550A] and 35 liters of strongly acidic cation exchange resin [Dowex Co., Ltd., 650C]. is there.
Of this ultrapure water, 1 m 3 / h was branched into ozone-dissolved water, and an ozone-containing gas 125 liter / h with an ozone concentration of 160 g / m 3 produced by a silent discharge method of oxygen gas, that is, 20 g / h as ozone. Ozone-dissolved water was produced by supplying via an ejector. The ozone-dissolved water was sampled from the ozone-dissolved water supply pipe at a position 50 m away from the ejector, and the ozone concentration was measured and found to be 5 mg / liter.
Example 1
The same operation as in Comparative Example 1 was performed, except that 5 liters of anion exchange resin carrying 1% by weight of palladium, that is, 5% of the ion exchange resin as the layer height, was loaded on the top of the mixed bed type ion exchange resin tower. .
The TOC concentration of the obtained ultrapure water was 0.5 μg / liter, which was the same as Comparative Example 1. The ozone concentration of the ozone-dissolved water sampled at a position 50 m away from the ejector was 9 mg / liter.
Example 2
A palladium-supported resin tower and an ultrafiltration device filled with 1 liter of anion exchange resin 1% by weight of palladium as in Example 1 on the downstream side of the branch point where ultrapure water was branched for ozone-dissolved water at 1 m 3 / h. The same operation as Comparative Example 1 was performed except that it was installed and ultrapure water was passed.
The ozone concentration of ozone-dissolved water sampled at a position 50 m away from the ejector was 10 mg / liter.
From the results of Comparative Example 1 and Examples 1-2, a catalyst reaction part filled with palladium-supported anion exchange resin was provided in the previous stage of the ozone dissolution apparatus, ultrapure water was brought into contact with palladium-supported anion exchange resin, and the catalyst reaction part was By filtering the ultrapure water that has passed through, using a filtration device, high-quality ozone-dissolved water is obtained, and even when this ozone-dissolved water is fed over a long distance, decomposition of ozone in the ozone-dissolved water is suppressed, It can be seen that the survival rate is high.
[0011]
【The invention's effect】
By using the ozone-dissolved water production apparatus of the present invention, trace substances that promote the decomposition of ozone contained in ultrapure water are removed, and ions and fine particles generated from pumps, catalyst-carrying resins, ion-exchange resins, etc. Since it can be removed, even if ozone-dissolved water is fed over a long distance, there is little decrease in ozone concentration, high residual rate of dissolved ozone, and high-quality ozone-dissolved water that does not contain ions or fine particles can be obtained. it can. In addition, the amount of ozone necessary for the production of ozone-dissolved water can be reduced.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of an ozone-dissolved water supply device that supplies ozone-dissolved water in a gas-liquid mixed state with an ozone-containing gas.
FIG. 2 is a process flow diagram of one embodiment of the apparatus of the present invention.
FIG. 3 is a process flow diagram of another aspect of (A) ultrapure water supply piping of the apparatus of the present invention.
FIG. 4 is a process flow diagram of another embodiment of the (B) catalytic reaction section of the apparatus of the present invention.
FIG. 5 is a process flow diagram of another embodiment of the (B) catalytic reaction section of the apparatus of the present invention.
FIG. 6 is a process flow diagram of another embodiment of (D) an ozone dissolving apparatus of the apparatus of the present invention.
FIG. 7 is a process flow diagram of another aspect of (D) the ozone dissolving apparatus of the apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oxygen gas container 2 Nitrogen gas container 3 Ozone generator 4 Ozone dissolution apparatus 5 Gas-liquid mixed fluid supply piping 6 Branch pipe 7 Use point 8 Gas-liquid separator 9 Ozone decomposition apparatus 10 Ozone decomposition apparatus 11 Ultrapure water supply pump DESCRIPTION OF SYMBOLS 12 Ultrapure water supply piping 13 Catalytic reaction part 14 Filtration apparatus 15 Ozone dissolution apparatus 16 Ozone generator 17 Gas-liquid separator 18 Chemical solution tank 19 Chemical injection pump 20 Instrument 21 Ultrapure water storage tank 22 Ultrapure water return piping 23 Palladium carrying resin 24 Cation Exchange Resin 25 Anion Exchange Resin 26 Palladium-Supported Resin Tower 27 Mixed Bed Tower 28 Ejector 29 In-Line Mixer 30 Dissolution Promotion / Bubble Coalescence Promotion Unit 31 Gas Permeation Membrane 32 Gas Permeation Membrane Module

Claims (4)

(A)超純水が供給される超純水供給配管、(B)超純水供給配管に連結し、超純水中に存在するOHラジカル、Hラジカルを除去するためのパラジウム担持樹脂からなる酸化還元触媒と超純水を接触させる触媒反応部であるパラジウム担持樹脂とイオン交換樹脂を共存させた触媒充填塔、(C)該触媒充填塔を経た超純水をろ過するろ過装置、(D)ろ過装置から排出される超純水にオゾンを溶解させるオゾン溶解装置を有することを特徴とするオゾン溶解水の製造装置。(A) ultrapure water supply pipe ultrapure water is supplied from (B) said ultrapure connected to the water supply pipe, OH radicals present in the ultrapure water, palladium resins for removal of H radicals A catalyst packed tower in which a palladium-supported resin and an ion-exchange resin coexist, which are catalytic reaction units for contacting the redox catalyst and ultrapure water , (C) a filtration device for filtering ultrapure water that has passed through the catalyst packed tower, D) A device for producing ozone-dissolved water, comprising an ozone dissolving device for dissolving ozone in ultrapure water discharged from a filtration device. 触媒充填塔が、パラジウム担持樹脂とカチオン交換樹脂又はパラジウム担持樹脂とカチオン交換樹脂とアニオン交換樹脂を混合状態又は積層状態で充填したものである請求項1記載のオゾン溶解水の製造装置。  The apparatus for producing ozone-dissolved water according to claim 1, wherein the catalyst packed tower is filled with a palladium-supported resin and a cation exchange resin or a palladium-supported resin, a cation exchange resin and an anion exchange resin in a mixed state or a laminated state. 触媒充填塔が、パラジウム担持樹脂塔とカチオン交換樹脂塔をこの順に直列に接続したものである請求項1記載のオゾン溶解水の製造装置。  The apparatus for producing ozone-dissolved water according to claim 1, wherein the catalyst-packed tower comprises a palladium-supported resin tower and a cation exchange resin tower connected in series in this order. 触媒充填塔が、パラジウム担持樹脂塔とカチオン交換樹脂塔とアニオン交換樹脂塔をこの順に直列に接続したものである請求項1記載のオゾン溶解水の製造装置。  The apparatus for producing ozone-dissolved water according to claim 1, wherein the catalyst-packed tower comprises a palladium-supported resin tower, a cation exchange resin tower, and an anion exchange resin tower connected in series in this order.
JP21129099A 1999-04-27 1999-07-26 Ozone-dissolved water production equipment Expired - Fee Related JP4038940B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP21129099A JP4038940B2 (en) 1999-07-26 1999-07-26 Ozone-dissolved water production equipment
EP00911349A EP1188473A4 (en) 1999-04-27 2000-03-24 Apparatus for producing water containing dissolved ozone
US09/958,890 US6464867B1 (en) 1999-04-27 2000-03-24 Apparatus for producing water containing dissolved ozone
CNB008077045A CN1192817C (en) 1999-04-27 2000-03-24 Apparatus for producing water containing dissolved ozone
PCT/JP2000/001823 WO2000064568A1 (en) 1999-04-27 2000-03-24 Apparatus for producing water containing dissolved ozone
KR1020017013187A KR100687361B1 (en) 1999-04-27 2000-03-24 Apparatus for producing water containing dissolved ozone
TW089107895A TW500691B (en) 1999-04-27 2000-04-26 Apparatus for producing ozone-dissolved water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21129099A JP4038940B2 (en) 1999-07-26 1999-07-26 Ozone-dissolved water production equipment

Publications (2)

Publication Number Publication Date
JP2001044162A JP2001044162A (en) 2001-02-16
JP4038940B2 true JP4038940B2 (en) 2008-01-30

Family

ID=16603493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21129099A Expired - Fee Related JP4038940B2 (en) 1999-04-27 1999-07-26 Ozone-dissolved water production equipment

Country Status (1)

Country Link
JP (1) JP4038940B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241586B2 (en) 2001-02-16 2012-08-14 Alab, Llc Operatory water disinfection system
KR102099433B1 (en) * 2018-08-29 2020-04-10 세메스 주식회사 Apparatus and method of processing stripping a substrate

Also Published As

Publication number Publication date
JP2001044162A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JP5499753B2 (en) Water treatment method and apparatus
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
JP5447378B2 (en) Method and apparatus for treating water containing organic matter
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
JP4756327B2 (en) Nitrogen gas dissolved water production method
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP6533359B2 (en) Ultra pure water production method
JP4073072B2 (en) Raw water desalination method and desalination equipment by membrane method
JP4038940B2 (en) Ozone-dissolved water production equipment
JP2002210494A (en) Device for manufacturing extrapure water
KR0171584B1 (en) Process for removing dissolved oxygen from water and system therefor
JP2000308815A (en) Producing device of ozone dissolved water
JP4538702B2 (en) Ozone dissolved water supply device
JP4587111B2 (en) Ozone dissolved water supply device
JP3928484B2 (en) Functional water recovery method
JP3858359B2 (en) How to remove organic matter
JP2772362B2 (en) Removal device for dissolved carbon dioxide in liquid
JP3856493B2 (en) Ultrapure water production equipment
JP3794113B2 (en) Method for removing TOC component and dissolved oxygen
JP2001062454A (en) Apparatus for production of electrolytic water
KR20240055814A (en) Resin production method, ultrapure water production method, and ultrapure water production device
JP2003126873A (en) Water purification system
JPH07265854A (en) Desalted water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees