JPH07265854A - Desalted water production device - Google Patents

Desalted water production device

Info

Publication number
JPH07265854A
JPH07265854A JP6081082A JP8108294A JPH07265854A JP H07265854 A JPH07265854 A JP H07265854A JP 6081082 A JP6081082 A JP 6081082A JP 8108294 A JP8108294 A JP 8108294A JP H07265854 A JPH07265854 A JP H07265854A
Authority
JP
Japan
Prior art keywords
water
storage tank
return pipe
reverse osmosis
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6081082A
Other languages
Japanese (ja)
Other versions
JP3100504B2 (en
Inventor
Yuji Hayashi
佑二 林
Mari Koide
真理 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP06081082A priority Critical patent/JP3100504B2/en
Publication of JPH07265854A publication Critical patent/JPH07265854A/en
Application granted granted Critical
Publication of JP3100504B2 publication Critical patent/JP3100504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To provide a desalted water production device capable of obtaining permeated water reduced in free carbon dioxide quantity, even though a decarbonation tower is not provided in a front stage of a reverse osmosis device. CONSTITUTION:An ejector 9 is provided on a pipe line of a return pipe 7 for concentrated water separated from the permeated water with the reverse osmosis device 4. Air is sucked by an ejector 9 and the air is mixed into the concentrated water returned to a raw water storage tank 1 through the return pipe 7 and the free carbon dioxide in the concentrated water is removed by gas-liquid contact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は逆浸透膜装置を用いて被
処理水を濃縮水と透過水とに分離するようにした脱塩水
製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing demineralized water in which water to be treated is separated into concentrated water and permeated water by using a reverse osmosis membrane device.

【0002】[0002]

【従来の技術】逆浸透膜を利用して被処理水を濃縮水と
透過水とに分離する脱塩水製造装置が知られている。こ
の逆浸透膜を利用した脱塩水製造装置によった場合、被
処理水中に含まれるナトリウム、カルシウム、マグネシ
ウム、塩化物、硫酸根、硝酸根などのイオンは有効に除
去することができるが、被処理水に溶解している遊離二
酸化炭素は逆浸透膜を透過してしまい、透過水の水質が
悪化するという問題がある。そのため、工業的には逆浸
透膜装置の前段に脱炭酸塔を付設して、被処理水中の遊
離二酸化炭素を除去して、炭酸ガスの取り除かれた被処
理水を逆浸透膜装置に送るようにしている。
2. Description of the Related Art An apparatus for producing demineralized water is known which separates water to be treated into concentrated water and permeated water by utilizing a reverse osmosis membrane. In the case of the desalinated water producing apparatus using this reverse osmosis membrane, ions such as sodium, calcium, magnesium, chloride, sulfate and nitrate contained in the water to be treated can be effectively removed. Free carbon dioxide dissolved in treated water permeates the reverse osmosis membrane, and there is a problem that the quality of the permeated water deteriorates. Therefore, industrially, a decarbonation tower is attached in front of the reverse osmosis membrane device to remove free carbon dioxide in the water to be treated and to send the water to be treated from which carbon dioxide has been removed to the reverse osmosis membrane device. I have to.

【0003】[0003]

【発明が解決しようとする課題】上記したように、工業
的には逆浸透膜装置の前段に脱炭酸塔を設備して、被処
理水中の遊離二酸化炭素を除去するようにしている。し
かしながら、前記脱炭酸塔は周知のように設備全体が可
成り大型であり、工業的には設置上何ら問題はないにし
ても、研究室や実験室規模等の比較的小規模の脱塩水製
造装置にはスペース的に設置することができない。その
ため、これまでの研究室規模の脱塩水製造装置において
は、逆浸透膜を透過した透過水中に遊離二酸化炭素が含
まれたままであり、そのため後段にイオン交換塔が接続
されている場合は遊離二酸化炭素の除去されていない透
過水がそのまま後段のイオン交換塔に送られることとな
り、その結果、イオン交換塔内に充填されている陰イオ
ン交換樹脂の負荷が増大して、イオン交換塔の通水ライ
フが短縮されるという問題点があった。
As described above, industrially, the decarbonation tower is installed before the reverse osmosis membrane device to remove the free carbon dioxide in the water to be treated. However, as is well known, the whole equipment of the decarbonation tower is quite large, and even if there is no problem in terms of industrial installation, relatively small-scale desalination water production such as in a laboratory or a laboratory is required. The device cannot be installed in space. Therefore, in conventional laboratory-scale demineralized water production equipment, free carbon dioxide remains contained in the permeated water that has permeated the reverse osmosis membrane.Therefore, when an ion exchange column is connected in the subsequent stage, free carbon dioxide is removed. The permeated water, from which carbon has not been removed, will be sent as it is to the ion-exchange tower in the subsequent stage, and as a result, the load of the anion-exchange resin filled in the ion-exchange tower will increase, and the water flow through the ion-exchange tower will increase. There was a problem that the life was shortened.

【0004】そこで、本発明は逆浸透膜装置によって分
離された濃縮水の戻し管中にエゼクタを付設し、当該エ
ゼクタより空気を吸引して、戻し管を通じて流れる濃縮
水中に空気を混合させ、気液接触により遊離二酸化炭素
を除去するようにして、逆浸透膜装置の前段に脱炭酸塔
を設備しなくても遊離二酸化炭素量の低減された透過水
を得ることができ、したがって、後段にイオン交換塔が
接続されている場合には、当該イオン交換塔内に充填さ
れている陰イオン交換樹脂の負荷を大幅に軽減できるよ
うになした脱塩水製造装置を提供することを目的とする
ものである。
Therefore, according to the present invention, an ejector is attached to the return pipe of the concentrated water separated by the reverse osmosis membrane device, air is sucked from the ejector, and the concentrated water flowing through the return pipe is mixed with the air. By removing free carbon dioxide by liquid contact, permeated water with a reduced amount of free carbon dioxide can be obtained without installing a decarbonation tower in the preceding stage of the reverse osmosis membrane device, and therefore, in the latter stage, the ionized water can be obtained. When an exchange tower is connected, it is an object of the present invention to provide a desalinated water production apparatus capable of significantly reducing the load of the anion exchange resin filled in the ion exchange tower. is there.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
の本発明の構成を詳述すれば、請求項1に係る発明は、
原水貯槽内の被処理水をポンプによって逆浸透膜装置に
送り、逆浸透膜によって被処理水を透過水と濃縮水とに
分離し、濃縮水を戻し管を通じて原水貯槽内に戻すよう
になした脱塩水製造装置において、前記濃縮水の戻し管
の管路中にエゼクタを付設し、戻し管を流れる濃縮水の
流速を利用して当該エゼクタより空気を吸引し、気液接
触により濃縮水中の遊離二酸化炭素を除去するようにな
したことを特徴とする脱塩水製造装置であり、また、請
求項2に係る発明は、原水貯槽内の上部にスプレーノズ
ルを配設し、戻し管を通じて原水貯槽内に戻される濃縮
水を、当該スプレーノズルを介して原水貯槽内に散水す
るようになした請求項1記載の脱塩水製造装置である。
Means for Solving the Problems To elaborate the constitution of the present invention for achieving the above object, the invention according to claim 1 is
The treated water in the raw water storage tank was sent to the reverse osmosis membrane device by a pump, the treated water was separated into permeated water and concentrated water by the reverse osmosis membrane, and the concentrated water was returned to the raw water storage tank through the return pipe. In the demineralized water manufacturing apparatus, an ejector is attached in the conduit of the return pipe of the concentrated water, air is sucked from the ejector by utilizing the flow rate of the concentrated water flowing through the return pipe, and liberated in the concentrated water by gas-liquid contact. A desalinated water production apparatus characterized in that carbon dioxide is removed, and the invention according to claim 2 has a spray nozzle disposed in an upper portion of the raw water storage tank, and the inside of the raw water storage tank is provided through a return pipe. 2. The desalinated water producing apparatus according to claim 1, wherein the concentrated water returned to the water is sprayed into the raw water storage tank through the spray nozzle.

【0006】[0006]

【作用】このように、本発明脱塩水製造装置において
は、濃縮水の戻し管の管路中にエゼクタを付設してある
ので、逆浸透膜を透過しなかった比較的高圧の濃縮水が
エゼクタを通過するときに当該エゼクタによって空気が
吸引され、戻し管を流れる濃縮水の中に当該吸引空気が
混合される。そして、気液接触により濃縮水中の遊離二
酸化炭素が濃縮水中より分離され、分離された遊離二酸
化炭素は、濃縮水が戻し管の先端から原水貯槽内に戻さ
れた時に、炭酸ガスとして原水貯槽の上部に設けてある
排気管を通じて外部に排出されるものである。また、原
水貯槽内の上部にスプレーノズルを配設し、濃縮水を当
該スプレーノズルによって噴霧状あるいは微細な水滴状
にして下方に降らせるようにすると、気液接触効果が一
層向上し、きわめて良好に遊離二酸化炭素を除去するこ
とができるものである。なお、スプレーノズルを配設し
ない場合は、原水貯槽内に濃縮水を戻すための戻し管の
先端部は、必ずしも原水貯槽内の上部位置に設定する必
要はなく、たとえば原水貯槽内に貯溜されている被処理
水の水面下に戻し管の先端部を位置させるようにしても
よいものである。
As described above, in the desalinated water producing apparatus of the present invention, since the ejector is provided in the conduit of the concentrated water return pipe, the relatively high-pressure concentrated water that has not permeated the reverse osmosis membrane is ejected. The air is sucked by the ejector when passing through, and the sucked air is mixed with the concentrated water flowing through the return pipe. Then, the free carbon dioxide in the concentrated water is separated from the concentrated water by the gas-liquid contact, and the separated free carbon dioxide is the carbon dioxide gas of the raw water storage tank when the concentrated water is returned from the tip of the return pipe to the raw water storage tank. It is discharged to the outside through an exhaust pipe provided in the upper part. Further, if a spray nozzle is provided in the upper part of the raw water storage tank and the concentrated water is sprayed or made into fine water droplets by the spray nozzle to descend downward, the gas-liquid contact effect is further improved, and it is extremely favorable. Free carbon dioxide can be removed. In addition, when the spray nozzle is not provided, the tip of the return pipe for returning the concentrated water into the raw water storage tank does not necessarily have to be set at the upper position in the raw water storage tank. The tip of the return pipe may be located below the surface of the water to be treated.

【0007】本発明脱塩水製造装置によった場合は、従
来のような大型の脱炭酸塔を逆浸透膜装置の前段に設備
しなくても、良好に被処理水中の遊離二酸化炭素を軽減
することができて純度の高い透過水を得ることができる
と共に、当該逆浸透膜装置の後段にイオン交換塔を接続
した場合には、後段のイオン交換塔内に充填されている
陰イオン交換樹脂に掛かる負荷を大幅に軽減することが
でき、当該イオン交換塔の通水ライフを延ばすことが可
能となる。
According to the demineralized water producing apparatus of the present invention, the free carbon dioxide in the water to be treated can be satisfactorily reduced without installing a conventional large decarbonation tower in the preceding stage of the reverse osmosis membrane apparatus. It is possible to obtain highly pure permeated water, and when an ion exchange tower is connected to the latter stage of the reverse osmosis membrane device, the anion exchange resin packed in the latter ion exchange tower is used. The applied load can be significantly reduced, and the water flow life of the ion exchange tower can be extended.

【0008】[0008]

【実施例】以下、本発明脱塩水製造装置の具体的構成を
図示の実施例に基づいて詳細に説明する。図1は本発明
脱塩水製造装置の一実施例を示す概略図、図2は本発明
脱塩水製造装置の他の実施例を示す概略図である。
The concrete constitution of the desalination water producing apparatus of the present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a schematic view showing an embodiment of the demineralized water producing apparatus of the present invention, and FIG. 2 is a schematic view showing another embodiment of the demineralized water producing apparatus of the present invention.

【0009】図中1は原水貯槽、2は当該原水貯槽1に
被処理水を供給する原水供給管、3は原水貯槽1内の被
処理水を逆浸透膜装置4に送る送水管、5は当該送水管
3の管路中に付設したポンプ、6は前記逆浸透膜装置4
の内部に付設された逆浸透膜、7は当該逆浸透膜6を透
過しなかった濃縮水を前記原水貯槽1内に戻すための戻
し管である。なお、戻し管7を通じて濃縮水の全てが原
水貯槽1内に戻されるものではなく、通常は濃縮水の約
70%前後を原水貯槽1内に戻し、残りの濃縮水は戻し
管7に接続された排水管8を通じてブローするようにし
ている。
In the figure, 1 is a raw water storage tank, 2 is a raw water supply pipe for supplying treated water to the raw water storage tank 1, 3 is a water supply pipe for feeding the treated water in the raw water storage tank 1 to a reverse osmosis membrane device 4, and 5 is A pump attached in the conduit of the water supply pipe 3, 6 is the reverse osmosis membrane device 4
A reverse osmosis membrane attached inside the device is a return pipe for returning concentrated water that has not permeated through the reverse osmosis membrane 6 into the raw water storage tank 1. It should be noted that not all of the concentrated water is returned to the raw water storage tank 1 through the return pipe 7, but normally about 70% of the concentrated water is returned to the raw water storage tank 1, and the remaining concentrated water is connected to the return pipe 7. Blow through the drain pipe 8.

【0010】次に、9は前記濃縮水の戻し管7の管路中
に付設したエゼクタであり、ポンプ5によって付勢され
た濃縮水がエゼクタ9を通過するときに、当該エゼクタ
9内に外部の空気が吸引され、戻し管7を流れる濃縮水
中に当該空気が攪拌混合される。10は原水貯槽1内の
上部に配設したスプレーノズルであり、戻し管7の先端
部は当該スプレーノズル10に接続されている。なお、
本発明装置においては戻し管7の先端部に必ずしもスプ
レーノズルを接続する必要はなく、特に図示しないが、
戻し管7の先端部を単純に原水貯槽1内の下方に向けて
突出させるようにしてもよいし、あるいは、図2に示す
実施例のように戻し管7の先端部11を原水貯槽1内の
被処理水の水面下に位置させるようにしてもよいもので
ある。さらに、特に図示していないが、原水供給管2を
原水貯槽1に直接連通せずに、原水供給管2の先端をエ
ゼクタ9の下流側の戻し管7に連通させ、原水を戻し管
7を介して濃縮水と混合して原水貯槽1内に供給するよ
うにしてもよい。
Next, 9 is an ejector provided in the conduit of the return pipe 7 for the concentrated water, and when the concentrated water urged by the pump 5 passes through the ejector 9, the ejector 9 is externally placed inside the ejector 9. Is sucked, and the air is agitated and mixed with the concentrated water flowing through the return pipe 7. Reference numeral 10 is a spray nozzle arranged in the upper portion of the raw water storage tank 1, and the tip of the return pipe 7 is connected to the spray nozzle 10. In addition,
In the device of the present invention, it is not always necessary to connect a spray nozzle to the tip of the return pipe 7, and although not particularly shown,
The tip of the return pipe 7 may simply be made to project downward in the raw water storage tank 1, or the tip 11 of the return pipe 7 may be placed in the raw water storage tank 1 as in the embodiment shown in FIG. It may be arranged below the surface of the water to be treated. Further, although not particularly shown, the raw water supply pipe 2 is not directly communicated with the raw water storage tank 1, but the tip of the raw water supply pipe 2 is communicated with a return pipe 7 on the downstream side of the ejector 9 so that the raw water is returned through the return pipe 7. It may be supplied to the raw water storage tank 1 after being mixed with the concentrated water via the water.

【0011】その他、図中の12は原水貯槽1の上部に
付設した排気管である。13は逆浸透膜装置4の透過水
側に接続した透過水の出口管であり、当該出口管13の
先端部は図示しないたとえばイオン交換塔の上部に接続
される。14は前記エゼクタ9の手前の戻し管7の管路
中に付設したバルブ、15は前記排水管8の管路中に付
設したバルブである。なお、当該バルブ14および15
の開度を調節することにより、戻し管7を通じて原水貯
槽1内に戻される濃縮水の分量が決定される。
In addition, reference numeral 12 in the figure denotes an exhaust pipe attached to the upper part of the raw water storage tank 1. Reference numeral 13 is a permeated water outlet pipe connected to the permeated water side of the reverse osmosis membrane device 4, and the tip end of the outlet pipe 13 is connected to, for example, the upper portion of an ion exchange column (not shown). Reference numeral 14 is a valve attached in the conduit of the return pipe 7 before the ejector 9, and 15 is a valve attached in the conduit of the drain pipe 8. The valves 14 and 15
The amount of concentrated water returned into the raw water storage tank 1 through the return pipe 7 is determined by adjusting the opening degree of the.

【0012】図1に示す実施例の場合、原水貯槽1内の
被処理水はポンプ5によって吸引され、送水管3を通じ
て逆浸透膜装置4内に送られる。そして、逆浸透膜6を
透過し、逆浸透膜6によってナトリウムやカルシウムな
どのイオンが取り除かれた透過水は出口管13を通じて
後段の図示しない処理設備に送られる。
In the case of the embodiment shown in FIG. 1, the water to be treated in the raw water storage tank 1 is sucked by the pump 5 and sent into the reverse osmosis membrane device 4 through the water supply pipe 3. Then, the permeated water that has permeated the reverse osmosis membrane 6 and from which ions such as sodium and calcium have been removed by the reverse osmosis membrane 6 is sent through an outlet pipe 13 to a treatment facility (not shown) in the subsequent stage.

【0013】一方、逆浸透膜6を透過しなかった非透過
水はイオン濃度の高い濃縮水となって戻し管7を通じて
原水貯槽1内に戻されるが、当該戻し管7の管路中にエ
ゼクタ9が付設されているので、エゼクタ9より吸引さ
れる空気が戻し管7を流れる濃縮水中に激しく攪拌状態
で混合され、気液接触状態でスプレーノズル10より噴
霧状あるいは微細な水滴状となって散布され、原水貯槽
1内に戻される。この際、濃縮水から遊離二酸化炭素が
炭酸ガスとして分離され、分離された炭酸ガスは原水貯
槽1の上部に設けてある排気管12を通じて外部に排気
される。また、この実施例においては、前記したように
原水貯槽1内に戻される濃縮水はスプレーノズル10に
よって細かく分散されるようになっているので被処理水
の水面に到達するまでの間においても気液接触が行わ
れ、炭酸ガスの分離が一層促進されることとなる。この
循環が継続されることにより被処理水中の遊離二酸化炭
素濃度は次第に低減され、透過水中に含まれる遊離二酸
化炭素濃度も大幅に軽減されるものである。
On the other hand, the non-permeated water that has not permeated the reverse osmosis membrane 6 becomes concentrated water having a high ion concentration and is returned to the raw water storage tank 1 through the return pipe 7, and the ejector is provided in the conduit of the return pipe 7. Since 9 is additionally provided, the air sucked from the ejector 9 is mixed in the concentrated water flowing through the return pipe 7 in a vigorous agitated state, and in a gas-liquid contact state, atomized or fine water droplets are formed from the spray nozzle 10. It is sprayed and returned to the raw water storage tank 1. At this time, free carbon dioxide is separated as carbon dioxide gas from the concentrated water, and the separated carbon dioxide gas is exhausted to the outside through an exhaust pipe 12 provided at the upper part of the raw water storage tank 1. Further, in this embodiment, as described above, the concentrated water returned to the raw water storage tank 1 is finely dispersed by the spray nozzle 10. Liquid contact is performed, and the separation of carbon dioxide gas is further promoted. By continuing this circulation, the concentration of free carbon dioxide in the water to be treated is gradually reduced, and the concentration of free carbon dioxide contained in the permeated water is also greatly reduced.

【0014】図2に示す実施例は、戻し管7の先端部1
1を原水貯槽1内の被処理水の水面下に没するようにし
たものであるが、このようにした場合、戻し管7の先端
部11から戻される濃縮水中には多量の空気が含まれて
いるため、原水貯槽1内の被処理水中で気泡化して良好
な気液接触効果が得られるものである。なお、前記いず
れの実施例においても、エゼクタ9によって吸引する空
気の量は、原水貯槽1内に戻される濃縮水の量と同等
か、あるいはそれ以上の量とするのが好ましい。
In the embodiment shown in FIG. 2, the tip portion 1 of the return pipe 7 is
1 is submerged below the surface of the water to be treated in the raw water storage tank 1. In this case, the concentrated water returned from the tip 11 of the return pipe 7 contains a large amount of air. Therefore, bubbles are formed in the water to be treated in the raw water storage tank 1 to obtain a good gas-liquid contact effect. In any of the above embodiments, the amount of air sucked by the ejector 9 is preferably equal to or more than the amount of concentrated water returned to the raw water storage tank 1.

【0015】次に、水温が20℃、TA(トータルアニ
オン)が1リットル当たり140mgCaCO3 で、そ
のうちCO2 の含有量が7mgCaCO3 の一般市水を
被処理水に設定し、当該被処理水を原水貯槽1内からポ
ンプ5によって12Kg/cm2 の圧力で逆浸透膜装置
4内に、1時間当たり700リットル供給し、透過水8
0リットルを除いた濃縮水のうち450リットルを、管
路中にエゼクタ9を具えた戻し管7の通常の先端部、す
なわちスプレーノズルを用いないで戻し管7の先端口か
ら原水貯槽1内に普通に戻すようにした実験例(A)
と、同じくエゼクタ9を具えた戻し管7の先端部にスプ
レーノズル10を接続して、当該スプレーノズル10か
ら濃縮水を微細な粒子状(3500μm程度)にして戻
すようにした実験例(B)を、戻し管の管路中にエゼク
タを具えない従来の脱塩水製造装置による比較例と併せ
て表1に実験の結果を示す。なお、上記実験例(A)お
よび(B)のいずれもエゼクタで供給する空気量は、空
気量/戻し濃縮水=1/1(容量比)の割合とした。
Next, general city water having a water temperature of 20 ° C. and TA (total anion) of 140 mgCaCO 3 per liter, of which CO 2 content of 7 mgCaCO 3 , is set as the treated water, and the treated water is treated. 700 liters per hour are supplied from the raw water storage tank 1 to the reverse osmosis membrane device 4 at a pressure of 12 kg / cm 2 by the pump 5, and the permeated water 8
450 liters of the concentrated water excluding 0 liters is fed into the raw water storage tank 1 from the normal tip of the return pipe 7 having the ejector 9 in the pipe line, that is, from the tip end of the return pipe 7 without using a spray nozzle. Experimental example (A) to return to normal
An experimental example (B) in which a spray nozzle 10 was connected to the tip of a return pipe 7 also equipped with an ejector 9, and concentrated water was returned from the spray nozzle 10 in the form of fine particles (about 3500 μm). The results of the experiment are shown in Table 1 together with a comparative example of a conventional desalinated water production apparatus having no ejector in the return pipe. In each of the above experimental examples (A) and (B), the amount of air supplied by the ejector was a ratio of air amount / reconstituted concentrated water = 1/1 (volume ratio).

【表1】 [Table 1]

【0016】この表1により明らかなとおり、実験例
(B)によった場合、逆浸透膜6を透過した透過水中の
CO2 量は、透過水1リットル当たり3.8mgCaC
3 に低減されており、比較例の場合の7mgCaCO
3 に較べ大幅に改善されていることが実証された。ま
た、戻し管の先端部にスプレーノズルを接続しない実験
例(A)によった場合でも、透過水中のCO2 量は、透
過水1リットル当たり4.5mgCaCO3 に低減して
いた。なお、比較例の場合のTA量は透過水1リットル
当たり12mgCaCO3 であるのに対し、実験例
(B)の場合のTA量は8.8mgCaCO3 であるの
で、TA量の比は12/8.8=1.36倍となる。し
たがって、逆浸透膜装置の透過水を更にイオン交換塔で
脱塩処理する場合は、本発明装置を使用した場合の方
が、当該割合でイオン交換塔内の陰イオン交換樹脂の通
水ライフが延びることとなる。
As is clear from Table 1, in the case of Experimental Example (B), the amount of CO 2 in the permeate that has permeated the reverse osmosis membrane 6 is 3.8 mgCaC per liter of permeate.
O 3 are reduced, 7MgCaCO in Comparative Example
It was proved that it was significantly improved compared to 3 . Even in the case of the experimental example (A) in which the spray nozzle was not connected to the tip of the return pipe, the amount of CO 2 in the permeated water was reduced to 4.5 mgCaCO 3 per liter of the permeated water. The TA amount in the comparative example was 12 mgCaCO 3 per liter of permeated water, whereas the TA amount in the experimental example (B) was 8.8 mgCaCO 3 , so the TA amount ratio was 12/8. .8 = 1.36 times. Therefore, in the case where the permeated water of the reverse osmosis membrane device is further desalted in the ion exchange tower, the water flow life of the anion exchange resin in the ion exchange tower is higher when the device of the present invention is used. It will be extended.

【0017】[0017]

【発明の効果】以上のように、本発明脱塩水製造装置に
よった場合は、従来のような大型の脱炭酸塔を逆浸透膜
装置の前段に設備しなくても、良好に被処理水中の遊離
二酸化炭素を軽減することができ、そのため、後段にイ
オン交換塔が接続されている場合は、当該イオン交換塔
内に充填されている陰イオン交換樹脂に掛かる負荷を大
幅に軽減することができ、当該イオン交換樹塔の通水ラ
イフを延ばすことが可能となった。したがって、研究室
や実験室規模等の比較的小規模で行われる脱塩水製造プ
ロセスに最適の装置を提供することができるものであ
る。
As described above, according to the demineralized water producing apparatus of the present invention, it is possible to satisfactorily treat the water to be treated without installing a large-scale decarbonation tower as in the prior art in front of the reverse osmosis membrane apparatus. The amount of free carbon dioxide can be reduced, and therefore, when an ion exchange column is connected in the subsequent stage, the load applied to the anion exchange resin filled in the ion exchange column can be significantly reduced. It has become possible to extend the water life of the ion exchange tree tower. Therefore, it is possible to provide the optimum apparatus for the desalination water production process which is performed in a relatively small scale such as a laboratory or a laboratory scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明脱塩水製造装置の一実施例を示す概略図
である。
FIG. 1 is a schematic view showing an embodiment of the desalinated water producing apparatus of the present invention.

【図2】本発明脱塩水製造装置の他の実施例を示す概略
図である。
FIG. 2 is a schematic view showing another embodiment of the desalinated water producing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1:原水貯槽 2:原水供給管 3:送水管 4:逆浸透膜装置 5:ポンプ 6:逆浸透膜 7:戻し管 8:排水管 9:エゼクタ 10:スプレーノズル 11:先端部 12:排気管 13:出口管 14:バルブ 15:バルブ 1: Raw water storage tank 2: Raw water supply pipe 3: Water supply pipe 4: Reverse osmosis membrane device 5: Pump 6: Reverse osmosis membrane 7: Return pipe 8: Drain pipe 9: Ejector 10: Spray nozzle 11: Tip part 12: Exhaust pipe 13: outlet pipe 14: valve 15: valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水貯槽内の被処理水をポンプによって
逆浸透膜装置に送り、逆浸透膜によって被処理水を透過
水と濃縮水とに分離し、濃縮水を戻し管を通じて原水貯
槽内に戻すようになした脱塩水製造装置において、前記
濃縮水の戻し管の管路中にエゼクタを付設し、戻し管を
流れる濃縮水の流速を利用して当該エゼクタより空気を
吸引し、気液接触により濃縮水中の遊離二酸化炭素を除
去するようになしたことを特徴とする脱塩水製造装置。
1. The water to be treated in the raw water storage tank is sent to a reverse osmosis membrane device by a pump, the water to be treated is separated into permeated water and concentrated water by the reverse osmosis membrane, and the concentrated water is fed into a raw water storage tank through a return pipe. In the demineralized water manufacturing apparatus adapted to return, an ejector is attached in the conduit of the concentrated water return pipe, air is sucked from the ejector by utilizing the flow rate of the concentrated water flowing through the return pipe, and gas-liquid contact is performed. The desalinated water producing apparatus is characterized in that the free carbon dioxide in the concentrated water is removed by the method.
【請求項2】 原水貯槽内の上部にスプレーノズルを配
設し、戻し管を通じて原水貯槽内に戻される濃縮水を、
当該スプレーノズルを介して原水貯槽内に散水するよう
になした請求項1記載の脱塩水製造装置。
2. The concentrated water that is returned to the raw water storage tank through a return pipe by disposing a spray nozzle in the upper part of the raw water storage tank,
The desalinated water production apparatus according to claim 1, wherein water is sprinkled into the raw water storage tank through the spray nozzle.
JP06081082A 1994-03-29 1994-03-29 Demineralized water production equipment Expired - Fee Related JP3100504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06081082A JP3100504B2 (en) 1994-03-29 1994-03-29 Demineralized water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06081082A JP3100504B2 (en) 1994-03-29 1994-03-29 Demineralized water production equipment

Publications (2)

Publication Number Publication Date
JPH07265854A true JPH07265854A (en) 1995-10-17
JP3100504B2 JP3100504B2 (en) 2000-10-16

Family

ID=13736474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06081082A Expired - Fee Related JP3100504B2 (en) 1994-03-29 1994-03-29 Demineralized water production equipment

Country Status (1)

Country Link
JP (1) JP3100504B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302323A (en) * 2007-06-08 2008-12-18 Matsumura Gumi Corp Unit for aerating contaminated water and apparatus for decontaminating contaminated water
WO2016002890A1 (en) * 2014-07-03 2016-01-07 栗田工業株式会社 Ultrapure water production apparatus and ultrapure water production method
JP2020089803A (en) * 2018-12-03 2020-06-11 オルガノ株式会社 Carbonic acid removing system, pure water producing apparatus, and method of removing carbonic acid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302323A (en) * 2007-06-08 2008-12-18 Matsumura Gumi Corp Unit for aerating contaminated water and apparatus for decontaminating contaminated water
WO2016002890A1 (en) * 2014-07-03 2016-01-07 栗田工業株式会社 Ultrapure water production apparatus and ultrapure water production method
JP2016013529A (en) * 2014-07-03 2016-01-28 栗田工業株式会社 Apparatus and method for producing pure water
KR20160135325A (en) * 2014-07-03 2016-11-25 쿠리타 고교 가부시키가이샤 Ultrapure water production apparatus and ultrapure water production method
CN106458651A (en) * 2014-07-03 2017-02-22 栗田工业株式会社 Ultrapure water production apparatus and ultrapure water production method
CN106458651B (en) * 2014-07-03 2019-10-18 栗田工业株式会社 Water Purifiers and pure water production method
JP2020089803A (en) * 2018-12-03 2020-06-11 オルガノ株式会社 Carbonic acid removing system, pure water producing apparatus, and method of removing carbonic acid

Also Published As

Publication number Publication date
JP3100504B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
KR101916557B1 (en) Ultrapure water production apparatus and ultrapure water production method
JP6533359B2 (en) Ultra pure water production method
JPS62273095A (en) Water treatment plant
JPH07265854A (en) Desalted water production device
WO2017213050A1 (en) Water treatment method and device, water treatment device modification method, and kit for water treatment device modification
JPS6336890A (en) Apparatus for producing high-purity water
US2226743A (en) Method of and apparatus for treating water
JP6629383B2 (en) Ultrapure water production method
CN105668860A (en) Desulfurization wastewater zero-emission and resource comprehensive treatment recycling method and equipment
JPH0671594B2 (en) Method and apparatus for removing dissolved oxygen in water
JP7118823B2 (en) Water treatment system and water treatment method
JPH10202296A (en) Ultrapure water producer
JPS6291287A (en) Apparatus for making pure water
JP2772362B2 (en) Removal device for dissolved carbon dioxide in liquid
JP4538702B2 (en) Ozone dissolved water supply device
US7504030B2 (en) Acid mine water demineralizer
JP2020089803A (en) Carbonic acid removing system, pure water producing apparatus, and method of removing carbonic acid
JPH11169852A (en) Pure water producing device
RU2047330C1 (en) Method for producing potable water
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JPH0790215B2 (en) Method for removing dissolved carbon dioxide gas in pure water production equipment
WO2020226039A1 (en) Water treatment apparatus
JPH11128949A (en) Desalting apparatus
JPH07116648A (en) Removal of volatile silicon in water and prevention of clogging of ultrafiltration membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000718

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees