WO2016002890A1 - Ultrapure water production apparatus and ultrapure water production method - Google Patents

Ultrapure water production apparatus and ultrapure water production method Download PDF

Info

Publication number
WO2016002890A1
WO2016002890A1 PCT/JP2015/069159 JP2015069159W WO2016002890A1 WO 2016002890 A1 WO2016002890 A1 WO 2016002890A1 JP 2015069159 W JP2015069159 W JP 2015069159W WO 2016002890 A1 WO2016002890 A1 WO 2016002890A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane device
reverse osmosis
osmosis membrane
membrane
Prior art date
Application number
PCT/JP2015/069159
Other languages
French (fr)
Japanese (ja)
Inventor
邦洋 早川
英邦 亀田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201580031233.0A priority Critical patent/CN106458651B/en
Priority to KR1020167029101A priority patent/KR101916557B1/en
Publication of WO2016002890A1 publication Critical patent/WO2016002890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Abstract

Provided are an ultrapure water production apparatus and ultrapure water production method in an ultrapure water production process configured so that concentrate from a first RO membrane device is processed in a second RO membrane device and permeate is collected. The apparatus and method are advantageous in terms of cost and the decarbonation device for preventing concentration of inorganic carbonic acid in the system is small and space-conserving. The present invention is an ultrapure water production apparatus equipped with: a first RO membrane device (3) for RO membrane treatment of water to be treated; an introduction line (13) for introducing the water to be treated to the first RO membrane device (3); an outflow line (14) for causing permeate from the first RO membrane device (3) to flow out; a second RO membrane device (5) for RO membrane treatment of the concentrate from the first RO membrane device (3); and return lines (19, 20) for returning permeate from the second RO membrane device (5) to the introduction line (13). A decarbonation device (6) for decarbonation of the permeate from the second RO membrane device (5) is provided in the return line.

Description

純水製造装置及び純水製造方法Pure water production apparatus and pure water production method
 本発明は、第1の逆浸透膜装置と、その濃縮水を処理する第2の逆浸透膜装置を備える水処理プロセスで被処理水を処理して純水を製造する純水製造装置及び純水製造方法に関する。 The present invention relates to a pure water production apparatus and a pure water production apparatus for producing pure water by treating water to be treated in a water treatment process comprising a first reverse osmosis membrane device and a second reverse osmosis membrane device for treating the concentrated water. The present invention relates to a water production method.
 純水製造装置は、通常、前処理除濁装置、脱炭酸装置、逆浸透膜(RO膜)装置、電気脱イオン装置などで構成されている。 The pure water production apparatus is usually composed of a pretreatment turbidity removal device, a decarboxylation device, a reverse osmosis membrane (RO membrane) device, an electrodeionization device and the like.
 RO膜装置は、有機物、イオン類を除去できるが、二酸化炭素、酸素などの溶存気体はほとんど除去することはできない。二酸化炭素は水中で重炭酸イオンに変化し、電気脱イオン装置の負荷となるため、RO膜装置の前段に脱炭酸装置を設置して除去することが一般的である。 The RO membrane device can remove organic substances and ions, but can hardly remove dissolved gases such as carbon dioxide and oxygen. Since carbon dioxide changes to bicarbonate ions in water and becomes a load on the electrodeionization device, it is common to remove the carbon dioxide by installing a decarboxylation device in front of the RO membrane device.
 RO膜装置は、通常、水回収率60~80%程度で運転される。プロセス全体の水回収率を高めるために、第2のRO膜装置を設け、RO膜装置(第1のRO膜装置)の濃縮水を第2のRO膜装置でRO膜処理して透過水を回収することが行われている。 The RO membrane device is usually operated at a water recovery rate of about 60 to 80%. In order to increase the water recovery rate of the entire process, a second RO membrane device is provided, and the concentrated water of the RO membrane device (first RO membrane device) is subjected to RO membrane treatment with the second RO membrane device, and the permeated water is supplied. It is being collected.
 しかし、この場合には、次のような問題がある。 However, in this case, there are the following problems.
 RO膜装置の濃縮水はスケール成分を高濃度で含有するため、その析出を防止するために、第2のRO膜装置の給水のpHを下げることが一般的である。第2のRO膜装置の給水のpHを下げると、重炭酸イオンが炭酸に変化(HCO +H→CO+HO)してRO膜を透過してしまうため、装置系内で炭酸、重炭酸イオンなどの無機炭酸が濃縮される。その結果、得られる純水の水質が低下し、スケールが析出する。 Since the concentrated water of the RO membrane device contains scale components at a high concentration, it is common to lower the pH of the feed water of the second RO membrane device in order to prevent precipitation thereof. When the pH of the feed water of the second RO membrane device is lowered, bicarbonate ions change to carbonic acid (HCO 3 + H + → CO 2 + H 2 O) and permeate the RO membrane. Inorganic carbonates such as bicarbonate ions are concentrated. As a result, the quality of the pure water obtained is reduced, and scale is deposited.
 特許文献1では、第1のRO膜装置の前段に設けられた脱炭酸装置の導入側に第2のRO膜装置の透過水を戻して脱炭酸処理する。特許文献1では、無機炭酸の濃縮は防止されるが、第1のRO膜装置の前段に設けられた脱炭酸装置には、第2のRO膜装置の透過水と被処理水の全量が導入されるため、脱炭酸装置の負荷が大きい。このため、脱炭酸装置が大型化し、経済性も悪化する。脱炭酸装置を第1のRO膜装置の後段に設けた場合には、処理水の水質の低下は防止されるが、第1のRO膜装置、第2のRO膜装置において無機炭酸が濃縮し、スケールが析出する。 In Patent Document 1, the permeated water of the second RO membrane device is returned to the introduction side of the decarboxylation device provided in the previous stage of the first RO membrane device to perform the decarboxylation treatment. In Patent Document 1, although the concentration of inorganic carbonic acid is prevented, the total amount of permeated water and treated water of the second RO membrane device is introduced into the decarboxylation device provided in the previous stage of the first RO membrane device. Therefore, the load on the decarboxylation device is large. For this reason, a decarboxylation apparatus enlarges and economical efficiency also deteriorates. When the decarboxylation device is provided at the subsequent stage of the first RO membrane device, the water quality of the treated water is prevented from being lowered, but the inorganic carbonate is concentrated in the first RO membrane device and the second RO membrane device. , The scale is deposited.
 特許文献2には、原水貯槽内の被処理水をポンプによってRO膜装置に送り、RO膜によって被処理水を透過水と濃縮水とに分離し、濃縮水を戻し管を通じて原水貯槽内に戻すようにした脱塩水製造装置が記載されている。特許文献2の装置は、濃縮水の戻し管の管路中にエゼクタを付設し、戻し管を流れる濃縮水の流速を利用して当該エゼクタより空気を吸引し、気液接触により濃縮水中の遊離二酸化炭素を除去する。 In Patent Document 2, the treated water in the raw water storage tank is sent to the RO membrane device by a pump, the treated water is separated into permeated water and concentrated water by the RO membrane, and the concentrated water is returned to the raw water storage tank through the return pipe. An apparatus for producing demineralized water is described. In the apparatus of Patent Document 2, an ejector is provided in the conduit of the concentrated water return pipe, air is sucked from the ejector using the flow rate of the concentrated water flowing through the return pipe, and the concentrated water is released by gas-liquid contact. Remove carbon dioxide.
 このような構成を採用することにより、脱炭酸塔や膜脱気装置のような脱炭酸装置が不要となり、省スペース化が可能となる。この装置では、濃縮水の戻し管の管路中にエゼクタを付設してあるので、RO膜を透過しなかった比較的高圧の濃縮水がエゼクタを通過するときに当該エゼクタによって空気が吸引され、戻し管を流れる濃縮水の中に吸引空気が混合される。気液接触により濃縮水中の遊離二酸化炭素が濃縮水中より分離され、分離された遊離二酸化炭素は、濃縮水が戻し管の先端から原水貯槽内に戻された時に、炭酸ガスとして原水貯槽の上部に設けてある排気管を通じて外部に排出される。 By adopting such a configuration, a decarboxylation device such as a decarboxylation tower or a membrane deaeration device becomes unnecessary, and space saving is possible. In this apparatus, since the ejector is attached in the conduit of the concentrated water return pipe, air is sucked by the ejector when the relatively high-pressure concentrated water that has not permeated the RO membrane passes through the ejector. Suction air is mixed into the concentrated water flowing through the return pipe. The free carbon dioxide in the concentrated water is separated from the concentrated water by gas-liquid contact. It is discharged to the outside through the provided exhaust pipe.
特開2004-167423号公報JP 2004-167423 A 特開平7-265854号公報JP 7-265854 A
 本発明は、第1のRO膜装置の濃縮水を第2のRO膜装置で処理して透過水を回収するようにした純水製造プロセスにおいて、系内の無機炭酸の濃縮を防止するための脱炭酸装置を小型で省スペースなものとした、コストメリットの高い純水製造装置及び純水製造方法を提供することを目的とする。 The present invention is to prevent the concentration of inorganic carbonate in the system in a pure water manufacturing process in which the concentrated water of the first RO membrane device is treated with the second RO membrane device and the permeated water is recovered. An object of the present invention is to provide a pure water production apparatus and a pure water production method which are small in size and space-saving and have high cost merit.
 本発明者らは、脱炭酸装置を、第1のRO膜装置への被処理水の導入ラインではなく、第2のRO膜装置の透過水をこの導入ラインに戻す返送ラインに設けることで、第1のRO膜装置で濃縮された無機炭酸がこの脱炭酸装置で除去され、系内の無機炭酸の濃縮が防止されることを見出した。しかも、この脱炭酸装置は、第1のRO膜装置及び第2のRO膜装置で水回収することにより、被処理水よりも大幅に水量が低減された第2のRO膜装置の透過水のみを処理するものであるため、脱炭酸装置の負荷は大幅に低減され、その小型、省スペース化を図ることができることが見出された。 The present inventors provide a decarboxylation device in the return line that returns the permeated water of the second RO membrane device to the introduction line, not the introduction line of the water to be treated into the first RO membrane device. It has been found that the inorganic carbonic acid concentrated by the first RO membrane device is removed by this decarbonation device, thereby preventing the concentration of inorganic carbonic acid in the system. In addition, this decarboxylation device only collects water from the first RO membrane device and the second RO membrane device, so that only the permeated water of the second RO membrane device in which the amount of water is significantly reduced compared to the water to be treated. Therefore, it has been found that the load on the decarboxylation device is greatly reduced, and that it is possible to reduce the size and space.
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
[1] 被処理水を逆浸透膜処理する第1の逆浸透膜装置と、該第1の逆浸透膜装置に被処理水を導入する導入ラインと、該第1の逆浸透膜装置の透過水を流出させる流出ラインと、該第1の逆浸透膜装置の濃縮水を逆浸透膜処理する第2の逆浸透膜装置と、該第2の逆浸透膜装置の透過水を前記導入ラインに戻す返送ラインとを備える純水製造装置において、該返送ラインに前記第2の逆浸透膜装置の透過水を脱炭酸処理する脱炭酸装置を備えることを特徴とする純水製造装置。 [1] A first reverse osmosis membrane device that treats treated water with a reverse osmosis membrane, an introduction line that introduces treated water into the first reverse osmosis membrane device, and permeation of the first reverse osmosis membrane device An outflow line for allowing water to flow out, a second reverse osmosis membrane device for treating the concentrated water of the first reverse osmosis membrane device with a reverse osmosis membrane, and the permeated water of the second reverse osmosis membrane device to the introduction line A pure water production apparatus comprising a return line for return, wherein the return line comprises a decarboxylation device for decarboxylating the permeated water of the second reverse osmosis membrane device.
[2] [1]に記載の純水製造装置において、前記脱炭酸装置が膜脱気装置であることを特徴とする純水製造装置。 [2] The pure water production apparatus according to [1], wherein the decarboxylation device is a membrane deaeration device.
[3] [1]又は[2]に記載の純水製造装置において、前記第1の逆浸透膜装置の透過水を脱イオン処理する電気脱イオン装置を有することを特徴とする純水製造装置。 [3] The pure water production apparatus according to [1] or [2], further comprising an electrodeionization apparatus that deionizes the permeated water of the first reverse osmosis membrane apparatus. .
[4] [1]ないし[3]のいずれかに記載の純水製造装置において、前記被処理水を除濁処理する除濁装置を有し、該除濁装置の処理水が前記第1の逆浸透膜装置に導入されることを特徴とする純水製造装置。 [4] The pure water production apparatus according to any one of [1] to [3], further comprising a turbidity removal device that turbidizes the water to be treated. A pure water production apparatus, which is introduced into a reverse osmosis membrane apparatus.
[5] [1]ないし[4]のいずれかに記載の純水製造装置において、前記第1の逆浸透膜装置の給水のpHを6.3以上に調整するpH調整手段を有することを特徴とする純水製造装置。 [5] The pure water production apparatus according to any one of [1] to [4], further comprising pH adjusting means for adjusting the pH of the feed water of the first reverse osmosis membrane apparatus to 6.3 or more. Pure water production equipment.
[6] [1]ないし[5]のいずれかに記載の純水製造装置において、前記第2の逆浸透膜装置の給水のpHを6.0未満に調整するpH調整手段を有することを特徴とする純水製造装置。 [6] The pure water production apparatus according to any one of [1] to [5], further comprising a pH adjusting unit that adjusts the pH of the feed water of the second reverse osmosis membrane device to less than 6.0. Pure water production equipment.
[7] 被処理水を逆浸透膜処理する第1の逆浸透膜装置と、該第1の逆浸透膜装置に被処理水を導入する導入ラインと、該第1の逆浸透膜装置の透過水を流出させる流出ラインと、該第1の逆浸透膜装置の濃縮水を逆浸透膜処理する第2の逆浸透膜装置と、該第2の逆浸透膜装置の透過水を前記導入ラインに戻す返送ラインとを備える純水製造装置で純水を製造する方法において、前記第2の逆浸透膜装置の透過水を脱炭酸処理した後、前記導入ラインに戻すことを特徴とする純水製造方法。 [7] A first reverse osmosis membrane device for treating treated water with a reverse osmosis membrane, an introduction line for introducing the treated water into the first reverse osmosis membrane device, and permeation of the first reverse osmosis membrane device An outflow line for allowing water to flow out, a second reverse osmosis membrane device for treating the concentrated water of the first reverse osmosis membrane device with a reverse osmosis membrane, and the permeated water of the second reverse osmosis membrane device to the introduction line A method for producing pure water with a pure water production apparatus comprising a return line for returning, wherein the permeated water of the second reverse osmosis membrane device is decarboxylated and then returned to the introduction line. Method.
[8] [7]に記載の純水製造方法において、前記第2の逆浸透膜装置の透過水を膜脱気装置で脱炭酸処理することを特徴とする純水製造方法。 [8] The pure water production method according to [7], wherein the permeated water of the second reverse osmosis membrane device is decarboxylated with a membrane deaeration device.
[9] [7]又は[8]に記載の純水製造方法において、前記第1の逆浸透膜装置の透過水を電気脱イオン装置で処理することを特徴とする純水製造方法。 [9] The pure water production method according to [7] or [8], wherein the permeated water of the first reverse osmosis membrane device is treated with an electrodeionization device.
[10] [7]ないし[9]のいずれかに記載の純水製造方法において、前記被処理水を除濁処理した後、前記第1の逆浸透膜装置に導入することを特徴とする純水製造方法。 [10] The pure water production method according to any one of [7] to [9], wherein the treated water is deturbed and then introduced into the first reverse osmosis membrane device. Water production method.
[11] [7]ないし[10]のいずれかに記載の純水製造方法において、前記第1の逆浸透膜装置の給水のpHを6.3以上とすることを特徴とする純水製造方法。 [11] The pure water production method according to any one of [7] to [10], wherein the pH of the feed water of the first reverse osmosis membrane device is 6.3 or more. .
[12] [7]ないし[11]のいずれかに記載の純水製造方法において、前記第2の逆浸透膜装置の給水のpHを6.0未満とすることを特徴とする純水製造方法。 [12] The pure water production method according to any one of [7] to [11], wherein the pH of the feed water of the second reverse osmosis membrane device is less than 6.0. .
 本発明によれば、第1のRO膜装置の濃縮水を第2のRO膜装置でRO膜処理して透過水を回収する純水製造プロセスにおいて、第2のRO膜装置の透過水を脱炭酸処理することにより、系内での無機炭酸の濃縮を防止して、処理の安定化、得られる処理水の高純度化が可能となる。しかも、第2のRO膜装置の透過水の返送ラインに設けた脱炭酸装置で第2のRO膜装置の透過水のみを脱炭酸処理するため、脱炭酸装置の小型化、省スペース化が可能となり、経済性に優れた処理が可能となる。 According to the present invention, in the pure water manufacturing process in which the concentrated water of the first RO membrane device is RO membrane treated by the second RO membrane device and the permeated water is recovered, the permeated water of the second RO membrane device is removed. By performing carbonic acid treatment, it is possible to prevent the concentration of inorganic carbonic acid in the system, stabilize the treatment, and increase the purity of the resulting treated water. Moreover, since only the permeated water of the second RO membrane device is decarboxylated by the decarboxylation device provided in the permeated water return line of the second RO membrane device, the decarboxylation device can be reduced in size and space can be saved. Thus, it is possible to perform processing with excellent economic efficiency.
 第1のRO膜装置の給水のpHを6.3以上とすることで、水中の無機炭酸のうちの重炭酸イオンの比率が高くなる。この結果、第1のRO膜装置で無機炭酸を効率的に除去して、処理水中に含まれる無機炭酸の量を低減し、電気脱イオン装置等の後段装置の負荷を低減することができ、処理水質を向上させることができる。 By setting the pH of the feed water of the first RO membrane device to 6.3 or higher, the ratio of bicarbonate ions in the inorganic carbonate in water increases. As a result, it is possible to efficiently remove the inorganic carbonic acid in the first RO membrane device, reduce the amount of inorganic carbonic acid contained in the treated water, and reduce the load on the subsequent device such as the electrodeionization device, The quality of treated water can be improved.
 第2のRO膜装置の給水のpHを6.0未満とすることにより、第2のRO膜装置の水回収率を高めた上で、スケールの析出を防止することができる。 By making the pH of the feed water of the second RO membrane device less than 6.0, it is possible to prevent the precipitation of scale while increasing the water recovery rate of the second RO membrane device.
本発明の純水製造装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the pure water manufacturing apparatus of this invention. 本発明で用いる脱炭酸装置の一例を示す系統図である。It is a systematic diagram which shows an example of the decarboxylation apparatus used by this invention.
 以下に本発明の実施の形態を図1を参照して詳細に説明するが、図1は本発明の純水製造装置の実施の形態の一例を示すものであって、本発明は何ら図示のものに限定されない。 Embodiments of the present invention will be described in detail below with reference to FIG. 1. FIG. 1 shows an example of an embodiment of a pure water production apparatus according to the present invention. It is not limited to things.
 図1の純水製造装置では、市水、井水、工水、回収水等の被処理水は、配管11より精密濾過膜(MF膜)装置1で除濁処理された後、配管12、水槽2、配管13を経て第1のRO膜装置3に導入されてRO膜処理される。 In the pure water production apparatus of FIG. 1, treated water such as city water, well water, industrial water, and recovered water is clarified by the microfiltration membrane (MF membrane) apparatus 1 from the pipe 11, and then the pipe 12, It is introduced into the first RO membrane device 3 through the water tank 2 and the pipe 13 and subjected to RO membrane treatment.
 第1のRO膜装置3の透過水は、配管14より電気脱イオン装置4に導入されて脱イオン処理され、処理水(純水)が配管15より取り出される。電気脱イオン装置4の濃縮水は、水回収のために配管16より水槽2に返送される。 The permeated water of the first RO membrane device 3 is introduced into the electrodeionization device 4 from the pipe 14 and subjected to deionization treatment, and treated water (pure water) is taken out from the pipe 15. The concentrated water of the electrodeionization device 4 is returned to the water tank 2 from the pipe 16 for water recovery.
 第1のRO膜装置3の濃縮水は配管17より第2のRO膜装置5に導入されてRO膜処理される。第2のRO膜装置5の濃縮水は、配管18より系外へ排出され、透過水は配管19より膜脱気装置等の脱炭酸装置6に導入されて脱炭酸処理され、脱炭酸処理水は配管20より水槽2に返送される。 The concentrated water of the first RO membrane device 3 is introduced into the second RO membrane device 5 through the pipe 17 and subjected to RO membrane treatment. The concentrated water of the second RO membrane device 5 is discharged out of the system through the pipe 18, and the permeated water is introduced into the decarbonation device 6 such as a membrane deaeration device through the pipe 19 and decarboxylated, and decarbonated water. Is returned from the pipe 20 to the water tank 2.
 このように、本発明においては、膜脱気装置等の脱炭酸装置6は、第2のRO膜装置5の透過水を第1のRO膜装置3の導入側に返送する返送ラインに設けられる。 Thus, in the present invention, the decarboxylation device 6 such as a membrane deaeration device is provided in a return line for returning the permeated water of the second RO membrane device 5 to the introduction side of the first RO membrane device 3. .
 被処理水中の重炭酸イオンは、第1のRO膜装置3の濃縮水中に濃縮されている。第2のRO膜装置5でpHを下げることにより、重炭酸イオンが炭酸(二酸化炭素)に変化し、この炭酸は第2のRO膜装置5の透過水側に透過する。そのため、第2のRO膜装置5の透過水中には高濃度の二酸化炭素が存在する。第2のRO膜装置5からの透過水の水量は、第1のRO膜装置3の給水3の1/5~1/10程度になっており、脱炭酸装置6を小型化できる。第2のRO膜装置5の透過水中には、炭酸成分が高濃度で存在するため、脱炭酸装置6での脱炭酸処理効率が高い。 Bicarbonate ions in the for-treatment water are concentrated in the concentrated water of the first RO membrane device 3. By lowering the pH with the second RO membrane device 5, bicarbonate ions change to carbonic acid (carbon dioxide), and this carbonic acid permeates to the permeate side of the second RO membrane device 5. Therefore, a high concentration of carbon dioxide exists in the permeated water of the second RO membrane device 5. The amount of permeated water from the second RO membrane device 5 is about 1/5 to 1/10 of the water supply 3 of the first RO membrane device 3, and the decarboxylation device 6 can be downsized. In the permeated water of the second RO membrane device 5, since the carbonic acid component is present at a high concentration, the decarboxylation efficiency in the decarboxylation device 6 is high.
 第1のRO膜装置3の濃縮水には、被処理水の汚れ成分や有機物が濃縮されているため、この濃縮水をそのまま脱炭酸処理する場合、膜脱気装置の脱気膜がファウリングを起こし易い。特許文献2の脱炭酸装置を採用する場合には、エゼクタやスプレーノズルなどが閉塞し易い。しかし、第2のRO膜装置5の透過水を脱炭酸装置6で処理することにより、第1のRO膜装置3の濃縮水中の汚れ成分が第2のRO膜装置5で除去されるので、脱気膜の汚染や、エゼクタ、スプレーノズルの閉塞等が抑制される。 In the concentrated water of the first RO membrane device 3, dirt components and organic substances in the water to be treated are concentrated. Therefore, when this concentrated water is decarboxylated as it is, the degassing membrane of the membrane degassing device is fouled. It is easy to cause. When the decarboxylation device of Patent Document 2 is adopted, the ejector, the spray nozzle, and the like are likely to be blocked. However, by treating the permeated water of the second RO membrane device 5 with the decarboxylation device 6, dirt components in the concentrated water of the first RO membrane device 3 are removed by the second RO membrane device 5. Contamination of the deaeration membrane and blockage of the ejector and spray nozzle are suppressed.
 RO膜装置3,5のRO膜の種類としては、特に制限はない。材質としてはポリアミド複合膜、酢酸セルロース膜などいずれの材質の膜も使用が可能である。RO膜の形状についても特に制限はなく、中空糸型、スパイラル型など、いずれの形状のものも使用可能である。 There are no particular restrictions on the type of RO membrane of the RO membrane devices 3 and 5. Any material such as a polyamide composite film or a cellulose acetate film can be used as the material. The shape of the RO membrane is not particularly limited, and any shape such as a hollow fiber type or a spiral type can be used.
 第1のRO膜装置3の給水のpHは、水中の重炭酸イオンの比率が50%を超える6.3以上であることが好ましい。従って、第1のRO膜装置3の給水のpHが6.3未満の場合には、NaOH、KOH等のアルカリを添加して、pH6.3以上、例えばpH6.5~7.5程度にpH調整することが好ましい。 The pH of the feed water of the first RO membrane device 3 is preferably 6.3 or more, in which the ratio of bicarbonate ions in water exceeds 50%. Therefore, when the pH of the feed water of the first RO membrane device 3 is less than 6.3, an alkali such as NaOH or KOH is added to adjust the pH to pH 6.3 or more, for example, about pH 6.5 to 7.5. It is preferable to adjust.
 第2のRO膜装置5の給水のpHは、スケール析出を防止するために、6.0未満とすることが好ましい。このため、第1のRO膜装置3の濃縮水のpHが6.0以上の場合には、HCl、HSO等の酸を添加して、pH6.0未満、例えばpH5.0~5.5程度にpH調整することが好ましい。このようなpH条件であれば、第2のRO膜装置5の透過水中の炭酸成分を脱炭酸装置6で効率的に脱炭酸することができる。 The pH of the feed water of the second RO membrane device 5 is preferably less than 6.0 in order to prevent scale deposition. For this reason, when the pH of the concentrated water of the first RO membrane device 3 is 6.0 or more, an acid such as HCl or H 2 SO 4 is added to reduce the pH to less than 6.0, for example, pH 5.0 to 5 It is preferable to adjust pH to about .5. Under such pH conditions, the carbonic acid component in the permeated water of the second RO membrane device 5 can be efficiently decarboxylated by the decarboxylation device 6.
 第1のRO膜装置3は、通常、水回収率50~80%程度で運転される。第2のRO膜装置5は、第2のRO膜装置5は、給水のpHが十分に低く、また、スケール成分濃度もさほど高くなく、スケール析出傾向が低い場合には、水回収率50~70%程度で運転し、給水のpHがさほど低くなく、また、スケール成分濃度が高く、スケール析出傾向が比較的高い場合には、水回収率30~50%程度で運転することが好ましい。 The first RO membrane device 3 is normally operated at a water recovery rate of about 50 to 80%. The second RO membrane device 5 is different from the second RO membrane device 5 in that the pH of the feed water is sufficiently low, the scale component concentration is not so high, and the scale precipitation tendency is low. When operating at about 70%, the pH of the feed water is not so low, the concentration of scale components is high, and the scale precipitation tendency is relatively high, it is preferable to operate at a water recovery rate of about 30-50%.
 図1の純水製造装置によれば、第2のRO膜装置5を脱炭酸装置6で脱炭酸処理した後、第1のRO膜装置3の給水側に返送することにより、系内の無機炭酸の濃縮を防止して、処理を安定化させると共に、高純度の処理水を得ることができる。 According to the pure water production apparatus of FIG. 1, after the second RO membrane device 5 is decarboxylated by the decarboxylation device 6, it is returned to the water supply side of the first RO membrane device 3, so that the inorganic content in the system is increased. The concentration of carbonic acid can be prevented to stabilize the treatment, and high-purity treated water can be obtained.
 脱炭酸装置6としては膜脱気装置に限らず、脱炭酸塔、真空脱気塔や、前掲の特許文献2に記載された脱炭酸装置などを使用することもできる。これらの脱炭酸装置の2以上を組み合わせて用いることもできる。ただし、経済性の面からは、膜脱気装置が好適に使用される。 The decarbonation device 6 is not limited to a membrane degassing device, and a decarbonation tower, a vacuum degassing tower, a decarbonation device described in Patent Document 2 described above, and the like can also be used. Two or more of these decarboxylation apparatuses can also be used in combination. However, from the viewpoint of economy, a membrane deaerator is preferably used.
 特許文献2に記載の脱炭酸装置を利用する場合、図2に示すように、第2のRO膜装置5の透過水の返送ラインである配管19,20の間にエゼクタ7を設け、水槽2内の水面上に挿入された配管20の先端にスプレーノズル8を取り付けると共に、水槽2の上部に排気管21を設ける。図示はされていないが、通常第1のRO膜装置と第2のRO膜装置の間にポンプが設けられる。第2のRO膜装置5の透過水は、このポンプにより付勢されてエゼクタ7を通過する。このときに、エゼクタ7内に外部の空気が吸引される。吸引空気は、配管20を流れる透過水中に激しく撹拌状態で混合され、気液接触状態でスプレーノズル8より噴霧状あるいは微細な水滴状となって散布され、水槽2内に戻される。この際、透過水から二酸化炭素が炭酸ガスとして分離され、分離された炭酸ガスは水槽2から排気管21を経て外部に排気される。水槽2内に戻された透過水はスプレーノズル8によって細かく分散されるため、水面に到達するまでの間においても気液接触が行われ、炭酸ガスが除去される。 When using the decarboxylation device described in Patent Document 2, as shown in FIG. 2, an ejector 7 is provided between the pipes 19 and 20 which are return lines for the permeated water of the second RO membrane device 5, and the water tank 2. A spray nozzle 8 is attached to the tip of a pipe 20 inserted on the water surface inside, and an exhaust pipe 21 is provided in the upper part of the water tank 2. Although not shown, a pump is usually provided between the first RO membrane device and the second RO membrane device. The permeated water of the second RO membrane device 5 is energized by this pump and passes through the ejector 7. At this time, outside air is sucked into the ejector 7. The suction air is vigorously mixed in the permeated water flowing through the pipe 20, sprayed in the form of spray or fine water droplets from the spray nozzle 8 in the gas-liquid contact state, and returned to the water tank 2. At this time, carbon dioxide is separated from the permeated water as carbon dioxide gas, and the separated carbon dioxide gas is exhausted from the water tank 2 through the exhaust pipe 21 to the outside. Since the permeated water returned into the water tank 2 is finely dispersed by the spray nozzle 8, gas-liquid contact is performed even before reaching the water surface, and carbon dioxide gas is removed.
 第1のRO膜装置3の後段の電気脱イオン装置4としては、陽極と陰極との間にイオン交換膜を配置することにより、少なくとも陰極側濃縮室、脱塩室、陽極側濃縮室を設け、少なくとも該脱塩室にイオン交換樹脂を充填してなり、該脱塩室に原水を通水する連続式電気脱イオン装置などを用いることができるが、これに限定されない。充填するイオン交換樹脂としては、強イオン交換樹脂、弱イオン交換樹脂、いずれも使用することができるが、強イオン交換樹脂を用いることが好ましい。イオン交換樹脂の充填方法やセル構造等にも制約はなく、いずれの形式も使用可能である。炭酸カルシウムの析出を防止する観点から、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を混合して充填することが好ましい。充填比率としては樹脂容量として強酸性カチオン交換樹脂:強塩基性アニオン交換樹脂=30~70:70~30が好適である。 The electrodeionization device 4 following the first RO membrane device 3 is provided with at least a cathode-side concentrating chamber, a desalting chamber, and an anode-side concentrating chamber by disposing an ion exchange membrane between the anode and the cathode. A continuous electrodeionization apparatus or the like in which at least the demineralization chamber is filled with an ion exchange resin and raw water is passed through the demineralization chamber can be used, but is not limited thereto. As the ion exchange resin to be filled, either a strong ion exchange resin or a weak ion exchange resin can be used, but a strong ion exchange resin is preferably used. There is no restriction | limiting in the filling method of ion-exchange resin, a cell structure, etc., Any format can be used. From the viewpoint of preventing the precipitation of calcium carbonate, it is preferable to mix and fill a strongly acidic cation exchange resin and a strongly basic anion exchange resin. The filling ratio is preferably strong acidic cation exchange resin: strong basic anion exchange resin = 30 to 70:70 to 30 as the resin capacity.
 通常、電気脱イオン装置4は水回収率80~95%程度で運転される。水回収率向上の観点からは、電気脱イオン装置4の濃縮水は、図1のように、第1のRO膜装置3の前段に戻すことが好ましい。電気脱イオン装置4の濃縮水は、膜脱気装置等の脱炭酸装置6の前段に送給し、第2のRO膜装置5の濃縮水と共に脱炭酸処理した後第1のRO膜装置3の前段に戻すようにしてもよい。 Usually, the electrodeionization apparatus 4 is operated at a water recovery rate of about 80 to 95%. From the viewpoint of improving the water recovery rate, the concentrated water of the electrodeionization device 4 is preferably returned to the previous stage of the first RO membrane device 3 as shown in FIG. The concentrated water of the electrodeionization device 4 is fed to the front stage of the decarboxylation device 6 such as a membrane deaeration device, and after decarboxylation with the concentrated water of the second RO membrane device 5, the first RO membrane device 3. It may be possible to return to the previous stage.
 このようにすることにより、電気脱イオン装置4の濃縮水に起因する無機炭酸の濃縮を防止することができる。この場合であっても、電気脱イオン装置の濃縮水量は、被処理水量に比べて極く少量であるため、脱炭酸装置の小型化、省スペース化を図る本発明の効果が大きく損なわれることはない。 By doing so, it is possible to prevent the concentration of inorganic carbonate caused by the concentrated water of the electrodeionization apparatus 4. Even in this case, the amount of concentrated water in the electrodeionization device is very small compared to the amount of water to be treated, so that the effect of the present invention for reducing the size and space-saving of the decarboxylation device is greatly impaired. There is no.
 図1は本発明の純水製造装置の実施の形態の一例を示すものであって、本発明は何ら図示の純水製造装置に限定されるものではない。 FIG. 1 shows an example of an embodiment of a pure water production apparatus of the present invention, and the present invention is not limited to the illustrated pure water production apparatus.
 例えば、前処理装置は、RO膜装置の膜汚染の原因となる水中の濁質やコロイダル成分を除去するためのものであり、MF膜装置に限らず、凝集、加圧浮上、濾過器、限外濾過膜(UF膜)装置などを、被処理水の水質や負荷に応じて適宜単一あるいは2以上を組み合わせて用いることができる。前処理装置としては、特にMF膜装置、UF膜装置を好適に使用することができる。MF膜装置、UF膜装置の場合、その膜型式に特に制限はなく、中空糸型、スパイラル型等の膜濾過装置を採用することができる。濾過方式にも制限はなく、内圧濾過、外圧濾過、クロスフロー濾過、全量濾過のいずれの方式も適用可能である。 For example, the pretreatment device is for removing turbidity and colloidal components in the water that cause membrane contamination of the RO membrane device, and is not limited to the MF membrane device, but is agglomerated, pressurized flotation, filter, An outer filtration membrane (UF membrane) device or the like can be used singly or in combination of two or more according to the quality and load of the water to be treated. As the pretreatment device, in particular, an MF membrane device and a UF membrane device can be preferably used. In the case of the MF membrane device and the UF membrane device, the membrane type is not particularly limited, and a membrane filtration device such as a hollow fiber type or a spiral type can be employed. There is no restriction | limiting also in the filtration system, Any system of internal pressure filtration, external pressure filtration, crossflow filtration, and total amount filtration is applicable.
 図1では、脱炭酸装置6を第2のRO膜装置5の透過水の返送ラインの1箇所のみに設けているが、脱炭酸装置は、その他、以下の(1)~(3)の1又は2箇所以上に設けてもよい。 In FIG. 1, the decarboxylation device 6 is provided only in one place of the permeate return line of the second RO membrane device 5, but the decarboxylation device is one of the following (1) to (3). Or you may provide in two or more places.
 (1) 第1のRO膜装置3と電気脱イオン装置4との間の配管14に設けて、第1のRO膜装置3の透過水を脱炭酸処理した後電気脱イオン装置4に送給する。 (1) Provided in the pipe 14 between the first RO membrane device 3 and the electrodeionization device 4 and decarboxylates the permeated water of the first RO membrane device 3 and then supplies it to the electrodeionization device 4 To do.
 (2) 電気脱イオン装置4の濃縮水の返送ラインである配管16に設け、電気脱イオン装置4の濃縮水を脱炭酸処理した後水槽2に返送する。 (2) Provided in the pipe 16 that is the return line of the concentrated water of the electrodeionization device 4, decondensate the concentrated water of the electrodeionization device 4 and then return it to the water tank 2.
 (3) 第1のRO膜装置3の被処理水導入ラインである配管12に設けて被処理水を脱炭酸処理した後第1のRO膜装置3に送給する。 (3) Provided in the pipe 12 which is the treated water introduction line of the first RO membrane device 3 and decarboxylates the treated water, and then feeds it to the first RO membrane device 3.
 特に、上記(1)、(2)の態様を採用することにより、系内の2箇所で脱炭酸処理を行うことができ、炭酸成分の除去量を高め、水質の向上を図ることができる。 In particular, by adopting the above aspects (1) and (2), decarboxylation can be performed at two locations in the system, the amount of carbonic acid components removed can be increased, and the water quality can be improved.
 図1に示す装置以外の装置、例えば、後掲の実施例における活性炭装置などを適宜付加してもよい。電気脱イオン装置の代りに第3のRO膜装置を設けてもよい。 A device other than the device shown in FIG. 1, for example, an activated carbon device in the examples described later, may be added as appropriate. A third RO membrane device may be provided instead of the electrodeionization device.
 以下に実施例、比較例及び参考例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples, Comparative Examples and Reference Examples.
[実施例1]
 図1に示す純水製造装置で純水の製造を行った。ただし、MF膜装置1の後段に活性炭装置を設けた。
[Example 1]
Pure water was produced using the pure water production apparatus shown in FIG. However, an activated carbon device was provided at the subsequent stage of the MF membrane device 1.
 水道水(Mアルカリ濃度:50mgCaCO/L、シリカ濃度:30mg/L)を、MF膜装置(クラレ社製、中空糸型PVDF膜、孔径0.02μm)で除濁し、活性炭装置で遊離塩素を除去した後、第1のRO膜装置(日東電工社製、ES20)に通水した。第1のRO膜装置の透過水は、電気脱イオン装置(栗田工業社製、KCDI-TC)に通水して純水を得た。第1のRO膜装置の濃縮水は、第2のRO膜装置(日東電工社製、ES20)に通水し、第2のRO膜装置で得られた透過水を、第2のRO膜装置の返送ラインに設けた膜脱気装置(セルガード社製 リキセルG521R X-50)を用いて脱炭酸処理した後、第1のRO膜装置の前段(活性炭装置の後段)に戻して処理を行った。 Tap water (M alkali concentration: 50 mg CaCO 3 / L, silica concentration: 30 mg / L) is turbidized with an MF membrane device (Kuraray Co., Ltd., hollow fiber type PVDF membrane, pore size 0.02 μm), and free chlorine is removed with an activated carbon device. After the removal, water was passed through the first RO membrane device (manufactured by Nitto Denko Corporation, ES20). The permeated water of the first RO membrane device was passed through an electrodeionization device (Kurita Industrial Co., Ltd., KCDI-TC) to obtain pure water. The concentrated water of the first RO membrane device is passed through the second RO membrane device (manufactured by Nitto Denko Corporation, ES20), and the permeated water obtained by the second RO membrane device is used as the second RO membrane device. The membrane was decarboxylated using a membrane deaerator (Lixel G521R X-50 manufactured by Celgard) installed in the return line, and then returned to the previous stage of the first RO membrane device (after the activated carbon device). .
 水回収率の観点から電気脱イオン装置の濃縮水も第1のRO膜装置の前段(活性炭装置の後段)に戻した。 From the viewpoint of water recovery rate, the concentrated water of the electrodeionization apparatus was also returned to the previous stage of the first RO membrane apparatus (the latter stage of the activated carbon apparatus).
 NaOH又はHClの添加で、第1のRO膜装置の給水pHは6.5、第2のRO膜装置の給水pHは5.5とした。第1のRO膜装置の水回収率は70%、第2のRO膜装置の水回収率は60%、電気脱イオン装置の水回収率は80%とした。 By adding NaOH or HCl, the feed water pH of the first RO membrane device was 6.5, and the feed water pH of the second RO membrane device was 5.5. The water recovery rate of the first RO membrane device was 70%, the water recovery rate of the second RO membrane device was 60%, and the water recovery rate of the electrodeionization device was 80%.
 この処理における電気脱イオン装置の給水の炭酸濃度と、電気脱イオン装置の処理水(純水)の比抵抗を調べ、結果を表1に示した。 The carbon dioxide concentration of the feed water of the electrodeionization apparatus in this treatment and the specific resistance of the treatment water (pure water) of the electrodeionization apparatus were examined, and the results are shown in Table 1.
 炭酸濃度はGE社製 Sievers-900により測定した。比抵抗は栗田工業社製 MX-4により測定した。 Carbonic acid concentration was measured by Sievers-900 manufactured by GE. The specific resistance was measured with MX-4 manufactured by Kurita Kogyo Co., Ltd.
[比較例1]
 膜脱気装置を省略し、第2のRO膜装置の透過水を脱炭酸処理することなく第1のRO膜装置の前段に戻したこと以外は実施例1と同様に処理を行い、結果を表1に示した。
[Comparative Example 1]
The treatment was performed in the same manner as in Example 1 except that the membrane deaeration device was omitted, and the permeated water of the second RO membrane device was returned to the previous stage of the first RO membrane device without decarboxylation. It is shown in Table 1.
[実施例2]
 第1のRO膜装置の給水のpHを6.0とした以外は実施例1と同様に処理を行い、結果を表1に示した。
[Example 2]
The treatment was performed in the same manner as in Example 1 except that the pH of the feed water of the first RO membrane device was 6.0, and the results are shown in Table 1.
[実施例3]
 第2のRO膜装置の給水のpHを6.0とし、シリカスケールの析出を防止するために、水回収率を30%とした以外は実施例1と同様に処理を行い、結果を表1に示した。
[Example 3]
The treatment was performed in the same manner as in Example 1 except that the pH of the feed water of the second RO membrane device was 6.0 and the water recovery rate was 30% in order to prevent silica scale precipitation, and the results are shown in Table 1. It was shown to.
[参考例1]
 膜脱気装置としてリキセルG521R X-50を2本用い、膜脱気装置を第2のRO膜装置の濃縮水の返送ラインに設ける代りに、被処理水の導入ラインに設け、水道水をMF膜装置、活性炭装置、膜脱気装置の順で処理した後、第1のRO膜装置に導入し、第2のRO膜装置の透過水と電気脱イオン装置の濃縮水は、膜脱気装置の入口側に返送した。それ以外は実施例1と同様の条件で処理を行い、結果を表1に示した。
[Reference Example 1]
Two Liquicel G521R X-50 are used as membrane deaerators. Instead of providing the membrane deaerator in the concentrated RO return line of the second RO membrane unit, it is provided in the treated water introduction line, and tap water is supplied to the MF. The membrane device, the activated carbon device, and the membrane deaerator are processed in this order, and then introduced into the first RO membrane device. The permeated water of the second RO membrane device and the concentrated water of the electrodeionization device are the membrane deaerator. Returned to the entrance. Otherwise, the treatment was performed under the same conditions as in Example 1, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より明らかなように、本発明によれば、第2のRO膜装置の透過水を脱炭酸処理して第1のRO膜装置に戻すことにより、水回収率を高くした上で、系内の炭酸濃度の濃縮を防止することができ、処理水水質を高く維持することができる。 As apparent from Table 1, according to the present invention, the permeated water of the second RO membrane device is decarboxylated and returned to the first RO membrane device, thereby increasing the water recovery rate and It is possible to prevent the concentration of carbonic acid from being concentrated, and to maintain the treated water quality high.
 これに対して比較例1では、第2のRO膜装置の透過水を脱炭酸処理することなく第1のRO膜装置に戻すため、電気脱イオン装置の給水の炭酸濃度が高く、処理水の水質も劣るものとなる。 On the other hand, in Comparative Example 1, since the permeated water of the second RO membrane device is returned to the first RO membrane device without decarboxylation, the carbonate concentration of the feed water of the electrodeionization device is high, and the treated water is Water quality will be poor.
 第1のRO膜装置の給水のpHを6.0とした実施例2では、第1のRO膜装置での重炭酸イオンの阻止率が劣る結果、電気脱イオン装置の給水の炭酸濃度が若干高く、また、処理水水質も若干劣る。 In Example 2 where the pH of the feed water of the first RO membrane device was 6.0, the carbonate ion concentration of the feed water of the electrodeionization device was slightly increased as a result of the poor blocking rate of bicarbonate ions in the first RO membrane device. High and the water quality of the treated water is also slightly inferior.
 第2のRO膜装置の給水のpHを6.0とした実施例3では、スケール析出を防止するために水回収率を低くする必要がある。 In Example 3 in which the pH of the feed water of the second RO membrane device was 6.0, it is necessary to lower the water recovery rate in order to prevent scale deposition.
 参考例1は、実施例1と同様に系内の無機炭酸の濃縮を防止して、良好な水質の処理水を得ることができるが、膜脱気装置を被処理水の導入ラインに設けた参考例1に比べて膜脱気装置を第2のRO膜装置の透過水の返送ラインに設けた実施例1によれば、膜脱気装置を格段に小型化することができる。 Reference Example 1 can prevent the concentration of inorganic carbonic acid in the system and obtain treated water with good water quality as in Example 1, but a membrane deaerator was provided in the treated water introduction line. Compared to Reference Example 1, according to Example 1 in which the membrane degasser is provided in the permeate return line of the second RO membrane device, the membrane degasser can be significantly reduced in size.
 実施例1及び参考例1では、第1のRO膜装置を水回収率70%で運転するため、第2のRO膜装置に第1のRO膜装置の給水(被処理水)の30%が導入される。第2のRO膜装置は水回収率60%で運転するため、第2のRO膜装置の透過水は、第1のRO膜装置の給水の18%であり、参考例1のように、第1のRO膜装置の前段に膜脱気装置を設ける場合に比べて、第2のRO膜装置の透過水の返送ラインに膜脱気装置を設けた場合には、膜脱気装置の負荷は1/5以下となり、装置を格段に小型化することができる。 In Example 1 and Reference Example 1, since the first RO membrane device is operated at a water recovery rate of 70%, 30% of the water supply (treated water) of the first RO membrane device is supplied to the second RO membrane device. be introduced. Since the second RO membrane device operates at a water recovery rate of 60%, the permeated water of the second RO membrane device is 18% of the water supply of the first RO membrane device. When a membrane deaerator is provided in the permeate return line of the second RO membrane device as compared with the case where a membrane deaerator is provided upstream of the first RO membrane device, the load on the membrane deaerator is It becomes 1/5 or less, and the device can be remarkably reduced in size.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年7月3日付で出願された日本特許出願2014-137740に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2014-137740 filed on Jul. 3, 2014, which is incorporated by reference in its entirety.
 1 MF膜装置
 2 水槽
 3 第1のRO膜装置
 4 電気脱イオン装置
 5 第2のRO膜装置
 6 脱炭酸装置
 7 エゼクタ
 8 スプレーノズル
DESCRIPTION OF SYMBOLS 1 MF membrane apparatus 2 Water tank 3 1st RO membrane apparatus 4 Electrodeionization apparatus 5 2nd RO membrane apparatus 6 Decarbonation apparatus 7 Ejector 8 Spray nozzle

Claims (12)

  1.  被処理水を逆浸透膜処理する第1の逆浸透膜装置と、該第1の逆浸透膜装置に被処理水を導入する導入ラインと、該第1の逆浸透膜装置の透過水を流出させる流出ラインと、該第1の逆浸透膜装置の濃縮水を逆浸透膜処理する第2の逆浸透膜装置と、該第2の逆浸透膜装置の透過水を前記導入ラインに戻す返送ラインとを備える純水製造装置において、該返送ラインに前記第2の逆浸透膜装置の透過水を脱炭酸処理する脱炭酸装置を備えることを特徴とする純水製造装置。 A first reverse osmosis membrane device for treating the water to be treated with a reverse osmosis membrane, an introduction line for introducing the water to be treated into the first reverse osmosis membrane device, and an outflow of permeate from the first reverse osmosis membrane device An outflow line, a second reverse osmosis membrane device for treating the concentrated water of the first reverse osmosis membrane device with a reverse osmosis membrane, and a return line for returning the permeated water of the second reverse osmosis membrane device to the introduction line A deionized water production apparatus comprising: a decarboxylation device for decarboxylating the permeated water of the second reverse osmosis membrane device in the return line.
  2.  請求項1に記載の純水製造装置において、前記脱炭酸装置が膜脱気装置であることを特徴とする純水製造装置。 2. The pure water production apparatus according to claim 1, wherein the decarboxylation device is a membrane deaeration device.
  3.  請求項1又は2に記載の純水製造装置において、前記第1の逆浸透膜装置の透過水を脱イオン処理する電気脱イオン装置を有することを特徴とする純水製造装置。 3. The pure water production apparatus according to claim 1 or 2, further comprising an electrodeionization device for deionizing the permeated water of the first reverse osmosis membrane device.
  4.  請求項1ないし3のいずれか1項に記載の純水製造装置において、前記被処理水を除濁処理する除濁装置を有し、該除濁装置の処理水が前記第1の逆浸透膜装置に導入されることを特徴とする純水製造装置。 The pure water manufacturing apparatus according to any one of claims 1 to 3, further comprising a turbidity device for turbidizing the treated water, wherein the treated water of the turbidity device is the first reverse osmosis membrane. A pure water production apparatus, which is introduced into the apparatus.
  5.  請求項1ないし4のいずれか1項に記載の純水製造装置において、前記第1の逆浸透膜装置の給水のpHを6.3以上に調整するpH調整手段を有することを特徴とする純水製造装置。 5. The pure water producing apparatus according to claim 1, further comprising a pH adjusting unit that adjusts the pH of the feed water of the first reverse osmosis membrane device to 6.3 or more. Water production equipment.
  6.  請求項1ないし5のいずれか1項に記載の純水製造装置において、前記第2の逆浸透膜装置の給水のpHを6.0未満に調整するpH調整手段を有することを特徴とする純水製造装置。 The pure water production apparatus according to any one of claims 1 to 5, further comprising a pH adjusting unit that adjusts the pH of the feed water of the second reverse osmosis membrane apparatus to less than 6.0. Water production equipment.
  7.  被処理水を逆浸透膜処理する第1の逆浸透膜装置と、該第1の逆浸透膜装置に被処理水を導入する導入ラインと、該第1の逆浸透膜装置の透過水を流出させる流出ラインと、該第1の逆浸透膜装置の濃縮水を逆浸透膜処理する第2の逆浸透膜装置と、該第2の逆浸透膜装置の透過水を前記導入ラインに戻す返送ラインとを備える純水製造装置で純水を製造する方法において、前記第2の逆浸透膜装置の透過水を脱炭酸処理した後、前記導入ラインに戻すことを特徴とする純水製造方法。 A first reverse osmosis membrane device for treating the water to be treated with a reverse osmosis membrane, an introduction line for introducing the water to be treated into the first reverse osmosis membrane device, and an outflow of permeate from the first reverse osmosis membrane device An outflow line, a second reverse osmosis membrane device for treating the concentrated water of the first reverse osmosis membrane device with a reverse osmosis membrane, and a return line for returning the permeated water of the second reverse osmosis membrane device to the introduction line A method for producing pure water using a pure water production apparatus comprising: a decarboxylation treatment of the permeated water of the second reverse osmosis membrane device, and then returning to the introduction line.
  8.  請求項7に記載の純水製造方法において、前記第2の逆浸透膜装置の透過水を膜脱気装置で脱炭酸処理することを特徴とする純水製造方法。 8. The pure water production method according to claim 7, wherein the permeated water of the second reverse osmosis membrane device is decarboxylated by a membrane deaeration device.
  9.  請求項7又は8に記載の純水製造方法において、前記第1の逆浸透膜装置の透過水を電気脱イオン装置で処理することを特徴とする純水製造方法。 9. The pure water production method according to claim 7 or 8, wherein the permeated water of the first reverse osmosis membrane device is treated with an electrodeionization device.
  10.  請求項7ないし9のいずれか1項に記載の純水製造方法において、前記被処理水を除濁処理した後、前記第1の逆浸透膜装置に導入することを特徴とする純水製造方法。 The pure water manufacturing method according to any one of claims 7 to 9, wherein the treated water is deturbed and then introduced into the first reverse osmosis membrane device. .
  11.  請求項7ないし10のいずれか1項に記載の純水製造方法において、前記第1の逆浸透膜装置の給水のpHを6.3以上とすることを特徴とする純水製造方法。 11. The pure water production method according to claim 7, wherein the pH of the feed water of the first reverse osmosis membrane device is 6.3 or more.
  12.  請求項7ないし11のいずれか1項に記載の純水製造方法において、前記第2の逆浸透膜装置の給水のpHを6.0未満とすることを特徴とする純水製造方法。 The method for producing pure water according to any one of claims 7 to 11, wherein the pH of the feed water of the second reverse osmosis membrane device is less than 6.0.
PCT/JP2015/069159 2014-07-03 2015-07-02 Ultrapure water production apparatus and ultrapure water production method WO2016002890A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580031233.0A CN106458651B (en) 2014-07-03 2015-07-02 Water Purifiers and pure water production method
KR1020167029101A KR101916557B1 (en) 2014-07-03 2015-07-02 Ultrapure water production apparatus and ultrapure water production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014137740A JP5910675B2 (en) 2014-07-03 2014-07-03 Pure water production apparatus and pure water production method
JP2014-137740 2014-07-03

Publications (1)

Publication Number Publication Date
WO2016002890A1 true WO2016002890A1 (en) 2016-01-07

Family

ID=55019417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069159 WO2016002890A1 (en) 2014-07-03 2015-07-02 Ultrapure water production apparatus and ultrapure water production method

Country Status (4)

Country Link
JP (1) JP5910675B2 (en)
KR (1) KR101916557B1 (en)
CN (1) CN106458651B (en)
WO (1) WO2016002890A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107162109A (en) * 2017-06-02 2017-09-15 大连海事大学 A kind of water purification system based on APP remote controls

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108658326A (en) * 2017-03-30 2018-10-16 上海茗洋净水设备有限公司 A kind of convenient reverse osmosis water full set water system of high-efficiency water-saving
CN108873049B (en) * 2018-06-13 2020-05-15 清华大学 In water14System and method for C-discharge separation
JP7275525B2 (en) * 2018-10-16 2023-05-18 栗田工業株式会社 Drinking water supply system for ships
JP2020089803A (en) * 2018-12-03 2020-06-11 オルガノ株式会社 Carbonic acid removing system, pure water producing apparatus, and method of removing carbonic acid
JP7231419B2 (en) * 2019-01-22 2023-03-01 日東電工株式会社 Separation membrane module and liquid treatment system using the same
JP6801731B2 (en) * 2019-03-28 2020-12-16 栗田工業株式会社 Pure water production equipment and pure water production method
CN110498478B (en) * 2019-09-21 2024-03-15 广东栗子科技有限公司 Split type reverse osmosis filter element device and water purifier
JP7129965B2 (en) * 2019-12-25 2022-09-02 野村マイクロ・サイエンス株式会社 Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system
JP7044848B1 (en) * 2020-10-14 2022-03-30 野村マイクロ・サイエンス株式会社 Liquid treatment equipment, pure water production system and liquid treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265854A (en) * 1994-03-29 1995-10-17 Japan Organo Co Ltd Desalted water production device
JPH11114576A (en) * 1997-10-20 1999-04-27 Japan Organo Co Ltd Deionized water producing device
JP2000061464A (en) * 1998-08-17 2000-02-29 Kurita Water Ind Ltd Production of pure water
JP2004167423A (en) * 2002-11-21 2004-06-17 Kurita Water Ind Ltd Apparatus and method for pure water production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504476B2 (en) * 1997-10-23 2004-03-08 東海ゴム工業株式会社 Filling method for ground filling filler and filler mixing and discharging apparatus used in the method
MX2012002889A (en) * 2009-09-08 2012-04-02 Toray Industries Fresh water production method and fresh water production device.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265854A (en) * 1994-03-29 1995-10-17 Japan Organo Co Ltd Desalted water production device
JPH11114576A (en) * 1997-10-20 1999-04-27 Japan Organo Co Ltd Deionized water producing device
JP2000061464A (en) * 1998-08-17 2000-02-29 Kurita Water Ind Ltd Production of pure water
JP2004167423A (en) * 2002-11-21 2004-06-17 Kurita Water Ind Ltd Apparatus and method for pure water production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107162109A (en) * 2017-06-02 2017-09-15 大连海事大学 A kind of water purification system based on APP remote controls

Also Published As

Publication number Publication date
CN106458651A (en) 2017-02-22
JP2016013529A (en) 2016-01-28
JP5910675B2 (en) 2016-04-27
CN106458651B (en) 2019-10-18
KR101916557B1 (en) 2018-11-07
KR20160135325A (en) 2016-11-25

Similar Documents

Publication Publication Date Title
WO2016002890A1 (en) Ultrapure water production apparatus and ultrapure water production method
KR101563169B1 (en) Pure water production apparatus and pure water production method
US10526226B2 (en) Ultrapure water production apparatus and ultrapure water production method
US20080277341A1 (en) Method for Making Reverse Osmosis Permeate Water and Mineral Water From Deep Seawater
WO2015012054A1 (en) Method and device for treating boron-containing water
US8491795B2 (en) Conversion of seawater to drinking water at room temperature
JP2004358440A (en) Operation method of electric deionized water manufacturing apparatus, and electric deionized water manufacturing apparatus
CN106315935A (en) Water desalination device and water desalination method adopting same
JP2004000919A (en) Apparatus for producing desalted water
JP2007307561A (en) High-purity water producing apparatus and method
KR102042043B1 (en) A Draw Solution for forward osmosis using salt of organic acid and use thereof
JP2013063372A (en) Desalination system
JP3137831B2 (en) Membrane processing equipment
JP2000015257A (en) Apparatus and method for making high purity water
KR20170069614A (en) Saltwater desalination system
JP5569784B2 (en) Pure water production system
US20130118984A1 (en) Process and system for treating water
US20220177340A1 (en) Pure-water production device and pure-water production method
JP2001198578A (en) Method and device for electrically desalting treatment
JP2004261648A (en) Electrodeionization apparatus, and operating method thereof
JP2002001069A (en) Method for producing pure water
JP2020040001A (en) Water treatment system, and water treatment method
JP2005246158A (en) Method and system for desalinating seawater
JP2020000983A (en) Pure water production apparatus and method of producing pure water
JP2007268352A (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167029101

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815111

Country of ref document: EP

Kind code of ref document: A1