WO2020226039A1 - Water treatment apparatus - Google Patents

Water treatment apparatus Download PDF

Info

Publication number
WO2020226039A1
WO2020226039A1 PCT/JP2020/016773 JP2020016773W WO2020226039A1 WO 2020226039 A1 WO2020226039 A1 WO 2020226039A1 JP 2020016773 W JP2020016773 W JP 2020016773W WO 2020226039 A1 WO2020226039 A1 WO 2020226039A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
softening device
flow line
reverse osmosis
Prior art date
Application number
PCT/JP2020/016773
Other languages
French (fr)
Japanese (ja)
Inventor
忍 茂庭
敏弘 今田
健介 中村
高橋 秀昭
雅夫 今
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Publication of WO2020226039A1 publication Critical patent/WO2020226039A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/20Sprayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the embodiment of the present invention relates to a water treatment device.
  • ZLD Zero Liquid Discharge
  • the water to be treated is softened with a weakly acidic ion exchange resin, and an acid is added to the softened water to adjust the pH to be acidic. Then, it is assumed that the water to be treated whose pH has been adjusted to be acidic is decarboxylated, and the pH of the water to be treated to be decarboxylated is adjusted to alkaline by adding alkali.
  • the weakly acidic ion exchange resin when used in a water softening treatment, for example, after acid regeneration, a conditioning agent is added to condition the resin to be alkaline.
  • a conditioning agent is added to condition the resin to be alkaline.
  • alkali metal ions derived from the conditioning agent are released. Since the pH of the treated water after the water softening treatment is biased toward the alkaline side in this way, the pH of the treated water after the water softening treatment is adjusted to be acidic as described in the above pretreatment, and the treated water after the decarbonization treatment is performed.
  • the pH of the treated water is adjusted to be alkaline, there is a problem that the pH adjustment range becomes wide and the consumption of the chemical solution increases.
  • the purpose is to provide a water treatment device that can reduce the amount of chemicals added.
  • the water treatment device includes a decarboxylation device, a first adjusting unit, a first water softening device, a second adjusting unit, and a reverse osmosis membrane device.
  • the decarboxylation device removes the dissolved carbonic acid component in the water to be treated.
  • the first adjusting unit adjusts the water to be treated from which the dissolved carbonic acid component has been removed to be substantially neutral.
  • the first water softening device softens the water to be treated which has been adjusted to be substantially neutral.
  • the second adjusting unit adjusts the softened water to be treated to be alkaline.
  • the reverse osmosis membrane device separates the alkalineally adjusted water to be treated into concentrated water and permeated water by the reverse osmosis membrane.
  • FIG. 1 is a block diagram showing a functional configuration of the water treatment apparatus according to the first embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the water treatment apparatus according to the second embodiment.
  • FIG. 3 is a block diagram showing a modified example of the functional configuration of the water treatment apparatus according to the second embodiment.
  • FIG. 1 is a block diagram showing an example of a functional configuration of the water treatment device 1 according to the first embodiment.
  • the water treatment device 1 shown in FIG. 1 includes a decarboxylation device 10, a water softening device 20, a booster pump 30, an RO membrane concentrator 40, a first pH adjusting unit 50, and a second pH adjusting unit 60.
  • the decarboxylation device 10 removes the dissolved carbonic acid component in the supplied water to be treated.
  • the decarboxylation device 10 is selected from, for example, a technique having a function of removing carbonate ions in the water to be treated.
  • the decarboxylation device 10 is realized by using sprinkling gas-liquid contact, a degassing membrane, or the like.
  • the water to be treated supplied to the decarboxylation device 10 can effectively remove the dissolved carbonic acid component when the pH is adjusted to be acidic.
  • the treated water from which the dissolved carbonic acid component has been removed by the decarboxylation device 10 is discharged to the water flow line 11 as water to be treated.
  • the water to be treated is, for example, wastewater containing carbonate ions and hardness components.
  • wastewater containing carbonate ions include wastewater that has been subjected to aerobic treatment, wastewater that has been subjected to anaerobic treatment, wastewater that has been subjected to solid-liquid separation treatment such as neutral to alkaline coagulation sedimentation or levitation separation.
  • wastewater or the like that has been subjected to a hardness removing treatment to which sodium carbonate or the like is added can be mentioned.
  • wastewater that has been treated by arbitrarily combining these is also included in wastewater containing carbonate ions.
  • the first pH adjusting unit 50 adds alkali to the water to be treated supplied to the water softening device 20 by the water flow line 11.
  • the first pH adjusting unit 50 is provided with, for example, a pump, and for example, an alkali such as sodium hydroxide is pumped to the water flow line 11.
  • the water to be treated is neutralized by the addition of alkali. More specifically, for example, the pH of the water to be treated discharged from the decarboxylation device 10 is about 5.5.
  • the first pH adjusting unit 50 adds alkali to the water flow line 11 so that the water to be treated becomes the water to be treated having a pH of about 7 to 7.5.
  • the water softening device 20 softens the water to be treated supplied from the water flow line 11. That is, the water softening device 20 produces soft water by substituting the hardness component contained in the water to be treated from which the dissolved carbon dioxide component has been removed by the decarboxylation device 10 with sodium ions. Soft water is produced by substituting sodium ions for the hardness component contained in the water to be treated from which the dissolved carbonic acid component has been removed by the decarboxylation device 10.
  • the water softening device 20 is realized by using, for example, a weakly acidic cation exchange resin.
  • the weakly acidic ion exchange resin is, for example, acid-regenerated and then alkalineally conditioned by adding a conditioning agent.
  • the treated water that has been softened by the water softening device 20 is discharged to the water flow line 21 as water to be treated.
  • the water treatment device 1 shown in FIG. 1 only one water softening device 20 is described. However, in practical use, a plurality of water softening devices 20 are provided, and operations such as chemical liquid regeneration and water flow of water to be treated are switched and operated.
  • the second pH adjusting unit 60 adds alkali to the water to be treated supplied by the booster pump 30 from the water flow line 21.
  • the second pH adjusting unit 60 is provided with, for example, a pump, and for example, an alkali such as sodium hydroxide is pumped to the water flow line 21.
  • the addition of alkali makes the water to be treated alkaline. More specifically, the pH of the water to be treated discharged from the water softening apparatus 20 is, for example, about 8 to 9 immediately after the alkaline conditioning of the weakly acidic cation exchange resin.
  • the second pH adjusting unit 60 adds alkali to the water flow line 21 so that the water to be treated becomes, for example, the water to be treated having a pH of about 9 to 10.
  • the water to be treated to which alkali has been added by the second pH adjusting unit 60 is boosted to a preset pressure by the booster pump 30 and supplied to the RO membrane concentrator 40.
  • the preset pressure is, for example, a pressure higher than at least an osmotic pressure.
  • the RO membrane concentrator 40 is an example of a reverse osmosis membrane device that separates the water to be treated, which is boosted to a high pressure and supplied, into permeated water from which dissolved salts have been removed and concentrated water from which dissolved salts have been concentrated. is there.
  • the RO membrane concentrator 40 is operated, for example, in alkaline.
  • the RO membrane concentrator 40 includes, for example, a pressure vessel 41 and a reverse osmosis membrane element 42 installed in the pressure vessel 41.
  • the reverse osmosis membrane element 42 includes a reverse osmosis membrane 421.
  • As the reverse osmosis membrane 421 for example, a spiral-shaped membrane or a hollow thread-shaped membrane is used.
  • the RO membrane concentrator 40 sends the high-pressure concentrated water separated by the reverse osmosis membrane 421 to the subsequent stage, and discharges the permeated water separated by the reverse osmosis membrane 421.
  • the RO membrane concentrator 40 suppresses the precipitation of carbonates derived from hardness. Is possible. Therefore, the RO membrane concentrator 40 is operated in an alkaline environment to suppress the generation of silica scale and the like.
  • the RO membrane concentrator 40 may include a plurality of pressure vessels 41. At this time, for example, the RO membrane concentrator 40 includes a plurality of pressure vessels 41 having a reverse osmosis membrane element 42 in a multi-stage configuration, a multi-system configuration, a tree configuration, or the like.
  • the RO membrane concentrator 40 may be provided with a power recovery device according to the operating pressure and the scale of the device.
  • the power recovery device is a device that recovers pressure energy from high-pressure concentrated water sent from the RO membrane concentrator 40.
  • the RO membrane concentrator 40 may be provided with an introduction route of a scale inhibitor, a slime inhibitor having a redox function, a cleaning agent, and / or cleaning water, etc., depending on the quality of the water to be treated.
  • a water quality meter is arranged at the inlet of the RO membrane concentrator 40. Then, by manipulating the introduction route based on the water quality measured by this water quality meter, the operation of adding the scale inhibitor and the slime inhibitor, and the operation of cleaning the RO membrane concentrator 40 are performed.
  • the salt-concentrated water derived from the concentrated water separated by the RO membrane concentrating device 40 may be used as a regenerating liquid for the weakly acidic cation exchange resin of the water softening device 20. This makes it possible to reduce the amount of the regenerated liquid used.
  • the water treatment device 1 neutralizes the water to be treated by adding alkali to the water to be treated after the decarboxylation treatment by the decarboxylation device 10. Then, the water treatment device 1 softens the neutralized water to be treated with the weakly acidic ion exchange resin of the water softening device 20, and then adds an alkali to the water to be treated, so that the water to be treated is suitable for RO membrane treatment. I try to adjust to the pH. This makes it possible to effectively utilize the pH control ability in the alkaline direction due to the resin discharge component contained in the liquid that has passed through the weakly acidic ion exchange resin of the water softening device 20.
  • the water to be treated supplied to the water treatment apparatus 1 contains, in addition to carbonate ions, alkaline earth metal ions such as magnesium ions and / or calcium ions.
  • alkaline earth metal ions such as magnesium ions and / or calcium ions.
  • alkaline earth carbonates and hydroxide salts are formed in the resin tower. These salts formed and formed may be deposited inside the resin tower.
  • the pH of the discharged liquid gradually decreases with the passage of time for softening the water. When the pH is lowered, carbon dioxide gas is generated from a part of the carbonates among the sediments deposited in the resin column.
  • the generation of carbon dioxide causes the accumulation of air bubbles inside the resin tower, causing the layer to rise due to the air bubbles in the resin packed layer or the packed layer density to decrease, and water is passed through the water softening treatment with a weakly acidic cation exchange resin. Uniformity may not be maintained.
  • the water to be treated from which the carbonate ion component has been removed by the decarboxylation device 10 is introduced into the water softening device 20. Therefore, the precipitation of the carbonate component in the environment of the weakly acidic cation exchange resin which is alkaline-conditioned, and the deposition and accumulation of the precipitated carbonate component are suppressed.
  • the water to be treated from which the carbonate ion component has been removed is softened by the water softening device 20, so that various wastewater containing the carbonate ion component can be treated.
  • the water treatment device 1 can appropriately operate the wastewater concentration operation for various wastewaters containing carbonate ions.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the water treatment device 1a according to the second embodiment.
  • the water treatment device 1a shown in FIG. 2 includes a filtration device 70, a first water softening device 80, a decarbonizing device 10a, a second water softening device 20a, booster pumps 30a and 90, a first RO film concentrator 40a, and a second RO film. It includes a concentrator 100, a first pH adjusting unit 110, a second pH adjusting unit 50a, and a third pH adjusting unit 60a.
  • the filtration device 70 filters the supplied water to be treated.
  • the filtration device 70 is realized by using a membrane separation technique such as a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, and an MBR (Membrane Bioreactor) method.
  • a sand filtration device may be provided in front of the filtration device 70.
  • the first water softening device 80 softens the water to be treated filtered by the filtration device 70. That is, the first water softening device 80 produces soft water by substituting the hardness component contained in the water to be treated filtered by the filtering device 70 with cations.
  • the first water softening device 80 is realized by using, for example, a weakly acidic cation exchange resin, a strongly acidic cation exchange resin, or the like.
  • the treated water that has been softened by the first water softening device 80 is discharged to the water flow line 81 as water to be treated.
  • the weakly acidic cation exchange resin is, for example, the same medium (beads) as the weakly acidic cation exchange resin used in the second water softening device 20a. Moreover, it may be accommodated in a resin tower having the same structure as the resin or the like provided as the second water softening device 20a.
  • a first resin tower to a third resin tower are provided, two of which are assigned as the first water softening device 80 and the second water softening device 20a, respectively, and one tower is used for chemical liquid regeneration. Operate to stand by.
  • the third resin tower is used as the second water softening device 20a, the first resin tower is used as the first water softening device 80, and the second water flow line for regenerating the second resin tower and the second resin tower are used.
  • the third resin tower will be used as the first water softening device 80, and a third water flow line for regenerating the first resin tower will be provided. Then, the connection is switched in the order of the first water flow line, the second water flow line, and the third water flow line by the switching means.
  • the first water softening device 80 When a strongly acidic cation exchange resin is used in the first water softening device 80, a plurality of resin towers as the first water softening device 80 are provided to switch between operations such as chemical liquid regeneration and water flow to be treated. Is operated.
  • the type and composition of the ion exchange resin of the first water softening apparatus 80 are selected according to the concentration of ion components in the water to be treated.
  • the first pH adjusting unit 110 adds an acid to the water to be treated supplied to the decarboxylation device 10a by the water flow line 81.
  • the first pH adjusting unit 110 is provided with, for example, a pump, and for example, an acid such as hydrochloric acid is pumped to the water flow line 81.
  • the addition of the acid makes the water to be treated acidic, and the decarboxylation treatment in the decarboxylation device 10a is promoted.
  • the decarboxylation device 10a operates in the same manner as the decarboxylation device 10 in the first embodiment. That is, the decarboxylation device 10a removes the dissolved carbonic acid component in the water to be treated, which is softened by the first water softening device 80 and supplied from the water flow line 81.
  • the decarboxylation device 10a is selected from, for example, a technique having a function of removing carbonate ions in the water to be treated.
  • the treated water from which the dissolved carbonic acid component has been removed by the decarboxylation device 10 is discharged to the water flow line 11a as water to be treated.
  • the second pH adjusting unit 50a operates in the same manner as the first pH adjusting unit 50 in the first embodiment. That is, the second pH adjusting unit 50a adds alkali to the water to be treated supplied to the second water softening device 20a by the water flow line 11a.
  • the second pH adjusting unit 50a includes, for example, a pump, and delivers alkali to the water flow line 11a by the pump. The water to be treated is neutralized by the addition of alkali.
  • the second water softening device 20a operates in the same manner as the water softening device 20 in the first embodiment. That is, the second water softening device 20a produces soft water by replacing the dissolved carbon dioxide component with the decarboxylation device 10a and replacing the hardness component contained in the water to be treated supplied from the water flow line 11a with sodium ions.
  • the second water softening device 20a is realized by using, for example, a weakly acidic cation exchange resin.
  • the treated water softened by the second water softening device 20a is discharged to the water flow line 21a as water to be treated.
  • the first water softening device 80 is not a resin tower having the same structure as the second water softening device 20a, that is, if the first water softening device 80 and the second water softening device 20a cannot be operated in the merry-go-round format, the second A plurality of water softening devices 20a are provided, and operations such as chemical liquid regeneration and water flow of water to be treated are switched and operated.
  • the third pH adjusting unit 60a operates in the same manner as the second pH adjusting unit 60 in the first embodiment. That is, the third pH adjusting unit 60a adds alkali to the water to be treated supplied to the booster pump 30a by the water flow line 21a.
  • the third pH adjusting unit 60a includes, for example, a pump, and sends alkali to the water flow line 21a by the pump. The addition of alkali makes the water to be treated alkaline.
  • the water to be treated to which alkali has been added by the third pH adjusting unit 60a is boosted to a preset pressure by the booster pump 30a and supplied to the first RO membrane concentrator 40a.
  • the first RO membrane concentrator 40a operates in the same manner as the first RO membrane concentrator 40a in the first embodiment. That is, the first RO membrane concentrator 40a separates the water to be treated, which is operated in an alkaline manner and is boosted to a high pressure and supplied, into permeated water from which dissolved salts have been removed and concentrated water from which dissolved salts have been concentrated. ..
  • the first RO membrane concentrator 40a sends the high-pressure concentrated water separated by the reverse osmosis membrane 421a to the subsequent stage, and discharges the permeated water separated by the reverse osmosis membrane 421a.
  • the concentrated water delivered from the first RO membrane concentrator 40a is boosted to a preset pressure by the booster pump 90 and supplied to the second RO membrane concentrator 100. If the concentrated water delivered from the first RO membrane concentrator 40a has, for example, a pressure higher than the osmotic pressure, it is not necessary to provide the booster pump 90.
  • the second RO membrane concentrator 100 separates the concentrated water supplied by being pressurized to a high pressure into permeated water from which dissolved salts have been removed and concentrated water in which dissolved salts are further concentrated.
  • the second RO membrane concentrator 100 is operated, for example, in alkaline.
  • the second RO membrane concentrator 100 includes, for example, a pressure vessel 101 and a reverse osmosis membrane element 102 installed in the pressure vessel 101.
  • the reverse osmosis membrane element 102 includes a reverse osmosis membrane 1021.
  • the second RO membrane concentrator 100 may include a plurality of pressure vessels 101. At this time, for example, the second RO membrane concentrator 100 includes a plurality of pressure vessels 101 having a reverse osmosis membrane element 102 in a multi-stage configuration, a multi-system configuration, a tree configuration, or the like.
  • the second RO membrane concentrator 100 sends the high-pressure concentrated water separated by the reverse osmosis membrane 1021 to the subsequent stage, and discharges the permeated water separated by the reverse osmosis membrane 1021.
  • the second RO membrane concentrator 100 may form an internal circulation of the concentrated liquid. That is, a part of the concentrated water sent out from the second RO membrane concentrator 100 may be circulated and supplied to the second RO membrane concentrator 100. Further, the second RO membrane concentrator 100 may supply the permeated water separated by the reverse osmosis membrane 1021 to the water passage line 21a.
  • the water treatment device 1a is subjected to the decarbonization treatment by the decarbonization device 10a after the water softening treatment by the first water softening device 80, and the alkali is added to the water to be treated. This neutralizes the water to be treated. Then, the water treatment device 1a softens the neutralized water to be treated with the weakly acidic ion exchange resin of the second water softening device 20a, and then adds an alkali to the water to be treated to perform RO film treatment on the water to be treated. It is adjusted to the pH suitable for. This makes it possible to effectively utilize the pH control ability in the alkaline direction due to the resin discharge component contained in the liquid that has passed through the weakly acidic ion exchange resin of the second water softening device 20a.
  • the water to be treated from which the carbonate ion component has been removed is softened with the weakly acidic cation exchange resin of the second water softening apparatus 20a, so that the carbonate ion component is treated.
  • the water treatment device 1a can appropriately operate the wastewater concentration operation for various wastewaters containing carbonate ions.
  • the water treatment device 1a can apply a strongly acidic cation exchange resin to, for example, the first water softening device 80.
  • a strongly acidic cation exchange resin to the first water softening device 80, it is possible to remove the hardness while suppressing the increase in pH of the water source to be treated of the decarboxylation device 10a.
  • the water treatment device 1a can apply a weakly acidic cation exchange resin to, for example, the first water softening device 80.
  • a weakly acidic cation exchange resin is applied to the first water softening device 80, and the type of the weakly acidic cation exchange resin and the structure of the resin tower are matched between the first water softening device 80 and the second water softening device 20a. Then, the first water softening device 80 and the second water softening device 20a can be used in the merry-go-round format. This makes it possible to switch and use the resin tower whose water softening efficiency has decreased due to its use as the second water softening device 20a as the first water softening device 80. That is, the resin tower can be effectively used.
  • FIG. 3 is a block diagram showing a modified example of the functional configuration of the water treatment device 1b according to the second embodiment.
  • the water treatment device 1b shown in FIG. 3 is provided with an evaporation concentrator 120 after the second RO membrane concentrator 100 with respect to the water treatment device 1a shown in FIG.
  • the evaporation concentrator 120 is an example of a heat treatment apparatus that carries out a heat treatment process for a concentrated liquid containing a water-soluble organic substance, and is, for example, an apparatus that carries out evaporative concentration.
  • the evaporation concentrator 120 evaporates the water derived from the concentrated water supplied from the second RO membrane concentrator 100 to generate an evaporation residue and evaporated water.
  • the evaporation concentrator 120 is realized by, for example, a configuration using an evaporation can, a configuration using heating steam, a configuration using a conventional system such as a spray dryer, and the like.
  • As the evaporation can, for example, a simple effect can and a multi-stage effect can may be used.
  • Examples of the configuration using the steam for heating include a TVR (Thermo-Vapor Recompression) type, an MVR (Mechanical Vapor Recompression) type, and a configuration using a heat pump or the like.
  • the evaporation concentrator 120 may have an additional configuration of a centrifuge and a solid-liquid separator depending on the generation of the evaporation residue. Further, in order to promote evaporation and concentration, a chemical solution addition mechanism such as an antifoaming agent and a scale inhibitor may be provided.
  • the evaporation concentrating step and wastewater elimination are eliminated while responding to fluctuations in the quantity and quality of water to be treated. It becomes possible to do.
  • the water treatment devices 1a and 1b may further have an oxidation treatment tank, a coagulation treatment tank, a biological treatment tank, and a combination of at least two or more of these in front of the filtration device 70.
  • an oxidation treatment tank a coagulation treatment tank
  • a biological treatment tank a combination of at least two or more of these in front of the filtration device 70.
  • the membrane separation activated sludge method or the like is introduced in the biological treatment tank, at least a part of the filtration device 70 may be included in the biological treatment tank.
  • the water treatment devices 1, 1a and 1b can reduce the amount of the chemical solution added.
  • the water treatment devices 1, 1a and 1b can reduce the amount of the chemical solution added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Provided is a water treatment apparatus that can reduce the amount of chemical solution addition. A water treatment apparatus is provided with a decarbonation apparatus, a first adjustment section, a first water softening apparatus, a second adjustment section, and a reverse osmosis membrane apparatus. The decarbonation apparatus removes the dissolved carbonic acid component in water being treated. The first adjustment section adjusts the water being treated from which the dissolved carbonic acid component has been removed, to around neutrality. The first water softening apparatus softens the water being treated which has been adjusted to around neutrality. The second adjustment section adjusts the softened water being treated to alkaline. Using a reverse osmosis membrane, the reverse osmosis membrane apparatus separates the alkalized water being treated into concentrated water and permeated water.

Description

水処理装置Water treatment equipment
 本発明の実施形態は、水処理装置に関する。 The embodiment of the present invention relates to a water treatment device.
 近年、健全な水循環を実現するための法規制が強化されている。ZLD(Zero Liquid Discharge)は、水質汚染リスクの低減と、排水の再生及び再利用の視点から、工場内で水を再生して利用すると共に、さらに工場から外部に出される排水を0にまで低減することで水環境保全を図るコンセプトである。 In recent years, laws and regulations have been strengthened to realize a healthy water cycle. ZLD (Zero Liquid Discharge) recycles and uses water in the factory from the viewpoint of reducing the risk of water pollution and regenerating and reusing wastewater, and further reduces the amount of wastewater discharged from the factory to the outside. It is a concept to protect the water environment by doing so.
 ZLDに向けた排水濃縮処理のため、逆浸透(RO:Reverse Osmosis)膜プロセスへ導入する被処理水に対して前処理を行う必要がある。RO膜プロセスのための前処理では、例えば、被処理水を弱酸性イオン交換樹脂により軟水化処理し、軟水化処理した被処理水に酸を添加して酸性にpH調整する。そして、酸性にpH調整された被処理水を脱炭酸処理し、脱炭酸処理した被処理水にアルカリを添加してアルカリ性にpH調整することが想定される。 For wastewater concentration treatment for ZLD, it is necessary to pre-treat the water to be treated to be introduced into the reverse osmosis (RO) membrane process. In the pretreatment for the RO membrane process, for example, the water to be treated is softened with a weakly acidic ion exchange resin, and an acid is added to the softened water to adjust the pH to be acidic. Then, it is assumed that the water to be treated whose pH has been adjusted to be acidic is decarboxylated, and the pH of the water to be treated to be decarboxylated is adjusted to alkaline by adding alkali.
 ところで、上記弱酸性イオン交換樹脂は、軟水化処理で利用される際、例えば、酸再生された後、コンディショニング薬剤が添加されることでアルカリ性にコンディショニングされている。コンディショニング直後の弱酸性イオン交換樹脂に被処理水を通水させると、コンディショニング薬剤に由来するアルカリ金属イオンが放出される。このように軟水化処理後の処理水はpHがアルカリ側に偏っているため、上記前処理で記載されるように、軟水化処理後の処理水を酸性にpH調整し、脱炭酸処理後の処理水をアルカリ性にpH調整しようとすると、pH調整幅が広くなり、薬液の消費量が大きくなるという問題がある。 By the way, when the weakly acidic ion exchange resin is used in a water softening treatment, for example, after acid regeneration, a conditioning agent is added to condition the resin to be alkaline. When the water to be treated is passed through the weakly acidic ion exchange resin immediately after conditioning, alkali metal ions derived from the conditioning agent are released. Since the pH of the treated water after the water softening treatment is biased toward the alkaline side in this way, the pH of the treated water after the water softening treatment is adjusted to be acidic as described in the above pretreatment, and the treated water after the decarbonization treatment is performed. When the pH of the treated water is adjusted to be alkaline, there is a problem that the pH adjustment range becomes wide and the consumption of the chemical solution increases.
米国特許第5925255号明細書U.S. Pat. No. 5,925,255 米国特許第6537456号明細書U.S. Pat. No. 6,537,456
 そこで目的は、薬液の添加量を削減可能な水処理装置を提供することにある。 Therefore, the purpose is to provide a water treatment device that can reduce the amount of chemicals added.
 実施形態によれば、水処理装置は、脱炭酸装置、第1調整部、第1軟水化装置、第2調整部、及び逆浸透膜装置を備える。脱炭酸装置は、被処理水中の溶解炭酸成分を除去する。第1調整部は、前記溶解炭酸成分が除去された被処理水を略中性に調整する。第1軟水化装置は、前記略中性に調整された被処理水を軟水化する。第2調整部は、前記軟水化された被処理水をアルカリ性に調整する。逆浸透膜装置は、前記アルカリ性に調整された被処理水を、逆浸透膜により濃縮水と透過水とに分離する。 According to the embodiment, the water treatment device includes a decarboxylation device, a first adjusting unit, a first water softening device, a second adjusting unit, and a reverse osmosis membrane device. The decarboxylation device removes the dissolved carbonic acid component in the water to be treated. The first adjusting unit adjusts the water to be treated from which the dissolved carbonic acid component has been removed to be substantially neutral. The first water softening device softens the water to be treated which has been adjusted to be substantially neutral. The second adjusting unit adjusts the softened water to be treated to be alkaline. The reverse osmosis membrane device separates the alkalineally adjusted water to be treated into concentrated water and permeated water by the reverse osmosis membrane.
図1は、第1の実施形態に係る水処理装置の機能構成を表すブロック図である。FIG. 1 is a block diagram showing a functional configuration of the water treatment apparatus according to the first embodiment. 図2は、第2の実施形態に係る水処理装置の機能構成を表すブロック図である。FIG. 2 is a block diagram showing a functional configuration of the water treatment apparatus according to the second embodiment. 図3は、第2の実施形態に係る水処理装置の機能構成の変形例を表すブロック図である。FIG. 3 is a block diagram showing a modified example of the functional configuration of the water treatment apparatus according to the second embodiment.
 以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 (第1の実施形態)
 図1は、第1の実施形態に係る水処理装置1の機能構成の例を表すブロック図である。図1に示される水処理装置1は、脱炭酸装置10、軟水化装置20、昇圧ポンプ30、RO膜濃縮装置40、第1pH調整部50、及び第2pH調整部60を備える。
(First Embodiment)
FIG. 1 is a block diagram showing an example of a functional configuration of the water treatment device 1 according to the first embodiment. The water treatment device 1 shown in FIG. 1 includes a decarboxylation device 10, a water softening device 20, a booster pump 30, an RO membrane concentrator 40, a first pH adjusting unit 50, and a second pH adjusting unit 60.
 脱炭酸装置10は、供給される被処理水中の溶解炭酸成分を除去する。脱炭酸装置10は、例えば、被処理水中の炭酸種イオンを除去する機能を有する技術から選定される。例えば、脱炭酸装置10は、散水気液接触、又は脱気膜等を用いて実現される。脱炭酸装置10に供給される被処理水は、酸性にpH調整されていると溶存炭酸成分を効果的に除去することが可能である。脱炭酸装置10で溶存炭酸成分が除去された処理水は、被処理水として通水ライン11へ排出される。 The decarboxylation device 10 removes the dissolved carbonic acid component in the supplied water to be treated. The decarboxylation device 10 is selected from, for example, a technique having a function of removing carbonate ions in the water to be treated. For example, the decarboxylation device 10 is realized by using sprinkling gas-liquid contact, a degassing membrane, or the like. The water to be treated supplied to the decarboxylation device 10 can effectively remove the dissolved carbonic acid component when the pH is adjusted to be acidic. The treated water from which the dissolved carbonic acid component has been removed by the decarboxylation device 10 is discharged to the water flow line 11 as water to be treated.
 本実施形態において、被処理水は、例えば、炭酸種イオン及び硬度成分を含む排水である。炭酸種イオンを含む排水としては、例えば、好気性処理が施された排水、嫌気性処理が施された排水、中性~アルカリ性凝集沈殿又は浮上分離等による固液分離処理が施された排水、若しくは、炭酸ソーダ等を添加する硬度除去処理が施された排水等が挙げられる。また、これらを任意に組み合わせた処理が施された排水も、炭酸種イオンを含む排水に含まれる。 In the present embodiment, the water to be treated is, for example, wastewater containing carbonate ions and hardness components. Examples of wastewater containing carbonate ions include wastewater that has been subjected to aerobic treatment, wastewater that has been subjected to anaerobic treatment, wastewater that has been subjected to solid-liquid separation treatment such as neutral to alkaline coagulation sedimentation or levitation separation. Alternatively, wastewater or the like that has been subjected to a hardness removing treatment to which sodium carbonate or the like is added can be mentioned. In addition, wastewater that has been treated by arbitrarily combining these is also included in wastewater containing carbonate ions.
 第1pH調整部50は、通水ライン11により軟水化装置20へ供給される被処理水にアルカリを添加する。第1pH調整部50は、例えば、ポンプを備え、例えば、水酸化ナトリウム等のアルカリをポンプにより通水ライン11へ送出する。アルカリの添加により、被処理水は中和される。より具体的には、例えば、脱炭酸装置10から排出される被処理水のpHは5.5程度である。第1pH調整部50は、例えば、この被処理水がpH7~7.5程度の被処理水となるように、通水ライン11へアルカリを添加する。 The first pH adjusting unit 50 adds alkali to the water to be treated supplied to the water softening device 20 by the water flow line 11. The first pH adjusting unit 50 is provided with, for example, a pump, and for example, an alkali such as sodium hydroxide is pumped to the water flow line 11. The water to be treated is neutralized by the addition of alkali. More specifically, for example, the pH of the water to be treated discharged from the decarboxylation device 10 is about 5.5. For example, the first pH adjusting unit 50 adds alkali to the water flow line 11 so that the water to be treated becomes the water to be treated having a pH of about 7 to 7.5.
 軟水化装置20は、通水ライン11から供給される被処理水を軟水化する。すなわち、軟水化装置20は、脱炭酸装置10で溶存炭酸成分が除去された被処理水に含まれる硬度成分をナトリウムイオンに置換して軟水を製造する。脱炭酸装置10で溶存炭酸成分が除去された被処理水に含まれる硬度成分をナトリウムイオンに置換して軟水を製造する。軟水化装置20は、例えば、弱酸性カチオン交換樹脂を用いて実現される。弱酸性イオン交換樹脂は、例えば、酸再生された後、コンディショニング薬剤が添加されることでアルカリ性にコンディショニングされている。軟水化装置20で軟水化処理された処理水は、被処理水として通水ライン21へ排出される。なお、図1に示される水処理装置1では、軟水化装置20が1つしか記載されていない。しかしながら、実用の際には、軟水化装置20は複数設けられ、薬液再生等の操作と、被処理水の通水とが切り替えられて運用される。 The water softening device 20 softens the water to be treated supplied from the water flow line 11. That is, the water softening device 20 produces soft water by substituting the hardness component contained in the water to be treated from which the dissolved carbon dioxide component has been removed by the decarboxylation device 10 with sodium ions. Soft water is produced by substituting sodium ions for the hardness component contained in the water to be treated from which the dissolved carbonic acid component has been removed by the decarboxylation device 10. The water softening device 20 is realized by using, for example, a weakly acidic cation exchange resin. The weakly acidic ion exchange resin is, for example, acid-regenerated and then alkalineally conditioned by adding a conditioning agent. The treated water that has been softened by the water softening device 20 is discharged to the water flow line 21 as water to be treated. In the water treatment device 1 shown in FIG. 1, only one water softening device 20 is described. However, in practical use, a plurality of water softening devices 20 are provided, and operations such as chemical liquid regeneration and water flow of water to be treated are switched and operated.
 第2pH調整部60は、通水ライン21から昇圧ポンプ30により供給される被処理水に、アルカリを添加する。第2pH調整部60は、例えば、ポンプを備え、例えば、水酸化ナトリウム等のアルカリをポンプにより通水ライン21へ送出する。アルカリの添加により、被処理水はアルカリ性となる。より具体的には、軟水化装置20から排出される被処理水のpHは、弱酸性カチオン交換樹脂のアルカリコンディショニング直後で、例えば、8~9程度である。 The second pH adjusting unit 60 adds alkali to the water to be treated supplied by the booster pump 30 from the water flow line 21. The second pH adjusting unit 60 is provided with, for example, a pump, and for example, an alkali such as sodium hydroxide is pumped to the water flow line 21. The addition of alkali makes the water to be treated alkaline. More specifically, the pH of the water to be treated discharged from the water softening apparatus 20 is, for example, about 8 to 9 immediately after the alkaline conditioning of the weakly acidic cation exchange resin.
 第2pH調整部60は、例えば、この被処理水がpH9~10程度の被処理水となるように、通水ライン21へアルカリを添加する。第2pH調整部60によりアルカリが添加された被処理水は、昇圧ポンプ30で予め設定された圧力へ昇圧され、RO膜濃縮装置40へ供給される。なお、予め設定した圧力とは、例えば、少なくとも浸透圧よりも高い圧力である。 The second pH adjusting unit 60 adds alkali to the water flow line 21 so that the water to be treated becomes, for example, the water to be treated having a pH of about 9 to 10. The water to be treated to which alkali has been added by the second pH adjusting unit 60 is boosted to a preset pressure by the booster pump 30 and supplied to the RO membrane concentrator 40. The preset pressure is, for example, a pressure higher than at least an osmotic pressure.
 RO膜濃縮装置40は、高圧に昇圧されて供給された被処理水を、溶存塩類が除去された透過水と、溶存塩類が濃縮された濃縮水とに分離する、逆浸透膜装置の一例である。RO膜濃縮装置40は、例えば、アルカリ性で運用される。RO膜濃縮装置40は、例えば、圧力容器41、及び圧力容器41内に設置される逆浸透膜エレメント42を備える。逆浸透膜エレメント42は、逆浸透膜421を備えている。逆浸透膜421としては、例えば、スパイラル状、及び中空糸状等の膜が用いられる。RO膜濃縮装置40は、逆浸透膜421により分離された高圧の濃縮水を後段へ送出し、逆浸透膜421により分離された透過水を排出する。 The RO membrane concentrator 40 is an example of a reverse osmosis membrane device that separates the water to be treated, which is boosted to a high pressure and supplied, into permeated water from which dissolved salts have been removed and concentrated water from which dissolved salts have been concentrated. is there. The RO membrane concentrator 40 is operated, for example, in alkaline. The RO membrane concentrator 40 includes, for example, a pressure vessel 41 and a reverse osmosis membrane element 42 installed in the pressure vessel 41. The reverse osmosis membrane element 42 includes a reverse osmosis membrane 421. As the reverse osmosis membrane 421, for example, a spiral-shaped membrane or a hollow thread-shaped membrane is used. The RO membrane concentrator 40 sends the high-pressure concentrated water separated by the reverse osmosis membrane 421 to the subsequent stage, and discharges the permeated water separated by the reverse osmosis membrane 421.
 後述のように本実施形態に係る水処理装置1は、硬度成分及び炭酸種イオンを前処理にて適切に除去可能であるため、RO膜濃縮装置40において硬度由来の炭酸塩析出を抑制することが可能となる。このため、RO膜濃縮装置40をアルカリ環境下で運用してシリカスケール等の発生を抑制するのに好適な環境となる。 As will be described later, since the water treatment apparatus 1 according to the present embodiment can appropriately remove hardness components and carbonate ions by pretreatment, the RO membrane concentrator 40 suppresses the precipitation of carbonates derived from hardness. Is possible. Therefore, the RO membrane concentrator 40 is operated in an alkaline environment to suppress the generation of silica scale and the like.
 なお、図1では、圧力容器41内に1つの逆浸透膜エレメント42が設置されているように表されているが、これに限定されない。例えば、圧力容器41内に設置される逆浸透膜エレメント42の数は複数であっても構わない。また、RO膜濃縮装置40は、複数の圧力容器41を備えていても構わない。このとき、例えば、RO膜濃縮装置40は、逆浸透膜エレメント42を有する複数の圧力容器41を、多段構成、多系統構成、又はツリー構成等の配置で備える。 Note that, in FIG. 1, it is shown that one reverse osmosis membrane element 42 is installed in the pressure vessel 41, but the present invention is not limited to this. For example, the number of reverse osmosis membrane elements 42 installed in the pressure vessel 41 may be plural. Further, the RO membrane concentrator 40 may include a plurality of pressure vessels 41. At this time, for example, the RO membrane concentrator 40 includes a plurality of pressure vessels 41 having a reverse osmosis membrane element 42 in a multi-stage configuration, a multi-system configuration, a tree configuration, or the like.
 また、RO膜濃縮装置40には、運転圧、及び装置規模に応じ、動力回収装置が設けられていても構わない。動力回収装置は、RO膜濃縮装置40から送出される、高圧の濃縮水から圧力エネルギーを回収する装置である。 Further, the RO membrane concentrator 40 may be provided with a power recovery device according to the operating pressure and the scale of the device. The power recovery device is a device that recovers pressure energy from high-pressure concentrated water sent from the RO membrane concentrator 40.
 また、RO膜濃縮装置40には、被処理水質に応じ、スケール防止剤、酸化還元機能を有するスライム防止剤、洗浄剤、及び/又は洗浄水等の導入経路が設けられていても構わない。このとき、例えば、RO膜濃縮装置40の入口に水質計を配置する。そして、この水質計器により測定される水質に基づいて導入経路を操作することで、スケール防止剤、及びスライム防止剤の添加操作、及びRO膜濃縮装置40の洗浄操作を実施する。 Further, the RO membrane concentrator 40 may be provided with an introduction route of a scale inhibitor, a slime inhibitor having a redox function, a cleaning agent, and / or cleaning water, etc., depending on the quality of the water to be treated. At this time, for example, a water quality meter is arranged at the inlet of the RO membrane concentrator 40. Then, by manipulating the introduction route based on the water quality measured by this water quality meter, the operation of adding the scale inhibitor and the slime inhibitor, and the operation of cleaning the RO membrane concentrator 40 are performed.
 また、RO膜濃縮装置40で分離される濃縮水に由来する塩分濃縮水は、軟水化装置20の弱酸性カチオン交換樹脂の再生液として利用しても構わない。これにより、再生液の使用量を抑制することが可能となる。 Further, the salt-concentrated water derived from the concentrated water separated by the RO membrane concentrating device 40 may be used as a regenerating liquid for the weakly acidic cation exchange resin of the water softening device 20. This makes it possible to reduce the amount of the regenerated liquid used.
 以上のように、第1の実施形態では、水処理装置1は、脱炭酸装置10での脱炭酸処理の後、被処理水へアルカリを添加することで被処理水を中和する。そして、水処理装置1は、中和した被処理水を軟水化装置20の弱酸性イオン交換樹脂で軟化処理した後、被処理水へアルカリを添加することで被処理水をRO膜処理に適したpHへ調整するようにしている。これにより、軟水化装置20の弱酸性イオン交換樹脂を通過した液体に含まれる樹脂排出成分によるアルカリ方向へのpH操作能を有効に活用することが可能となる。 As described above, in the first embodiment, the water treatment device 1 neutralizes the water to be treated by adding alkali to the water to be treated after the decarboxylation treatment by the decarboxylation device 10. Then, the water treatment device 1 softens the neutralized water to be treated with the weakly acidic ion exchange resin of the water softening device 20, and then adds an alkali to the water to be treated, so that the water to be treated is suitable for RO membrane treatment. I try to adjust to the pH. This makes it possible to effectively utilize the pH control ability in the alkaline direction due to the resin discharge component contained in the liquid that has passed through the weakly acidic ion exchange resin of the water softening device 20.
 ところで、本実施形態に係る水処理装置1へ供給される被処理水には、炭酸種イオンの他、例えば、マグネシウムイオン、及び/又は、カルシウムイオンといったアルカリ土類金属イオンが含有されている。このような被処理水を、脱炭酸装置10への導入より先に、軟水化装置20の弱酸性カチオン交換樹脂に導入すると、樹脂塔内にアルカリ土類の炭酸塩や水酸化物塩が形成され、形成されたこれらの塩が樹脂塔内部に堆積する可能性がある。弱酸性カチオン交換樹脂は、軟水化の通水時間経過に従い、排出される液体のpHが次第に低下する。pHが低下すると、樹脂塔内に堆積された堆積塩のうち、炭酸塩の一部から炭酸ガスが発生する。この炭酸ガスの発生により、樹脂塔内部にて気泡の蓄積が生じ、樹脂充填層の気泡による層上昇、又は充填層密度の低下が引き起こされ、弱酸性カチオン交換樹脂による軟水化処理での通水均一性が保てなくなるおそれがある。 By the way, the water to be treated supplied to the water treatment apparatus 1 according to the present embodiment contains, in addition to carbonate ions, alkaline earth metal ions such as magnesium ions and / or calcium ions. When such water to be treated is introduced into the weakly acidic cation exchange resin of the water softening device 20 before being introduced into the decarbonating device 10, alkaline earth carbonates and hydroxide salts are formed in the resin tower. These salts formed and formed may be deposited inside the resin tower. In the weakly acidic cation exchange resin, the pH of the discharged liquid gradually decreases with the passage of time for softening the water. When the pH is lowered, carbon dioxide gas is generated from a part of the carbonates among the sediments deposited in the resin column. The generation of carbon dioxide causes the accumulation of air bubbles inside the resin tower, causing the layer to rise due to the air bubbles in the resin packed layer or the packed layer density to decrease, and water is passed through the water softening treatment with a weakly acidic cation exchange resin. Uniformity may not be maintained.
 これに対して第1の実施形態に係る水処理装置1では、脱炭酸装置10で炭酸種イオン成分が除去された被処理水が軟水化装置20へ導入されるようになっている。このため、アルカリ性にコンディショニングされている弱酸性カチオン交換樹脂環境下における炭酸塩成分の析出、並びに、析出した炭酸塩成分の堆積及び蓄積が抑制される。 On the other hand, in the water treatment device 1 according to the first embodiment, the water to be treated from which the carbonate ion component has been removed by the decarboxylation device 10 is introduced into the water softening device 20. Therefore, the precipitation of the carbonate component in the environment of the weakly acidic cation exchange resin which is alkaline-conditioned, and the deposition and accumulation of the precipitated carbonate component are suppressed.
 また、第1の実施形態に係る水処理装置1では炭酸種イオン成分が除去された被処理水が軟水化装置20で軟水化処理されるため、炭酸種イオン成分を含む種々の排水に対し、適切な硬度除去、炭酸除去等のスケール要因を除去した後、アルカリ性でのRO膜による排水の濃縮が可能となる。すなわち、水処理装置1は、炭酸種イオンを含む様々な排水に対し、排水濃縮操作を適切に運用することが可能となる。 Further, in the water treatment device 1 according to the first embodiment, the water to be treated from which the carbonate ion component has been removed is softened by the water softening device 20, so that various wastewater containing the carbonate ion component can be treated. After removing scale factors such as appropriate hardness removal and carbonic acid removal, it becomes possible to concentrate wastewater by an alkaline RO membrane. That is, the water treatment device 1 can appropriately operate the wastewater concentration operation for various wastewaters containing carbonate ions.
 (第2の実施形態)
 図2は、第2の実施形態に係る水処理装置1aの機能構成の例を表すブロック図である。図2に示される水処理装置1aは、ろ過装置70、第1軟水化装置80、脱炭酸装置10a、第2軟水化装置20a、昇圧ポンプ30a,90、第1RO膜濃縮装置40a、第2RO膜濃縮装置100、第1pH調整部110、第2pH調整部50a、及び第3pH調整部60aを備える。
(Second Embodiment)
FIG. 2 is a block diagram showing an example of the functional configuration of the water treatment device 1a according to the second embodiment. The water treatment device 1a shown in FIG. 2 includes a filtration device 70, a first water softening device 80, a decarbonizing device 10a, a second water softening device 20a, booster pumps 30a and 90, a first RO film concentrator 40a, and a second RO film. It includes a concentrator 100, a first pH adjusting unit 110, a second pH adjusting unit 50a, and a third pH adjusting unit 60a.
 ろ過装置70は、供給される被処理水をろ過する。ろ過装置70は、例えば、精密ろ過(MF:Microfiltration)膜、限外ろ過(UF:Ultrafiltration)膜、及びMBR(Membrane Bioreactor)法等の膜分離技術を用いて実現される。なお、ろ過装置70の前段に砂ろ過装置が設けられていても構わない。 The filtration device 70 filters the supplied water to be treated. The filtration device 70 is realized by using a membrane separation technique such as a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, and an MBR (Membrane Bioreactor) method. A sand filtration device may be provided in front of the filtration device 70.
 第1軟水化装置80は、ろ過装置70でろ過された被処理水を軟水化する。すなわち、第1軟水化装置80は、ろ過装置70でろ過された被処理水に含まれる硬度成分を陽イオンに置換して軟水を製造する。第1軟水化装置80は、例えば、弱酸性カチオン交換樹脂、又は強酸性カチオン交換樹脂等を用いて実現される。第1軟水化装置80で軟水化処理された処理水は、被処理水として通水ライン81へ排出される。 The first water softening device 80 softens the water to be treated filtered by the filtration device 70. That is, the first water softening device 80 produces soft water by substituting the hardness component contained in the water to be treated filtered by the filtering device 70 with cations. The first water softening device 80 is realized by using, for example, a weakly acidic cation exchange resin, a strongly acidic cation exchange resin, or the like. The treated water that has been softened by the first water softening device 80 is discharged to the water flow line 81 as water to be treated.
 第1軟水化装置80で弱酸性カチオン交換樹脂が用いられる場合、この弱酸性カチオン交換樹脂は、例えば、第2軟水化装置20aで用いられる弱酸性カチオン交換樹脂と同一メディア(ビーズ)であり、かつ、第2軟水化装置20aとして設けられる樹脂等と同一構造の樹脂塔に収容されるようにしてもよい。第1軟水化装置80及び第2軟水化装置20aをこのように構築し、被処理水の通水ラインを切り替えるための切替手段を設けることで、第1軟水化装置80及び第2軟水化装置20aをメリーゴーランド形式で運用することが可能となる。 When a weakly acidic cation exchange resin is used in the first water softening device 80, the weakly acidic cation exchange resin is, for example, the same medium (beads) as the weakly acidic cation exchange resin used in the second water softening device 20a. Moreover, it may be accommodated in a resin tower having the same structure as the resin or the like provided as the second water softening device 20a. By constructing the first water softening device 80 and the second water softening device 20a in this way and providing a switching means for switching the water flow line of the water to be treated, the first water softening device 80 and the second water softening device 80 It becomes possible to operate 20a in the merry-go-round format.
 より具体的には、例えば、第1樹脂塔乃至第3樹脂塔を設け、このうち2塔をそれぞれ第1軟水化装置80及び第2軟水化装置20aとして割り当て、1塔を薬液再生のために待機させるように運用する。このとき、例えば、第1樹脂塔を第2軟水化装置20aとして利用し、第2樹脂塔を第1軟水化装置80として利用し、第3樹脂塔を薬液再生させる第1通水ラインと、第3樹脂塔を第2軟水化装置20aとして利用し、第1樹脂塔を第1軟水化装置80として利用し、第2樹脂塔を薬液再生させる第2通水ラインと、第2樹脂塔を第2軟水化装置20aとして利用し、第3樹脂塔を第1軟水化装置80として利用し、第1樹脂塔を薬液再生させる第3通水ラインとを設ける。そして、切替手段により、第1通水ライン、第2通水ライン、第3通水ラインの順で接続を切り替える。 More specifically, for example, a first resin tower to a third resin tower are provided, two of which are assigned as the first water softening device 80 and the second water softening device 20a, respectively, and one tower is used for chemical liquid regeneration. Operate to stand by. At this time, for example, a first water flow line in which the first resin tower is used as the second water softening device 20a, the second resin tower is used as the first water softening device 80, and the third resin tower is regenerated with a chemical solution, The third resin tower is used as the second water softening device 20a, the first resin tower is used as the first water softening device 80, and the second water flow line for regenerating the second resin tower and the second resin tower are used. It will be used as the second water softening device 20a, the third resin tower will be used as the first water softening device 80, and a third water flow line for regenerating the first resin tower will be provided. Then, the connection is switched in the order of the first water flow line, the second water flow line, and the third water flow line by the switching means.
 また、第1軟水化装置80で強酸性カチオン交換樹脂が用いられる場合、第1軟水化装置80としての樹脂塔は複数設けられ、薬液再生等の操作と、被処理水の通水とを切り替えて運用される。なお、第1軟水化装置80のイオン交換樹脂の種類と構成とは、被処理水中のイオン成分濃度に応じて選定される。 When a strongly acidic cation exchange resin is used in the first water softening device 80, a plurality of resin towers as the first water softening device 80 are provided to switch between operations such as chemical liquid regeneration and water flow to be treated. Is operated. The type and composition of the ion exchange resin of the first water softening apparatus 80 are selected according to the concentration of ion components in the water to be treated.
 第1pH調整部110は、通水ライン81により脱炭酸装置10aへ供給される被処理水に酸を添加する。第1pH調整部110は、例えば、ポンプを備え、例えば、塩酸等の酸をポンプにより通水ライン81へ送出する。酸の添加により、被処理水は酸性となり、脱炭酸装置10aでの脱炭酸処理が促進される。 The first pH adjusting unit 110 adds an acid to the water to be treated supplied to the decarboxylation device 10a by the water flow line 81. The first pH adjusting unit 110 is provided with, for example, a pump, and for example, an acid such as hydrochloric acid is pumped to the water flow line 81. The addition of the acid makes the water to be treated acidic, and the decarboxylation treatment in the decarboxylation device 10a is promoted.
 脱炭酸装置10aは、第1の実施形態における脱炭酸装置10と同様に動作する。すなわち、脱炭酸装置10aは、第1軟水化装置80で軟水化されて通水ライン81から供給される被処理水中の溶解炭酸成分を除去する。脱炭酸装置10aは、例えば、被処理水中の炭酸種イオンを除去する機能を有する技術から選定される。脱炭酸装置10で溶存炭酸成分が除去された処理水は、被処理水として通水ライン11aへ排出される。 The decarboxylation device 10a operates in the same manner as the decarboxylation device 10 in the first embodiment. That is, the decarboxylation device 10a removes the dissolved carbonic acid component in the water to be treated, which is softened by the first water softening device 80 and supplied from the water flow line 81. The decarboxylation device 10a is selected from, for example, a technique having a function of removing carbonate ions in the water to be treated. The treated water from which the dissolved carbonic acid component has been removed by the decarboxylation device 10 is discharged to the water flow line 11a as water to be treated.
 第2pH調整部50aは、第1の実施形態における第1pH調整部50と同様に動作する。すなわち、第2pH調整部50aは、通水ライン11aにより第2軟水化装置20aへ供給される被処理水にアルカリを添加する。第2pH調整部50aは、例えば、ポンプを備え、アルカリをポンプにより通水ライン11aへ送出する。アルカリの添加により、被処理水は中和される。 The second pH adjusting unit 50a operates in the same manner as the first pH adjusting unit 50 in the first embodiment. That is, the second pH adjusting unit 50a adds alkali to the water to be treated supplied to the second water softening device 20a by the water flow line 11a. The second pH adjusting unit 50a includes, for example, a pump, and delivers alkali to the water flow line 11a by the pump. The water to be treated is neutralized by the addition of alkali.
 第2軟水化装置20aは、第1の実施形態における軟水化装置20と同様に動作する。すなわち、第2軟水化装置20aは、脱炭酸装置10aで溶存炭酸成分が除去されて通水ライン11aから供給される被処理水に含まれる硬度成分をナトリウムイオンに置換して軟水を製造する。第2軟水化装置20aは、例えば、弱酸性カチオン交換樹脂を用いて実現される。第2軟水化装置20aで軟化処理された処理水は、被処理水として通水ライン21aへ排出される。なお、第1軟水化装置80が第2軟水化装置20aと同一の構造の樹脂塔でない場合、すなわち、第1軟水化装置80及び第2軟水化装置20aをメリーゴーランド形式で運用できない場合、第2軟水化装置20aは複数設けられ、薬液再生等の操作と、被処理水の通水とが切り替えられて運用される。 The second water softening device 20a operates in the same manner as the water softening device 20 in the first embodiment. That is, the second water softening device 20a produces soft water by replacing the dissolved carbon dioxide component with the decarboxylation device 10a and replacing the hardness component contained in the water to be treated supplied from the water flow line 11a with sodium ions. The second water softening device 20a is realized by using, for example, a weakly acidic cation exchange resin. The treated water softened by the second water softening device 20a is discharged to the water flow line 21a as water to be treated. If the first water softening device 80 is not a resin tower having the same structure as the second water softening device 20a, that is, if the first water softening device 80 and the second water softening device 20a cannot be operated in the merry-go-round format, the second A plurality of water softening devices 20a are provided, and operations such as chemical liquid regeneration and water flow of water to be treated are switched and operated.
 第3pH調整部60aは、第1の実施形態における第2pH調整部60と同様に動作する。すなわち、第3pH調整部60aは、通水ライン21aにより昇圧ポンプ30aへ供給される被処理水にアルカリを添加する。第3pH調整部60aは、例えば、ポンプを備え、アルカリをポンプにより通水ライン21aへ送出する。アルカリの添加により、被処理水はアルカリ性となる。第3pH調整部60aによりアルカリが添加された被処理水は、昇圧ポンプ30aで予め設定された圧力へ昇圧され、第1RO膜濃縮装置40aへ供給される。 The third pH adjusting unit 60a operates in the same manner as the second pH adjusting unit 60 in the first embodiment. That is, the third pH adjusting unit 60a adds alkali to the water to be treated supplied to the booster pump 30a by the water flow line 21a. The third pH adjusting unit 60a includes, for example, a pump, and sends alkali to the water flow line 21a by the pump. The addition of alkali makes the water to be treated alkaline. The water to be treated to which alkali has been added by the third pH adjusting unit 60a is boosted to a preset pressure by the booster pump 30a and supplied to the first RO membrane concentrator 40a.
 第1RO膜濃縮装置40aは、第1の実施形態における第1RO膜濃縮装置40aと同様に動作する。すなわち、第1RO膜濃縮装置40aは、アルカリ性で運用され、高圧に昇圧されて供給された被処理水を、溶存塩類が除去された透過水と、溶存塩類が濃縮された濃縮水とに分離する。第1RO膜濃縮装置40aは、逆浸透膜421aにより分離された高圧の濃縮水を後段へ送出し、逆浸透膜421aにより分離された透過水を排出する。第1RO膜濃縮装置40aから送出された濃縮水は、昇圧ポンプ90で予め設定された圧力へ昇圧され、第2RO膜濃縮装置100へ供給される。なお、第1RO膜濃縮装置40aから送出された濃縮水が、例えば、少なくとも浸透圧よりも高い圧力を有している場合には、昇圧ポンプ90を設ける必要はない。 The first RO membrane concentrator 40a operates in the same manner as the first RO membrane concentrator 40a in the first embodiment. That is, the first RO membrane concentrator 40a separates the water to be treated, which is operated in an alkaline manner and is boosted to a high pressure and supplied, into permeated water from which dissolved salts have been removed and concentrated water from which dissolved salts have been concentrated. .. The first RO membrane concentrator 40a sends the high-pressure concentrated water separated by the reverse osmosis membrane 421a to the subsequent stage, and discharges the permeated water separated by the reverse osmosis membrane 421a. The concentrated water delivered from the first RO membrane concentrator 40a is boosted to a preset pressure by the booster pump 90 and supplied to the second RO membrane concentrator 100. If the concentrated water delivered from the first RO membrane concentrator 40a has, for example, a pressure higher than the osmotic pressure, it is not necessary to provide the booster pump 90.
 第2RO膜濃縮装置100は、高圧に昇圧されて供給された濃縮水を、溶存塩類が除去された透過水と、溶存塩類がさらに濃縮された濃縮水とに分離する。第2RO膜濃縮装置100は、例えば、アルカリ性で運用される。第2RO膜濃縮装置100は、例えば、圧力容器101、及び圧力容器101内に設置される逆浸透膜エレメント102を備える。逆浸透膜エレメント102は、逆浸透膜1021を備えている。 The second RO membrane concentrator 100 separates the concentrated water supplied by being pressurized to a high pressure into permeated water from which dissolved salts have been removed and concentrated water in which dissolved salts are further concentrated. The second RO membrane concentrator 100 is operated, for example, in alkaline. The second RO membrane concentrator 100 includes, for example, a pressure vessel 101 and a reverse osmosis membrane element 102 installed in the pressure vessel 101. The reverse osmosis membrane element 102 includes a reverse osmosis membrane 1021.
 なお、図2では、圧力容器101内に1つの逆浸透膜エレメント102が設置されているように表されているが、これに限定されない。例えば、圧力容器101内に設置される逆浸透膜エレメント102の数は複数であっても構わない。また、第2RO膜濃縮装置100は、複数の圧力容器101を備えていても構わない。このとき、例えば、第2RO膜濃縮装置100は、逆浸透膜エレメント102を有する複数の圧力容器101を、多段構成、多系統構成、又はツリー構成等の配置で備える。 Note that, in FIG. 2, it is shown that one reverse osmosis membrane element 102 is installed in the pressure vessel 101, but the present invention is not limited to this. For example, the number of reverse osmosis membrane elements 102 installed in the pressure vessel 101 may be plural. Further, the second RO membrane concentrator 100 may include a plurality of pressure vessels 101. At this time, for example, the second RO membrane concentrator 100 includes a plurality of pressure vessels 101 having a reverse osmosis membrane element 102 in a multi-stage configuration, a multi-system configuration, a tree configuration, or the like.
 第2RO膜濃縮装置100は、逆浸透膜1021により分離された高圧の濃縮水を後段へ送出し、逆浸透膜1021により分離された透過水を排出する。なお、第2RO膜濃縮装置100は、濃縮液内部循環を形成するようにしてもよい。すなわち、第2RO膜濃縮装置100から送出された濃縮水の一部を循環させ、第2RO膜濃縮装置100へ供給してもよい。また、第2RO膜濃縮装置100は、逆浸透膜1021により分離された透過水を通水ライン21aへ供給しても構わない。 The second RO membrane concentrator 100 sends the high-pressure concentrated water separated by the reverse osmosis membrane 1021 to the subsequent stage, and discharges the permeated water separated by the reverse osmosis membrane 1021. The second RO membrane concentrator 100 may form an internal circulation of the concentrated liquid. That is, a part of the concentrated water sent out from the second RO membrane concentrator 100 may be circulated and supplied to the second RO membrane concentrator 100. Further, the second RO membrane concentrator 100 may supply the permeated water separated by the reverse osmosis membrane 1021 to the water passage line 21a.
 以上のように、第2の実施形態では、水処理装置1aは、第1軟水化装置80での軟水化処理の後、脱炭酸装置10aで脱炭酸処理し、被処理水へアルカリを添加することで被処理水を中和する。そして、水処理装置1aは、中和した被処理水を第2軟水化装置20aの弱酸性イオン交換樹脂で軟化処理した後、被処理水へアルカリを添加することで被処理水をRO膜処理に適したpHへ調整するようにしている。これにより、第2軟水化装置20aの弱酸性イオン交換樹脂を通過した液体に含まれる樹脂排出成分によるアルカリ方向へのpH操作能を有効に活用することが可能となる。 As described above, in the second embodiment, the water treatment device 1a is subjected to the decarbonization treatment by the decarbonization device 10a after the water softening treatment by the first water softening device 80, and the alkali is added to the water to be treated. This neutralizes the water to be treated. Then, the water treatment device 1a softens the neutralized water to be treated with the weakly acidic ion exchange resin of the second water softening device 20a, and then adds an alkali to the water to be treated to perform RO film treatment on the water to be treated. It is adjusted to the pH suitable for. This makes it possible to effectively utilize the pH control ability in the alkaline direction due to the resin discharge component contained in the liquid that has passed through the weakly acidic ion exchange resin of the second water softening device 20a.
 また、アルカリ性にコンディショニングされている弱酸性カチオン交換樹脂環境下における炭酸塩成分の析出、並びに、析出した炭酸塩成分の堆積及び蓄積が抑制される。 In addition, the precipitation of carbonate components in an alkaline-conditioned weakly acidic cation exchange resin environment and the deposition and accumulation of precipitated carbonate components are suppressed.
 また、第2の実施形態に係る水処理装置1aでは炭酸種イオン成分が除去された被処理水が第2軟水化装置20aの弱酸性カチオン交換樹脂で軟水化処理されるため、炭酸種イオン成分を含む種々の排水に対し、適切な硬度除去、炭酸除去等のスケール要因を除去した後、アルカリ性でのRO膜による排水の濃縮が可能となる。すなわち、水処理装置1aは、炭酸種イオンを含む様々な排水に対し、排水濃縮操作を適切に運用することが可能となる。 Further, in the water treatment apparatus 1a according to the second embodiment, the water to be treated from which the carbonate ion component has been removed is softened with the weakly acidic cation exchange resin of the second water softening apparatus 20a, so that the carbonate ion component is treated. After removing scale factors such as appropriate hardness removal and carbon dioxide removal for various types of wastewater including water, it becomes possible to concentrate the wastewater with an alkaline RO membrane. That is, the water treatment device 1a can appropriately operate the wastewater concentration operation for various wastewaters containing carbonate ions.
 また、第2の実施形態では、水処理装置1aは、例えば、第1軟水化装置80に強酸性カチオン交換樹脂を適用可能である。第1軟水化装置80に強酸性カチオン交換樹脂を適用することで、脱炭酸装置10aの被処理水源のpH上昇を抑制した硬度除去が可能となる。これにより、第1pH調整部110による酸の供給量を軽減しつつ、第2軟水化装置20aへの硬度負荷を軽減することが可能となる。すなわち、薬品消費量を抑制して、硬度除去を進めることが可能となる。 Further, in the second embodiment, the water treatment device 1a can apply a strongly acidic cation exchange resin to, for example, the first water softening device 80. By applying the strongly acidic cation exchange resin to the first water softening device 80, it is possible to remove the hardness while suppressing the increase in pH of the water source to be treated of the decarboxylation device 10a. As a result, it is possible to reduce the hardness load on the second water softening device 20a while reducing the amount of acid supplied by the first pH adjusting unit 110. That is, it is possible to suppress the consumption of chemicals and proceed with the removal of hardness.
 また、第2の実施形態では、水処理装置1aは、例えば、第1軟水化装置80に弱酸性カチオン交換樹脂を適用可能である。第1軟水化装置80に弱酸性カチオン交換樹脂を適用し、かつ、弱酸性カチオン交換樹脂の種類、及び樹脂塔の構造を第1軟水化装置80と第2軟水化装置20aとで一致させることで、第1軟水化装置80及び第2軟水化装置20aを、メリーゴーランド形式で利用することが可能となる。これにより、第2軟水化装置20aとしての利用により軟水化効率が低下した樹脂塔を、第1軟水化装置80として切り替えて利用することが可能となる。すなわち、樹脂塔を有効に活用することが可能となる。 Further, in the second embodiment, the water treatment device 1a can apply a weakly acidic cation exchange resin to, for example, the first water softening device 80. A weakly acidic cation exchange resin is applied to the first water softening device 80, and the type of the weakly acidic cation exchange resin and the structure of the resin tower are matched between the first water softening device 80 and the second water softening device 20a. Then, the first water softening device 80 and the second water softening device 20a can be used in the merry-go-round format. This makes it possible to switch and use the resin tower whose water softening efficiency has decreased due to its use as the second water softening device 20a as the first water softening device 80. That is, the resin tower can be effectively used.
 (変形例)
 図3は、第2の実施形態に係る水処理装置1bの機能構成の変形例を表すブロック図である。図3に示される水処理装置1bは、図2に示される水処理装置1aに対し、第2RO膜濃縮装置100の後段に蒸発濃縮装置120が設けられている。
(Modification example)
FIG. 3 is a block diagram showing a modified example of the functional configuration of the water treatment device 1b according to the second embodiment. The water treatment device 1b shown in FIG. 3 is provided with an evaporation concentrator 120 after the second RO membrane concentrator 100 with respect to the water treatment device 1a shown in FIG.
 蒸発濃縮装置120は、水溶性有機物を含む濃縮液に対する熱処理プロセスを実施する熱処理装置の一例であり、例えば、蒸発濃縮を実施する装置である。蒸発濃縮装置120は、第2RO膜濃縮装置100から供給される濃縮水に由来する水分を蒸発させ、蒸発残渣と蒸発水とを発生させる。蒸発濃縮装置120は、例えば、蒸発缶を利用した構成、加熱用蒸気を利用した構成、及びスプレードライヤ等の既往のシステムを利用した構成等により実現される。蒸発缶としては、例えば、単純効用缶、及び多段効用缶が用いられてもよい。加熱用蒸気を利用した構成としては、例えば、TVR(Thermo-Vapor Recompression)形式、MVR(Mechanical Vapor Recompression)形式、及びヒートポンプ等を利用した構成が挙げられる。なお、蒸発濃縮装置120は、蒸発残渣の生成に応じ、遠心分離機、及び固液分離器の追加構成を取ってもよい。また、蒸発濃縮促進のため、消泡剤、及びスケール防止剤等の薬液添加機構を設けても構わない。 The evaporation concentrator 120 is an example of a heat treatment apparatus that carries out a heat treatment process for a concentrated liquid containing a water-soluble organic substance, and is, for example, an apparatus that carries out evaporative concentration. The evaporation concentrator 120 evaporates the water derived from the concentrated water supplied from the second RO membrane concentrator 100 to generate an evaporation residue and evaporated water. The evaporation concentrator 120 is realized by, for example, a configuration using an evaporation can, a configuration using heating steam, a configuration using a conventional system such as a spray dryer, and the like. As the evaporation can, for example, a simple effect can and a multi-stage effect can may be used. Examples of the configuration using the steam for heating include a TVR (Thermo-Vapor Recompression) type, an MVR (Mechanical Vapor Recompression) type, and a configuration using a heat pump or the like. The evaporation concentrator 120 may have an additional configuration of a centrifuge and a solid-liquid separator depending on the generation of the evaporation residue. Further, in order to promote evaporation and concentration, a chemical solution addition mechanism such as an antifoaming agent and a scale inhibitor may be provided.
 第1RO膜濃縮装置40a、及び第2RO膜濃縮装置100を蒸発濃縮装置120の前段に複数多段に配することで、被処理水の量・質の変動に対応しつつ蒸発濃縮工程、排水ゼロ化することが可能となる。 By arranging the first RO membrane concentrator 40a and the second RO membrane concentrator 100 in a plurality of stages in front of the evaporative concentrator 120, the evaporation concentrating step and wastewater elimination are eliminated while responding to fluctuations in the quantity and quality of water to be treated. It becomes possible to do.
 なお、水処理装置1a,1bは、ろ過装置70の前段に酸化処理槽、凝集処理槽、生物処理槽、及びこれらのうち少なくとも2つ以上の組み合わせをさらに有していても構わない。なお、生物処理槽で膜分離活性汚泥法等が導入されている場合には、ろ過装置70の少なくとも一部が、生物処理槽で含まれるようにしても構わない。 The water treatment devices 1a and 1b may further have an oxidation treatment tank, a coagulation treatment tank, a biological treatment tank, and a combination of at least two or more of these in front of the filtration device 70. When the membrane separation activated sludge method or the like is introduced in the biological treatment tank, at least a part of the filtration device 70 may be included in the biological treatment tank.
 以上説明した少なくとも一つの実施形態によれば、水処理装置1,1a,1bは、薬液の添加量を削減できる。また、炭酸塩成分の堆積及び蓄積が抑制されることで、堆積固形分による圧力損失、堆積固形分の再溶解による弱酸性カチオン交換樹脂層での気泡蓄積、発生した気泡の成長に伴う樹脂層の偏流化、及び/又は、樹脂層均質充填性の欠如といった、イオン交換樹脂プロセスを運用する際の健全性維持の課題を解決することができる。 According to at least one embodiment described above, the water treatment devices 1, 1a and 1b can reduce the amount of the chemical solution added. In addition, by suppressing the accumulation and accumulation of carbonate components, pressure loss due to the accumulated solids, bubble accumulation in the weakly acidic cation exchange resin layer due to redissolution of the accumulated solids, and the resin layer accompanying the growth of generated bubbles. It is possible to solve the problem of maintaining the soundness when operating the ion exchange resin process, such as the drifting of the resin layer and / or the lack of uniform packing property of the resin layer.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention as well as the invention described in the claims and the equivalent scope thereof.

Claims (11)

  1.  被処理水中の溶解炭酸成分を除去する脱炭酸装置と、
     前記溶解炭酸成分が除去された被処理水を略中性に調整する第1調整部と、
     前記略中性に調整された被処理水を軟水化する第1軟水化装置と、
     前記軟水化された被処理水をアルカリ性に調整する第2調整部と、
     前記アルカリ性に調整された被処理水を、逆浸透膜により濃縮水と透過水とに分離する逆浸透膜装置と
    を具備する水処理装置。
    A decarboxylation device that removes the dissolved carbonic acid component in the water to be treated,
    The first adjusting unit that adjusts the water to be treated from which the dissolved carbonic acid component has been removed to be substantially neutral, and
    The first water softening device that softens the water to be treated adjusted to be substantially neutral, and
    A second adjusting unit that adjusts the softened water to be treated to be alkaline, and
    A water treatment apparatus including a reverse osmosis membrane device that separates the alkalineally adjusted water to be treated into concentrated water and permeated water by a reverse osmosis membrane.
  2.  前記第1軟水化装置は、弱酸性カチオン交換樹脂により被処理水を軟水化する請求項1記載の水処理装置。 The water treatment device according to claim 1, wherein the first water softening device softens the water to be treated with a weakly acidic cation exchange resin.
  3.  被処理水をろ過するろ過装置と、
     前記ろ過された被処理水を軟水化する第2軟水化装置と、
     前記第2軟水化装置で軟水化された被処理水を酸性に調整し、前記酸性に調整した被処理水を前記脱炭酸装置へ供給する第3調整部と
    を更に具備する請求項1記載の水処理装置。
    A filtration device that filters the water to be treated,
    A second water softening device that softens the filtered water to be treated, and
    The first aspect of claim 1, further comprising a third adjusting unit which adjusts the water to be treated softened by the second water softening device to be acidic and supplies the acid-adjusted water to be treated to the decarboxylation device. Water treatment equipment.
  4.  前記第2軟水化装置は、弱酸性カチオン交換樹脂により被処理水を軟水化する請求項3記載の水処理装置。 The water treatment device according to claim 3, wherein the second water softening device softens the water to be treated with a weakly acidic cation exchange resin.
  5.  前記第2軟水化装置は、複数設けられる請求項3記載の水処理装置。 The second water softening device is the water treatment device according to claim 3, which is provided in plurality.
  6.  同一の種類の第1及び第2弱酸性カチオン交換樹脂がそれぞれ収容される、同一構造の第1及び第2樹脂塔と、
     前記第1樹脂塔を前記軟水化装置として利用し、前記第2樹脂塔を前記第2軟水化装置として利用する第1通水ラインと、
     前記第2樹脂塔を前記軟水化装置として利用し、前記第1樹脂塔を前記第2軟水化装置として利用する第2通水ラインと、
     前記第1通水ラインと、前記第2通水ラインとを切り替える切替手段と
    を更に具備する請求項3記載の水処理装置。
    The first and second resin towers of the same structure, each containing the same type of first and second weakly acidic cation exchange resins,
    A first water flow line that uses the first resin tower as the water softening device and uses the second resin tower as the second water softening device.
    A second water flow line that uses the second resin tower as the water softening device and uses the first resin tower as the second water softening device.
    The water treatment apparatus according to claim 3, further comprising a switching means for switching between the first water flow line and the second water flow line.
  7.  同一の種類の第1乃至第3弱酸性カチオン交換樹脂がそれぞれ収容される、同一構造の第1乃至第3樹脂塔と、
     前記第1樹脂塔を前記軟水化装置として利用し、前記第2樹脂塔を前記第2軟水化装置として利用し、前記第3樹脂塔を薬液再生させる第1通水ラインと、
     前記第3樹脂塔を前記軟水化装置として利用し、前記第1樹脂塔を前記第2軟水化装置として利用し、前記第2樹脂塔を薬液再生させる第2通水ラインと、
     前記第2樹脂塔を前記軟水化装置として利用し、前記第3樹脂塔を前記第2軟水化装置として利用し、前記第1樹脂塔を薬液再生させる第3通水ラインと、
     第1通水ライン、第2通水ライン、第3通水ラインの順で接続を切り替える切替手段とを更に具備する請求項3記載の水処理装置。
    The first to third resin towers of the same structure, each containing the same type of first to third weakly acidic cation exchange resins,
    A first water flow line that uses the first resin tower as the water softening device, uses the second resin tower as the second water softening device, and regenerates the third resin tower with a chemical solution.
    A second water flow line that uses the third resin tower as the water softening device, uses the first resin tower as the second water softening device, and regenerates the second resin tower with a chemical solution.
    A third water flow line that uses the second resin tower as the water softening device, uses the third resin tower as the second water softening device, and regenerates the first resin tower with a chemical solution.
    The water treatment apparatus according to claim 3, further comprising a switching means for switching the connection in the order of the first water flow line, the second water flow line, and the third water flow line.
  8.  前記逆浸透膜装置は、アルカリ性で運用される請求項1記載の水処理装置。 The water treatment device according to claim 1, wherein the reverse osmosis membrane device is operated in an alkaline manner.
  9.  前記逆浸透膜装置で分離された濃縮水に熱処理を施すことで、前記濃縮水に含まれる水分を蒸発させる蒸発濃縮装置をさらに具備する請求項1記載の水処理装置。 The water treatment device according to claim 1, further comprising an evaporation concentration device that evaporates the water contained in the concentrated water by subjecting the concentrated water separated by the reverse osmosis membrane device to heat treatment.
  10.  前記分離された濃縮水を、逆浸透膜により第2濃縮水と第2透過水とに分離する第2逆浸透膜装置と、
     前記第2逆浸透膜装置で分離された第2濃縮水に熱処理を施すことで、前記第2濃縮水に含まれる水分を蒸発させる蒸発濃縮装置と
    を更に具備する請求項9記載の水処理装置。
    A second reverse osmosis membrane device that separates the separated concentrated water into a second concentrated water and a second permeated water by a reverse osmosis membrane.
    The water treatment apparatus according to claim 9, further comprising an evaporation concentrator that evaporates the water contained in the second concentrated water by heat-treating the second concentrated water separated by the second reverse osmosis membrane apparatus. ..
  11.  前記逆浸透膜装置で分離された濃縮水が、前記軟水化装置を再生するための再生液として用いられる請求項9記載の水処理装置。 The water treatment device according to claim 9, wherein the concentrated water separated by the reverse osmosis membrane device is used as a regenerating liquid for regenerating the water softening device.
PCT/JP2020/016773 2019-05-07 2020-04-16 Water treatment apparatus WO2020226039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019087585A JP7237714B2 (en) 2019-05-07 2019-05-07 water treatment equipment
JP2019-087585 2019-05-07

Publications (1)

Publication Number Publication Date
WO2020226039A1 true WO2020226039A1 (en) 2020-11-12

Family

ID=73044372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016773 WO2020226039A1 (en) 2019-05-07 2020-04-16 Water treatment apparatus

Country Status (2)

Country Link
JP (1) JP7237714B2 (en)
WO (1) WO2020226039A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130196U (en) * 1987-02-13 1988-08-25
JPH01245893A (en) * 1987-12-07 1989-10-02 Fujitsu Ltd Method for making ultrapure water
JPH02227185A (en) * 1989-03-01 1990-09-10 Nippon Telegr & Teleph Corp <Ntt> Removal of dissolved silica
JPH11197649A (en) * 1998-01-08 1999-07-27 Kurita Water Ind Ltd Production of pure water
JP2000070933A (en) * 1998-08-27 2000-03-07 Kurita Water Ind Ltd Production of pure water
JP2000271570A (en) * 1999-03-25 2000-10-03 Kurita Water Ind Ltd Production of pure water
JP2003302389A (en) * 2002-04-10 2003-10-24 Kurita Water Ind Ltd Method and apparatus for analyzing boric acid and method and apparatus for manufacturing ultrapure water
JP2005118712A (en) * 2003-10-17 2005-05-12 Nomura Micro Sci Co Ltd Pure water manufacturing method
JP2011189242A (en) * 2010-03-12 2011-09-29 Miura Co Ltd Water treatment system
JP2019042651A (en) * 2017-08-31 2019-03-22 オルガノ株式会社 Treatment device and treatment method of hardness component-containing water

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130196U (en) * 1987-02-13 1988-08-25
JPH01245893A (en) * 1987-12-07 1989-10-02 Fujitsu Ltd Method for making ultrapure water
JPH02227185A (en) * 1989-03-01 1990-09-10 Nippon Telegr & Teleph Corp <Ntt> Removal of dissolved silica
JPH11197649A (en) * 1998-01-08 1999-07-27 Kurita Water Ind Ltd Production of pure water
JP2000070933A (en) * 1998-08-27 2000-03-07 Kurita Water Ind Ltd Production of pure water
JP2000271570A (en) * 1999-03-25 2000-10-03 Kurita Water Ind Ltd Production of pure water
JP2003302389A (en) * 2002-04-10 2003-10-24 Kurita Water Ind Ltd Method and apparatus for analyzing boric acid and method and apparatus for manufacturing ultrapure water
JP2005118712A (en) * 2003-10-17 2005-05-12 Nomura Micro Sci Co Ltd Pure water manufacturing method
JP2011189242A (en) * 2010-03-12 2011-09-29 Miura Co Ltd Water treatment system
JP2019042651A (en) * 2017-08-31 2019-03-22 オルガノ株式会社 Treatment device and treatment method of hardness component-containing water

Also Published As

Publication number Publication date
JP7237714B2 (en) 2023-03-13
JP2020182899A (en) 2020-11-12

Similar Documents

Publication Publication Date Title
CN108218087B (en) System for treating high-salt-content wastewater based on multistage electrically-driven ionic membrane
KR101916557B1 (en) Ultrapure water production apparatus and ultrapure water production method
EA011830B1 (en) Method (embodiments) for liquid treatment by reverse osmosis under acidic conditions
JP7366527B2 (en) water treatment equipment
JP2017205703A (en) Water treatment method and equipment, and method for regenerating ion exchange resin
EP1894612B1 (en) Method for purifying water by means of a membrane filtration unit
JP2004000919A (en) Apparatus for producing desalted water
JP2007307561A (en) High-purity water producing apparatus and method
JP7500483B2 (en) Water treatment system and water treatment method
WO2020226039A1 (en) Water treatment apparatus
JP7106465B2 (en) Water treatment system and water treatment method
JP2021007927A (en) Regeneration process of water softener, and manufacturing apparatus of desalted water
JP7118823B2 (en) Water treatment system and water treatment method
KR101305747B1 (en) Hybrid Seawater Desalination Apparatus and Process without Concentrate Discharge in Reverse Osmosis Process
JP2009160500A (en) Ultrapure water production method and apparatus
JP7044848B1 (en) Liquid treatment equipment, pure water production system and liquid treatment method
CN115485245A (en) Method for treating wastewater, method for producing ultrapure water, and wastewater treatment apparatus
JPH0380991A (en) Method and apparatus for treating supplied water to boiler
US11071949B2 (en) Reverse osmosis or nanofiltration process for cleaning water
JP2002001069A (en) Method for producing pure water
US20130082001A1 (en) Fresh Water Generating Apparatus and Fresh Water Generating Method
JP2019107592A (en) Method for producing permeation water, water treatment device and method for operating the water treatment device
WO2021117309A1 (en) Water treatment device
RU62923U1 (en) WATER TREATMENT PLANT
WO2023067912A1 (en) Electrode water recovery method and method for producing ultrapure water or pharmaceutical water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802336

Country of ref document: EP

Kind code of ref document: A1