JP2001062454A - Apparatus for production of electrolytic water - Google Patents

Apparatus for production of electrolytic water

Info

Publication number
JP2001062454A
JP2001062454A JP24219299A JP24219299A JP2001062454A JP 2001062454 A JP2001062454 A JP 2001062454A JP 24219299 A JP24219299 A JP 24219299A JP 24219299 A JP24219299 A JP 24219299A JP 2001062454 A JP2001062454 A JP 2001062454A
Authority
JP
Japan
Prior art keywords
ultrapure water
water
electrolytic
catalyst
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24219299A
Other languages
Japanese (ja)
Inventor
Osamu Ota
治 太田
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP24219299A priority Critical patent/JP2001062454A/en
Publication of JP2001062454A publication Critical patent/JP2001062454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove a trace amount of decomposable materials included in ultrapure water and to obtain electrolytic water having a high washing effect by bringing the ultrapure water of ultrapure water supply piping into contact with the oxidation reduction catalyst of a catalyst reaction section and filtering the ultrapure water with a filter device, then electrolyzing the ultrapure water with an electrolytic cell. SOLUTION: The ultrapure water is first supplied by a pump 1 to supply piping 2. The supply piping 2 is connected to the catalyst reaction section 3 where the ultrapure water is brought into contact with the oxidation reduction catalyst. The ultrapure water subjected to the catalyst reaction is filtered in the filter device 4. In succession, the ultrapure water is introduced to the electrolytic cell 5 and is electrolyzed. Medicinal liquids, such as acids and alkalis, are injected from a medicinal liquid tank 6 and a chemical injecting pump 7 into the electrolytic water at this time. As a result, the decomposable materials included in the ultrapure water are efficiently removed and the respective decomposition of the oxidizing materials in electrolytic anode water and the reducing materials in the electrolytic cathode water is suppressed and the electrolytic water having the high washing effect is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解水の製造装置
に関する。さらに詳しくは、本発明は、超純水中に含ま
れる微量の分解性物質を除去し、電解アノード水中の酸
化性物質及び電解カソード水中の還元性物質の分解を抑
制し、洗浄効果の高い電解水を得ることができる電解水
の製造装置に関する。
The present invention relates to an apparatus for producing electrolyzed water. More specifically, the present invention removes a small amount of decomposable substances contained in ultrapure water, suppresses decomposition of oxidizing substances in electrolytic anode water and reducing substances in electrolytic cathodic water, and provides a high cleaning effect of electrolytic solution. The present invention relates to an apparatus for producing electrolyzed water from which water can be obtained.

【0002】[0002]

【従来の技術】半導体用シリコン基板、液晶用ガラス基
板、フォトマスク用石英基板などの電子材料の表面から
異物を除去することは、製品の品質と歩留まりを確保す
る上で極めて重要であり、この目的のためにウェット洗
浄が広く行われている。有機物汚染や金属汚染の除去に
は、強い酸化力を有する洗浄液の適用が有効であり、硫
酸と過酸化水素水の混合液(SPM洗浄液)や、塩酸と
過酸化水素水と超純水の混合液(SC2洗浄液)などに
よる高温洗浄が採用され、また、微粒子汚染の除去に
は、アンモニア水と過酸化水素水と超純水の混合液(A
PM洗浄液)などによる高温洗浄が採用されていた。近
年、洗浄工程の簡略化、省資源化、室温化が求められる
ようになり、溶存物質が極めて低濃度でありながら、電
子材料表面の汚染物質の除去に効果を発揮する電解水が
着目され、電子材料表面の洗浄に用いられるようになっ
てきた。イオン交換膜やイオン交換樹脂を備えた電解槽
を用いて超純水を電解すると、これらのイオン交換体は
水分子の解離を促進し、水素イオンとヒドロキシルイオ
ンを電極に継続的に供給するので、陽極側では酸化性を
有する電解アノード水が生成し、陰極側では還元性を有
する電解カソード水が生成する。電解アノード水は、シ
リコンウェーハなどの電子材料表面に付着した金属汚染
や有機物汚染の除去に効果があり、電解カソード水は、
電子材料表面に付着した微粒子汚染の除去に効果があ
る。電解水による洗浄は、室温で行うことができ、薬液
使用量やリンス水量を低減することができる。しかし、
電解水による洗浄では、電子材料表面に付着した不純物
の除去が十分ではない場合があり、このためにより高い
洗浄効果を有する電解水が求められていた。
2. Description of the Related Art It is extremely important to remove foreign matter from the surface of electronic materials such as silicon substrates for semiconductors, glass substrates for liquid crystals, and quartz substrates for photomasks, in order to ensure product quality and yield. Wet cleaning is widely performed for the purpose. To remove organic and metal contamination, it is effective to use a cleaning solution that has a strong oxidizing power, such as a mixture of sulfuric acid and hydrogen peroxide (SPM cleaning solution) or a mixture of hydrochloric acid, hydrogen peroxide and ultrapure water. High-temperature cleaning with a liquid (SC2 cleaning liquid) or the like is employed. To remove particulate contamination, a mixed solution of ammonia water, hydrogen peroxide water and ultrapure water (A
High-temperature cleaning using a PM cleaning solution) or the like has been employed. In recent years, simplification of the washing process, resource saving, and room temperature have been demanded, and attention has been paid to electrolytic water that has an extremely low concentration of dissolved substances and is effective in removing contaminants on the surface of electronic materials. It has come to be used for cleaning the surface of electronic materials. When ultrapure water is electrolyzed using an electrolytic cell equipped with an ion exchange membrane or ion exchange resin, these ion exchangers promote the dissociation of water molecules and continuously supply hydrogen ions and hydroxyl ions to the electrodes. On the anode side, oxidizing electrolytic anode water is generated, and on the cathode side, reducing electrolytic cathode water is generated. Electrolytic anode water is effective in removing metal contamination and organic contamination adhering to the surface of electronic materials such as silicon wafers.
It is effective in removing fine particle contamination attached to the electronic material surface. Washing with electrolytic water can be performed at room temperature, and the amount of chemical solution used and the amount of rinse water can be reduced. But,
In the case of cleaning with electrolytic water, there is a case where impurities attached to the surface of the electronic material are not sufficiently removed. Therefore, electrolytic water having a higher cleaning effect has been demanded.

【0003】[0003]

【発明が解決しようとする課題】本発明は、超純水中に
含まれる微量の分解性物質を除去し、電解アノード水中
の酸化性物質及び電解カソード水中の還元性物質の分解
を抑制し、洗浄効果の高い電解水を得ることができる電
解水の製造装置を提供することを目的としてなされたも
のである。
SUMMARY OF THE INVENTION The present invention removes a trace amount of decomposable substances contained in ultrapure water and suppresses decomposition of oxidizing substances in electrolytic anode water and reducing substances in electrolytic cathodic water, An object of the present invention is to provide an apparatus for producing electrolyzed water that can obtain electrolyzed water having a high cleaning effect.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、電解水の原水で
ある超純水中に洗浄効果を低下させる微量物質が存在
し、この微量物質は酸化還元触媒により効果的に除去す
ることができ、微量物質を除去した超純水から製造され
る電解水は高い洗浄効果を有することを見いだして、こ
の知見に基づいて本発明を完成するに至った。すなわ
ち、本発明は、(1)(A)超純水が供給される超純水供
給配管、(B)超純水供給配管に連結し、超純水を酸化還
元触媒と接触させる触媒反応部、(C)触媒反応部を経た
超純水をろ過するろ過装置及び(D)ろ過装置から排出さ
れる超純水を電解する電解セルを有することを特徴とす
る電解水の製造装置、を提供するものである。さらに、
本発明の好ましい態様として、(2)酸化還元触媒が、
パラジウム担持樹脂である第1項記載の電解水の製造装
置、(3)超純水を酸化還元触媒と接触させる触媒反応
部が、触媒充填塔である第1項記載の電解水の製造装
置、(4)触媒充填塔が、パラジウム担持樹脂とアニオ
ン交換樹脂又はカチオン交換樹脂を、混合状態又は積層
状態で充填した塔である第3項記載の電解水の製造装
置、(5)触媒充填塔が、パラジウム担持樹脂とアニオ
ン交換樹脂とカチオン交換樹脂を、混合状態又は積層状
態で充填した塔である第3項記載の電解水の製造装置、
(6)触媒充填塔が、パラジウム担持樹脂塔とアニオン
交換樹脂塔又はカチオン交換樹脂塔をこの順に直列に接
続したものである第3項記載の電解水の製造装置、
(7)触媒充填塔が、パラジウム担持樹脂塔とカチオン
交換樹脂塔とアニオン交換樹脂塔をこの順に直列に接続
したものである第3項記載の電解水の製造装置、 (8)触媒充填塔が、パラジウム担持樹脂塔と、カチオ
ン交換樹脂とアニオン交換樹脂の混床塔をこの順に直列
に接続したものである第3項記載の電解水の製造装置、
及び、(9)ろ過装置が、限外ろ過膜(UF)、精密ろ
過膜(MF)及び逆浸透膜(RO)のいずれかを備え
た、又は、これらの膜を組み合わせた装置である第1項
記載の電解水の製造装置、を挙げることができる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, there is a trace substance which reduces the cleaning effect in ultrapure water which is raw water of electrolyzed water. The present inventors have found that this trace substance can be effectively removed by an oxidation-reduction catalyst, and that electrolyzed water produced from ultrapure water from which the trace substance has been removed has a high cleaning effect. Was completed. That is, the present invention provides (1) (A) a ultrapure water supply pipe through which ultrapure water is supplied, and (B) a catalyst reaction section which is connected to the ultrapure water supply pipe to bring the ultrapure water into contact with the oxidation-reduction catalyst. And (C) an apparatus for producing electrolyzed water, comprising: a filtration device for filtering ultrapure water that has passed through the catalytic reaction section; and (D) an electrolysis cell for electrolyzing ultrapure water discharged from the filtration device. Is what you do. further,
In a preferred embodiment of the present invention, (2) the redox catalyst comprises:
2. The apparatus for producing electrolyzed water according to item 1, wherein the apparatus is a palladium-supported resin; (3) the apparatus for producing electrolyzed water according to item 1, wherein the catalyst reaction section for bringing ultrapure water into contact with an oxidation-reduction catalyst is a catalyst packed tower; (4) The apparatus for producing electrolyzed water according to (3), wherein the catalyst-packed tower is a tower filled with a palladium-supported resin and an anion exchange resin or a cation exchange resin in a mixed state or a stacked state. The apparatus for producing electrolyzed water according to claim 3, which is a column packed with a palladium-supported resin, an anion exchange resin, and a cation exchange resin in a mixed state or a stacked state,
(6) The apparatus for producing electrolyzed water according to (3), wherein the catalyst-packed tower has a palladium-carrying resin tower and an anion exchange resin tower or a cation exchange resin tower connected in series in this order.
(7) The apparatus for producing electrolyzed water according to (3), wherein the catalyst-packed tower comprises a palladium-supporting resin tower, a cation exchange resin tower, and an anion exchange resin tower connected in series in this order. 4. The apparatus for producing electrolyzed water according to claim 3, wherein a palladium-supported resin tower, and a mixed bed tower of a cation exchange resin and an anion exchange resin are connected in series in this order.
And (9) the first device, wherein the filtration device includes one of an ultrafiltration membrane (UF), a microfiltration membrane (MF), and a reverse osmosis membrane (RO), or is a device in which these membranes are combined. And an apparatus for producing electrolyzed water described in the section.

【0005】[0005]

【発明の実施の形態】本発明の電解水の製造装置は、
(A)超純水が供給される超純水供給配管、(B)超純水供
給配管に連結し、超純水を酸化還元触媒と接触させる触
媒反応部、(C)触媒反応部を経た超純水をろ過するろ過
装置及び(D)ろ過装置から排出される超純水を電解する
電解セルを有するものである。なお、本発明装置で処理
する超純水とは、通常、市水・工水などの原水を凝集沈
殿、ろ過などからなる前処理系で処理した後、イオン交
換、脱気、逆浸透膜処理などを行う一次純水系で処理
し、さらに二次純水系で紫外線酸化、イオン交換、限外
ろ過膜などの処理を行うことにより得られるものであ
る。図1は、本発明装置の一態様の工程系統図である。
本態様においては、超純水は超純水送給ポンプ1により
超純水供給配管2に供給される。超純水送給ポンプに特
に制限はなく、例えば、ピストンポンプ、プランジャー
ポンプ、ブースターポンプ、タービンポンプ、ボリュー
トポンプなどを挙げることができる。これらの中で、ブ
ースターポンプを好適に用いることができる。本発明装
置において、超純水供給配管2は、超純水を酸化還元触
媒と接触させる触媒反応部3に連結される。本発明装置
において使用する酸化還元触媒に特に制限はなく、例え
ば、白金触媒、銀触媒、パラジウム触媒などを挙げるこ
とができる。これらの中で、パラジウム触媒を特に好適
に使用することができる。パラジウム触媒は、金属パラ
ジウム、酸化パラジウム、水素化パラジウムなどのほか
に、イオン交換樹脂、アルミナ、活性炭、ゼオライトな
どの担体にパラジウムを担持させた触媒を用いることが
できる。パラジウム触媒の形状に特に制限はなく、例え
ば、粉末状、粒状、ペレット状など、いずれの形状でも
使用することができる。粉末状の触媒は、反応槽を設け
て反応槽に適当量を添加することができ、あるいは、反
応塔などに充填して流動床として通水処理することもで
きる。粒状又はペレット状の触媒は、反応塔などに充填
して触媒充填塔とし、連続的に通水処理することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The apparatus for producing electrolyzed water of the present invention comprises:
(A) an ultrapure water supply pipe through which ultrapure water is supplied, (B) a catalyst reaction section connected to the ultrapure water supply pipe and bringing the ultrapure water into contact with the oxidation-reduction catalyst, and (C) a catalyst reaction section It has a filtration device for filtering ultrapure water and (D) an electrolysis cell for electrolyzing ultrapure water discharged from the filtration device. The ultrapure water to be treated by the apparatus of the present invention is usually a raw water such as city water or industrial water, which is treated by a pretreatment system including coagulation sedimentation, filtration, and the like, followed by ion exchange, deaeration, and reverse osmosis membrane treatment. And the like, and then a secondary pure water system is used to perform treatments such as ultraviolet oxidation, ion exchange, and ultrafiltration membrane. FIG. 1 is a process flow diagram of one embodiment of the apparatus of the present invention.
In this embodiment, the ultrapure water is supplied to the ultrapure water supply pipe 2 by the ultrapure water supply pump 1. There is no particular limitation on the ultrapure water supply pump, and examples thereof include a piston pump, a plunger pump, a booster pump, a turbine pump, and a volute pump. Among them, a booster pump can be preferably used. In the apparatus of the present invention, the ultrapure water supply pipe 2 is connected to a catalytic reaction section 3 for bringing the ultrapure water into contact with the oxidation-reduction catalyst. The oxidation-reduction catalyst used in the apparatus of the present invention is not particularly limited, and examples thereof include a platinum catalyst, a silver catalyst, and a palladium catalyst. Among them, a palladium catalyst can be particularly preferably used. As the palladium catalyst, besides metal palladium, palladium oxide, palladium hydride, and the like, a catalyst in which palladium is supported on a carrier such as an ion exchange resin, alumina, activated carbon, or zeolite can be used. The shape of the palladium catalyst is not particularly limited, and for example, any shape such as powder, granule, and pellet can be used. The powdery catalyst can be provided with a reaction tank and an appropriate amount can be added to the reaction tank, or can be filled in a reaction tower or the like and subjected to water treatment as a fluidized bed. The granular or pelletized catalyst can be packed in a reaction tower or the like to form a catalyst packed tower, and can be continuously subjected to water flow treatment.

【0006】パラジウム担持触媒の場合、パラジウムの
担持量は0.1〜10重量%であることが好ましい。パ
ラジウム担持触媒の中で、アニオン交換樹脂にパラジウ
ムを担持させたパラジウム担持樹脂は、少ないパラジウ
ムの担持量で優れた効果を発揮するので、特に好適に使
用することができる。アニオン交換樹脂にパラジウムを
担持させたパラジウム担持樹脂は、アニオン交換樹脂を
反応塔に充填し、塩化パラジウムの酸性溶液を通水する
ことにより調製することができる。さらに、この反応塔
にホルマリンなどの還元剤を加えて還元することによ
り、金属パラジウムを担持した触媒とすることができ
る。超純水を触媒反応部において酸化還元触媒と接触さ
せることにより、超純水中に含まれる電解水中の酸化性
物質及び還元性物質の分解を促進する微量の分解性物質
を除去することができる。酸化性物質及び還元性物質の
分解を促進する微量の分解性物質としては、例えば、超
純水製造システム中の紫外線照射装置で発生する水の分
解生成物であるOHラジカル、Hラジカルなどが考えら
れる。本発明装置においては、触媒充填塔にパラジウム
担持樹脂とイオン交換樹脂を共存させることができる。
パラジウム担持樹脂とイオン交換樹脂の共存の態様に特
に制限はなく、例えば、触媒充填塔にパラジウム担持樹
脂とアニオン交換樹脂又はパラジウム担持樹脂とカチオ
ン交換樹脂を混合状態又は積層状態で充填することがで
き、触媒充填塔にパラジウム担持樹脂とアニオン交換樹
脂とカチオン交換樹脂を混合状態又は積層状態で充填す
ることができ、パラジウム担持樹脂塔とアニオン交換樹
脂塔又はカチオン交換樹脂塔をこの順に直列に接続する
こともでき、パラジウム担持触媒塔とカチオン交換樹脂
塔とアニオン交換樹脂塔をこの順に直列に接続すること
もでき、あるいは、パラジウム担持触媒塔と、カチオン
交換樹脂とアニオン交換樹脂の混床塔をこの順に直列に
接続することもできる。パラジウム担持樹脂とイオン交
換樹脂を共存させることにより、パラジウム担持樹脂か
ら極微量のパラジウムイオンが溶出するとしてもイオン
交換樹脂で捕捉することができ、また、超純水送給ポン
プからイオン成分が溶出するとしてもイオン交換樹脂で
捕捉することができ、超純水の高純度を維持することが
できる。
In the case of a supported palladium catalyst, the amount of supported palladium is preferably 0.1 to 10% by weight. Among the palladium-supported catalysts, a palladium-supported resin in which palladium is supported on an anion exchange resin exhibits an excellent effect with a small amount of palladium supported, and thus can be particularly preferably used. The palladium-supported resin in which palladium is supported on an anion exchange resin can be prepared by filling a reaction tower with an anion exchange resin and passing an acidic solution of palladium chloride through water. Furthermore, by reducing the reaction tower by adding a reducing agent such as formalin, a catalyst carrying metal palladium can be obtained. By contacting the ultrapure water with the oxidation-reduction catalyst in the catalytic reaction section, it is possible to remove trace amounts of decomposable substances that promote the decomposition of oxidizing substances and reducing substances in the electrolytic water contained in the ultrapure water. . Examples of trace amounts of decomposable substances that promote the decomposition of oxidizing substances and reducing substances include, for example, OH radicals and H radicals, which are decomposition products of water generated by an ultraviolet irradiation device in an ultrapure water production system. Can be In the device of the present invention, the palladium-carrying resin and the ion-exchange resin can coexist in the catalyst packed tower.
The mode of coexistence of the palladium-supported resin and the ion-exchange resin is not particularly limited.For example, a palladium-supported resin and an anion-exchange resin or a palladium-supported resin and a cation-exchange resin can be filled in a mixed state or a stacked state in a catalyst packed tower. The palladium-carrying resin tower, anion-exchange resin and cation-exchange resin tower can be packed in a mixed state or a stacked state, and the palladium-carrying resin tower and the anion-exchange resin tower or the cation-exchange resin tower are connected in series in this order. It is also possible to connect a palladium-supported catalyst tower, a cation exchange resin tower and an anion exchange resin tower in series in this order, or a palladium-supported catalyst tower and a mixed bed tower of a cation exchange resin and an anion exchange resin. They can be connected in series in order. By coexisting palladium-supported resin and ion-exchange resin, even if a very small amount of palladium ion elutes from the palladium-supported resin, it can be captured by the ion-exchange resin, and ion components elute from the ultrapure water feed pump Even so, it can be captured by the ion exchange resin, and high purity of ultrapure water can be maintained.

【0007】本発明装置において、触媒反応部を経た超
純水は、ろ過装置4においてろ過される。ろ過装置に使
用するろ過膜に特に制限はなく、例えば、限外ろ過膜
(UF)、精密ろ過膜(MF)、逆浸透膜(RO)など
を挙げることができる。これらのろ過膜は、1種を単独
で用いることができ、あるいは、2種以上を組み合わせ
て用いることもできる。ろ過装置を用いて超純水をろ過
することにより、超純水送給ポンプ、パラジウム担持樹
脂、カチオン交換樹脂、アニオン交換樹脂などに由来す
る微粒子を除去して、超純水の高純度を維持することが
できる。本発明装置においては、ろ過装置から排出され
る超純水を電解セル5に導き、超純水の電解を行う。使
用する電解セルの形態に特に制限はなく、例えば、アノ
ード室とカソード室を1枚の隔膜で仕切った2槽式構造
とすることができ、あるいは、2枚のイオン交換膜を用
いてアノード室、カソード室及び中間室に仕切り、中間
室にイオン交換樹脂を充填した3槽式構造とすることも
できる。イオン交換膜とイオン交換樹脂は、水分子の解
離を促進し、H+イオンとOH-イオンを電極に連続的に
供給するので、支持電解質を全く含有しない、酸化性物
質を含む電解アノード水と、還元性物質を含む電解カソ
ード水を製造することができる。使用する電極の材質に
特に制限はないが、陽極としては、例えば、白金、イリ
ジウムや、これらをチタンなどの基材上に被覆したもの
などを好適に使用することができ、陰極としては、例え
ば、ステンレス鋼、アルミニウム、銀、あるいは、炭
素、フッ素樹脂などの基材上に白金を担持させたものな
どを好適に使用することができる。本発明装置において
は、薬液槽6と薬注ポンプ7を備え、薬液注入点を設け
て、電解水に酸、アルカリなどの薬液を注入することが
できる。薬注ポンプの代わりに、窒素ガスなどの不活性
ガスにより圧送することもできる。本発明装置におい
て、電解セルと電解アノード水の配管は、接液部がすべ
て耐酸化性の材料で構成されることが好ましい。耐酸化
性の材料としては、例えば、フッ素樹脂、石英、表面を
不働態化した金属などを挙げることができる。図2は、
本発明装置の(B)触媒反応部の他の態様の工程系統図で
ある。本態様においては、触媒充填塔8に、パラジウム
担持樹脂層9及びカチオン交換樹脂とアニオン交換樹脂
の混合層10が、この順に積層状態で充填されている。
図3は、本発明装置の(B)触媒反応部の他の態様の工程
系統図である。本態様においては、触媒充填塔が、パラ
ジウム担持樹脂塔11とカチオン交換樹脂とアニオン交
換樹脂の混床塔12からなり、両者がこの順に直列に接
続されている。本発明装置においては、超純水中に含ま
れる電解水中の洗浄力を低下させる微量の分解性物質を
除去し、酸化還元触媒からパラジウムなどの溶出があっ
た場合でも、イオン交換樹脂を存在させることにより捕
捉することができ、また、触媒反応部から微粒子が流出
することがあっても、ろ過装置において捕捉し除去する
ことができる。本発明の電解水の製造装置を用いること
により、電子材料などの表面の汚染物を効率よく除去し
得る優れた洗浄力を有する電解水を簡便に製造すること
ができる。
[0007] In the apparatus of the present invention, the ultrapure water that has passed through the catalytic reaction section is filtered in the filtration device 4. There is no particular limitation on the filtration membrane used in the filtration device, and examples thereof include an ultrafiltration membrane (UF), a microfiltration membrane (MF), and a reverse osmosis membrane (RO). One of these filtration membranes can be used alone, or two or more can be used in combination. Filtration of ultrapure water using a filtration device removes particles derived from ultrapure water feed pump, palladium-supported resin, cation exchange resin, anion exchange resin, etc., and maintains high purity of ultrapure water can do. In the apparatus of the present invention, ultrapure water discharged from the filtration device is guided to the electrolysis cell 5 to perform electrolysis of the ultrapure water. There is no particular limitation on the form of the electrolytic cell to be used. For example, a two-chamber structure in which an anode chamber and a cathode chamber are separated by one diaphragm, or an anode chamber using two ion exchange membranes can be used. Alternatively, a three-chamber structure in which the cathode chamber and the intermediate chamber are partitioned and the intermediate chamber is filled with an ion exchange resin may be employed. Since the ion exchange membrane and the ion exchange resin promote the dissociation of water molecules and continuously supply H + ions and OH - ions to the electrode, the anode water containing an oxidizing substance containing no oxidizing substance and containing no supporting electrolyte is used. And an electrolytic cathode water containing a reducing substance. The material of the electrode to be used is not particularly limited, but as the anode, for example, platinum, iridium, or those obtained by coating these on a substrate such as titanium can be suitably used, and as the cathode, for example, For example, a material in which platinum is supported on a base material such as stainless steel, aluminum, silver, or carbon or fluororesin can be suitably used. In the apparatus of the present invention, a chemical solution tank 6 and a chemical injection pump 7 are provided, and a chemical solution injection point is provided so that a chemical solution such as an acid or an alkali can be injected into the electrolytic water. Instead of the chemical injection pump, it can be pumped by an inert gas such as nitrogen gas. In the apparatus of the present invention, it is preferable that all the liquid contact portions of the piping of the electrolytic cell and the electrolytic anode water are made of an oxidation-resistant material. Examples of the oxidation-resistant material include a fluorine resin, quartz, and a metal whose surface is passivated. FIG.
It is a process system diagram of another mode of (B) catalyst reaction part of the device of the present invention. In this embodiment, the catalyst packed tower 8 is packed with a palladium-carrying resin layer 9 and a mixed layer 10 of a cation exchange resin and an anion exchange resin in a stacked state in this order.
FIG. 3 is a process system diagram of another embodiment of the catalyst reaction section (B) of the apparatus of the present invention. In this embodiment, the catalyst-packed tower comprises a palladium-carrying resin tower 11 and a mixed-bed tower 12 of a cation exchange resin and an anion exchange resin, both of which are connected in series in this order. In the apparatus of the present invention, a trace amount of decomposable substances that reduce the detergency in the electrolyzed water contained in the ultrapure water are removed, and even when palladium or the like is eluted from the oxidation-reduction catalyst, the ion exchange resin is present. Thus, even if fine particles flow out of the catalytic reaction section, the fine particles can be captured and removed by the filtration device. By using the apparatus for producing electrolyzed water of the present invention, electrolyzed water having an excellent detergency capable of efficiently removing surface contaminants such as electronic materials can be easily produced.

【0008】[0008]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1(電解カソード水による微粒子の除去) 熱酸化膜付きの6インチシリコンウェーハを、オゾン5
mg/Lを溶解した超純水に3分間浸漬したのち、超純水
で5分間リンスすることにより予備洗浄した。次いで、
このシリコンウェーハをアルミナ(Al23)粒子を含
む溶液に浸漬することにより強制汚染した。汚染シリコ
ンウェーハ表面の微粒子数を、表面異物検査装置[(株)
トプコン、WM−1500]を用いて測定したところ、
直径0.2〜0.5μmの微粒子が11,019個、直径
0.5〜1.0μmの微粒子が32,179個、直径1.0
μm以上の微粒子が197個であった。超純水供給配管
より、比抵抗18.2MΩ・cm、TOC濃度0.9μg/
Lの超純水を、パラジウム1重量%担持アニオン交換樹
脂と強塩基性アニオン交換樹脂を容量比1:9で混合充
填した触媒充填塔に、触媒樹脂の面速度900hr-1で通
水した。なお、超純水は、原水を凝集沈殿、ろ過した
後、イオン交換装置で脱塩し逆浸透膜処理して得た一次
純水を、紫外線酸化、脱気、限外ろ過膜処理して得たも
のである。触媒充填塔の流出水を限外ろ過装置に通水
し、限外ろ過装置の流出水を電解イオン装置[ペルメレ
ック電極(株)、PEW−200−01]に通水して電解
を行い、電解カソード水を得た。この電解カソード水
に、高純度アンモニア水をアンモニアとして5mg/L添
加し、洗浄水とした。上記の汚染シリコンウェーハを5
00rpmで回転し、洗浄水を800mL/minの流量で、超
音波発振装置[プレテック社、FINEJET]により
周波数1.6MHzの超音波を照射しながら180秒間噴射
して洗浄し、さらに、回転速度を1,500rpmに上げて
20秒間乾燥した。乾燥後のシリコンウェーハ表面の微
粒子数は、直径0.2〜0.5μmの微粒子が986個、
直径0.5〜1.0μmの微粒子が969個、直径1.0
μm以上の微粒子が20個であった。 比較例1 実施例1と同様にして、汚染シリコンウェーハを調製し
た。表面の微粒子数は、直径0.2〜0.5μmの微粒子
が10,335個、直径0.5〜1.0μmの微粒子が3
5,626個、直径1.0μm以上の微粒子が282個で
あった。実施例1と同じ超純水を、触媒充填塔と限外ろ
過装置に通水することなく、直接電解イオン装置に通水
した以外は、実施例1と同様にして、洗浄水を調製し、
上記の汚染シリコンウェーハの洗浄を行った。乾燥後の
シリコンウェーハ表面の微粒子数は、直径0.2〜0.5
μmの微粒子が1,609個、直径0.5〜1.0μmの
微粒子が2,211個、直径1.0μm以上の微粒子が4
0個であった。実施例1及び比較例1の結果を、第1表
に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 (Removal of fine particles by electrolytic cathode water) A 6-inch silicon wafer with a thermal oxide film was
After being immersed in ultrapure water in which mg / L was dissolved for 3 minutes, the substrate was preliminarily washed by rinsing with ultrapure water for 5 minutes. Then
The silicon wafer was immersed in a solution containing alumina (Al 2 O 3 ) particles, thereby forcibly contaminating the silicon wafer. The number of fine particles on the surface of a contaminated silicon wafer can be measured using a surface foreign matter inspection device [
Topcon, WM-1500]
11,019 particles having a diameter of 0.2 to 0.5 μm, 32,179 particles having a diameter of 0.5 to 1.0 μm, and a diameter of 1.0
The number of fine particles having a size of not less than μm was 197. From the ultrapure water supply pipe, specific resistance 18.2 MΩ · cm, TOC concentration 0.9 μg /
L of ultrapure water was passed through a catalyst packed column in which a 1% by weight palladium-supported anion exchange resin and a strongly basic anion exchange resin were mixed and filled at a volume ratio of 1: 9 at a surface speed of the catalyst resin of 900 hr -1 . The ultrapure water is obtained by coagulating and sedimenting the raw water, filtering, and then desalting with an ion exchange device and treating the primary pure water obtained by reverse osmosis membrane treatment with ultraviolet oxidation, deaeration, and ultrafiltration membrane treatment. It is a thing. The effluent of the catalyst packed tower is passed through an ultrafiltration device, and the effluent of the ultrafiltration device is passed through an electrolytic ion device [Permelec Electrode Co., Ltd., PEW-200-01] to perform electrolysis. Cathode water was obtained. 5 mg / L of high-purity ammonia water as ammonia was added to the electrolytic cathode water to prepare washing water. 5 above contaminated silicon wafer
Rotating at 00 rpm, washing water was sprayed at a flow rate of 800 mL / min for 180 seconds while irradiating ultrasonic waves with a frequency of 1.6 MHz by an ultrasonic oscillator [Pretec, FINEJET], and washing was performed. It was dried at 1,500 rpm for 20 seconds. The number of fine particles on the silicon wafer surface after drying was 986 fine particles having a diameter of 0.2 to 0.5 μm,
969 fine particles having a diameter of 0.5 to 1.0 μm, and a diameter of 1.0
There were 20 fine particles having a size of at least μm. Comparative Example 1 A contaminated silicon wafer was prepared in the same manner as in Example 1. The number of fine particles on the surface was 10,335 fine particles having a diameter of 0.2 to 0.5 μm and 3 fine particles having a diameter of 0.5 to 1.0 μm.
There were 5,626 particles and 282 particles having a diameter of 1.0 µm or more. A washing water was prepared in the same manner as in Example 1, except that the same ultrapure water as in Example 1 was directly passed through the electrolytic ion apparatus without passing through the catalyst packed tower and the ultrafiltration apparatus.
The above-mentioned contaminated silicon wafer was cleaned. The number of fine particles on the surface of the silicon wafer after drying is 0.2 to 0.5 in diameter.
1,609 micron particles, 2,211 microparticles with a diameter of 0.5 to 1.0 μm, and 4 microparticles with a diameter of 1.0 μm or more
There were zero. Table 1 shows the results of Example 1 and Comparative Example 1.

【0009】[0009]

【表1】 [Table 1]

【0010】第1表に見られるように、超純水を酸化還
元触媒と接触させたのち電解することにより得られた電
解カソード水を用いて洗浄した実施例1の方が、超純水
をそのまま電解することにより得られた電解カソード水
を用いて洗浄した比較例1よりも、洗浄後の微粒子数が
少なく、微粒子の除去率が高く、より効果的に洗浄が行
われている。 実施例2(電解アノード水による有機物の除去) 熱酸化膜付きの6インチシリコンウェーハを、オゾン5
mg/Lを溶解した超純水に3分間浸漬したのち、超純水
で5分間リンスすることにより予備洗浄した。予備洗浄
後のシリコンウェーハの超純水に対する接触角は、2.
0度であった。このシリコンウェーハを、大気中に一晩
放置して強制汚染した。強制汚染後のシリコンウェーハ
の超純水に対する接触角は62.7度であった。超純水
供給配管より、比抵抗18.2MΩ・cm、TOC濃度0.
9μg/Lの超純水を、パラジウム1重量%担持アニオ
ン交換樹脂と強塩基性アニオン交換樹脂を容量比1:9
で混合充填した触媒充填塔に、触媒樹脂の面速度900
hr-1で通水した。さらに、触媒充填塔の流出水を限外ろ
過装置に通水し、限外ろ過装置の流出水を電解イオン装
置[ペルメレック電極(株)、PEW−200−01]に
通水して電解を行い、電解アノード水を得た。上記の汚
染シリコンウェーハを500rpmで回転し、電解アノー
ド水を800mL/minの流量で、超音波発振装置[プレ
テック社、FINEJET]により周波数1.6MHzの超
音波を照射しながら180秒間噴射して洗浄し、さら
に、回転速度を1,500rpmに上げて20秒間乾燥し
た。乾燥後のシリコンウェーハの超純水に対する接触角
は、2.3度であった。 比較例2 実施例2と同様にして、熱酸化膜付きのシリコンウェー
ハを予備洗浄し、さらに大気中に一晩放置して強制汚染
した。シリコンウェーハの超純水に対する接触角は、予
備洗浄後が2.1度であり、強制汚染後が61.2度であ
った。実施例2と同じ超純水を、触媒充填塔と限外ろ過
装置に通水することなく、直接電解イオン装置に通水し
た以外は、実施例2と同様にして、電解アノード水を調
製し、上記の汚染シリコンウェーハの洗浄を行った。乾
燥後のシリコンウェーハの超純水に対する接触角は、
5.3度であった。実施例2及び比較例2の結果を、第
2表に示す。
As can be seen from Table 1, Example 1 in which ultrapure water was contacted with an oxidation-reduction catalyst and then electrolyzed and then washed with electrolytic cathode water obtained was used. Compared with Comparative Example 1 in which cleaning was performed using electrolytic cathode water obtained by performing electrolysis as it was, the number of fine particles after cleaning was smaller, the removal rate of fine particles was higher, and cleaning was performed more effectively. Example 2 (Removal of organic matter by electrolytic anode water) A 6-inch silicon wafer provided with a thermal oxide film was treated with ozone 5
After being immersed in ultrapure water in which mg / L was dissolved for 3 minutes, the substrate was preliminarily washed by rinsing with ultrapure water for 5 minutes. The contact angle of the pre-cleaned silicon wafer to ultrapure water is 2.
It was 0 degrees. The silicon wafer was left in the air overnight for forced contamination. The contact angle of the silicon wafer after the forced contamination to ultrapure water was 62.7 degrees. From the ultrapure water supply pipe, specific resistance 18.2 MΩ · cm, TOC concentration 0.
9 μg / L ultrapure water was added to an anion exchange resin carrying 1% by weight of palladium and a strongly basic anion exchange resin in a volume ratio of 1: 9.
The catalyst resin has a surface velocity of 900
Water was passed at hr -1 . Further, the effluent from the catalyst packed tower is passed through an ultrafiltration device, and the effluent from the ultrafiltration device is passed through an electrolytic ion device [Permelec Electrode Co., Ltd., PEW-200-01] to perform electrolysis. Thus, electrolytic anode water was obtained. The above-mentioned contaminated silicon wafer is rotated at 500 rpm, and the electrolytic anode water is sprayed at a flow rate of 800 mL / min for 180 seconds while being irradiated with ultrasonic waves having a frequency of 1.6 MHz by an ultrasonic oscillator [Pretech, FINEJET] for cleaning. Then, the rotation speed was increased to 1,500 rpm and drying was performed for 20 seconds. The contact angle of the dried silicon wafer to ultrapure water was 2.3 degrees. Comparative Example 2 In the same manner as in Example 2, a silicon wafer provided with a thermal oxide film was preliminarily cleaned, and left in the air overnight for forced contamination. The contact angle of the silicon wafer to ultrapure water was 2.1 degrees after pre-cleaning, and 61.2 degrees after forced contamination. Electrolyte anode water was prepared in the same manner as in Example 2, except that the same ultrapure water as in Example 2 was directly passed through the electrolytic ion apparatus without passing through the catalyst packed tower and the ultrafiltration device. Then, the contaminated silicon wafer was cleaned. The contact angle of the dried silicon wafer to ultrapure water is
5.3 degrees. Table 2 shows the results of Example 2 and Comparative Example 2.

【0011】[0011]

【表2】 [Table 2]

【0012】第2表に見られるように、予備洗浄したシ
リコンウェーハを大気中に一晩放置すると、有機物によ
り汚染されて表面が疎水性となり、接触角が大きくなっ
ている。超純水を酸化還元触媒と接触させたのち電解す
ることにより得られた電解アノード水を用いて洗浄した
実施例2では、洗浄後の接触角は、ほぼ強制汚染前の値
に戻り、有機物汚染がほぼ完全に除去されている。これ
に対して、超純水をそのまま電解することにより得られ
た電解アノード水を用いて洗浄した比較例2では、洗浄
後の接触角は強制汚染前の接触角より大きく、有機物汚
染が完全には除去されていない。
As can be seen from Table 2, when the pre-cleaned silicon wafer is left in the air overnight, it is contaminated by organic substances, the surface becomes hydrophobic, and the contact angle increases. In Example 2, in which ultrapure water was contacted with the oxidation-reduction catalyst and then electrolyzed and then washed using electrolytic anode water, the contact angle after the washing was almost returned to the value before the forced contamination, and the organic matter was contaminated. Has been almost completely removed. On the other hand, in Comparative Example 2 in which cleaning was performed using electrolytic anode water obtained by electrolyzing ultrapure water as it was, the contact angle after cleaning was larger than the contact angle before forcible contamination, and organic contamination was completely eliminated. Has not been removed.

【0013】[0013]

【発明の効果】本発明の電解水の製造装置を用いること
により、洗浄力の高い電解カソード水及び電解アノード
水を得ることができ、洗浄時間の延長など洗浄条件を変
更することなく洗浄効果を向上することができる。
By using the apparatus for producing electrolyzed water of the present invention, electrolytic cathode water and electrolytic anode water having high detergency can be obtained, and the cleaning effect can be improved without changing the cleaning conditions such as extending the cleaning time. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明装置の一態様の工程系統図であ
る。
FIG. 1 is a process flow diagram of one embodiment of the apparatus of the present invention.

【図2】図2は、本発明装置の触媒反応部の他の態様の
工程系統図である。
FIG. 2 is a process flow diagram of another embodiment of the catalytic reaction section of the apparatus of the present invention.

【図3】図3は、本発明装置の触媒反応部の他の態様の
工程系統図である。
FIG. 3 is a process flow diagram of another embodiment of the catalytic reaction section of the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 超純水送給ポンプ 2 超純水供給配管 3 触媒反応部 4 ろ過装置 5 電解セル 6 薬液槽 7 薬注ポンプ 8 触媒充填塔 9 パラジウム担持樹脂層 10 カチオン交換樹脂とアニオン交換樹脂の混合層 11 パラジウム担持樹脂塔 12 カチオン交換樹脂とアニオン交換樹脂の混床塔 DESCRIPTION OF SYMBOLS 1 Ultrapure water supply pump 2 Ultrapure water supply pipe 3 Catalytic reaction part 4 Filtration device 5 Electrolysis cell 6 Chemical tank 7 Chemical injection pump 8 Catalyst filling tower 9 Palladium-loaded resin layer 10 Mixed layer of cation exchange resin and anion exchange resin 11 Palladium-loaded resin tower 12 Mixed bed tower of cation exchange resin and anion exchange resin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 504 C02F 9/00 504E ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 9/00 504 C02F 9/00 504E

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(A)超純水が供給される超純水供給配管、
(B)超純水供給配管に連結し、超純水を酸化還元触媒と
接触させる触媒反応部、(C)触媒反応部を経た超純水を
ろ過するろ過装置及び(D)ろ過装置から排出される超純
水を電解する電解セルを有することを特徴とする電解水
の製造装置。
(A) ultrapure water supply piping for supplying ultrapure water,
(B) Connected to the ultrapure water supply pipe and brought into contact with the ultrapure water with the oxidation-reduction catalyst; (C) a filtration device that filters ultrapure water passing through the catalyst reaction portion; An electrolytic water producing apparatus, comprising: an electrolytic cell for electrolyzing ultrapure water to be produced.
JP24219299A 1999-08-27 1999-08-27 Apparatus for production of electrolytic water Pending JP2001062454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24219299A JP2001062454A (en) 1999-08-27 1999-08-27 Apparatus for production of electrolytic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24219299A JP2001062454A (en) 1999-08-27 1999-08-27 Apparatus for production of electrolytic water

Publications (1)

Publication Number Publication Date
JP2001062454A true JP2001062454A (en) 2001-03-13

Family

ID=17085668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24219299A Pending JP2001062454A (en) 1999-08-27 1999-08-27 Apparatus for production of electrolytic water

Country Status (1)

Country Link
JP (1) JP2001062454A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397111B1 (en) * 2001-06-08 2003-09-06 (주)보명하이텍 Deionizer water manufacturing apparatus and its processing
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2011194402A (en) * 2004-03-31 2011-10-06 Kurita Water Ind Ltd Ultrapure water production plant
JP2012040560A (en) * 2011-10-24 2012-03-01 Japan Organo Co Ltd Water treatment system and water treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397111B1 (en) * 2001-06-08 2003-09-06 (주)보명하이텍 Deionizer water manufacturing apparatus and its processing
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2011194402A (en) * 2004-03-31 2011-10-06 Kurita Water Ind Ltd Ultrapure water production plant
JP2012040560A (en) * 2011-10-24 2012-03-01 Japan Organo Co Ltd Water treatment system and water treatment method

Similar Documents

Publication Publication Date Title
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
JP3198899B2 (en) Wet treatment method
TWI408107B (en) Extra-pure water production equipment and operating method thereof
KR101525635B1 (en) Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
WO2019159197A1 (en) Method and apparatus for regenerating a working salt solution in salt purification
CN106587472A (en) Resource recycling method for palladium-containing electroplating wastewater
TW323306B (en)
TW201922623A (en) Washing water treatment device and washing water treatment method
JP2010069460A (en) Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
TW201703847A (en) Removal device of fine particles in water and ultrapure water production/supply system
JP2000354729A5 (en)
JP2018086619A (en) Ultrapure water production system and ultrapure water production method
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2001062454A (en) Apparatus for production of electrolytic water
JPH10216721A (en) Ultrapure water producing device
JPH1129794A (en) Cleaning water for electronic material its reparation, and cleaning of electronic material
JP2000290693A (en) Cleaning of electronic parts and members
JP3507588B2 (en) Wet processing method and processing apparatus
JP3928484B2 (en) Functional water recovery method
JP2004500976A (en) Method of treating object using colloidal palladium solution
JPH0780259A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JP5919960B2 (en) Treatment method for organic water
JP3507590B2 (en) Wet processing method and processing apparatus