JP4036420B2 - Culture medium - Google Patents

Culture medium Download PDF

Info

Publication number
JP4036420B2
JP4036420B2 JP2001056423A JP2001056423A JP4036420B2 JP 4036420 B2 JP4036420 B2 JP 4036420B2 JP 2001056423 A JP2001056423 A JP 2001056423A JP 2001056423 A JP2001056423 A JP 2001056423A JP 4036420 B2 JP4036420 B2 JP 4036420B2
Authority
JP
Japan
Prior art keywords
medium
bark
cultivation
raw material
cultivation medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001056423A
Other languages
Japanese (ja)
Other versions
JP2002253045A (en
Inventor
豊 西内
速都 篠原
公友 沖
望 鶴田
幸二 前田
昭彦 高橋
卓也 細川
大史 田岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi Prefecture
Original Assignee
Kochi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi Prefecture filed Critical Kochi Prefecture
Priority to JP2001056423A priority Critical patent/JP4036420B2/en
Publication of JP2002253045A publication Critical patent/JP2002253045A/en
Application granted granted Critical
Publication of JP4036420B2 publication Critical patent/JP4036420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は栽培用培地に関し、特には木質系樹皮を所定のサイズに粉砕して原材料とし、この原材料を乾燥,加熱,加圧工程によって栽培用培地として成形することにより、農作物及び各種植物の生育時にロックウールと同等もしくはそれ以上の栽培効果が得られるとともに、自然環境サイクルへのダメージが少ない栽培用培地に関するものである。
【0002】
【従来の技術】
従来から知られている植物栽培用の人工培地として、ロックウール、ピートモス、バーク堆肥等があり、これらの人工培地は農業用又は園芸用の分野で広く用いられている。ロックウールとは鉱石を溶解してそれを綿状にした所謂岩綿であって近時は鉄鋼石のスラグから製造されるロックファイバーをも含む意味で一般的に使用されている。また、バーク堆肥とは広葉樹又は針葉樹の樹皮を堆肥化した堆肥である。
【0003】
例えば栽培用ロックウールを用いた水耕栽培を行うには、養液を満たしたトレイ内に該栽培用ロックウールを浸漬し、浸透作用によって養液を栽培用ロックウールに供給して園芸作物の養液栽培を行う。上記トレイ内の養液の液位を検出するレベルセンサを取り付けて液位によりモータポンプで養液を供給する方法も知られている。
【0004】
【発明が解決しようとする課題】
前記各種の栽培用培地の中で、ロックウールは耐久性に優れているものの、使用後に廃棄する際の自然環境への負荷が大きいという難点があり、ピートモスは自然環境への負荷が少ない反面でバクテリアによって容易に分解されてしまうため耐久性の面での難点がある。また、バーク堆肥は施工上の労力が大きいという問題がある。
【0005】
本発明者は従来から廃棄物としての処理に難点があった木質系樹皮、例えばスギ又はヒノキの樹皮が軽量で取り扱いやすく、保水性、通気性及び耐久性が良好であることに着目して、人工の栽培用培地として利用しようとする研究を継続している。しかしながら、これらの樹皮は嵩が大きく、輸送と保管のためのコストが高いという問題点があり、更にこれらの樹皮は天然物であるため、養液栽培用培地とか園芸用培地に使用する場合には土壌の消毒が必要であるという問題点があった。
【0006】
そこで本発明は上記の問題点を解決して、木質系樹皮の持つ保水性、通気性及び耐久性を有効に生かすとともに嵩を小さくして輸送と保管のためのコストを低減し、廃棄する際の自然環境への負荷を下げて良好な環境維持の面からも好ましい栽培用培地を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、所定のサイズに粉砕し、乾燥させた木質系樹皮からなる原材料を圧縮加熱成形することにより、熱圧縮作用及び樹皮成分による自己融着作用によって原材料の1/2〜1/15の体積のブロック状の培地とし、水分を含むことにより均一に膨張する栽培用培地を基本手段としている。
【0008】
前記ブロック状の培地の形状は、プレート形状,鉢形ポット形状もしくは半割円筒形状とする。
0009
そして、原材料を繊維長10cm以下、粒径1cm以下に粉砕し、含水率を30%以下に乾燥させる。また、原材料の圧縮加熱成形時の加熱温度範囲を70℃〜220℃とし、10〜50kg/cmの加圧範囲で原材料を圧縮する。
0010
かかる栽培用培地によれば、得られた培地は水分により迅速、かつ、均一に膨張して、保水性と通気性に優れて植え込み材料等に利用して良好な人工培地が得られる。特にスギ又はヒノキ等から採取した木質系樹皮には吸水性と保水性が良好な繊維が含まれており、毛細管現象によって水分が吸収されることから個々の作物に適合する保水性を維持するようにコントロールすることができる。土壌に混入して使用した場合にはバクテリアによる分解性は小さいため濃度障害を起こす虞れがなく、長期に亘って土壌の肉やせを防止し、植物の生育を促進することができる。
0011
栽培用培地の製造時に温度を加えて圧縮成形しているため、培地内部の殺菌作用が得られて病原菌による作物の病害が抑制され、樹皮成分の自己融着作用の促進に伴って高密度に成形されて嵩を小さくし、運搬時に形くずれを起こす惧れがない。また、作製時にはバインダーを使用していないので廃棄時にも格別の浄化処置をする必要がなく、自然環境への負荷を下げることができる。
0012
【発明の実施の形態】
以下本発明にかかる栽培用培地の具体的な実施形態を説明する。図1に示す概要図において、山林1から伐採したスギ又はヒノキをステップ2で製材所3に運搬し、該製材所3で製材する過程で採取した樹皮を原材料として用いる
0013
次に上記により得られた原材料をステップ4で粉砕・乾燥を行う。粉砕は繊維長が10cm以下、粒径が1cm以下になるようにし、含水率が30%以下になるように乾燥する。次にステップ5で70℃〜220℃の範囲に加熱した熱板を持つプレス装置によって2分〜7分間の圧縮加熱成形処理を行うことにより、熱圧縮作用及び自己融着作用に伴って原材料の体積が1/2〜1/15まで高密度に圧縮成形されて本発明にかかる栽培用培地が得られる。
0014
上記ステップ4で乾燥する理由は、含水率を均一にして安定した圧縮加熱成形を行うためであり、仮に含水率が30%を越えるケースでは成形直後に割れ目が入って形くずれを起こしたり、運搬中に損壊する虞れが生じる。
0015
ステップ6では得られた栽培用培地を養液に浸して水耕栽培用培地、鉢型ポット用培地等に利用するか、或いはインテリア用等に利用してからステップ7で廃棄処理する。ステップ8では廃棄物をバーク堆肥として再利用に供してからステップ9で土壌に還元し、山林1での植林用土壌として利用する。従って図1は本発明にかかる栽培用培地を用いた自然循環サイクルの模式図にもなっている。
0016
前記製造過程中のステップ5での圧縮加熱成形により、プレス装置による機械的圧縮作用の外に、原材料から木質系樹皮の成分によって原材料の自己融着作用が惹起されて、バインダーを用いることなく高密度に圧縮成形された栽培用培地が得られる。加熱範囲を70℃〜220℃とした理由は、70℃は培地の殺菌を行うために最小限必要な温度であり、又、木材の着火温度は230℃であって樹皮成分の自己融着作用を促進するために上限温度は220℃とした。
0017
プレス装置による加圧範囲は10〜50kg/cmとするのが適当である。圧縮加熱成形された栽培用培地は、持ち運び時に崩れることなく容易に運搬することが可能な固さを持つブロック状を呈しており、使用時には現場において養液に浸すことにより、水分を吸収して養液栽培に適した体積にまで迅速に膨張させることができる。膨張は均一に行われ、しかも膨張後の培地の体積と密度は原材料の含水率,加熱温度,圧縮率及び圧縮時間の各条件を適宜に変更することによって自在に調節することができる。
0018
以下に本発明の具体的な各種実施例と比較例を挙げて説明する。
〔実施例1〕
先ずリングバーカで粉砕したスギ樹皮の含水率が20%以下になるように乾燥させ、熱板温度が200℃の油圧プレス装置によって3分〜5分間のプレス処理を行うことにより、熱圧縮作用に伴って原材料の体積を1/8まで圧縮成形して培地を得た。尚、圧縮加熱成形体の大きさは30cm×30cm×2cmのブロック状とした。得られた培地を栽培用装置の内部に入れて養液を満たし、厚さが約8cmになるまで膨張させた。
0019
〔比較例1〕
市販されている養液栽培用のロックウールを栽培用培地として用いて、実施例1,2と同様に栽培用装置の内部に入れて養液を満たした。
0020
表1は上記により得られた実施例1と比較例1の各栽培用培地の物理的特性を測定した結果を示している。実施例1の培地は比較例1に較べて真比重が小さくて仮比重が大きく、孔隙率は若干小さくなっている。三相比率は固相と気相は実施例1の方が大きく、液相は比較例1の方が大きくなっている。表2はこれらの培地の水分保持率を測定した結果である。実施例1は比較例1よりも水分保持力が低く、通気性が優れていることが判明した。
0021
【表1】

Figure 0004036420
0022
【表2】
Figure 0004036420
0023
上記実施例1と比較例1の各栽培用培地に、堪液型養液栽培法を用いてキュウリとナスの子苗を定植し、収穫果数と収穫果率その他のデータを取った結果を表3と表4に示す。表3はキュウリのデータを示し、表4はナスの収量を示している。
0024
【表3】
Figure 0004036420
0025
【表4】
Figure 0004036420
0026
表3によれば、実施例1によるキュウリの雌花開花可能節数と収穫果数及び収穫果率は比較例1と遜色なく、特に収穫果率は実施例1の方が上回っている。表4によれば、実施例1によるナスの収穫果数と収穫果重は比較例1に較べてやや下回っているが、実用上からは問題ない結果が得られた。
0027
〔実施例
リングバーカで粉砕したスギ樹皮の含水率が20%以下になるように乾燥させ、熱板温度が200℃の油圧プレス装置によって3分〜5分間の金型を用いたプレス処理を行うことにより、熱圧縮作用に伴って原材料の体積を1/2まで圧縮成形して鉢形の人工ポット培地を得た。この人工ポット培地を市販のポットに挿入し、水を含ませることによって鉢形ポット用培地として適正な体積と形状に膨張させた。
0028
〔比較例2〕
市販されているミズゴケを用いて鉢形の人工ポット培地を得た。
0029
上記実施例と比較例2の各人工ポット培地に洋蘭(シンビジュウム,コチョウラン)の子苗を移植する際の作業性、即ち1鉢移植するのに必要とするまでの時間(秒)と、移植後の耐久性を調べた。その結果を表5に示す。
0030
【表5】
Figure 0004036420
0031
表5によれば、実施例の人工ポット培地を用いて子苗を1鉢移植するのに必要とする時間は20秒であって、比較例2の240秒に較べてはるかに作業性が良く、移植後の耐久性も比較例2の1年に較べて2年と長いことが判明した。
0032
図2〜図7は本発明を適用したブロック状栽培用培地の各種形状例であって、図2はプレート形状の栽培用培地11の例を示し、図3は鉢形ポット形状の栽培用培地12の例を示している。図4は半割円筒形状の栽培用培地13の例であり、この例では使用時に図5に示したように該栽培用培地13を折り曲げ部13aで二つ折りにしながら中間部13bに植物を挟み込み、上方から水分を含ませるだけで栽培用培地13に対する植物の植え込み作業を完了することができる。
0033
図6,図7は本発明を適用したブロック状栽培用培地をインテリア用として利用した形状例であり、図6は頂部を切り欠いた四角錐台状の栽培用培地14の例を、図7は真球状の栽培用培地15の例を示している。
0034
以下に本発明にかかる栽培用培地の特性と性能を証明する根拠となる各種の実験方法と得られたデータに関して説明する。先ず供試材料として天然乾燥したスギバークを用意し、スギバークの含水率を14%として運搬可能な固さになるまでバインダを用いずにホットプレス装置により圧縮加熱成形を行った。圧縮加熱成形条件を表6に示す
0035
【表6】
Figure 0004036420
0036
成形体として得られたスギバーク培地の平均厚みは、約15mmであり、スギバーク培地の圧縮率は8である。
0037
スギバーク培地の内部熱変化をみるために圧縮加熱成形時に100℃に達するまでの内部熱を測定した。その結果を図8に示す。スギバーク培地は約2分の時間で100℃まで急速に上昇し、100℃を超えると緩やかな上昇カーブを示した。100℃まで急速に上昇するのは培地に含まれる水分によるものと考えられる
0038
栽培用培地に水分を含ませることによって膨張する性能を確保するには、常温常湿の状況下で成形された状態を保ったまま貯蔵する必要がある。そこでレーザー変位計を用いて恒温恒湿槽内で温度50℃、湿度90%に保った状態で24時間放置した時の厚み変位を2体について10分間隔で測定した。その結果を図に示す。
0039
スギバーク培地は開始1時間ほどの間に2〜3mm膨張し、その後は徐々に膨張するという傾向を示した。スギバーク培地は吸水性の高さから24時間後の厚みは平均13mm程度膨張しており、やや脆い状態になっていたものの運搬可能な固さを保っている。従ってスギバーク培地は適切な貯蔵を行えば運搬可能な固さを保つことができることが判明した。
0040
以上説明したように、本発明による栽培用培地は製造時に高密度に圧縮しても水分により迅速かつ均一に膨張するため、保水性と通気性に優れ、植え込み材料等に利用して良好な人工培地が得られる。また、植物の種類によっては吸水による膨張を行わず、軽石等の他の栽培用培地もしくは土壌中にそのまま混入する事により、土壌改良材として利用することもできる。この場合にはバクテリアによる分解性が小さく、施肥過多による濃度障害を起こす虞れがない。更に長期に亘って土壌の肉やせを防止することが可能であり、植物の生育を促進することができる。
0041
【発明の効果】
以上詳細に説明したように、本発明にかかる栽培用培地によれば、木質系樹皮の持つ保水性、通気性、耐久性を有効に生かし、しかも嵩を小さくして輸送と保管のためのコストが低減された栽培用培地を提供することができる。特にスギ又はヒノキ等から採取した木質系樹皮には吸水性と保水性が良好な繊維が含まれていて毛管現象によって水分が吸収されるため、個々の作物に適合する保水性を維持するようにコントロールすることができる。更に使用後に堆肥化してバーク堆肥として再利用をはかることもできる。
0042
栽培用培地の製造時には温度を加えて圧縮加熱成形しているため、培地内部の殺菌作用も得られて病原菌による作物の病害が抑制され、樹皮成分による自己融着作用の促進に伴って高密度に成形されて運搬時に形くずれを起こす惧れがない。また、成形時にバインダーを使用していないので廃棄する際にも格別の浄化処置をする必要がなく、自然環境への負荷を下げて環境維持の面からも好ましい栽培用培地が得られる。また、土壌に混入して使用した場合にはバクテリアによる分解性は小さいため濃度障害を起こす虞れがなく、長期に亘って土壌の肉やせを防止し、植物の生育を促進することができる。
【図面の簡単な説明】
【図1】 本発明にかかる栽培用培地を用いた自然循環サイクルの概要図。
【図2】 本発明を適用したプレート形状の栽培用培地の例を示す斜視図。
【図3】 本発明を適用した鉢形ポット形状の栽培用培地の例を示す斜視図。
【図4】 本発明を適用した半割円筒形状の栽培用培地の例を示す斜視図。
【図5】 半割円筒形状の栽培用培地の使用形態例を示す斜視図。
【図6】 本発明を適用した栽培用培地をインテリア用として利用した例を示す斜視図。
【図7】 栽培用培地を他のインテリア用として利用した例を示す斜視図。
【図8】 スギバーク培地の内部熱変化を示すグラフ。
【図】 スギバーク培地の厚み変位を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cultivation medium, and in particular, a woody bark is pulverized into a predetermined size as a raw material, and the raw material is formed as a cultivation medium by a drying, heating, and pressurizing process, thereby growing crops and various plants. The present invention relates to a cultivation medium that sometimes has a cultivation effect equivalent to or higher than that of rock wool and has little damage to the natural environment cycle.
[0002]
[Prior art]
Conventionally known artificial media for plant cultivation include rock wool, peat moss, bark compost, and the like, and these artificial media are widely used in the fields of agriculture and horticulture. Rock wool is a so-called rock wool obtained by dissolving ore into a cotton-like shape, and has recently been commonly used to include rock fibers produced from steel slag. The bark compost is compost obtained by composting the bark of hardwood or conifer.
[0003]
For example, in order to perform hydroponics using rock wool for cultivation, the cultivation rock wool is immersed in a tray filled with the nutrient solution, and the nutrient solution is supplied to the rock wool for cultivation by osmotic action. Hydroponic cultivation. A method of attaching a level sensor for detecting the level of the nutrient solution in the tray and supplying the nutrient solution with a motor pump according to the level is also known.
[0004]
[Problems to be solved by the invention]
Among the various culture media, although rock wool is excellent in durability, there is a problem that the load on the natural environment when discarded after use is large, while peat moss has a small load on the natural environment. Since it is easily decomposed by bacteria, there is a difficulty in terms of durability. In addition, bark compost has a problem that the construction labor is large.
[0005]
The present inventor has noticed that wood bark that was a drawback to the process as waste from conventional, e.g. cedar or bark cypress easy to handle, lightweight, water retention, air permeability and durability is good Therefore, we are continuing research to use it as an artificial cultivation medium. However, these bark is bulky and has a problem of high cost for transportation and storage. Furthermore, since these bark is a natural product, it is used when it is used as a nutrient culture medium or a horticultural medium. Had the problem that soil disinfection was necessary.
[0006]
Therefore, the present invention solves the above-mentioned problems, effectively utilizes the water retention, air permeability and durability of the wood-based bark and reduces the bulk for reducing the cost for transportation and storage, and for disposal. An object of the present invention is to provide a culture medium that is preferable from the standpoint of maintaining a good environment by reducing the load on the natural environment.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention compresses and heat-molds a raw material made of wood-based bark that has been pulverized to a predetermined size and dried, so that the raw material 1 can be obtained by heat compression action and self-fusing action by bark components. The medium is a block-shaped medium having a volume of 1/2 to 1/15, and a cultivation medium that expands uniformly by containing water is used as a basic means.
[0008]
The shape of the block-shaped medium is a plate shape, a pot shape, or a half-cylindrical shape.
[ 0009 ]
Then, the raw material is pulverized to a fiber length of 10 cm or less and a particle size of 1 cm or less, and the moisture content is dried to 30% or less. Moreover, the heating temperature range at the time of compression heating molding of the raw material is set to 70 ° C. to 220 ° C., and the raw material is compressed in a pressure range of 10 to 50 kg / cm 2 .
[ 0010 ]
According to such a culture medium, the obtained medium is rapidly and uniformly expanded by moisture, and a good artificial medium can be obtained by using it as an implantation material with excellent water retention and air permeability. In particular, woody bark collected from cedar or cypress contains fibers with good water absorption and water retention, and water is absorbed by capillarity so that water retention suitable for individual crops is maintained. Can be controlled. When mixed with soil and used, the degradability by bacteria is small, so there is no risk of damage to the concentration, and it is possible to prevent soil thinning over a long period of time and promote plant growth.
[ 0011 ]
Because it is compression-molded by adding temperature at the time of production of cultivation medium, bactericidal action inside the medium is obtained, crop diseases caused by pathogenic bacteria are suppressed, and the self-fusing action of bark components is promoted to increase density It is molded to reduce the bulk and there is no risk of deformation during transportation. In addition, since no binder is used at the time of production, it is not necessary to perform a special purification treatment at the time of disposal, and the load on the natural environment can be reduced.
[ 0012 ]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the culture medium according to the present invention will be described. In the schematic diagram shown in FIG. 1, cedar or cypress harvested from a forest 1 is transported to a sawmill 3 in step 2, and bark collected in the process of sawing at the sawmill 3 is used as a raw material .
[ 0013 ]
Next, the raw material obtained as described above is pulverized and dried in step 4. The pulverization is performed so that the fiber length is 10 cm or less, the particle diameter is 1 cm or less, and the moisture content is 30% or less. Next, by performing compression thermoforming treatment for 2 minutes to 7 minutes with a press apparatus having a hot plate heated in the range of 70 ° C. to 220 ° C. in Step 5, the raw material is mixed with the heat compression action and self-fusing action. The culture medium according to the present invention is obtained by compression molding to a volume of 1/2 to 1/15 at a high density.
[ 0014 ]
The reason for drying in the above step 4 is to perform stable compression heating molding with a uniform moisture content. In the case where the moisture content exceeds 30%, a crack is formed immediately after molding, causing deformation or transportation. There is a risk of damage.
[ 0015 ]
In Step 6, the obtained cultivation medium is immersed in a nutrient solution and used for a hydroponics medium, a pot-type pot medium, or the like, or is used for interior or the like, and then discarded in Step 7. In step 8, the waste is reused as bark compost and then reduced to soil in step 9 and used as planting soil in the forest 1. Therefore, FIG. 1 is also a schematic diagram of a natural circulation cycle using the cultivation medium according to the present invention.
[ 0016 ]
By the compression heating molding in step 5 in the manufacturing process, in addition to the mechanical compression action by the press device, the self-fusing action of the raw material is induced from the raw material by the components of the wood-based bark, so that it is highly effective without using a binder. A cultivation medium compressed to a density is obtained. The reason for setting the heating range to 70 ° C. to 220 ° C. is that 70 ° C. is the minimum necessary temperature for sterilizing the medium, and the ignition temperature of the wood is 230 ° C., and the self-bonding action of the bark components In order to promote this, the upper limit temperature was set to 220 ° C.
[ 0017 ]
The pressurizing range by the press device is suitably 10 to 50 kg / cm 2 . The culture medium that has been compression-heated and formed has a block shape with a hardness that can be easily transported without being broken when carried, and absorbs moisture by immersing it in the nutrient solution at the time of use. It can be rapidly expanded to a volume suitable for hydroponics. The expansion is performed uniformly, and the volume and density of the expanded medium can be freely adjusted by appropriately changing the water content, heating temperature, compression rate, and compression time of the raw materials.
[ 0018 ]
Hereinafter, various specific examples and comparative examples of the present invention will be described.
[Example 1]
First, the cedar bark pulverized with a ring barker is dried so that the water content is 20% or less, and is subjected to a press treatment for 3 to 5 minutes with a hydraulic press apparatus having a hot plate temperature of 200 ° C. Along with this, the volume of the raw material was compression-molded to 1/8 to obtain a culture medium. In addition, the size of the compression heating molded body was a block shape of 30 cm × 30 cm × 2 cm. The obtained culture medium was put into the cultivation apparatus, filled with a nutrient solution, and expanded until the thickness became about 8 cm.
[ 0019 ]
[Comparative Example 1]
Using commercially available rock wool for nutrient solution cultivation as a culture medium, the nutrient solution was filled into the cultivation apparatus in the same manner as in Examples 1 and 2.
[ 0020 ]
Table 1 shows the results of measuring the physical characteristics of the culture media of Example 1 and Comparative Example 1 obtained as described above. The medium of Example 1 has a smaller true specific gravity and a larger temporary specific gravity than that of Comparative Example 1, and a slightly lower porosity. Three-phase ratio solid phase and gas phase larger in Example 1, the liquid phase becomes larger in the comparative example 1. Table 2 shows the results of measuring the water retention rate of these media. Example 1 was found to have lower moisture retention and better breathability than Comparative Example 1.
[ 0021 ]
[Table 1]
Figure 0004036420
[ 0022 ]
[Table 2]
Figure 0004036420
[ 0023 ]
In each culture medium of Example 1 and Comparative Example 1 above, cucumber and eggplant seedlings were planted by using the submerged nutrient solution cultivation method, and the results of collecting the number of harvested fruits, the harvested fruit rate and other data were obtained. Tables 3 and 4 show. Table 3 shows the cucumber data, and Table 4 shows the eggplant yield.
[ 0024 ]
[Table 3]
Figure 0004036420
[ 0025 ]
[Table 4]
Figure 0004036420
[ 0026 ]
According to Table 3, the female flower flowering possible clause number and harvesting fruit number and harvesting nuts in cucumber according to Example 1 Comparative Example 1 comparable to that, is above the direction of Example 1 in particular harvest fruit rate. According to Table 4, the harvested fruit weight and the harvest number fruit eggplant according to Example 1 but slightly below in comparison with Comparative Example 1, practically no problem results from it was obtained.
[ 0027 ]
[Example 2 ]
By drying so that the moisture content of the cedar bark crushed with a ring barker is 20% or less, and performing a press treatment using a mold for 3 to 5 minutes with a hydraulic press device having a hot plate temperature of 200 ° C., The volume of the raw material was compression-molded to 1/2 with the heat compression action to obtain a pot-shaped artificial pot medium. This artificial pot medium was inserted into a commercially available pot, and it was expanded to an appropriate volume and shape as a pot-shaped pot medium by including water.
[ 0028 ]
[Comparative Example 2]
A pot-shaped artificial pot medium was obtained using commercially available sphagnum.
[ 0029 ]
Workability when transplanting seedlings of orchids (Cymbidium, moth orchid) to each artificial pot medium of Example 2 and Comparative Example 2, that is, the time (seconds) required to transplant one pot, The durability after transplantation was examined. The results are shown in Table 5.
[ 0030 ]
[Table 5]
Figure 0004036420
[ 0031 ]
According to Table 5, the time required to transplant one seedling using the artificial pot medium of Example 2 is 20 seconds, which is much more workable than 240 seconds of Comparative Example 2. It was found that the durability after transplantation was 2 years longer than that of Comparative Example 2 as well.
[ 0032 ]
2-7 are examples of various shapes of a block-shaped cultivation medium to which the present invention is applied. FIG. 2 shows an example of a plate-shaped cultivation medium 11. FIG. 3 shows a pot-shaped cultivation medium 12 in a pot shape. An example is shown. FIG. 4 shows an example of the cultivation medium 13 having a half-cylindrical shape. In this example, as shown in FIG. 5, the cultivation medium 13 is folded in two at the folding part 13a and the plant is sandwiched between the intermediate parts 13b. The planting operation for the cultivation medium 13 can be completed only by adding moisture from above.
[ 0033 ]
6 and 7 are examples of shapes using the block-shaped cultivation medium to which the present invention is applied for interior use, and FIG. 6 is an example of the cultivation medium 14 having a truncated pyramid shape with the top notched. Shows an example of a true spherical culture medium 15.
[ 0034 ]
Hereinafter, various experimental methods and data obtained as a basis for proving the characteristics and performance of the culture medium according to the present invention will be described. First, the natural dried Sugiba click provided as test material was subjected to compression thermoforming by hot pressing apparatus without using a binder to a transportable firmness by 14% the water content of Sugibaku. Table 6 shows the compression thermoforming conditions .
[ 0035 ]
[Table 6]
Figure 0004036420
[ 0036 ]
The average thickness of the cedar bark medium obtained as a molded body is about 15 mm, and the compressibility of the cedar bark medium is 8.
[ 0037 ]
In order to see the internal heat change of the cedar bark medium, the internal heat until reaching 100 ° C. was measured during compression heating molding. The results are shown in Figure 8. Sugibaku culture areas rose rapidly to 100 ° C. in about 2 minutes time, showed a gradual increase curve exceeds 100 ° C.. The rapid rise to 100 ° C. is considered to be due to moisture contained in the medium .
[ 0038 ]
In order to ensure the ability to expand by adding moisture to the culture medium, it is necessary to store the culture medium while maintaining the state of being molded under normal temperature and humidity conditions. Therefore, using a laser displacement meter, thickness displacement was measured at 10 minute intervals for two bodies when left for 24 hours in a constant temperature and humidity chamber maintained at a temperature of 50 ° C. and a humidity of 90%. The results are shown in Figure 9.
[ 0039 ]
The cedar bark medium showed a tendency to expand by 2 to 3 mm in about 1 hour from the start, and then gradually expand. The cedar bark medium has an average thickness of about 13 mm after 24 hours from its high water absorption, and maintains a firmness that can be transported although it is in a slightly brittle state . Therefore, it was found that the cedar bark medium can maintain a transportable hardness if properly stored.
[ 0040 ]
As described above, the cultivation medium according to the present invention expands quickly and uniformly with moisture even when compressed to a high density at the time of manufacture, so it has excellent water retention and breathability, and is a good artificial material that can be used for planting materials. A medium is obtained. In addition, depending on the type of plant, it does not expand due to water absorption, and can be used as a soil conditioner by being directly mixed in other cultivation media such as pumice or soil. In this case, the degradability by bacteria is small, and there is no possibility of causing concentration disturbance due to excessive fertilization. Further, it is possible to prevent the soil from thinning over a long period of time, and the growth of the plant can be promoted.
[ 0041 ]
【The invention's effect】
As described in detail above, according to the cultivation medium according to the present invention, the water retention, breathability, and durability of the woody bark are effectively utilized, and the bulk and the cost for transportation and storage are reduced. It is possible to provide a culture medium for which cultivation is reduced. In particular, woody bark collected from cedar or cypress contains fibers with good water absorption and water retention, and moisture is absorbed by capillary action, so that water retention suitable for individual crops should be maintained. Can be controlled. Furthermore, it can be composted after use and reused as bark compost.
[ 0042 ]
Since the culture medium is compressed and heat-molded at the time of production of the cultivation medium, the bactericidal action inside the medium is also obtained, the disease of crops caused by pathogenic bacteria is suppressed, and the self-fusing action by the bark component is promoted to increase the density There is no risk of deformation during transportation. In addition, since no binder is used at the time of molding, it is not necessary to perform a special purification treatment even when it is discarded, and a culture medium that is preferable from the viewpoint of maintaining the environment can be obtained by reducing the load on the natural environment. In addition, when mixed with soil, the degradability by bacteria is small, so there is no possibility of causing a concentration failure, and it is possible to prevent soil thinning over a long period of time and promote plant growth.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a natural circulation cycle using a cultivation medium according to the present invention.
FIG. 2 is a perspective view showing an example of a plate-shaped cultivation medium to which the present invention is applied.
FIG. 3 is a perspective view showing an example of a pot-shaped cultivation medium to which the present invention is applied.
FIG. 4 is a perspective view showing an example of a cultivation medium having a half-cylindrical shape to which the present invention is applied.
FIG. 5 is a perspective view showing an example of how the cultivation medium having a half-cylindrical shape is used.
FIG. 6 is a perspective view showing an example in which a cultivation medium to which the present invention is applied is used for interior use.
FIG. 7 is a perspective view showing an example in which a culture medium is used for another interior.
FIG. 8 is a graph showing changes in internal heat of cedar bark medium.
FIG. 9 is a graph showing the thickness displacement of a cedar bark medium.

Claims (5)

所定のサイズに粉砕し、乾燥させた木質系樹皮からなる原材料を圧縮加熱成形することにより、熱圧縮作用及び樹皮成分による自己融着作用によって原材料の1/2〜1/15の体積のブロック状の培地とし、水分を含むことにより均一に膨張することを特徴とする栽培用培地。  By compressing and heat-molding the raw material made of wood-based bark that has been crushed to a predetermined size and dried, a block shape having a volume of 1/2 to 1/15 of the raw material by the heat compression action and the self-bonding action by the bark component A cultivation medium characterized by being uniformly expanded by containing water. 前記ブロック状の培地の形状を、プレート形状,鉢形ポット形状もしくは半割円筒形状とした請求項1に記載の栽培用培地。  The cultivation medium according to claim 1, wherein the shape of the block-shaped medium is a plate shape, a pot shape, or a half-cylindrical shape. 原材料を繊維長10cm以下、粒径1cm以下に粉砕し、含水率を30%以下に乾燥させた請求項1又は2に記載の栽培用培地。  The cultivation medium according to claim 1 or 2, wherein the raw material is pulverized to a fiber length of 10 cm or less and a particle size of 1 cm or less and dried to a moisture content of 30% or less. 原材料の圧縮加熱成形時の加熱温度範囲を70℃〜220℃とした請求項1,2又は3に記載の栽培用培地。  The cultivation medium according to claim 1, 2 or 3, wherein a heating temperature range at the time of compression thermoforming of the raw material is set to 70 ° C to 220 ° C. 10〜50kg/cmの加圧範囲で原材料を圧縮した請求項1,2,3又は4に記載の栽培用培地。Cultivation medium according to claim 1, 2, 3 or 4 was compressed raw materials under pressure range of 10 to 50 kg / cm 2.
JP2001056423A 2001-03-01 2001-03-01 Culture medium Expired - Fee Related JP4036420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001056423A JP4036420B2 (en) 2001-03-01 2001-03-01 Culture medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001056423A JP4036420B2 (en) 2001-03-01 2001-03-01 Culture medium

Publications (2)

Publication Number Publication Date
JP2002253045A JP2002253045A (en) 2002-09-10
JP4036420B2 true JP4036420B2 (en) 2008-01-23

Family

ID=18916451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056423A Expired - Fee Related JP4036420B2 (en) 2001-03-01 2001-03-01 Culture medium

Country Status (1)

Country Link
JP (1) JP4036420B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847268B2 (en) * 2003-04-14 2006-11-22 株式会社プラム・エコ・プロジェクト Plant growing mat and method for producing the same
JP4110157B2 (en) * 2004-12-14 2008-07-02 寿雄 福山 Variable space effective utilization type cultivation method
NL2003810C2 (en) * 2009-11-16 2011-05-17 Idea Packaging B V METHOD AND SUBSTRATE FOR GROWING A PLANT.
CN103609362B (en) * 2013-12-04 2015-12-02 四川省自然资源科学研究院 Dysosma versipellis cultivation matrix and preparation method thereof
WO2020158718A1 (en) * 2019-01-29 2020-08-06 学校法人立命館 Novel organic soil, method for producing same and plant cultivation method using same

Also Published As

Publication number Publication date
JP2002253045A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
KR100277836B1 (en) Plant growth method and plant growth support
EP0652090A1 (en) Processed coconut outer husk chops and process for producing same
KR100718867B1 (en) Mat-type bed soil for raising seedlings and manufacturing method thereof
CN106083354A (en) Plant cultivation media conditioner, this conditioner is utilized to prepare the method for compound cultivation matrix and the cultivation matrix of preparation
KR101359047B1 (en) A production method of vegetation mat which could product a chrysanthemum seedings for long time storage
EP1207741B1 (en) A substrate for growing seedlings and a method for manufacturing blocks on which to grow seedlings
JP4036420B2 (en) Culture medium
KR20130068290A (en) Mat system to plant chrysanthemum for a flower bed
JP4395661B2 (en) Plant cultivation medium and method for producing the same
KR200491452Y1 (en) Pressed Culture Soil for Preparing Simple Flowerpot
JP2007259768A (en) Raising seedling medium
JP2003047335A (en) Plant culture material and method for producing the same
EP0486105A1 (en) Method for preparing a substrate material and the substrate material obtained
KR100750656B1 (en) Composition of compressed culture soil and manufacturing process thereof
EP3694307B1 (en) Hydroponic growing medium
Nichols Coir-a XXIst Century sustainable growing medium
CN113875551A (en) Nutrient flower soil formula for plant cultivation and preparation method
RU214491U1 (en) Pressed sphagnum moss briquette
JPH0315319A (en) Planting material for horticultural pot and soil improver
RU2791225C1 (en) Plant substrate for the preparation of molds for growing seedlings of vegetable crops.
KR101152216B1 (en) Mat-type bed soil for raising rice seedling subject to compression process
JP4369474B2 (en) Hydroponic substrate and mat
JPH10191803A (en) Plane pot for nursery and plant cultivation using the same
JPS5841810B2 (en) Plant growing method
KR200157460Y1 (en) The artificial media made of waste sponge for hydroponics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees