JPS5841810B2 - Plant growing method - Google Patents

Plant growing method

Info

Publication number
JPS5841810B2
JPS5841810B2 JP54031169A JP3116979A JPS5841810B2 JP S5841810 B2 JPS5841810 B2 JP S5841810B2 JP 54031169 A JP54031169 A JP 54031169A JP 3116979 A JP3116979 A JP 3116979A JP S5841810 B2 JPS5841810 B2 JP S5841810B2
Authority
JP
Japan
Prior art keywords
pressure
sawdust
soil
rice
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54031169A
Other languages
Japanese (ja)
Other versions
JPS55124424A (en
Inventor
嘉彦 西沢
剛 赤尾
直 塚田
達雄 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITSUKOOMAN KK
Original Assignee
KITSUKOOMAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITSUKOOMAN KK filed Critical KITSUKOOMAN KK
Priority to JP54031169A priority Critical patent/JPS5841810B2/en
Publication of JPS55124424A publication Critical patent/JPS55124424A/en
Publication of JPS5841810B2 publication Critical patent/JPS5841810B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)
  • Cultivation Of Plants (AREA)
  • Fertilizing (AREA)

Description

【発明の詳細な説明】 本発明は従来利用価値が殆んど無いばかりか、田や畑の
土壌に混和すれば弊害があるとされ、焼却または廃棄さ
れていた籾殻やオガ〉ズ等の植物繊維質素材を植物の育
成に有効ならしめ、これを田、畑の土壌に混和して植物
を好適に育成する方法に関する。
[Detailed Description of the Invention] The present invention utilizes plants such as rice husks and sawdust, which have not only had little utility value but have been considered to be harmful if mixed with the soil of rice fields and fields, and which have been incinerated or discarded. This invention relates to a method of making a fibrous material effective for growing plants and mixing it with the soil of rice fields and fields to suitably grow plants.

近年、農業構造の変遷により、集約農業が行なわれるよ
うになり、労力不足と人件費節約から化学質肥料が多流
されるようになった結果、地力の低下を招来してきてい
る。
In recent years, changes in the agricultural structure have led to intensive farming, which has led to increased use of chemical fertilizers due to labor shortages and labor cost savings, resulting in a decline in soil fertility.

このようなことから、農地の地力を向上せしめるため、
有機質肥料、特に堆肥についての効用が再認識されて、
農地への施用が必要となり、農業において多量副生ずる
籾殻や製材工業において副生ずるオガクズや木材片等の
植物繊維質素材を堆肥化する試みは各所にて行なわれて
いる。
For this reason, in order to improve the soil fertility of farmland,
The benefits of organic fertilizers, especially compost, have been reaffirmed,
Attempts are being made in various places to compost plant fibrous materials such as rice husks, which are produced in large amounts as by-products in agriculture, and sawdust and wood chips, which are produced in the lumber industry, as they need to be applied to farmland.

しかるに、植物繊維質素材のうち籾殻は籾殻中に多量存
在する硅酸分によりセルロース、ヘミセルロース等の有
機物が強く保護され、微生物により醗酵分解されにくい
形となっており、また堆肥化に必要な水、窒素源、微量
要素等の各種養分の吸収がわるく、完熟した堆肥を得る
ためには極めて長時間を要する欠点を有する。
However, among plant fibrous materials, rice husks contain organic substances such as cellulose and hemicellulose that are strongly protected by the large amount of silicic acid present in the rice husks, making them difficult to ferment and decompose by microorganisms, and the amount of water required for composting is However, it has the disadvantage that it has poor absorption of various nutrients such as nitrogen sources and trace elements, and that it takes an extremely long time to obtain fully ripened compost.

また該籾殻を堆肥化せずに生のまま、または未完熟の堆
肥の状態で農地に施用しようとすると、籾殻中にリグニ
ン、硅酸等の有害物質を含み、また土壌微生物により土
壌中で腐植が進むため、植物に対して根腐れ、窒素飢餓
、病気の発生、発育不良、発芽障害等の害を与える欠点
を有する。
Furthermore, if the rice husks are applied to farmland in their raw form or as unripe compost without being composted, the rice husks will contain harmful substances such as lignin and silicic acid, and soil microorganisms will cause humus in the soil. This has the disadvantage of causing harm to plants, such as root rot, nitrogen starvation, disease outbreaks, poor growth, and germination problems.

また、松、杉、檜等のオガクズも植物生育に有害となる
樹脂および精油の含量が多く、これらのオガクズをその
まま、または未完熟の堆肥の状態で農地に施用しようと
すると、籾殻の場合と同様、植物の育成に著しい積極の
障害を与える欠点を有している。
Additionally, sawdust from pine, cedar, cypress, etc. has a high content of resins and essential oils that are harmful to plant growth. Similarly, they have the disadvantage of seriously hindering plant growth.

従って、これら籾殻やオガクズ等の植物繊維質素材は、
長時間堆積醗酵して、完熟した堆肥とした後でなげれば
、農地に施用出来ないが、前述したように該素材は完熟
した堆肥とするには極めて長時間を必要とし、工業化の
発展に伴う農業人口の減少、即ち農家の労力不足と人件
費節約のために、堆肥とすることが極めて困難あるいは
不可能とすらなるに至っており、これら植物繊維質素材
の農地への施用が農地の地力を向上するため必要となっ
てきているにもかかわらず、利用されないまま焼却され
たり、廃棄されているのが現状である。
Therefore, these plant fibrous materials such as rice husk and sawdust,
If it is piled and fermented for a long time and turned into fully ripened compost, it cannot be applied to farmland, but as mentioned above, this material requires an extremely long time to be fully matured, and it is difficult to develop industrialization. Due to the accompanying decline in the agricultural population, the lack of labor on the part of farmers, and the need to save on labor costs, it has become extremely difficult or even impossible to compost, and the application of these plant fibrous materials to farmland has been shown to improve the soil fertility of farmland. Despite the fact that it is becoming necessary to improve the environment, the current situation is that it is incinerated or discarded without being used.

そこで、本発明者らは、このような現状に鑑み、従来利
用価値が殆んど無いばかりか、施用すれば植物の育成に
弊害があるとされて、焼却または廃棄されていた各種籾
殻やオガクズ等の植物繊維質素材を有効利用すべく種々
検討を重ねた結果、該植物繊維質素材を密閉容器に入れ
、該素材を圧縮蒸煮して質密体とすることなく、ゲージ
圧2kg/ctrt、温度約130℃以上の飽和水蒸気
、過熱水蒸気またはその他の高圧加熱ガスにより加圧加
熱したのち瞬間的に常圧に戻して膨化破壊すると、該素
材の、植物に対して有する、根腐れ、窒素飢餓、病気の
発生、発育不良、発芽障害等が全て解消され、また植物
の根部への酸素供給を良好ならしめ、根部付近を常に適
度の温度と湿度に保持し、植物の成育を非常に良好なら
しめることを発見し、この発見に基づいて、本発明を完
成した。
Therefore, in view of the current situation, the present inventors have investigated various types of rice husks and sawdust that have been incinerated or discarded because they have almost no utility value and are harmful to plant growth if applied. As a result of various studies in order to effectively utilize plant fibrous materials such as If the material is heated under pressure with saturated steam, superheated steam, or other high-pressure heated gas at a temperature of about 130°C or higher and then instantly returned to normal pressure to swell and destroy, the material will cause root rot and nitrogen starvation to plants. , the occurrence of diseases, poor growth, germination problems, etc. are all eliminated, and the plant's roots are kept well supplied with oxygen, and the area around the roots is always kept at an appropriate temperature and humidity, resulting in very good plant growth. Based on this discovery, the present invention was completed.

すなわち、本発明は植物繊維質素材を密閉容器に入れ、
該素材を圧縮蒸煮して質密体とすることなく、ゲージ圧
2kg/crrt、温度約130℃以上の飽和水蒸気、
過熱水蒸気またはその他の高圧加熱ガスにより加圧加熱
したのち、瞬間的に常圧に戻して膨化破壊したものをそ
のまま田、畑の土壌に混和し、植物を育成することを特
徴とする植物育成方法である。
That is, the present invention places a plant fibrous material in a sealed container,
Saturated steam at a gauge pressure of 2 kg/crrt and a temperature of about 130°C or higher, without compressing the material to make it into a dense body,
A plant growing method characterized by heating under pressure using superheated steam or other high-pressure heating gas, then instantly returning the pressure to normal pressure to swell and destroy the product, which is then mixed directly into the soil of a rice field or field to grow plants. It is.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における植物繊維質素材としては、農業において
副生される籾殻、麦殻、そば殻等、穀類の外皮、稲藁、
麦藁などの薬類、タバコ、トウモロコシなどの残稈、大
豆、エントウ豆などの莢および茎、砂糖きびの絞り粕、
落花生の外皮等および製材工業において副生されるオガ
クズ、チップクズ、プレーナークズ、樹木の外皮等が挙
げられる。
The plant fiber materials used in the present invention include rice husks, wheat husks, buckwheat husks, etc., which are by-products in agriculture, grain husks, rice straw,
Medicines such as wheat straw, residual culms of tobacco and corn, pods and stems of soybeans and peas, squeezed lees of sugar cane,
Examples include peanut husk, sawdust, chip waste, planer waste, and tree husk produced as by-products in the lumber industry.

そして、これらの粗大物は1c/rL角以下の大きさに
粉砕して使用することが好ましい。
It is preferable to use these coarse particles by pulverizing them to a size of 1 c/rL square or less.

本発明においては、まず上記植物繊維質素材を中空の密
閉容器に入れ、該素材を圧縮蒸煮して質密体とすること
なく、加圧加熱したのち、瞬間的に常圧下に放出する。
In the present invention, the plant fibrous material is first placed in a hollow airtight container, and the material is heated under pressure without being compressed and steamed to form a compact, and then instantaneously released under normal pressure.

このことは、極めて重要であって、該素材を圧縮蒸煮し
て質密体を形成し、次いでこれを切削しつつその削片を
圧縮より急激に解除させるときは、蒸煮中、該素材は質
密体となっており多量の高圧加熱ガスと接触することが
殆んど無いので該素材中に含まれている樹脂、精油等の
植物育成阻害成分を充分に蒸散または揮散させることが
出来ず、圧縮解除後の素材中に植物育成阻害成分が残る
ので好ましくない。
This is extremely important, as when the material is compression steamed to form a compact body and then cut while the material is being cut to release the flakes more rapidly than the compression, the material is Since it is a dense body and hardly comes into contact with a large amount of high-pressure heated gas, it is not possible to sufficiently evaporate or volatilize plant growth inhibiting components such as resins and essential oils contained in the material. This is not preferable because plant growth inhibiting components remain in the material after decompression.

これに対し、該素材が中空の密閉容器中で多量の飽和水
蒸気、過熱水蒸気等の高圧加熱ガスと直接接触しつつ、
該高圧加熱ガスにより加圧加熱されるときには、該加圧
加熱中、素材に含まれる植物育成阻害成分は良好に蒸散
または揮散させることが可能となり、従って加圧解除後
の素材中には植物育成阻害成分が殆んど残らない。
On the other hand, while the material is in direct contact with a large amount of high-pressure heated gas such as saturated steam or superheated steam in a hollow closed container,
When the material is pressurized and heated by the high-pressure heating gas, plant growth inhibiting components contained in the material can be evaporated or volatilized well during the pressurization and heating, so that after the pressure is released, the material contains plant growth inhibitors. Almost no inhibitory components remain.

ここに用いられる加圧加熱装置としては、回分式のもの
でも連続式のものでもいずれでもよい。
The pressure heating device used here may be either a batch type or a continuous type.

即ち回分式のものとしては、植物繊維質素材を中空の密
閉容器に入れ、該密閉容器を高圧加熱ガスにより加圧加
熱したのち、急激に放圧し得る装置が挙げられ、また、
連続式のものとしては、内部に適宜の移送手段を構成し
た中空の密閉容器と、これに蒸煮すべき固形原料を連続
的に導入する導入装置と、蒸煮ずみの固形原料を連続的
に排出する排出装置とを有する連続式の加圧加熱蒸煮装
置が挙げられる。
That is, examples of the batch type include a device that can place a plant fiber material in a hollow airtight container, pressurize and heat the airtight container with high-pressure heating gas, and then rapidly release the pressure;
Continuous types include a hollow airtight container with an appropriate transfer means inside, an introduction device that continuously introduces the solid raw material to be steamed into the container, and a continuous discharge device that continuously discharges the steamed solid raw material. A continuous pressurized heating steaming device having a discharge device is mentioned.

上記連続式の装置としては、例えば特公昭45−266
95号公報に記載されている膨化食品の製造装置および
特公昭46−34747号公報に記載されている気流加
熱方式に依る膨化食品製造装置が挙げられる。
As for the above-mentioned continuous type device, for example,
Examples include an apparatus for producing a puffed food described in Japanese Patent Publication No. 95 and an apparatus for producing a puffed food using an air current heating method described in Japanese Patent Publication No. 46-34747.

上記密閉容器の内部に導入される植物繊維質素材の加圧
加熱処理に使用される気体としては、飽和水蒸気、過熱
水蒸気またはその他の高圧加熱ガス、例えば加熱された
炭酸ガス、窒素ガス、フレオンガス、アルコールガス等
が挙げられるが、特に飽和水蒸気、過熱水蒸気が植物育
成阻害成分をより効果的に除去するので好ましい。
The gases used for the pressurized heat treatment of the plant fiber material introduced into the airtight container include saturated steam, superheated steam, or other high-pressure heated gases, such as heated carbon dioxide gas, nitrogen gas, freon gas, Examples include alcohol gas, but saturated steam and superheated steam are particularly preferred because they more effectively remove plant growth-inhibiting components.

そして、加圧加熱の条件は、植物繊維質素材の種類と形
状、大きさ等によっても異なるが、通常はゲージ圧2k
g/cst以上、特に4〜14 kg/ctaが好まし
く、温度は約130℃以上、特に160〜300℃が好
ましい。
The pressure heating conditions vary depending on the type, shape, size, etc. of the vegetable fiber material, but usually the gauge pressure is 2k.
g/cst or more, especially 4 to 14 kg/cta, is preferred, and the temperature is preferably about 130°C or more, especially 160 to 300°C.

また時間は30分以内、特に15分以内が好ましい。Moreover, the time is preferably within 30 minutes, particularly within 15 minutes.

そして、上記加圧加熱の温度と時間の関係は反比例関係
にあり、温度が高いときは時間を短くし、逆に温度が低
いときは時間を長くすることが好ましく、例えば籾殻を
飽和水蒸気で加圧加熱する場合は、2 kg7c4(1
32℃)で15分、4ky/c4(151℃)で8分、
6kg/cd (164℃)で5分、8ky/c4(1
74℃)で2分前後とすることが好ましい。
The relationship between the temperature and time of the pressurized heating is inversely proportional, and it is preferable to shorten the time when the temperature is high, and to lengthen the time when the temperature is low. For example, rice husks are heated with saturated steam. When pressure heating, 2 kg7c4 (1
32℃) for 15 minutes, 4ky/c4 (151℃) for 8 minutes,
6kg/cd (164℃) for 5 minutes, 8ky/c4 (1
74° C.) for about 2 minutes.

このようにして、加圧加熱された素材は瞬間的により低
圧下例えば常圧下に放出される。
In this way, the pressurized and heated material is instantaneously released to a lower pressure, for example, normal pressure.

このように植物繊維質素材の加熱を加圧条件で行うと、
常圧下で加熱した場合において当然蒸発すべき原料内の
水分は蒸発を抑えられて高温高圧の圧縮水となるため、
この素材を高圧からより低圧の、例えば常圧に急激に放
出すると、原料内の圧縮水は爆発的に膨化し、素材の組
織が膨化破壊され、且つ素材は蒸気の抜けた跡が空間と
なって多孔性を有するものとなる。
When heating plant fibrous materials under pressure conditions in this way,
The moisture in the raw material that should naturally evaporate when heated under normal pressure is suppressed from evaporating and becomes compressed water at high temperature and high pressure.
When this material is suddenly released from high pressure to lower pressure, such as normal pressure, the compressed water in the material expands explosively, the structure of the material expands and is destroyed, and the material remains with voids where steam has escaped. It becomes porous.

このようにして得られた膨化破壊物は堆肥とすることな
くそのまま、植物を育成すべき場所の田や畑の土壌中に
混和し、次いで作物の種子を播いたり、作物の苗を植え
込んだりして、以下通常の栽培方法に従って植物を育成
する。
The expanded debris obtained in this way is mixed directly into the soil of fields and fields where plants are to be grown, without being turned into compost, and then used to sow crop seeds or plant crop seedlings. Then, the plants are grown according to the usual cultivation method.

混和の方法としては、田や畑の土壌表面に均一に散布し
たあと耕耘機等を用いて、表面の土壌と均一に混和する
か、または、植物の種子を育てる場所の土壌中に局部的
に手またはシャベル等を使って混和するか、**または
植物の根部付近の土壌中に混和する。
The method of mixing is to spread it evenly over the soil surface of rice fields or fields and then use a tiller to mix it evenly with the surface soil, or to mix it locally into the soil where plant seeds are grown. Mix by hand or with a shovel, or into the soil near the roots of the plant.

混和する割合は、決して制限されるものではなく、混和
される土壌の種類、栽培すべき植物の種類により種々変
化させることが出来るが、通常3%(重量)以上で施用
の効果が期待可能であり、特に5〜30%が好ましい。
The mixing ratio is not limited in any way and can be varied depending on the type of soil to be mixed and the type of plants to be cultivated, but the effect of application can usually be expected at 3% (by weight) or more. Yes, particularly preferably 5 to 30%.

ここで、本発明の効果を実験例を挙げて説明す。Here, the effect of the present invention will be explained by giving an experimental example.

実験例 1 製材したスギ材、マツ材、ヒノキ材およびブナ材をそれ
ぞれ電気鋸で挽いて、4種類のオガクズを得、それぞれ
を飽和水蒸気により第1表に記載の圧力、温度条件で1
5分間加圧加熱し、次いで急激に大気圧下に放出して、
それぞれ加圧加熱処理条件の異なる膨化オガクズを得た
Experimental Example 1 Four types of sawdust were obtained by sawing cedar wood, pine wood, cypress wood, and beech wood using an electric saw.
Heat under pressure for 5 minutes, then rapidly release to atmospheric pressure,
Swollen sawdust was obtained under different pressure and heat treatment conditions.

このようにして得られた膨化オガクズの成分飛散率を測
定した結果、第1表に示す如き結果が得られた。
As a result of measuring the component scattering rate of the thus obtained expanded sawdust, the results shown in Table 1 were obtained.

なお、膨化オガクズの成分飛散率は次式により算出した
The component scattering rate of the expanded sawdust was calculated using the following formula.

式中、加圧加熱処理前の固形分重量は加圧加熱前のオガ
クズを60℃の恒温室内で48時間乾燥したものの重量
値を、また加圧加熱処理後の固形※※分重重量、加圧加
熱処理後のオガクズを60℃の恒温室内で48時間乾燥
したものの重量値を示す。
In the formula, the solid weight before pressure and heat treatment is the weight of sawdust dried in a thermostatic chamber at 60°C for 48 hours, and the solid weight after pressure and heat treatment is the solid weight after pressure and heat treatment, The weight value of the sawdust after the pressure heating treatment is dried in a thermostatic chamber at 60° C. for 48 hours.

この結果から、各種オガクズを2 kg/crA、約1
30℃以上の加圧加熱処理を行なうことにより、成分飛
散率が著しく増大することが判る。
From this result, we found that 2 kg/crA of various types of sawdust, approximately 1
It can be seen that the component scattering rate increases significantly by performing pressure heat treatment at 30° C. or higher.

実験例 2 上記実験例1で得られた成分飛散率が0.01%と、4
.60%のスギの膨化オガクズに10重量倍の水を加え
、4時間煮沸した後、濾過し、得られた濾液に2%寒天
を溶解して、直径15crrLのシャーレに注ぎ、2種
類の寒天培地を作成した。
Experimental Example 2 The component scattering rate obtained in Experimental Example 1 above was 0.01%, and 4
.. Add 10 times the weight of water to 60% swollen cedar sawdust, boil for 4 hours, filter, dissolve 2% agar in the resulting filtrate, pour into a petri dish with a diameter of 15 crrL, and prepare two types of agar media. It was created.

また比較のため、水に2%寒天を溶解して、同様に寒天
培地を作成した。
For comparison, an agar medium was prepared in the same manner by dissolving 2% agar in water.

次いで、それぞれの寒天培地に小松菜の種を20個播き
ふたをして、25℃の恒温室に入れ、24時間後の発芽
率および根の長さを測定したところ、それぞれ水の区分
は発芽率が80%、根の長さが12鼎、成分飛散率が0
.01%のオガクズ抽出濾液の区分は発芽率が20%、
根の長さが5m71L、そして成分飛散率が4.60%
のオガクズ抽出濾液の区分は発芽率が80%、根の長さ
が13mmであった。
Next, 20 Komatsuna seeds were sown on each agar medium, covered with a lid, and placed in a thermostatic chamber at 25°C. After 24 hours, the germination rate and root length were measured. is 80%, root length is 12 degrees, and component scattering rate is 0.
.. 01% sawdust extraction filtrate has a germination rate of 20%,
Root length is 5m71L and component scattering rate is 4.60%
The germination rate of the sawdust extracted filtrate section was 80%, and the root length was 13 mm.

この結果から、成分飛散率が0.01%の区分は著しい
、発芽および発育抑制作用が見られるが、成分飛散率が
4.60%の区分は発芽抑制作用は見られずまた発芽後
良好な育成を示すことが判る。
From this result, the category with a component scattering rate of 0.01% has a remarkable effect of inhibiting germination and growth, but the category with a component scattering rate of 4.60% shows no germination inhibiting effect and a good effect after germination. It can be seen that it shows growth.

また成分飛散率が高いものほどオガクズ中に存在する樹
脂、精油等の植物育成阻害成分がより多く除去されてい
ることが判る。
It can also be seen that the higher the component scattering rate, the more plant growth inhibiting components such as resins and essential oils present in sawdust are removed.

実験例 3 籾殻を中空の密閉容器に入れ、ゲージ圧6kg/ctA
、164℃の飽和水蒸気を用も・て、2分間、加圧加熱
し、次いで瞬間的に放圧して膨化籾殻を得た。
Experimental example 3 Rice husks were placed in a hollow airtight container and the gauge pressure was 6 kg/ctA.
The rice husks were heated under pressure for 2 minutes using saturated steam at 164°C, and then the pressure was released instantly to obtain expanded rice husks.

この膨化籾殻の保水性と濡れ易さの性質を調べた結果、
それぞれ第2表および第3表に示す如き結果が得られた
As a result of investigating the water retention and wettability properties of this expanded rice husk,
The results shown in Tables 2 and 3, respectively, were obtained.

尚、保水性と濡れ易さの性質の測定は以下に示す方法に
より実施した。
The properties of water retention and wettability were measured by the methods shown below.

保水性:容量100ydの円筒(内径2吋)の底部を布
で覆い、籾殻を81充填し、その上から水Loomを全
面に撒水し、10分間放置後、撒水前後の籾殻の重量変
化から重量増加率を測定した。
Water retention: Cover the bottom of a cylinder with a capacity of 100 yards (inner diameter 2 inches) with a cloth, fill it with 81 rice husks, sprinkle water Loom over the entire surface, leave it for 10 minutes, and calculate the weight from the change in the weight of the rice husks before and after watering. The rate of increase was measured.

濡れ易さの性質:内径10關のガラス管に、8〜12メ
ツシユに粉砕した籾殻を、毛細管吸着の発生する程度に
圧縮して充填(充填密度20 ft7100m1)L、
これを深さ10mmの水中に直立させ、 24時間後に吸着する水の高さを測定す る。
Properties of wettability: Fill a glass tube with an inner diameter of 10 mm with rice husk crushed into 8 to 12 meshes, compressed to the extent that capillary adsorption occurs (packing density: 20 ft 7100 m1),
This was placed upright in water at a depth of 10 mm, and the height of the water adsorbed was measured after 24 hours.

第2表および第3表の結果から、本発明の膨化籾殻は対
照の無処理の籾殻に比べて、保水性および濡れ易さの性
質が著しく良いことが判る。
From the results in Tables 2 and 3, it can be seen that the expanded rice husk of the present invention has significantly better water retention and wettability than the control untreated rice husk.

以上説明したことから明らかなように、本発明は植物繊
維質素材を密閉容器に入れ、該素材を圧縮蒸煮して質重
体とすることなく、ゲージ圧2に9/ca、温度約13
0℃以上の飽和水蒸気、過熱水蒸気またはその他の高圧
加熱ガスにより加圧加熱したのち瞬間的に常圧に戻して
膨化破壊したものを、堆肥化せずにそのまま田や畑の土
壌に混和し、植物を育成するものであるから、以下に示
す如き利点を有する。
As is clear from the above explanation, the present invention involves placing a plant fibrous material in a closed container, compressing the material to produce a mass, without compressing the material into a mass, at a gauge pressure of 2 9/ca, and at a temperature of approximately 13
After being pressurized and heated with saturated steam, superheated steam, or other high-pressure heating gases at temperatures above 0°C, the material is instantly returned to normal pressure to swell and destroy, and then it is mixed directly into the soil of fields and fields without being composted. Since it is used for growing plants, it has the following advantages.

すなわち、従来利用価値が殆んど無いばかりか、田や畑
の土壌に混和すれば、植物に対して根腐れ、窒素飢餓、
病気の発生、発育不良、発芽障害等をもたらす弊害があ
るとされて、焼却または廃棄されていた籾殻やオガクズ
等の植物繊維質素材の前記弊害を全て解消することがで
きる。
In other words, not only does it have almost no utility value, but if it is mixed into the soil of rice fields or fields, it can cause root rot, nitrogen starvation, and
It is possible to eliminate all the harmful effects of plant fibrous materials such as rice husks and sawdust, which have been incinerated or discarded because of their harmful effects such as the occurrence of diseases, poor growth, and germination problems.

また従来、農地の地力を向上せしめるため、植物繊維質
素材の農地への施用は、該素材を完熟堆肥とした後でな
げればならないと考えられており、該素材を完熟堆肥と
する際多大の労力と時間、人件費を必要としていたが、
本発明は該素材を堆肥とすることなく、直ちに農地に施
用して、有機質を農地還元し、地力を著しく向上するこ
とができるので、堆肥化に必要な労力と時間、人件費、
設備費が不要となり非常に経済的である。
Furthermore, in order to improve the soil fertility of farmland, it has traditionally been believed that when applying plant fiber materials to farmland, it is necessary to turn the material into fully ripened compost before throwing it away. However, it required a lot of effort, time, and labor costs.
The present invention can immediately apply the material to farmland without converting it into compost, returning organic matter to the farmland and significantly improving soil fertility.
It is very economical as no equipment costs are required.

また、本発明は、田や畑の土壌が本来有していた方がよ
いとされていた好ましい性質の大部分を付与することが
出来、従って、どのような土壌においても、その性質を
改善することができる。
In addition, the present invention can impart most of the desirable properties that the soil of rice fields and fields should originally have, and therefore can improve the properties of any type of soil. be able to.

例えば粘土質土壌の如く、重い土壌を良好な通気性と通
水性を有し、固結しにくい土壌とし、また砂質土壌の如
く保水性のない土壌においては良好な保水性を有する土
壌とすることができる。
For example, make heavy soil such as clay soil a soil that has good air permeability and water permeability and is difficult to consolidate, and make soil that does not have water retention property such as sandy soil have good water retention property. be able to.

しかもすべての土壌を硬度の上昇の防止された土壌とし
、さらに断熱性の有する土壌として、冬期に於る霜柱の
発生を防止することができる。
In addition, all soils are soils that are prevented from increasing in hardness, and furthermore, have heat insulating properties, which can prevent the formation of frost columns in the winter.

即ち、本発明においては植物の根部への酸素の供給が良
好で、根部付近が常に適度の温度と湿度を有する状態で
の植物の育成が可能となるので、植物の成育が促進され
、収穫量も増大する効果が得られる。
That is, in the present invention, the supply of oxygen to the roots of the plants is good, and it is possible to grow the plants in a state where the vicinity of the roots always has appropriate temperature and humidity, so that the growth of the plants is promoted and the yield is increased. The effect of increasing the amount of energy can also be obtained.

以下、実施例を示して、本発明の効果を従来の堆肥を施
用する方法と対比して示す。
EXAMPLES Hereinafter, examples will be shown to demonstrate the effects of the present invention in comparison with conventional methods of applying compost.

尚、実施例において用いられる膨化処理物および堆肥の
略号は、以下に示す方法によって製造し、得られたもの
である。
Incidentally, the abbreviations for the expanded material and compost used in the Examples are those produced and obtained by the method shown below.

A(膨化籾殻):籾殻(水分6.7%)を中空の高圧密
閉容器に入れ、飽和水蒸気を圧入し、ゲージ圧7 kg
/cd、温度169℃で5分間、加圧加熱した後、瞬間
的に放圧して得た籾殻(水分的40%)である。
A (expanded rice husk): Rice husk (moisture 6.7%) is placed in a hollow high-pressure airtight container, and saturated steam is pressurized to a gauge pressure of 7 kg.
/cd, rice husk (moisture 40%) obtained by heating under pressure at a temperature of 169° C. for 5 minutes and then instantly releasing the pressure.

B(膨化杉オガクズ):杉オガクズ(水分9.2%)を
、内部にスクリュウコンベアを装着し、蒸気連通管を介
して、飽和水蒸気を通流させ得るように構成された中空
の密閉容器内に、投入ロータリーバルブを介して気密的
に連続的に導入し、該密閉容器内においてオガクズを質
密体とすることなく移動しながら、ゲージ圧7kg/c
rA、温度169℃で4分間加圧加熱し、排出ロータリ
ーバルブを介して瞬間的に大気下に放出して得た杉オガ
クズ(水分37%)である。
B (expanded cedar sawdust): Cedar sawdust (moisture 9.2%) is placed inside a hollow closed container equipped with a screw conveyor and configured to allow saturated steam to flow through it through a steam communication pipe. The sawdust was introduced continuously through the input rotary valve in an airtight manner, and while moving the sawdust in the closed container without making it into a compact, the gauge pressure was 7 kg/c.
This is cedar sawdust (moisture 37%) obtained by pressurizing and heating at rA and a temperature of 169° C. for 4 minutes, and then instantaneously releasing it into the atmosphere through a discharge rotary valve.

C(膨化松オガクズ):松オガクズ(水分10.7%)
を、内部に一定方向へ連続して過熱水蒸気が流れる中空
の細長い密閉容器内に、投入ロータリーバルブを介して
気密的に連続的に導入し、該オガクズを過熱水蒸気の気
流にのせて原料導入側から原料排出側に移送しながら、
ゲージ圧6kg/cyst、温度260℃で10秒間加
圧加熱し、排出ロータリーバルブを介して、瞬間的に大
気下に放出して得た松オガクズ(水分1.8%)である
C (expanded pine sawdust): Pine sawdust (moisture 10.7%)
is continuously introduced in an airtight manner through an input rotary valve into a hollow, elongated sealed container through which superheated steam flows continuously in a fixed direction, and the sawdust is carried on the airflow of superheated steam to the raw material introduction side. While transferring from the raw material discharge side to the raw material discharge side,
Pine sawdust (moisture content: 1.8%) was obtained by pressurizing and heating at a gauge pressure of 6 kg/cyst and a temperature of 260° C. for 10 seconds, and then instantaneously releasing it into the atmosphere through a discharge rotary valve.

D(稲藁堆肥):稲藁100部(重量)に対し、石灰窒
素1、尿素0.5、硫酸アンモニウム(硫安)2、過リ
ン酸石灰3および水200を添加し、混和堆積し、4〜
5日経過して堆積物が60℃以上に上昇したら、切返し
を行ない、以後常法により時々切返して、堆積開始後6
ケ月を経て得られる稲藁の完熟堆肥である。
D (rice straw compost): To 100 parts (weight) of rice straw, 1 lime nitrogen, 0.5 urea, 2 ammonium sulfate (ammonium sulfate), 3 lime superphosphate, and 200 water are added, mixed and deposited,
After 5 days have passed and the temperature of the deposit has risen to 60°C or higher, it is cut back.
It is a fully ripened compost of rice straw obtained after several months.

E(杉オガクズ堆肥):杉オガクズ100部(重量)に
対し、乾燥鶏糞10、米ヌカ10および水110部を加
え、混和堆積し、4〜5日して堆積物が60℃以上に上
昇したら、切返しを行ない、以後常法により時々切返し
て堆積開始後6ケ月を経て得られる杉オガクズの完熟堆
肥である。
E (cedar sawdust compost): To 100 parts (weight) of cedar sawdust, add 10 parts of dried chicken manure, 10 parts of rice bran, and 110 parts of water, mix and deposit, and after 4 to 5 days, when the temperature of the deposit rises to 60°C or higher, This is a fully ripened compost of cedar sawdust obtained after 6 months from the start of accumulation, after which the compost is cut and turned over from time to time in a conventional manner.

F(松オガクズ堆肥):前記E区分の杉オガクズ堆肥の
製造法において、杉オガクズ100部の代わりに、松オ
ガクズ100部を用いる以外は全く同様にして得られる
松オガクズの完熟堆肥である。
F (pine sawdust compost): This is a fully ripened pine sawdust compost obtained in exactly the same manner as in the method for producing cedar sawdust compost in category E above, except that 100 parts of pine sawdust is used instead of 100 parts of cedar sawdust.

実施例 1 採取した通常の畑の土壌にA(膨化籾殻)を総量の10
%(いずれも重量%)になるように混和し、通常の施肥
を行ない、これを アール・000 フグネルポット4連に充填し、ポット当り2本の陸稲苗
を植え、時々潅水しながら通常の陸稲栽培を4ケ月実施
し、もみを収穫した。
Example 1 A total of 10% of A (swollen rice husk) was added to the collected soil from a normal field.
% (all percentages by weight), fertilize as usual, fill four R.000 Hugner pots with this, plant two upland rice seedlings per pot, and cultivate upland rice as usual while watering occasionally. This was carried out for four months and the rice was harvested.

また、比較のため、加圧加熱処理しない無処理の籾殻お
よびD(稲藁堆肥)についても上記と同様に栽培(各区
分、施肥料を殆んど同じにするため、稲藁堆肥区分に通
常の施肥は行なわない)し、もみを収穫した。
For comparison, untreated rice husks and D (rice straw compost), which are not subjected to pressure and heat treatment, were also cultivated in the same manner as above. (No fertilizer was applied) and the rice was harvested.

それらの結果を増収率で第4表に示す。The results are shown in Table 4 in terms of yield increase rate.

第4表の結果から、明らかなように、本発明は多大な労
力と6ケ月もの長時間経て得られる完熟稲藁堆肥を用い
た場合と比べ、はぼ同量、籾を収穫できることが判る。
As is clear from the results in Table 4, the present invention allows harvesting of approximately the same amount of paddy as compared to the case of using fully ripened rice straw compost, which requires a great deal of labor and a long period of 6 months.

即ち、本発明は籾殻を堆肥とすることなく、そのまま土
壌に混合(施用)するものであるから、籾殻を堆肥化す
るための多大な労力と時間を省略し、堆肥化に必要な設
備が全**く不要となるばかりでなく、植物の成育が促
進され、収穫量も増大することが判る。
In other words, since the present invention mixes (applies) rice husks directly to the soil without composting them, a great deal of labor and time for composting rice husks is omitted, and all the equipment necessary for composting is required. **Not only is this unnecessary, but it also promotes plant growth and increases yield.

実施例 2 通常の野菜畑10aに、A(膨化籾殻)を無水物換算で
1500kgとなるように計量して、均一に散布し、耕
耘機で深さ30crrLの厚さの土壌中に均一に混和し
た後、施肥量が窒素18kg、燐酸10kg、加里14
kgとなるように化学肥料を施し、次いで「秋蒔山東菜
」を直播し、以下、常法の秋蒔山東菜の栽培方法に従っ
て栽培し、播種後15日口の発芽率と30日日の任意株
20株の平均生体重を測定した。
Example 2 Weighed 1500 kg of A (expanded rice husk) in terms of anhydride in a normal vegetable garden 10a, spread it uniformly, and mixed it uniformly into the soil with a depth of 30 crrL using a tiller. After that, the amount of fertilizer applied was 18 kg of nitrogen, 10 kg of phosphoric acid, and 14 kg of potassium.
1 kg of chemical fertilizer, and then directly sowing "Aki Makiyama Tosai" and cultivating it according to the conventional Aki Makiyama Tosai cultivation method. The average fresh weight of 20 plants was measured.

また比較のため、加圧加熱処理しない無処理の籾殻およ
びD(稲藁堆肥)についても上記と同様に栽培(各区分
、施肥料を殆んど同じにするため、稲藁堆肥区分に化学
肥料は施用しない)し、発芽率と生体重を測定した。
For comparison, untreated rice husks and D (rice straw compost) that are not subjected to pressure and heat treatment were also cultivated in the same manner as above. (not applied) and germination rate and fresh weight were measured.

それらの結果を、第5表に示す。The results are shown in Table 5.

実施例 3 通常の野菜畑10aKB(膨化杉オガクズ)を無水物換
算で200 okgとなるように計量して均一に散布し
、耕耘機で深さ30cIfLの厚さの土壌中に均一に混
和した後、施肥料が窒素18kg、燐酸10kg、加里
14kgとなるように化学肥料を施し、次いで「秋蒔か
ぶ」を直播し、以低常法の秋蒔かぷの栽培方法に従って
栽培し、播種後15日口の発芽率、30日日の任意株2
0株の平均生体重および90日日の任意株20株の平均
生体重を測定した。
Example 3 Weighed 10aKB (swollen cedar sawdust) of a normal vegetable garden to 200kg in terms of anhydride, spread it evenly, and mixed it uniformly into the soil with a depth of 30cIfL using a tiller. , Apply chemical fertilizer so that the fertilizer is 18 kg of nitrogen, 10 kg of phosphoric acid, and 14 kg of potassium, and then directly sow ``autumn turnip'', and from then on, cultivate it according to the conventional method of ``autumn turnip'', 15 days after sowing. Oral germination rate, 30 days arbitrary strain 2
The average fresh weight of 0 strains and the average fresh weight of 20 arbitrary strains on the 90th day were measured.

また、比較のため、加圧加熱処理しない無処理の杉オガ
クズおよびE(杉オガクズ堆肥)についても上記と同様
に栽培(各区分、施肥料を殆んど同じにするため、杉オ
ガクズ堆肥区分に化学肥料は施用しない)し、発芽率、
生体重を測定した。
For comparison, untreated cedar sawdust and E (cedar sawdust compost) without pressure and heat treatment were also cultivated in the same manner as above. (Do not apply chemical fertilizers), germination rate,
Live weight was measured.

それらの結果を第6表に示す。The results are shown in Table 6.

実施例 4 通常の野菜畑10aにC(膨化松オガクズ)を無水物換
算で2000kgとなるように計量して均一に散布し、
耕耘機で深さ30cIfLの厚さの土壌中に均一に混和
した後、施肥料が窒素18kg、燐酸10kg、加重1
4kgとなるように化学肥料を施し、次いで「春蒔小松
菜」を直播し、以下常法の春蒔小松菜の栽培方法に従っ
て栽培し、播種後15日目の発芽率と30日目、75日
目の任意株20株*未の平均生体重を測定した。
Example 4 C (expanded pine sawdust) was weighed and uniformly sprinkled in an amount of 2000 kg in anhydrous terms on a normal vegetable field 10a.
After uniformly mixing the soil with a tiller to a depth of 30 cIfL, the applied fertilizer was 18 kg of nitrogen, 10 kg of phosphoric acid, and a weight of 1.
Apply chemical fertilizer to 4 kg, and then directly sow "spring-sown komatsuna" and cultivate it according to the conventional method of cultivating spring-sown komatsuna. The average fresh weight of 20 arbitrary strains* was measured.

また、比較のため、加圧加熱処理しない無処理の松オガ
クズおよびF(松オガクズ堆肥)についても上記と同様
に栽培(各区分、施肥料を殆んど同じにするため、松オ
ガクズ堆肥区分に化学肥料は施用しない)し、発芽率お
よび生体重を測定した。
For comparison, untreated pine sawdust and F (pine sawdust compost) without pressure and heat treatment were also cultivated in the same manner as above. No chemical fertilizers were applied), and the germination rate and fresh weight were measured.

それらの結果を第7表に示す。The results are shown in Table 7.

第5.6.7表の結果から、籾殻、杉オガクズおよび松
オガクズは、無処理のまま田や畑の土壌に施用すると、
植物の発芽と生育が著しく抑制されるが、それらを本発
明処理して得られたものを土壌に施用すると発芽抑制作
用はなくなり、発芽後良好な生育を示すことが判る。
From the results in Table 5.6.7, if rice husk, cedar sawdust, and pine sawdust are applied to the soil of rice fields and fields without treatment,
Although the germination and growth of plants are significantly inhibited, when the products obtained by treating them according to the present invention are applied to soil, the germination inhibiting effect disappears and it is found that they show good growth after germination.

また、本発明区分は、籾殻、杉オガクズおよび松オガク
ズを堆肥化したそれぞれの区分と比べ、勝るとも劣らな
い結果が得られることから、本発明は籾殻や杉オガクズ
および松オガクズをそれぞれ堆肥化するための多大な労
力と時間を省略し、その設備が全く不要となる利点を有
する。
Furthermore, the classification of the present invention yields comparable results compared to the respective classifications in which rice husks, cedar sawdust, and pine sawdust are composted. It has the advantage that it saves a lot of effort and time, and its equipment is completely unnecessary.

Claims (1)

【特許請求の範囲】[Claims] 1 植物繊維質素材を中空の密閉容器に入れ、該素材を
圧縮蒸煮して質密体とすることなく、ゲージ圧2 kg
/crA、温度約130℃以上の飽和水蒸気、過熱水蒸
気またはその他の高圧加熱ガスにより加圧加熱したのち
瞬間的に常圧に戻して膨化破壊したものを、そのまま田
、畑の土壌に混和し、植物を育成することを特徴とする
植物育成方法。
1. Place a plant fiber material in a hollow airtight container and heat the material to a gauge pressure of 2 kg without compressing and steaming the material to make a compact.
/crA, heated under pressure with saturated steam, superheated steam, or other high-pressure heated gas at a temperature of about 130°C or higher, and then instantly returned to normal pressure to swell and destroy the product, which is mixed directly into the soil of rice fields and fields, A plant growing method characterized by growing plants.
JP54031169A 1979-03-19 1979-03-19 Plant growing method Expired JPS5841810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54031169A JPS5841810B2 (en) 1979-03-19 1979-03-19 Plant growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54031169A JPS5841810B2 (en) 1979-03-19 1979-03-19 Plant growing method

Publications (2)

Publication Number Publication Date
JPS55124424A JPS55124424A (en) 1980-09-25
JPS5841810B2 true JPS5841810B2 (en) 1983-09-14

Family

ID=12323925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54031169A Expired JPS5841810B2 (en) 1979-03-19 1979-03-19 Plant growing method

Country Status (1)

Country Link
JP (1) JPS5841810B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305085A (en) * 2003-04-07 2004-11-04 Maeda Seikan Kk Artificial lightweight soil and method for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159715A (en) * 1983-03-03 1984-09-10 株式会社嵐北商事 Production of seedling bed soil
JP7229830B2 (en) * 2019-03-28 2023-02-28 デンカ株式会社 Agricultural land conversion method
JP7228441B2 (en) * 2019-03-28 2023-02-24 デンカ株式会社 Agricultural land conversion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305085A (en) * 2003-04-07 2004-11-04 Maeda Seikan Kk Artificial lightweight soil and method for producing the same

Also Published As

Publication number Publication date
JPS55124424A (en) 1980-09-25

Similar Documents

Publication Publication Date Title
KR100741818B1 (en) Method and antifungal organic farming soil for planting
KR100779756B1 (en) Development for agricultural bed soil using the seaweeds by-product
CN106986678A (en) A kind of implantation methods of oil tea
TAYEB et al. The effect of nitrogen fixation and phosphorus solvent bacteria on growth physiology and vitamin C content of Capsicum annum L.
Adetunji Response of onion to soil solarization and organic mulching in semi-arid tropics
Comia et al. Erosion and crop yield response to soil conditions under alley cropping systems in the Philippines
JP3430026B2 (en) Vegetation base materials such as slopes and greening method
Bilalis et al. Response of Organic Linseed ('Linum usitatissimum'L.) to the Combination of Tillage Systems,(Minimum, Conventional and No-Tillage) and Fertilization Practices: Seed and Oil Yield Production
Nejatzadeh-Barandozi Effects of different levels of mulch and irrigation on growth traits and essential oil content of basil
Astiko et al. The effect of row proportion of maize and soybean intercropping on growth and yield of component crops in sandy soil North Lombok, Indonesia
JPH0135802B2 (en)
JPS5841810B2 (en) Plant growing method
US4553351A (en) Method of treating a soil
KR102514602B1 (en) Method for producing organic fertilizer having activity of plant disease control using spent mushroom substrate
CN108901751A (en) A kind of solid matrix and implantation methods of suitable vegetable three-dimensional planting
Yadav et al. Comparative evaluation of locally available casing materials for quantitative and qualitative effect on two strains of Agaricus bisporus (Lange).
Farag et al. Utilization of rice straw and vermicompost in vegetable production via soilless culture
Bath Matching the availability of N mineralised from green-manure crops with the N-demand of field vegetables
Chandana et al. Influence of Nutrient Management Practices on Growth and Yield of Pearl Millet in Melia dubia Based Agri-Silvi System
JPH01312934A (en) Culture medium for plant cultivation
Jata et al. Intercrop and drip irrigation effects on growth, yield, water-use efficiency and economics of elephant foot yam (Amorphophallus paeoniifolius)
JP2824127B2 (en) How to promote turf growth
JPS6049717A (en) Endotrophic mycorrhiza due to carbon fertilizer, growing of plant forming endotrophic mycorrhiza and root nodule and propagation of root nodule
RU2813800C1 (en) Method of growing potatoes using organic and mineral fertilizers
CN112919937A (en) Process for preparing micromolecular carbon nutrient and application thereof