JP4035668B2 - 画像処理装置、画像処理方法、および記憶媒体 - Google Patents

画像処理装置、画像処理方法、および記憶媒体 Download PDF

Info

Publication number
JP4035668B2
JP4035668B2 JP12248397A JP12248397A JP4035668B2 JP 4035668 B2 JP4035668 B2 JP 4035668B2 JP 12248397 A JP12248397 A JP 12248397A JP 12248397 A JP12248397 A JP 12248397A JP 4035668 B2 JP4035668 B2 JP 4035668B2
Authority
JP
Japan
Prior art keywords
spatial frequency
image
processing
signal
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12248397A
Other languages
English (en)
Other versions
JPH10214336A (ja
Inventor
真吾 内橋
斉 小勝
裕二 小林
信行 竹尾
伸児 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP12248397A priority Critical patent/JP4035668B2/ja
Priority to US08/871,757 priority patent/US6035065A/en
Publication of JPH10214336A publication Critical patent/JPH10214336A/ja
Application granted granted Critical
Publication of JP4035668B2 publication Critical patent/JP4035668B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • G06T5/75Unsharp masking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像データに対して空間周波数処理を施して出力する画像処理に関するものである。
【0002】
【従来の技術】
複数の出力機器が接続されたデスクトップパブリシング(DTP)システム等の画像処理システムを用いてカラー画像の編集および出力を行なっている現状において、出力機器によらず同一の出力画像を得たいという要望がある。しかし、画像出力装置の再現特性は、各装置ごとにばらつきが大きく、そのまま出力したのでは同一の特性を有する出力画像が得られない。
【0003】
このような個々の画像出力装置の再現特性のばらつきに対して、色の再現に関しては、画像出力装置によらず同一の色再現出力画像が得られるようになりつつある。例えば、カラーマネージメントシステム(CMS)を用いて、装置に依存しないカラー信号から各装置固有の色信号への色変換を行なうことにより、出力機器によらず同一の色再現出力画像が得られる。この際の色変換に用いられる色変換係数は、例えば、特開平2−289367号公報に述べられているように、複数のカラーパッチの出力画像を測色することにより算出することが可能である。算出された色変換係数は、装置特性情報として、例えばICCプロファイルの形成で記述され、システムに保持される。
【0004】
しかし、それぞれの出力機器に応じた色変換を施した画像データを作成し、出力しても、出力機器ごとに鮮鋭度の異なる出力画像となってしまう。鮮鋭度を比較する尺度として、画像処理の分野では各周波数ごとにコントラストをどのくらい伝達できるかを示すCTF(コントラストトランスファーファンクション)を用いる。以下の説明では、このCTFを各出力装置の空間周波数特性とする。
【0005】
現状においては、各画像出力装置の空間周波数特性の影響による出力画像の変化をカンと経験から定性的に予測し、画像処理アプリケーションソフトウェアエアを用いて、画像データに対してシャープネス処理や平滑化処理などの空間周波数処理を繰り返し行ない、希望する出力画像を得ている。
【0006】
また、あらかじめプリンタ内部に空間周波数処理部を内蔵しているカラープリンタにおいては、その開発段階において、空間周波数処理部の処理係数を決定している。その際には、処理係数をカンと経験に基づいて変化させながら、複数種類の基準画像データの出力画像をカラープリンタで繰り返し作成し、出力画像の鮮鋭度を観察することにより、処理係数を決定している。
【0007】
【発明が解決しようとする課題】
本発明は、上述した事情に鑑みてなされたもので、画像出力装置の空間周波数伝達特性を補正するために行なう画像データに対する空間周波数処理において、その処理係数をカンや経験によらずに決定できる処理係数算出手段によって各画像出力装置ごとに算出された空間処理係数を用い、画像出力装置によらず同一の鮮鋭度の出力画像を得ることが可能な画像処理装置及び画像処理方法と、そのような画像処理プログラムを記憶した記憶媒体を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、画像処理装置において、注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号と空間周波数処理係数に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段と、特定の複数の空間周波数成分を有する領域を含むテストパターン画像データから求める前記出力手段における前記画像処理信号のDC成分ごとの画像再現特性に基づいて前記処理手段の前記空間周波数処理係数を決定する係数決定手段を備え、該係数決定手段は、前記テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定する測定手段と、該測定手段で測定された前記領域の空間周波数成分の測定結果と前記テストパターン画像データの空間周波数成分とを比較する比較手段と、前記比較手段の比較結果から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように前記処理手段の前記空間周波数処理係数を決定する空間周波数処理係数決定手段を有し、前記処理手段は、該空間周波数処理係数に基づいて前記画像処理信号のDC成分ごとに前記注目画素の値に加える変更の程度を変化させることを特徴とするものである。
【0009】
請求項2に記載の発明は、請求項1に記載の画像処理装置において、前記画像処理信号のDC成分ごとに付与すべき前記所定の特性は、前記出力装置の持つ画像再現特性を前記画像処理信号のDC成分ごとに変化しないとする理想特性にするためのものであることを特徴とするものである。
【0010】
請求項3に記載の発明は、画像処理装置において、注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号と空間周波数処理係数に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段と、特定の複数の空間周波数成分を有する領域を含むテストパターン画像データから求める前記出力手段の画像再現特性に基づいて前記処理手段の前記空間周波数処理係数を決定する係数決定手段を備え、前記空間周波数処理係数は、基本処理係数と補助処理係数を含み、前記係数決定手段は、前記テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定する測定手段と、該測定手段で測定された前記領域の空間周波数成分の測定結果と前記テストパターン画像データの空間周波数成分とを比較する比較手段と、前記比較手段の比較結果から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように前記処理手段の前記空間周波数処理係数を決定する空間周波数処理係数決定手段を有し、前記空間周波数処理係数決定手段は、前記出力装置に入力する前記画像処理信号の持つ空間周波数特性に所定の特性を付与するために前記基本処理係数を決定する基本処理係数決定手段と、該基本係数決定手段で決定される基本処理係数で変化する画像処理信号の持つ空間周波数特性にさらに加えるべき処理の特性を付与するための前記補助処理係数を決定する補助処理係数決定手段を有していることを特徴とするものである。
【0011】
請求項4に記載の発明は、請求項3に記載の画像処理装置において、前記補助処理係数は、補助空間周波数処理係数と補助ゲイン係数を含み、前記処理係数決定手段は、前記画像処理信号の持つ空間周波数特性に所定の特性を付与するための前記補助空間周波数処理係数を決定する補助空間周波数処理係数決定手段と、該補助空間周波数処理係数決定手段で決定される補助空間周波数処理係数に基づき変更する画像処理信号に掛け合わせるべきゲインを得るための補助ゲイン係数を決定するゲイン係数決定手段を含むことを特徴とするものである。
【0012】
請求項5に記載の発明は、請求項3に記載の画像処理装置において、前記基本処理係数は、基本空間周波数処理係数と基本ゲイン係数を含み、前記処理係数決定手段は、前記画像処理信号の持つ空間周波数特性に所定の特性を付与するための前記基本空間周波数処理係数を決定する基本空間周波数処理係数決定手段と、該基本空間周波数処理係数決定手段で決定される基本空間周波数処理係数に基づき変更する画像処理信号に掛け合わせるべきゲインを得るための基本ゲイン係数を決定するゲイン係数決定手段を含むことを特徴とするものである。
【0013】
請求項6に記載の発明は、請求項4または請求項5に記載の画像処理装置において、前記ゲイン係数決定手段は、前記画像処理信号の局所的なコントラストに対応する基本ゲイン係数または補助ゲイン係数を決定することを特徴とするものである。
【0014】
請求項7に記載の発明は、請求項4または請求項5に記載の画像処理装置において、前記ゲイン係数決定手段は、前記画像処理信号の局所的な平均値に対応する基本ゲイン係数または補助ゲイン係数を決定することを特徴とするものである。
【0015】
請求項8に記載の発明は、画像処理装置において、注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的なコントラストを特徴として求める特徴量抽出手段と、前記入力手段に入力された画像処理信号と空間周波数処理係数と前記特徴量抽出手段で求めた特徴に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段を備えており、前記空間周波数処理係数は、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とするものである。
【0016】
請求項9に記載の発明は、画像処理装置において、注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的な平均値を特徴として求める特徴量抽出手段と、前記入力手段に入力された画像処理信号と空間周波数処理係数と前記特徴量抽出手段で求めた特徴に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段を備えており、前記空間周波数処理係数は、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とするものである。
【0017】
請求項10に記載の発明は、請求項8または請求項9に記載の画像処理装置において、前記空間周波数処理係数は、基本処理係数と補助処理係数を含み、前記基本処理係数は、前記出力装置に入力する前記画像処理信号の持つ空間周波数特性に所定の特性を付与するためのものであり、前記補助処理係数は、前記基本処理係数で変化する画像処理信号の持つ空間周波数特性にさらに加えるべき処理の特性を付与するためのものであり、前記処理手段は、前記画像処理信号の前記注目画素の値を前記基本処理係数に基づき変更する基本処理手段と、前記注目画素の値を前記補助処理係数に基づき変更する補助処理手段を含み、それぞれの変更された注目画素の値に基づいて前記出力手段に与える画像処理信号を作成することを特徴とするものである。
【0018】
請求項11に記載の発明は、請求項10に記載の画像処理装置において、前記補助処理係数は、補助空間周波数処理係数と補助ゲイン係数を含み、前記補助処理手段は、前記補助空間周波数処理係数に基づき画像処理信号に変更を加え、さらに前記特徴量抽出手段により求めた特徴と前記補助ゲイン係数から得られるゲインに基づいた変更を加えることを特徴とするものである。
【0019】
請求項12に記載の発明は、請求項10に記載の画像処理装置において、前記基本処理係数は、基本空間周波数処理係数と基本ゲイン係数を含み、前記基本処理手段は、前記基本空間周波数処理係数に基づき画像処理信号に変更を加え、さらに前記特徴量抽出手段により求めた特徴と前記基本ゲイン係数から得られるゲインに基づいた変更を加えることを特徴とするものである。
【0020】
請求項13に記載の発明は、請求項9に記載の画像処理装置において、前記空間周波数処理係数は、前記テストパターン画像を実際に測定した空間周波数成分と前記テストパターン画像データの空間周波数成分との比較結果とともに前記出力手段が実効的に許容する入力値の範囲とから目標空間周波数伝達特性を決定し、該目標空間周波数伝達特性に基づいて算出されたものであることを特徴とするものである。
【0021】
請求項14に記載の発明は、画像処理装置において、注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的なコントラストを特徴として求める特徴量抽出手段と、該特徴量抽出手段で求めた特徴に基づいて前記画像処理信号の空間周波数成分ごとのゲインを決定するゲイン決定手段と、前記入力手段に入力された画像処理信号の空間周波数成分ごとに前記ゲイン決定手段で決定されたそれぞれの前記ゲインに基づいて前記注目画素の値に変更を加え得られたそれぞれの値から変更された画像処理信号を得る処理手段と、該処理手段によって得られた前記変更された画像処理信号の画像を出力する出力手段を備えており、前記画像処理信号の空間周波数成分ごとの前記ゲインは、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とするものである。
【0022】
請求項15に記載の発明は、画像処理装置において、注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的な平均値を特徴として求める特徴量抽出手段と、該特徴量抽出手段で求めた特徴に基づいて前記画像処理信号の空間周波数成分ごとのゲインを決定するゲイン決定手段と、前記入力手段に入力された画像処理信号の空間周波数成分ごとに前記ゲイン決定手段で決定されたそれぞれの前記ゲインに基づいて前記注目画素の値に変更を加え得られたそれぞれの値から変更された画像処理信号を得る処理手段と、該処理手段によって得られた前記変更された画像処理信号の画像を出力する出力手段を備えており、前記画像処理信号の空間周波数成分ごとの前記ゲインは、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とするものである。
【0023】
請求項16に記載の発明は、画像処理装置において、注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、前記入力手段に入力された画像処理信号と空間周波数処理係数に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段と、前記入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的なコントラストを特徴として求める特徴量抽出手段と、該特徴量抽出手段で求めた特徴に基づいて前記処理手段の前記空間周波数処理係数を設定する処理係数決定手段を備えており、前記空間周波数処理係数は、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とするものである。
【0024】
請求項17に記載の発明は、画像処理装置において、注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、前記入力手段に入力された画像処理信号と空間周波数処理係数に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段と、前記入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的な平均値を特徴として求める特徴量抽出手段と、該特徴量抽出手段で求めた特徴に基づいて前記処理手段の前記空間周波数処理係数を設定する処理係数決定手段を備えており、前記空間周波数処理係数は、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とするものである。
【0025】
請求項18に記載の発明は、画像処理装置において、均等色空間の色座標系で表現された値を含む画像処理信号を入力する第1の入力手段と、該第1の入力手段に入力された画像処理信号を出力手段の制御に適した前記色空間と異なる第2の色空間の色座標系に変換する色変換手段と、該色変換手段により色変換された注目画素および該注目画像に対する周辺画素の画像信号の値を含む画像処理信号を入力する第2の入力手段と、該第2の入力手段に入力された前記画像信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的なコントラストを特徴として求める特徴量抽出手段と、前記第2の入力手段に入力された画像処理信号と空間周波数処理係数と前記特徴量抽出手段で求めた特徴に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段を備えており、前記空間周波数処理係数は、テストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像のデータの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とするものである。
【0026】
請求項19に記載の発明は、画像処理装置において、均等色空間の色座標系で表現された値を含む画像処理信号を入力する第1の入力手段と、該第1の入力手段に入力された画像処理信号を出力手段の制御に適した前記色空間と異なる第2の色空間の色座標系に変換する色変換手段と、該色変換手段により色変換された注目画素および該注目画像に対する周辺画素の画像信号の値を含む画像処理信号を入力する第2の入力手段と、該第2の入力手段に入力された前記画像信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的な平均値を特徴として求める特徴量抽出手段と、前記第2の入力手段に入力された画像処理信号と空間周波数処理係数と前記特徴量抽出手段で求めた特徴に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段を備えており、前記空間周波数処理係数は、テストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像のデータの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とするものである。
【0027】
請求項20に記載の発明は、請求項16ないし請求項19のいずれか1項に記載の画像処理装置において、前記空間周波数処理係数は、前記テストパターン画像を実際に測定した空間周波数成分と前記テストパターン画像データの空間周波数成分との比較結果とともに前記出力手段が実効的に許容する入力値の範囲とから目標空間周波数伝達特性を決定し、該目標空間周波数伝達特性に基づいて算出されたものであることを特徴とするものである。
【0028】
請求項21に記載の発明は、画像処理方法において、特定の複数の空間周波数成分を有する領域を含むテストパターン画像データを出力手段により出力し出力画像を作成する工程と、前記出力画像の空間周波数特性を測定する工程と、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように空間周波数処理係数を決定する工程と、入力された注目画素および周辺画素の画像信号の値を含む画像処理信号の局所的なコントラストを特徴として求める工程と、前記画像処理信号と前記特徴と前記空間周波数処理係数に基づいて前記注目画素の値に変更を加える工程と、変更を加えた前記画像処理信号の画像を出力する工程を有することを特徴とするものである。
【0029】
請求項22に記載の発明は、画像処理方法において、特定の複数の空間周波数成分を有する領域を含むテストパターン画像データを出力手段により出力し出力画像を作成する工程と、前記出力画像の空間周波数特性を測定する工程と、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように空間周波数処理係数を決定する工程と、入力された注目画素および周辺画素の画像信号の値を含む画像処理信号の局所的な平均値を特徴として求める工程と、前記画像処理信号と前記特徴と前記空間周波数処理係数に基づいて前記注目画素の値に変更を加える工程と、変更を加えた前記画像処理信号の画像を出力する工程を有することを特徴とするものである。
【0030】
請求項23に記載の発明は、請求項21または請求項22に記載の画像処理方法において、前記空間周波数処理係数を決定する工程は、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係とともに前記出力手段が実効的に許容する入力値の範囲とから目標空間周波数伝達特性を決定し、該目標空間周波数伝達特性に基づいて前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように前記空間周波数処理係数を算出することを特徴とするものである。
【0031】
請求項24に記載の発明は、コンピュータが読み取り可能な記憶媒体において、特定の複数の空間周波数成分を有する領域を含むテストパターン画像データを出力手段に出力させ出力画像を作成する工程と、前記出力画像の空間周波数特性を測定する工程と、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように空間周波数処理係数を決定する工程と、入力された注目画素および周辺画素の画像信号の値を含む画像処理信号の局所的なコントラストを特徴として求める工程と、前記画像処理信号と前記特徴と前記空間周波数処理係数に基づいて前記注目画素の値に変更を加える工程と、変更を加えた前記画像処理信号の画像を出力する工程をコンピュータに実行させるプログラムを記憶したことを特徴とするものである。
【0032】
請求項25に記載の発明は、コンピュータが読み取り可能な記憶媒体において、特定の複数の空間周波数成分を有する領域を含むテストパターン画像データを出力手段に出力させ出力画像を作成する工程と、前記出力画像の空間周波数特性を測定する工程と、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように空間周波数処理係数を決定する工程と、入力された注目画素および周辺画素の画像信号の値を含む画像処理信号の局所的な平均値を特徴として求める工程と、前記画像処理信号と前記特徴と前記空間周波数処理係数に基づいて前記注目画素の値に変更を加える工程と、変更を加えた前記画像処理信号の画像を出力する工程をコンピュータに実行させることを特徴とするものである。
【0057】
【発明の実施の形態】
図1は、本発明の実施の一形態を示すブロック図である。図中、1は処理演算部、2は出力部、3は測定部、4は係数算出部、5はテストパターン保持部である。処理演算部1は、入力された画像データに対して各種の処理を施し、出力画像データを作成する。ここでは、少なくとも空間周波数処理を行ない、画像出力装置に応じた空間周波数となるように、入力画像データに対して変換処理を行なう。この時行なわれる空間周波数処理は、係数算出部4で算出された処理係数を用いて行なう。また、処理係数の算出時には、テストパターン保持部5に保持されているテストパターン画像データに対して空間周波数処理以外の必要な処理を施し、出力画像データを作成する。出力部2は、処理演算部1で作成された出力画像データを出力する。
【0058】
測定部3は、空間周波数処理で用いる処理係数を算出する際に、テストパターン保持部5に保持されているテストパターン画像データに基づいて出力部2から出力されたテストパターン画像の空間周波数特性を測定する。
【0059】
係数算出部4は、テストパターン保持部5に保持されているテストパターン画像データの空間周波数特性を求め、また、測定部3で測定したテストパターン画像の空間周波数特性を得て、両者の対応関係から空間周波数処理で用いる処理係数を算出する。
【0060】
テストパターン保持部5は、テストパターン画像データを保持する。テストパターン画像データは、例えば空間周波数の異なる1以上のパッチ画像により構成することができる。パッチ画像の1つとして、DC成分、すなわち空間周波数が0のパッチ画像を含めることができる。
【0061】
空間周波数処理で用いる処理係数を算出する際には、テストパターン保持部5に保持されているテストパターン画像データに対して処理演算部1で空間周波数処理以外の必要な処理、例えばカラー処理等を行なった後、出力部2から出力する。出力されたテストパターン画像の空間周波数特性を測定部3で測定する。係数算出部4において、測定部3で測定した空間周波数特性と、テストパターン保持部5に保持されているテストパターン画像データの空間周波数特性とを対応づけ、2つの空間周波数特性を近づけるような空間周波数処理を行なうための処理係数を算出する。算出された処理係数は処理演算部1に渡される。
【0062】
画像データの出力処理は、このようにして空間周波数処理を行なうための処理係数が求められた後に行なう。処理演算部1は、入力された画像に対して係数算出部4で算出された処理係数を用いた空間周波数処理を含め、各種の画像処理を行なって出力画像データを作成し、出力部2から出力する。このとき、空間周波数処理のための処理係数が既に算出されて処理演算部1に設定されているので、処理演算部1および出力部2のみで動作でき、測定部3、係数算出部4、テストパターン保持部5はなくてもよい。
【0063】
図2は、処理演算部の構成の一例を示すブロック図である。図中、11は色空間変換部、12は空間周波数処理部、13は階調変換部である。ここでは、具体例として、カラー画像データに対する処理を示している。入力されるカラー画像データは、一例として、入出力装置に依存しないL* * * 各8Bitのデータであるものとする。また、出力部2は、YMC各8Bitのカラー画像を受け取り、画像を出力するものとする。もちろん、入力、出力とも、他の表色系を用いたり、ビット数が異なっていてもよい。
【0064】
色空間変換部11は、L* * * 各8Bitの画像データから、YMC各8Bitの画像データへの変換を行なう。このYMCカラー信号は、a* =b* =0のときY=M=C、a* =b* =0かつL* =100のときY,M,C=0、a* =b* =0かつL* =0のときY,M,C=255であり、a* =b* =0のときY,M,Cの値はL* 値にリニアな関係となるように階調設定がされている。このような色変換処理は、例えばダイレクト・ルックアップ・テーブルを用いて変換を行なうことができる。
【0065】
次に、空間周波数処理部12においてY,M,Cの各カラー画像データに対して空間周波数処理を行なう。空間周波数処理としては、デジタルフィルタ処理が一般的である。図3は、デジタルフィルタ処理の一例の説明図である。いま、図3(B)に示すような3×3のフィルタ係数マトリクスを考える。空間周波数処理の場合、このフィルタ係数マトリクスの係数の和が1となるように設定されている。図3(A)に示す画像データが入力されたとき、各画素を順次注目画素として、周囲の画素とともに3×3画素について積和演算を行なう。図3に示した例では、中央の値3の画素を注目画素とし、その注目画素を中心とする3×3画素を用いて演算を行なう。例えば、1×(−0.2)+2×(−0.1)+1×(−0.2)+3×2.2+2×(−0.2)の計算を行ない、値5.8を得る。得られた値を注目画素の新たな値とする。このような演算処理を、各画素を注目画素として行なうことにより、図3(C)に示すような空間周波数処理後の画像データが得られる。
【0066】
ここで、図3(B)に示すフィルタ係数マトリクスは、係数算出部4において、出力部2の再現特性に応じて算出され、設定される。フィルタ係数マトリクスは、YMC各軸ごとに、それぞれ1つ以上設定される。後述するように、入力画像データの平均値やコントラスト等に応じた複数のフィルタ係数マトリクスを設定し、これらを入力された画像データの空間周波数特性に応じて切り換えて用いるように構成することができる。
【0067】
最後に、階調変換部13において各々ルックアップ・テーブルにより階調特性を調整し、例えば、面積変調により画像を形成するカラー画像形成装置においては、出力カバレッジにリニアな画像信号である、Y’M’C’各8Bitに変換して出力部2に出力する。階調変換部13は、YMC各軸に対応したそれぞれのルックアップ・テーブルで構成することができる。
【0068】
上述の色空間変換部11におけるダイレクト・ルックアップ・テーブルの処理係数、および、階調変換部13におけるルックアップ・テーブルの処理係数は、出力装置色変換情報としてあらかじめ出力部2の出力装置ごとに保持されているものとする。使用する出力装置に対応した出力装置色変換情報を用いて処理を行なうことにより、入出力装置に依存しない形式で表現された画像データから出力装置によらず同一色再現の出力画像を得ることが可能となっている。また、空間周波数処理部12におけるデジタルフィルタの処理係数も、係数算出部4で出力装置に対応づけて算出しておくことにより、出力装置によらず同一の空間周波数特性を有する出力画像を得ることが可能となっている。なお、空間周波数処理部12におけるデジタルフィルタの処理係数も、係数算出部4で算出後、出力装置ごとに保持しておけばよい。
【0069】
図2に示した構成では、テストパターン保持部5に保持されているテストパターン画像データはYMC各8Bitの画像データとして保持されていることを仮定している。そのため、空間周波数処理部12で用いる処理係数を算出する際には、階調変換部13の処理を行なって、出力部2からテストパターン画像を出力している。テストパターン画像データがYMC色空間以外の色空間のデータであれば、色空間の変換を行なってから階調変換部13に入力することになる。例えば、L* * * 各8Bitのデータであれば、色空間変換部11の処理後、空間周波数処理部12の処理を行なわずに階調変換部13の処理を行なうように構成すればよい。
【0070】
空間周波数処理部12についてさらに説明する。図4は、種々の出力装置における空間周波数応答特性の一例の説明図である。図中、実線は入力された画像データの信号を示し、破線は出力された画像の信号を示す。出力装置は、それぞれの出力方式の特徴や機器の構成などによって、入力された画像データの空間周波数特性と出力された画像の空間周波数特性は、線形に対応しない場合がある。例えば、図4(A)に示すように、同じ空間周波数、同じ振幅であっても、平均の明るさ(以下DC成分と呼ぶ)の異なる入力画像データに対して出力画像の振幅が異なる場合がある。また、図4(B)に示すように、同じ空間周波数、同じDC成分で異なる振幅の場合、例えば、小さな振幅の入力画像データに対して振幅の大きな出力画像となったり、大きな振幅の入力画像データに対して振幅の小さな出力画像が得られたりする。この時の入力画像データの振幅と出力画像の振幅は線形に変化するとは限らない。以下の説明では、画像信号からDC成分を取り除いた信号をAC成分と呼ぶことにする。
【0071】
このような異なる空間周波数応答をする出力装置が存在するため、これらに対応した空間周波数処理を行なうと有効である。図4(A)に示す場合に対応するため、同じ空間周波数で異なるDC成分の入力画像データに対応して補正量を調整し、また、図4(B)に示す場合に対応するため、同じ空間周波数で異なるAC成分の入力信号に対応して補正量を調整すればよい。
【0072】
図5は、空間周波数処理部の構成の第1の例を示すブロック図である。図中、21はハイパスフィルタ、22はローパスフィルタ、23,24はルックアップテーブル、25は乗算部、26は加算部、31は入力画像信号、32は補正量信号、33はAC成分ゲイン信号、34は調整補正量信号、35はDC成分信号、36はDC成分ゲイン信号、37は出力画像信号である。図2に示した空間周波数処理部12では、YMC各画像信号に対してデジタルフィルタ処理を行なう構成として、例えば、図5に示す構成を適用することができる。
【0073】
ハイパスフィルタ21、ローパスフィルタ22は、例えば2次元FIRフィルタ(FIRF:Finite Impulse Response Filter:有限インパルス応答フィルタ)で構成することができる。2次元FIRフィルタは、画像データ中の各注目画素を注目画素値およびその周辺画素値の重み付加により算出される値に変換するものであり、例えば3×3フィルタにおいては、入力データに対して図3に示したごとくの動作を行なう。もちろん、フィルタサイズはもっと大きくてもよい。ハイパスフィルタ21は、フィルタ係数の和が0である2次元FIRフィルタであり、入力画像信号31に対して空間周波数処理を行ない、注目画素に対して補正すべき補正量信号32を出力する。また、ローパスフィルタ22は、フィルタ係数の和が1かつ各係数が等しい2次元FIRフィルタであり、入力画像信号31に対して空間周波数処理を行ない、DC成分信号35を出力する。
【0074】
ルックアップテーブル23は、ハイパスフィルタ21から補正量信号32を受け取り、AC成分ゲイン信号33を生成し出力するルックアップテーブルである。また、ルックアップテーブル24は、ローパスフィルタ22からDC成分信号35を受け取り、DC成分ゲイン信号36を生成し出力するルックアップテーブルである。
【0075】
乗算部25は、ルックアップテーブル23から入力されるAC成分ゲイン信号33およびルックアップテーブル24から入力されるDC成分ゲイン信号36により、ハイパスフィルタ21から入力される補正量信号32を増幅調整し、調整補正量信号34として出力する。
【0076】
加算部26は、入力画像信号31と調整補正量信号34とを加算演算し、空間周波数処理を施した出力画像信号37を出力する。
【0077】
上述の構成において、空間周波数処理部12に入力された入力画像信号31は、加算部26とハイパスフィルタ21とローパスフィルタ22に入力される。ハイパスフィルタ21はフィルタ係数の和が0の2次元FIRフィルタであるので、このハイパスフィルタ21によって、入力画像信号31からAC成分のうちの補正量のみが取り出され、補正量信号32として出力される。そして、ルックアップテーブル23によって補正量信号32からAC成分のゲイン調整を行なうためのAC成分ゲイン信号33が生成され、乗算部25に出力される。このルックアップテーブル23で行なわれる演算が、図4(B)に示す同じ空間周波数で異なるAC成分の入力信号に対応するための補正である。
【0078】
一方、ローパスフィルタ22は、入力画像信号31からDC成分を抽出し、DC成分信号35として出力される。そして、ルックアップテーブル24によってDC成分信号35からDC成分のゲイン調整を行なうためのDC成分ゲイン信号が生成され、乗算部25に出力される。このルックアップテーブル24で行なわれる演算が、図4(A)に示す同じ空間周波数で異なるDC成分の入力信号に対応するための補正である。
【0079】
ハイパスフィルタ21で得られた補正量信号32に対し、AC成分の相違による調整量であるAC成分ゲイン信号33と、DC成分の相違による調整量であるDC成分ゲイン信号35とを乗算部25で乗算し、最終的な調整量を表わす調整補正量信号34を生成する。そして、入力画像信号31と調整補正量信号34とを加算部26で加算し、出力画像信号37を出力する。
【0080】
このような構成において、決定すべき処理係数は、ハイパスフィルタ21の2次元FIRフィルタのフィルタ係数、および、ルックアップテーブル23,ルックアップテーブル24の変換テーブルである。これらの値は出力装置の特性に従って決定されるものであり、以下、これらの値の決定方式について順次説明して行く。なお、図4に示したようなDC成分、AC成分の相違による空間周波数特性の変化を無視できる出力装置のみが接続されたシステムであれば、ローパスフィルタ22、ルックアップテーブル23,24、乗算部25は不要であり、ハイパスフィルタ21の出力を入力画像信号31に加算部26で直接加算すれば補正を行なうことができる。この場合、以下の説明中、ハイパスフィルタ21のフィルタ係数のみを求めればよいことになる。もちろん、DC成分の相違を考慮しない構成や、AC成分の相違を考慮しない構成も可能である。
【0081】
図6は、空間周波数処理部の第1の例において用いる処理係数を決定する処理の一例を示すフローチャートである。図6に示した空間周波数処理で用いる処理係数を決定する処理は、画像データ出力工程40、出力画像の測定工程50、空間周波数処理係数の決定工程60の3工程からなる。まず、画像データ出力工程40において、特定の空間周波数成分からなるテストパターン画像データを、処理係数を決定したい出力装置で出力し、その出力画像を作成する。次いで、出力画像測定工程50において、その出力画像の空間周波数特性を測定する。最後に、空間周波数処理係数の決定工程60において、テストパターン画像データの空間周波数成分と、出力画像測定工程50で測定したテストパターンの出力画像の空間周波数特性との関係から、出力装置の空間周波数伝達特性を求め、それを補正するための各空間周波数処理係数を算出する。
【0082】
図6に示す処理係数を決定する処理について具体例を用いながらさらに説明する。以下の説明では、具体的な出力装置の例として、入力データの解像度が10dot/mmのカラープリンタを想定する。
【0083】
まず、S41において、テストパターン画像データのレイアウトを決定する。図7は、空間周波数処理部の第1の例において用いるテストパターン画像データのレイアウトの一例を示す説明図である。図中、71は基本ACパッチ画像群、72は補助ACパッチ画像群、73はDCパッチ画像群である。図7に示したテストパターン画像データのレイアウトは、基本ACパッチ画像群71、補助ACパッチ画像群72、DCパッチ画像群73から構成されている。各パッチ画像群には、複数のパッチ画像が含まれている。図7では、合計で29個のパッチ画像が示されている。各パッチ画像のサイズは10dot/mmのプリンタで出力した際に20mm四方となるように、200画素×200画素としている。
【0084】
ここで、基本ACパッチ画像群71および補助ACパッチ画像群72における各パッチ画像は、0lp/mm以外の空間周波数成分を有するパッチ画像、すなわち濃淡の変化のあるパッチ画像である。基本ACパッチ画像群71は、出力装置の基本的な空間周波数伝達特性を求め、図5に示したハイパスフィルタ21のフィルタ係数を決定するためのものである。基本ACパッチ画像群71のパッチ画像には、V1〜V8で示される垂直方向の縞のパッチ画像と、H1〜H8で示される水平方向の縞のパッチ画像が設けられる。V1とH1,V2とH2,・・・,V8とH8はそれぞれ空間周波数が同じで縞の方向が異なるパッチ画像である。
【0085】
補助ACパッチ画像群72は、図5に示したルックアップテーブル23,24の変換テーブルの係数を決定するためのものである。基本ACパッチ画像群71のパッチ画像と同様に、V2.1〜V2.4で示されるパッチ画像は垂直方向の縞であり、H2.1〜H2.4で示されるパッチ画像は水平方向の縞である。ここでは基本ACパッチ画像群71中のV2,H2のパッチを基本として、図4(A)に示すようにDC成分の異なるパッチ画像をV2.1,V2.2,H2.1,H2.2にレイアウトする。また、図4(B)に示すようにAC成分の異なるパッチ画像としてV2.3,V2.4.H2.3,H2.4をレイアウトしている。なお、V2.1とH2.1,・・・,V2.4とH2.4はそれぞれ方向が異なるのみでAC成分、DC成分とも同じパッチ画像である。
【0086】
DCパッチ画像群73における各パッチ画像は、0lp/mm以外の空間周波数成分を含まないパッチ画像、すなわち濃度変化のない平坦な濃度のパッチ画像であり、後述するように、基本ACパッチ画像群71、補助ACパッチ画像群72の測定値を規格化するためのものである。D0〜D255はそれぞれ濃度の異なるパッチ画像である。
【0087】
図7に示したテストパターン画像データのレイアウトは一例であって、どの位置にどのようなパッチ画像が配置されているかがわかれば他のレイアウトであってもかまわない。また、それぞれのパッチ画像群が別々の複数枚のテストパターン画像として形成されるものであってもよい。各パッチ画像群に含まれるパッチ画像の数や特性、大きさ等は任意である。特にこの例では補助ACパッチ群72は基本ACパッチ群71中のパッチ画像V2,H2をもとに作成しているが、他の基本ACパッチ群71中のパッチ画像をもとにしたパッチ画像を追加することによって精度を向上させることが可能である。
【0088】
なお、例えば、図7に示したようなテストパターン画像データのレイアウトは、予め作成してテストパターン保持部5などに記憶させておいてもよい。複数のテストパターン画像データのレイアウトを記憶させておき、選択して用いるように構成することもできる。
【0089】
S42において、例えば、図7に示したようなテストパターン画像データのうちの基本ACパッチ画像群71および補助ACパッチ画像群72のパッチ画像の画像データを作成する。上述のように、図7において、基本ACパッチ画像群71の各パッチに付された記号V1〜V8は垂直方向のライン、H1〜H8は水平方向のラインを表わしており、記号VまたはHの後ろの数字は各ラインの幅を画素数で表わしている。図8は、空間周波数処理部の第1の例において用いる基本ACパッチ画像群のパッチ画像の一例の説明図である。図中、Bは黒画素を表わし、Wは白画素を表わしている。図8(A)はV2のパッチ画像の一部を示しており、幅が2画素の白と黒の垂直方向のラインが交互に配列されている。また、図8(B)はH3のパッチ画像の一部を示しており、幅が3画素の白と黒の水平方向のラインが交互に配列されている。ここでは、黒画素のデータ値を160、白画素のデータ値を96としている。
【0090】
次に、図7に示したテストパターン画像データのうちの補助ACパッチ画像群72について、各パッチ画像V2.1〜V2.4,H2.1〜H2.4の画像データを作成する。上述のように、基本ACパッチ画像群71中のV2,H2のパッチを基本として、DC成分の異なるパッチ画像V2.1,V2.2,H2.1,H2.2と、AC成分の異なるパッチ画像V2.3,V2.4.H2.3,H2.4を作成する。
【0091】
図9は、空間周波数処理部の第1の例において用いる基本ACパッチ画像群と補助ACパッチ画像群の各パッチ画像の特性値の一例の説明図である。図9には、基本ACパッチ画像群71および補助ACパッチ画像群72に含まれるパッチ画像について、その空間周波数、黒画素のデータ値、白画素のデータ値、DC成分値、AC成分値、信号コントラスト値を示している。空間周波数は、1mmあたり何本のラインが含まれるかを示したものであり、V1,H1であれば1画素おきに白と黒のラインが交互に現われるため、想定しているプリンタの解像度である1mmあたり10dot中に5本のラインが含まれることを示している。DC成分値は平均濃度を示しており、AC成分値は黒画素のデータ値および白がそのデータ値とDC成分値の差分を示している。なお、濃度は、最も黒の濃度が濃い場合を255、最も黒の濃度が薄い白部分の場合を0としている。信号コントラスト値は後述する。
【0092】
図9にも示したように、基本ACパッチ画像群71の各パッチ画像では、黒画素のデータ値、白画素のデータ値、DC成分値、AC成分値はすべて同じであり、空間周波数のみが異なる。また、補助ACパッチ画像群72の各パッチ画像では、図9に示すように空間周波数が一定で、黒画素のデータ値、白画素のデータ値としてそれぞれの値を有する。
【0093】
例えば、図9に示した各パラメータに従って、各パッチ画像の画像データを作成し、作成した各パッチ画像データを例えば図7に示すようなテストパターン画像データのレイアウトに従って埋め込む。
【0094】
次に、S43において、基本ACパッチ画像群71および補助ACパッチ画像群72の各パッチ画像の画像データから特性値を算出する。基本ACパッチ画像群71および補助ACパッチ画像群72における各パッチ画像の各画素のデータ値は、例えば基本ACパッチ画像群71においては、黒画素値=160,白画素値=96というように設定した。これは、別の表現をすると、DC成分値=128,AC成分値=±32と表わすことができる。DC成分値,AC成分値で表現した各パッチの設定値は図9に示した。
【0095】
ここで、基本ACパッチ画像群71および補助ACパッチ画像群72の各パッチ画像の画像データの特性値として、DC成分値と信号のコントラスト値を考える。DC成分値は、図9に示した各DC成分値である。信号のコントラスト値は、上述した各AC成分値をもとに補正を行なう。画像の場合には信号は正弦波というよりも矩形波であるため、実効コントラスト値は正弦波のときよりも向上する。このことを考慮してコントラスト値の補正を行なう。実際の補正は、
信号コントラスト値=AC成分値×(4/3.14)
によって計算することができる。このような補正を行なって求めた各パッチ画像のコントラスト値を図9の信号コントラスト値の欄に示している。
【0096】
S44において、DCパッチ画像群73のパッチ画像の画像データを作成する。図7において、DCパッチ画像群72の各パッチ画像に付された記号D0〜D255において、記号DはDC成分すなわち0lp/mmのみの空間周波数成分からなるパッチ画像であることを示し、後ろの数字はDC成分のデータ値を表わしている。たとえば、D64のパッチ画像は、200画素×200画素の全画素のデータ値が64である均一なパッチ画像を意味する。
【0097】
ここでは、データ値=0からデータ値=255までを、ほぼ均等に分割し、9個のパッチ画像を用意している。各パッチ画像の画像データを作成し、作成した各パッチ画像の画像データを、例えば図7に示したようなテストパターン画像データのレイアウトに従って埋め込む。これにより、テストパターン画像データが完成する。完成したテストパターン画像データは、テストパターン保持部5に保持される。同一のテストパターン画像データが、Y,M,C用に3色分用意される。あるいは1つのテストパターン画像データが3色共通に使用される。
【0098】
画像データ出力工程40の最後として、S45においてテストパターン画像データを出力装置から出力させ、テストパターン画像を作成する。テストパターン画像の出力に際しては、まず出力装置を単色モードに設定し、テストパターン画像の出力を行なう。例えば、Y単色モードに設定されているとき、テストパターン保持部5からはY用画像信号としてテストパターン画像データが出力される。テストパターン保持部5から出力されたテストパターン画像データは、図2に示す階調変換部13においてルックアップテーブルを用いて階調変換処理が施された後、出力装置から出力される。出力装置では、Y用の階調変換処理が施されたテストパターン画像データを受け取り、Y単色モードにてその出力の画像を出力する。M,Cに対しても同様に、出力装置をM単色モード、C単色モードに設定しながら、それぞれのテストパターン画像を得、計3枚のテストパターン画像を得る。
【0099】
得られたテストパターン画像は例えば図7と同様のレイアウトの画像である。ただし、各パッチ画像は、出力装置の特性を反映しており、テストパターン画像データを忠実に反映した画像とは限らない。以下、得られた3枚のテストパターン画像のそれぞれに対して、出力画像の測定工程50および空間周波数処理係数の決定工程60を行なう。説明の都合上、そのうちの1色についてのみ説明するが、3色それぞれについて同様の処理を行なう。
【0100】
出力画像の測定工程50では、テストパターン画像データを出力装置から出力したテストパターン画像の測定を行ない、測定結果を解析する。まずS51において、テストパターン画像中の基本ACパッチ画像群および補助ACパッチ画像群について、微少領域ごとに反射率を測定する。反射率の測定には、例えばミクロ反射計などを用いることができる。図10は、反射率の測定の具体例の説明図である。図中、81はアパーチャ、82はパッチ画像である。反射率の測定の具体例として、図10に示すように、例えば、0.1mm×0.02mmのアパーチャ81を使用し、アパーチャの長辺がパッチ画像82中のライン構造と平行になるようにセットする。そして、アパーチャの短辺方向(図10中の矢印方向)に測定位置を0.02mmづつ移動しながら各位置における反射光量を測定し、測定結果を得る。この際、補色フィルタを使用して測定するとよい。
【0101】
続いてS52において、テストパターン画像中のDCパッチ画像群の各パッチ画像についても微少領域ごとに反射率を測定し、平均反射率を求める。この場合も、例えばミクロ反射計を用いることができる。DCパッチ画像群は上述のようにDC成分のみの均一なパッチ画像なので、アパーチャを任意な方向にセットし、アパーチャの短辺方向に測定位置を移動しながら各位置における反射光量を各パッチに対して複数点で測定し、測定結果の平均値を得る。この際、基本ACパッチ画像群および補助ACパッチ画像群の測定に際してフィルタを使用した場合には、ここでも同一のフィルタを使用する。
【0102】
このようにして得られた測定値に対して解析を行なう。まずS53において、基本ACパッチ画像群および補助ACパッチ画像群の各パッチ画像における測定値を規格化する。図11は、DCパッチ画像群の各パッチ画像の平均反射率のデータとテストパターン画像データにおけるDCパッチ画像群の各パッチ画像のデータ値との対応関係の一例を示すグラフである。S52で測定して得られたDCパッチ画像群の各パッチ画像の平均反射率のデータと、テストパターン画像データにおけるDCパッチ画像群の各パッチ画像のデータ値とを対応づけると、例えば図11に示すような関係が得られる。まずこの対応関係fdc(x)を近似値により求める。基本ACパッチ画像群および補助ACパッチ画像群の各パッチ画像に対するミクロ反射計での測定値を、この対応関係fdc(x)を用いて変換する。これにより、測定結果を処理演算部1で取り扱うYMC画像信号と同等に扱うことが可能となる。
【0103】
図12は、ACパッチ画像の測定値の規格化および成形処理による波形の変化の一例の説明図である。基本ACパッチ画像群または補助ACパッチ画像群のあるパッチ画像に対する測定データ列を図12(A)に示している。この測定データ列を例えば図11に示すように得られた対応関係fdc(x)を用いて出力装置に依存した画像信号値に変換し、規格化データ列を作成する。作成された規格化データ列を図12(B)に示す。この規格化データ列は、図2において色空間変換部11から出力されるYMC信号と同等のものである。ここではYMC信号は8Bit256階調としているが、これに限られるものではない。なお、上述のように、規格化データ列において値が小さい方が白に近く、値が大きい方が色濃度が濃くなることを示している。そのため、反射率の値の大小とは逆になっている。
【0104】
次にS54において、S53で規格化した測定値に対して整形処理を行ない、成形データ列を作成する。図13は、規格化データ列に対する成形処理の一例を示すフローチャートである。例えば、図12(B)に示すような波形の規格化データ列は、上述のように20mm四方のパッチ画像を0.02mm間隔で測定した場合には1000個の測定データからなっている。S91において、これら1000個のデータからなる規格化データ列の中央部から512個のデータを切り出す。次にS92において、S91で切り出した512個のデータを離散フーリエ変換(DFT)処理する。これにより、空間周波数成分が算出される。S93において、S92で算出された空間周波数成分のうち、不要な高周波成分を除去し、その後、S94において離散フーリエ逆変換処理する。このような成形処理によって、ノイズなどによる高調波成分が除去されて、例えば、図12(C)にしめすような、Sin波形を基本とした整形データ列が得られる。
【0105】
S55において、基本ACパッチ画像群および補助ACパッチ画像群の各パッチ画像に対応する整形データ列をもとに、それらの特性値としてコントラスト値を算出する。図14は、空間周波数処理部の第1の例における整形データ列に対する特性値の測定手法の一例の説明図である。図14に示すように、整形データ列に対して、破線で示したようなウインドウ領域を設定し、このウインドウ領域内での最大値と最小値を検出し、(最大値−最小値)を算出する。ウインドウ領域を移動しながら、(最大値−最小値)を繰り返し算出し、その平均値をコントラストとする。また、最大値と最大値の間、あるいは最小値と最小値の間など、特徴点の間のデータ数を係数することによって周期を求めることができる。測定ピッチは0.2mmであったから、0.2×データ数で周期が求められる。また、周期の逆数を計算することにより、空間周波数が求められる。ここで、ウインドウ領域のサイズは、基本ACパッチ画像群および補助ACパッチ画像群の各パッチ画像に含まれる縞状の線の2〜3本分程度に設定すればよい。
【0106】
図15は、空間周波数処理部の第1の例においてテストパターン画像から得られた基本ACパッチ画像群の各パッチ画像の周期および空間周波数の一例の説明図、図16は、同じく得られたコントラスト値の一例を示すグラフである。図15には、上述のようにして算出された基本ACパッチ画像群の各パッチ画像に含まれる縞状の線の周期を長さとデータ数で示すとともに、算出される空間周波数と、使用したウインドウ領域のサイズをデータ数で示している。また、各パッチ画像ごとに算出された空間周波数とコントラストの関係の一例を図16に示している。図16において、黒丸はH1〜H8の各パッチ画像における空間周波数とコントラストの関係を示し、白丸はV1〜V8の各パッチ画像における空間周波数とコントラストの関係を示している。
【0107】
なお、図15、図16には基本ACパッチ画像群の各パッチ画像について、周期、空間周波数、コントラスト等を示したが、補助ACパッチ画像群の各パッチ画像についても同様に周期を求めて空間周波数を算出し、また、コントラストを算出する。
【0108】
空間周波数処理係数の決定工程60では、テストパターン画像データの基本ACパッチ画像群の各パッチ画像のデータのコントラスト値と、それに対応するテストパターン画像のコントラスト値との関係から出力装置の空間周波数伝達特性を求め、それを補正するための空間周波数処理部12における処理係数を算出する。
【0109】
S61において、出力装置の空間周波数伝達特性を算出する。空間周波数伝達特性として各空間周波数のコントラスト伝達率を考える。出力装置の空間周波数伝達率は、(出力画像のコントラスト値/入力データのコントラスト値)により求まる。ここで、基本ACパッチ画像群のうち、記号Vで示した垂直方向の縞からなるパッチ画像からは、それに直交する水平方向の空間周波数伝達率が求まり、同様に、記号Hで示した水平方向の縞からなるパッチ画像からからは、それに直交する垂直方向の空間周波数伝達率が求まる。なお、空間周波数伝達率の算出は、基本ACパッチ画像群および補助ACパッチ画像群の両者に関して行なう。
【0110】
図17は、基本ACパッチ画像群における算出された空間周波数伝達特性の一例を示すグラフである。この例において、出力画像のコントラスト値は、上述の図16に示すグラフの値であり、入力データのコントラスト値は図9に示す信号コントラスト値である。ただし、図9に示した信号コントラスト値はDC成分からの差分で示しているので、示されている値を2倍して(最大値−最小値)の値に直すか、あるいは出力画像のコントラスト値を1/2にしてから計算する必要がある。
【0111】
図17において、黒丸は図16で黒丸で示した水平方向の縞のパッチ画像におけるコントラストから得られた垂直方向の空間周波数伝達率を表わしており、白丸は図16で白丸で示した垂直方向の縞のパッチ画像におけるコントラストから得られた水平方向の空間周波数伝達率を表わしている。
【0112】
次にS62において、基本的な空間周波数伝達特性を決定する。ここで、基本的な空間周波数伝達特性とは、図4で説明したようなDC成分の違いやAC成分の違いを考慮しない空間周波数伝達特性のことを指す。
【0113】
図2に示したように、処理演算部1に入力された画像データは、空間周波数処理部12にて空間周波数伝達率F1の空間周波数処理を施された後に、出力部2に送られ、空間周波数伝達率F2である画像形成工程を経て、出力画像が作成される。したがって、入力された画像データの有する空間周波数成分をS1,出力画像の有する空間周波数成分をS2とすると、S2=S1×F1×F2となる。
【0114】
上述のごとく、出力装置によらず同一の鮮鋭度を得るためには、空間周波数処理部12における空間周波数伝達率F1は、画像形成工程の空間周波数伝達率F2を補正するものであればよい。すなわち、空間周波数処理部12における空間周波数伝達率F1=1/F2となるように、空間周波数処理部12に設定する処理係数を設計すればよい。
【0115】
図18は、基本ACパッチ画像群の各パッチ画像から求められた空間周波数伝達特性に基づいて設計された空間周波数処理部の第1の例における空間周波数伝達率の一例を示すグラフである。図18において、破線は図17に示した出力部2の空間周波数伝達率の逆数のグラフであり、実線は実際に設計した空間周波数処理部の空間周波数伝達率のグラフである。例えば、出力部2の基本ACパッチ画像群の各パッチ画像から求まる空間周波数伝達特性が図17に示すものであるとき、空間周波数処理部12の空間周波数伝達率の目標値は、図18に破線で示すものとなる。このままでは高い空間周波数帯域においてノイズが極端に強調されてしまう。ノイズ成分の強調を抑えるため、解像度10dot/mmのカラープリンタでは、そのナイキスト周波数である5lp/mmにおいて伝達率が1になるように設定している。
【0116】
このようにして設計された空間周波数処理部12の空間周波数伝達率を実現するように、S63において、基本的な空間周波数処理における処理係数を算出する。空間周波数処理部12として例えば図5に示す構成を用いる場合、そのうち基本的な空間周波数処理はハイパスフィルタ21が行なう。このS63における処理では、このハイパスフィルタ21のフィルタ係数を決定する。
【0117】
まず、先に基本ACパッチ画像群より求めた、垂直、水平の2方向の空間周波数伝達率の設計値をもとに、設計値を2次元面補間し、その逆フーリエ変換を施す。次に逆フーリエ変換をした結果を総和が1となるように規格化することで、目標とする空間周波数伝達特性のフィルタ係数が算出される。このようなフィルタ係数の算出方法は種々開発されており、適宜用いればよい。ただし、ハイパスフィルタ21は、上述したとおり補正信号のみを出力するフィルタである。そのため、算出されたフィルタ係数のうち、中心画素に対する係数から1を減算し、ハイパスフィルタ21のフィルタ係数として決定する。
【0118】
次にS64において、例えば、図4(B)に示したような、AC成分による非線形性の補正係数を算出する。上述したように、ハイパスフィルタ21は画像信号のコントラストが±40.5である基本ACパッチ画像群を基にフィルタ係数を算出した。いま、水平方向の縞のパッチ画像における空間周波数が2.5lp/mmの入力画像データに対するハイパスフィルタ21の応答を考える。
【0119】
図9に示すように、テストパターン画像データにおける記号V2のパッチ画像は、DC成分=128、信号コントラスト=±40.5、空間周波数=2.5lp/mmである。このパッチ画像で算出した出力装置の空間周波数伝達率をT0とすると、信号コントラスト=C1である入力信号に対してハイパスフィルタ21から出力される補正量信号32のコントラストCh0は、Ch0=C1×(1/T0−1)となる。
【0120】
ここで、信号コントラスト=C1である入力信号に対する出力装置の空間周波数伝達率をT1とすると、本来望まれる補正後の信号のコントラストCw1は、Cw1=C1×(1/T1−1)となる。したがって、入力信号の信号コントラストがC1である場合には、ハイパスフィルタ21から出力される補正量信号32に対して増幅処理をする必要があり、その増幅率Gain1は、
Gain1=Cw1/Ch0=(1/T1−1)/(1/T0−1)
となる。
【0121】
ルックアップテーブル23は、この増幅率Gain1を得るためのものであり、補正量信号32によりルックアップテーブルを参照して、対応する増幅率Gain1を出力するものである。ルックアップテーブル23の処理係数は、基本ACパッチ画像群の中のV2、H2パッチ画像、補助ACパッチ画像群中のV2.3,H2.3,V2.4,H2.4パッチ画像に対応する出力装置の空間周波数伝達率を算出し、その算出結果を用いて決定する。
【0122】
具体例として、信号コントラストC0が±40.5であるV2パッチ画像に対応する空間周波数伝達率T0が0.8であり、信号コントラストC1が±20.5であるV2.3パッチ画像に対応する空間周波数伝達率T1が0.9、信号コントラストC2が±81であるV2.4パッチ画像に対応する空間周波数伝達率T2が0.7であるとする。このとき、信号コントラスト=C0,C1,C2である入力信号に対してハイパスフィルタ21から出力される補正量信号32のコントラストをCh0,Ch1,Ch2とすると、
Ch0=C0×(1/T0−1)=±10.1
Ch1=C1×(1/T0−1)=±5.1
Ch2=C2×(1/T0−1)=±20.3
となる。またルックアップテーブル23における各々に対する増幅率をG0,G1,G2とすると、
G0=(1/T0−1)/(1/T0−1)=1
G1=(1/T1−1)/(1/T0−1)=0.44
G2=(1/T2−1)/(1/T0−1)=1.71
となる。
【0123】
図19は、補正量信号のコントラストと増幅率の関係を示すグラフである。上述のようにしてCh0とG0、Ch1とG1、Ch2とG2の組の値が求められた。これらをグラフ上にプロットし、これらの点を補間することにより、図19に示すようなグラフが得られる。このグラフと同等の変換テーブルを作成する。同様に、H2、H2.3、H2.4パッチ画像を用いて変換テーブルを作成し、両者の平均をルックアップテーブル23の係数とすればよい。
【0124】
次にS65において、例えば、図4(A)に示したような、DC成分による非線形性の補正係数を算出する。ルックアップテーブル23の処理係数算出時と同様に、ハイパスフィルタ21の応答を考える。具体例として、V2パッチ画像(DC成分=123,データコントラスト=±40.5、空間周波数=2.5lp/mm)で算出した出力装置の空間周波数伝達率をT0とすると、データコントラスト=C0である入力信号に対してハイパスフィルタ21から出力される補正量信号32のコントラストCh0は、
Ch0=C1×(1/T0−1)
となる。
【0125】
ここで、DC成分=d1である入力信号に対する出力装置の空間周波数伝達率をT’1とすると、本来望まれる補正後の信号のコントラストCw’1は、
Cw’1=C0×(1/T’1−1)
となる。したがって、入力信号のDC成分=d1である場合には、ハイパスフィルタ21から出力される補正量信号32に対して増幅処理をする必要があり、その増幅率Gain2は、
Gain2=Cw’1/Ch0=(1/T’1−1)/(1/T0−1)
となる。
【0126】
ルックアップテーブル24は、この増幅率Gain2を得るためのものであり、入力であるDC成分信号35によりルックアップテーブルを参照して対応する増幅率Gain2を出力するものである。ルックアップテーブル24の処理係数は、基本ACパッチ画像群71中のV2,H2パッチ画像、補助ACパッチ画像群73中のV2.1,H2.1,V2.2,H2.2パッチ画像に対応する出力装置の空間周波数伝達率の算出結果を用いて決定する。
【0127】
具体例として、DC成分d0が128であるV2パッチ画像に対応する空間周波数伝達率T0が0.8であり、DC成分d1が64であるV2.1パッチ画像に対応する空間周波数伝達率T1が0.7であり、DC成分d2が192であるV2.2パッチ画像に対応する空間周波数伝達率T2が0.9であるとする。DC成分=d0,d1,d2である入力信号に対するルックアップテーブル24における各々に対応する増幅率をG’0,G’1,G’2,とすると、
G’0=(1/T0−1)/(1/T0−1)=1
G’1=(1/T’1−1)/(1/T0−1)=1.71
G’2=(1/T’2−1)/(1/T0−1)=0.44
となる。
【0128】
図20は、DC成分信号値と増幅率の関係を示すグラフである。上述のようにしてd0とG’0、d1とG’1、d2とG’2の組の値が求められた。これらをグラフ上にプロットし、これらの点を補間することにより、図20に示すようなグラフが得られる。このグラフと同等の変換テーブルを作成する。同様に、H2、H2.1、H2.2パッチ画像を用いて変換テーブルを作成し、両者の平均をルックアップテーブル24の係数とすればよい。
【0129】
以上により、ハイパスフィルタ21のフィルタ係数、ルックアップテーブル23および24の係数が得られた。これらの係数をそれぞれ設定し、空間周波数処理部12で空間周波数処理を行なう。空間周波数処理部12では、出力部2に応じて設定された処理係数に従って空間周波数処理を行なうことにより、出力部2の特性によらない空間周波数特性を有する出力画像を得ることができる。
【0130】
上述のテストパターン画像データの基本ACパッチ画像群および補助ACパッチ画像群中の各パッチ画像に含まれる空間周波数成分は、各々単一空間周波数成分とその高調波成分であった。しかしこれに限らず、各パッチ画像に含まれる空間周波数成分は各々複数の空間周波数成分であってもよい。図21は、ACパッチ画像群のパッチ画像の別の例の説明図である。図21(A)に示すパッチ画像の例は、黒画素=160,白画素=96が横方向に各々2画素づつ繰り返される縦縞のパターンである。また、図21(B)に示すパッチ画像の例は、黒画素=160,白画素=96が横方向に各々3画素づつ繰り返される縦縞のパターンである。例えば、この図21(A)に示すパッチ画像のパターンと図21(B)に示すパッチ画像のパターンとを合成し、図21(C)に示すようなパターンをテストパターン画像データのパッチ画像として用いることもできる。この場合、図6のS54において説明したACパッチ規格化測定値の整形処理において、図13のS93で不要な高周波成分を除去する際に、空間周波数データをDC成分と合成前の各々の画像データパターンに対応した空間周波数周波数成分に分解し、各々に対してS94で離散フーリエ逆変換を行なうことにより、同様に空間周波数処理のための処理係数を算出することができる。
【0131】
また、上述の例では補助ACパッチ画像としてV2,H2パッチ画像と同じ空間周波数のパッチ画像のみを用意したが、これに限らず、種々の空間周波数に対応する補助ACパッチ画像を用意してもよい。このとき、図19、図20に示したような変換テーブルは空間周波数ごとに得られることになる。ルックアップテーブル23を参照する際には、それぞれ、補正量信号32のコントラストとともに空間周波数を用いて、また、ルックアップテーブル24を参照する際にはDC成分信号35とともにAC成分の空間周波数を用いて、それぞれ参照するように構成すればよい。この場合、空間周波数の違いによるAC成分、DC成分による補正量の違いを補正することが可能となる。
【0132】
図22は、空間周波数処理部の構成の第2の例を示すブロック図である。図中、111は基本補正部、112は補助補正部、113は増幅率決定部、114は乗算部、115は加算部、121は121は入力画像信号、122は基本補正信号、123は補助補正基本信号、124は補助補正量増幅率信号、125は補助補正信号、126は出力画像信号である。
【0133】
基本補正部111および補助補正部112は、入力画像信号121の空間周波数特性を変更するためのものである。基本補正部111および補助補正部112としては、例えば2次元FIRフィルタなどのデジタルフィルタを用いることができる。デジタルフィルタを用いることにより、再現性の高い処理系の設計が容易になる。また、既存の専用チップを用いることにより高速な処理を安価で実現できる。また、FIRフィルタにすることにより、入力画像信号121に対して処理系を容易に安定化することができる。基本補正部111は、例えばフィルタ係数の和が1である2次元フィルタとすることができ、入力画像信号121に対して空間周波数処理を行ない、基本補正信号122を出力する。補助補正部112は、例えばフィルタ係数の和が0である2次元フィルタとすることができ、入力画像信号121に対して空間周波数処理を行ない、補助補正基本信号123を出力する。
【0134】
増幅率決定部113は、入力画像信号121から補助補正基本信号123の増幅率を決定し、補助補正量増幅率信号124として出力する。詳しい内部動作については後述する。
【0135】
乗算部114は、増幅率決定部113より入力される補助補正量増幅率信号124により、補助補正部112から入力される補助補正基本信号123を増幅調整し、補助補正信号125として出力する。
【0136】
加算部115は、基本補正信号122と補助補正信号125とを加算演算し、空間周波数処理を施した出力画像信号126を出力する。
【0137】
上述の構成において、空間周波数処理部12に入力された入力画像信号121は、基本補正部111と補助補正部112と増幅率決定部113に入力される。基本補正部111は、入力画像信号121に対して基本的な補正を施し、基本補正信号122として加算部115に出力する。
【0138】
一方、補助補正部112は、入力画像信号121より基本補正部111を用いた補正の過不足分を調整するための予備信号である補助補正信号基本信号123を算出し、乗算部114に出力する。乗算部114で補助補正基本信号123は、入力画像信号121より増幅率決定部113において算出された補助補正量増幅率信号124に基づき増幅調整され、補助補正信号125として加算部115に出力される。そして、基本補正信号122と補助補正信号125を加算部115で加算し、出力画像信号126を出力する。
【0139】
この補助補正部112と増幅率決定部113と乗算部114で行なわれる演算が、上述の図4で説明した同じ空間周波数で異なるDC成分および/またはAC成分の入力に対応するための補正である。
【0140】
図23は、増幅率決定部の構成の一例を示すブロック図である。図中、131はAC成分抽出器、132はDC成分抽出器、133は2次元ルックアップテーブル、134はAC成分信号、135はDC成分信号である。AC成分抽出器131は、注目画素周辺の局所的なAC成分を抽出するためのもので、入力画像信号121に対して、例えば注目画素を中心に11×11の領域の最大値と最小値の差を算出し、AC成分信号134として出力する。AC成分抽出器131を設けることにより、異なるAC成分を持つ入力画像信号121に対して効率よく対応することができる。
【0141】
DC成分抽出器132は、注目画素周辺の局所的なDC成分を抽出するためのもので、入力画像信号121に対して、例えば注目画素を中心に11×11の領域を平均値を算出し、DC成分信号135として出力する。DC成分抽出器132を設けることにより、異なるDC成分を持つ入力画像121に対して効率よく対応することができる。
【0142】
2次元ルックアップテーブル133は、AC成分抽出器131から入力されるAC成分信号134と、DC成分抽出器132から入力されるDC成分信号135を受け取り、補助補正量増幅率信号124を生成し出力する。2次元ルックアップテーブル133を用いることにより、入力信号に応じた任意の出力を得ることができる。また、2次元のルックアップテーブルとすることにより、入力のAC成分信号とDC成分信号の任意の組合せに柔軟に応じた出力信号を得ることができる。
【0143】
このような構成において、決定すべき処理係数は、基本補正部111と補助補正部112の例えば2次元FIRフィルタのフィルタ係数、および、2次元ルックアップテーブル133の変換テーブルである。これらの値は出力装置の特性に従って決定されるものであり、以下、これらの値の決定方式について順次説明していく。なお、図4に示したようなDC成分、AC成分の相違による空間周波数特性の変化を無視できる出力装置のみが接続されたシステムであれば、補助補正部112、増幅率決定部113、乗算部114、加算部115は不要であり、基本補正部111の出力を直接出力画像信号とすることができる。またこの場合は、補助補正部112のフィルタ係数と増幅率決定部113内の2次元ルックアップテーブル133の変換テーブルのいずれか、または両方の係数を全て0にしてもよい。この場合、以下の説明中、基本補正部111のフィルタ係数のみを求めればよいことになる。もちろん、AC成分の相違を考慮しない構成や、AC成分の相違を考慮しない構成も可能である。
【0144】
図24は、空間周波数処理部の第2の例において用いる処理係数を決定する処理の一例を示すフローチャートである。図24に示すフローチャートの概略は上述の図6に示す流れとほぼ同様である。図24における画像データ出力工程140は図6の画像データ出力工程40に対応し、同様に出力画像の測定工程150は出力画像の測定工程50に対応し、空間周波数処理係数の決定工程160は空間周波数処理係数の決定工程60に対応する。図6に示す空間周波数処理部12の処理と重複する部分もあるが、以下に空間周波数処理部12の第2の例における処理係数の決定処理の流れを順に説明して行く。なお、以下の説明では、具体的な出力装置の例として、入力データの解像度が10dot/mmの場合を想定する。
【0145】
まず、S141において、テストパターン画像データのレイアウトを決定する。図25は、空間周波数処理部の第2の例において用いるテストパターン画像データのレイアウトの一例を示す説明図である。図中、171はACパッチ画像群、172はDCパッチ画像群である。図25に示したテストパターン画像のレイアウトは、ACパッチ画像群171、DCパッチ画像群172から構成されている。各パッチ画像群には、複数のパッチ画像群が含まれている。図25では、合計で81個のパッチ画像が示されている。各パッチ画像のサイズは10dot/mmの解像度のプリンタで出力した際に20mm四方となるように、200画像×200画素としている。
【0146】
ここで、ACパッチ画像群171における各パッチ画像は、0lp/mm以外の空間周波数成分を有するパッチ画像、すなわち濃淡の変化のあるパッチ画像である。ACパッチ画像群171は、出力装置の空間周波数伝達特性を求めるためのものである。ACパッチ画像群171を用いて求めた出力装置の空間周波数伝達特性に基づき、図22に示した基本補正部111および補助補正部112のフィルタ係数と図23に示した2次元ルックアップテーブル133の変換テーブルを決定する。ACパッチ画像群171のパッチ画像には、V1.1〜V9.8で示される垂直方向の縞のパッチ画像と、H1.1〜H9.8で示される水平方向の縞のパッチ画像が設けられる。各パッチ画像を示す記号のうち、Vは垂直方向の縞、Hは水平方向の縞を表わしている。VまたはHの後ろの2つの数字は、1番目の数字は各パッチ画像に含まれているAC成分とDC成分の組合せ条件を示す通し番号で、2番目の数字は各パッチ画像の濃淡の空間周波数を表わす通し番号である。すなわち、H1.1〜H1.8はAC成分とDC成分が同じで濃淡の空間周波数のみが異なるパッチ画像である。H2.1〜H2.8・・・、V9.1〜V9.8も各々同様である。また、V1.1とH1.1・・・、V9.8とH9.8はそれぞれAC成分とDC成分と濃淡の空間周波数が同じで、縞の方向のみが異なるパッチである。
【0147】
DCパッチ画像群172における各パッチ画像は、0lp/mm以外の空間周波数成分を含まないパッチ画像、すなわち濃度変化のない平坦な濃度のパッチ画像であり、後述するように、ACパッチ画像群171の測定値を規格化するするためのものである。D0〜D255はそれぞれ濃度の異なるパッチである。
【0148】
図25に示したテストパターン画像データのレイアウトは一例であって、どの位置にどのようなパッチ画像が配置されているかがわかれば他のレイアウトであってもかまわない。また、それぞれのパッチ画像群が別々の複数枚のテストパターン画像として形成されるものであってもよい。各パッチ画像群に含まれるパッチ画像群の数や特性、大きさ等は任意である。特にこの例では、9種類のAC成分/DC成分の組合せを持つACパッチ画像を用いているが、ACパッチ画像を追加することにより精度を向上させることが可能である。
【0149】
なお、例えば、図25に示したようなテストパターン画像データのレイアウトは、あらかじめ作成してテストパターン保持部5などに記憶させておいてもよい。複数のテストパターン画像データのレイアウトを記憶させておき、選択して用いるように構成することもできる。テストパターン画像データをテストパターン保持部5に記憶させておくことにより、テストパターン画像データのレイアウトは1度行なえばよいことになり、2回目以降にテストパターン画像を出力する際の高速化を図ることができる。これにより、画像データ出力工程140、出力画像の測定工程150、空間周波数処理係数の決定工程160の一連の作業時間を短縮することができ、画像出力装置の補正を簡単に行なうことができるようになる。
【0150】
S142において、例えば、図25に示したようなテストパターン画像データのうちACパッチ画像群171の画像データを作成する。上述のように図25において、ACパッチ画像群171の各パッチに付与された記号V1.1〜V1.8、V2.1〜V1.8・・・V9.1〜V9.8は垂直方向のライン、H1.1〜H1.8、H2.1〜H1.8、・・・、H9.1〜H9.8は水平方向のラインを表わしており、VまたはHの後ろの数字はAC成分/DC成分の組合せ条件の種類と各ラインの幅を画素数で表わしている。これらの各パッチ画像は、上述の空間周波数処理部の第1の例において説明した図8に示す例と同様に構成することができる。なお、図8(A)はV1.2のパッチ画像の1部、図8(B)はH1.3のパッチ画像の一部に相当する。ここでは、黒画素のデータ値を160、白画素のデータ値を96としている。もちろん、図21に示したような複数の空間周波数成分が含まれるパッチを使用してもよい。
【0151】
図26、図27は、空間周波数処理部の第2の例において用いるAC画像群の各パッチ画像の特性値の一例である。図26、図27には、ACパッチ画像群171について、その空間周波数、黒画素のデータ値、白画素のデータ値、信号コントラスト値を示している。空間周波数は、1mmあたり何本のラインが含まれるかを示したものであり、単位はlp/mmで示している。V1.1、H1.1であれば1画素おきに白と黒のラインが交互に現れるため、想定しているプリンタの解像度である1mmあたり10dot中に5本のラインが含まれていることを示している。DC成分値は平均濃度を示しており、AC成分値は黒画素のデータ値および白画素のデータ値とDC成分値の差分を示している。なお、濃度は最も黒の濃度が濃い場合を255、最も黒の濃度が薄い白部分の場合を0としている。信号コントラスト値は後述する。
【0152】
例えば、図26、図27に示した各パラメータに従って、ACパッチ画像群171の各パッチ画像の画像データを作成し、作成した各パッチ画像データを例えば図25に示すようなテストパターン画像データのレイアウトに従って、埋め込む。
【0153】
次に、S143において、ACパッチ画像群171の各パッチ画像の画像データから特性値を算出する。ACパッチ画像群171における各パッチ画像の各画素のデータ値は、例えばV1.1においては、黒画素値=160、白画素値=96というように設定した。これは、別の表現をすると、DC成分値=123、AC成分値=±32と表わすことができる。DC成分値、AC成分値で表現したパッチの設定値は図26、図27に示した。
【0154】
ここで、ACパッチ画像群171の各パッチ画像の画像データの特性値として、DC成分値と信号のコントラスト値を考える。DC成分値は、図26、図27に示した各DC成分値である。信号のコントラスト値は、上述した各AC成分値をもとに補正を行なう。画像の場合には信号は正弦波というよりも矩形波であるため、実効コントラスト値は正弦波のときよりも向上する。このことを考慮してコントラスト値の補正を行なう。実際の補正は、
信号コントラスト値=AC成分値×(4/3.14)
によって計算することができる。このような補正を行なって決めた各パッチ画像のコントラスト値を図26、図27の信号コントラスト値の欄に示している。
【0155】
S144において、DCパッチ画像群172のパッチ画像の画像データを作成する。図25において、DCパッチ画像群172の各パッチ画像に付された記号D0〜D255において、記号DはDC成分すなわち0lp/mmのみの空間周波数成分からなるパッチ画像であることを示し、後ろの数字はDC成分のデータ値を表わしている。例えば、DC64のパッチ画像は、200画素×200画素の全画素のデータ値が64である均一なパッチ画像を意味する。
【0156】
ここでは、データ値=0からデータ値=255までを、ほぼ均等に分割し、9個のパッチ画像を用意している。各パッチ画像の画像データを作成し、作成した各パッチ画像のデータを、例えば図25に示したようなテストパターン画像データのレイアウトにしたがって埋め込む。これにより、テストパターン画像データが完成する。完成したテストパターン画像データは、テストパターン保持部5により保持される。カラープリンタでは、このような同一のテストパターン画像データが、Y、M、C用に3色分、さらにはK用にもう1色分用意される。あるいは1つのテストパターン画像データが3色あるいは4色共通に使用される。
【0157】
画像データ出力工程140の最後として、S145においてテストパターン画像データを出力装置から出力させ、テストパターン画像を作成する。テストパターン画像の出力に際しては、まず出力装置を単色モードに設定し、テストパターン画像の出力を行なう。例えば、Y単色モードに設定されているとき、テストパターン保持部5からはY用画像信号としてテストパターン画像データが出力される。テストパターン保持部5から出力されたテストパターン画像データは、図2に示す階調変換部13においてルックアップテーブルを用いて階調変換処理が施された後、出力装置から出力される。出力装置では、Y用の階調変換処理が施されたテストパターン画像データを受け取り、Y単色モードにてその出力の画像を出力する。M、Cに対しても同様に、出力装置をM単色モード、C単色モードに設定しながら、それぞれのテストパターン画像を得、計3枚のテストパターン画像を得る。
【0158】
得られたテストパターン画像は、例えば図25と同様のレイアウトの画像である。ただし、各パッチ画像は、出力装置の特性を反映しており、テストパターン画像データを忠実に反映した画像とは限らない。以下、得られた3枚のテストパターン画像のそれぞれに対して、出力画像の測定工程150および空間周波数処理係数の決定工程160を行なう。説明の都合上、そのうちの1色についてのみ説明するが、3色それぞれについて同様の処理を行なう。
【0159】
出力画像の測定工程150では、テストパターン画像データを出力装置から出力したテストパターン画像の測定を行ない、測定結果を解析する。まずS151において、テストパターン画像中のACパッチ画像群について、微小領域ごとに反射率を測定する。反射率の測定には、例えばデジタルカメラなどを用いることができる。デジタルカメラを用いた場合は同時に広い領域の反射率の測定が可能である。図28は、反射率の測定の別の具体例の説明図である。図中、181はデジタルカメラ、182はパッチ画像である。例えば、テストパターン画像の20mm四方を1000画素×1000画素の画像データとして取り込めるようにデジタルカメラ181の位置を調整して、テストパターン画像の撮像を行なう。これは、テストパターン画像の反射率を0.02mm間隔で測定していることと等価である。この際、撮像を行なうときに、デジタルカメラの軸に対して、テストパターン画像が傾かないようにする。また、補色フィルタを使用して撮像するとよい。もちろん、図10に示したようなアパーチャ81による走査を行なう方式を用いたり、ラインタイプの撮像素子で走査してもよい。また、図28に示す構成を上述の空間周波数処理部の第1の例において用いることもできる。
【0160】
続いてS152において、テストパターン画像中のDCパッチ画像群の各パッチ画像についても微小領域ごとに反射率を測定し、平均反射率を求める。この場合も、例えば図28に示すようにデジタルカメラ181を用いたり、図10に示すような走査方式を用いることができる。DCパッチ画像群は上述のようにDC成分のみの均一なパッチ画像なので、DCパッチ画像を撮像し、撮像した測定データ画像の平均値を得る。この際、ACパッチ画像群の測定に際してフィルタを使用した場合には、ここでも同一のフィルタを使用する。
【0161】
このようにして得られた測定値に対して解析を行なう。まずS153において、ACパッチ画像群の各パッチ画像における測定値を規格化する。上述の空間周波数処理部の第1の例と同様に、S152で測定して得られたDCパッチ画像群の各パッチ画像の平均反射率のデータと、テストパターン画像データにおけるDCパッチ画像群の各パッチ画像のデータ値とを対応づけると、例えば図11に示すような関係が得られる。まずこの対応関係fdc(x)を近似値により求める。ACパッチ画像群の各パッチ画像に対するデジタルカメラ181による測定値を、この対応関係fdc(x)を用いて変換する。これにより、測定結果を処理演算部1で取り扱うYMC画像信号と同等に扱うことが可能となる。
【0162】
図29は、空間周波数処理部の第2の例において測定された測定データ列の並び方向の説明図である。測定データ列は、水平方向の縞のACパッチ画像に対する測定データ画像の場合は、図29(A)に示すように垂直方向の断面の測定データ列であり、同様に垂直方向の縞のACパッチ画像に対する測定データ画像の場合は、図29(B)に示すように水平方向の断面の測定データ列である。ACパッチ画像に対する測定データ画像の断面の測定データ列は、例えば上述した図12(A)に示すようになる。測定データ画像を例えば図11に示すように得られた対応関係fdc(x)を用いて出力装置に依存した画像信号値に変換して、規格化データ画像を作成する。規格化データ画像の断面の規格化データ列は、例えば図12(B)に示すようになる。断面の方向は、図29に示すもので、測定データ画像に対するものと同様である。この規格化データ画像は、図2において色空間変換部11から出力されるYMC信号と同等のものである。ここではYMC信号は8bit256階調としているが、これに限られるものではない。なお、上述のように、規格化データ画像において値が小さい方が白に近く、値が大きい方が色濃度が濃くなることを示している。そのため、反射率の値の大小とは逆になっている。
【0163】
次にS154において、S153で規格化した測定データ画像に対して整形処理を行ない、整形データ画像を作成する。この処理は、空間周波数処理部の第1の例における図13に示した処理と基本的に同じである。ここでは、図28に示したようにデジタルカメラ181によって上述のように20mm四方のパッチ画像を0.02mm間隔で測定するものとし、2次元の処理を行なう場合について図13を用いて説明する。この場合には、規格化画像データは、例えば1000画素×1000画素の測定データからなっている。図13のS91において、これら1000画素×1000画素のデータからなる規格化データ画像の中央部から512画素×512画素のデータを切り出す。次にS92において、S91で切り出した512画素×512画素のデータを2次元離散フーリエ変換(2D−DFT)処理する。これにより、空間周波数成分が算出される。S93において、S92で算出された空間周波数成分のうち、不要な高周波成分を除去し、その後、S94において2次元離散フーリエ逆変換処理(2D−IDFT)する。このような整形処理によって、ノイズおよび高周波成分が除去されて、例えば、図12(C)に示すような、断面においてSin波形を基本とした整形データ列を持つ整形データ画像が得られる。ここで、断面の方向は図29に示すもので、測定データ画像に対するものと同様である。
【0164】
S155において、ACパッチ画像群に対応する整形データ画像をもとに、それらの特性値としてコントラスト値を算出する。図30は、空間周波数処理部の第2の例における整形データ画像に対する特性値の算出手法の一例の説明図である。まず、整形データ画像より、図30(A)に示すように縞と直交する方向に沿って整形データ列を取り出す。整形データ列は複数取り出すことで特性値の算出精度を上げることができる。図30(A)では、整形データ列として、1個の整形データ画像から6本の整形データ列を取り出している。整形データ列は、上述した図12(C)に示すようなSin波形を基本としたデータ列である。図30(B)に示すように、1本の整形データ列に対して、破線で示したようなウインドウ領域を設定し、このウインドウ領域内での最大値と最小値を検出し、(最大値−最小値)を算出する。ウインドウ領域を移動しながら、(最大値−最小値)を繰り返し算出する。1個の整形データ画像から取り出した、全ての整形データ列につて繰り返し算出した(最大値−最小値)の平均値をコントラストとする。整形データ列からは、極大値と極大値の間、あるいは極小値と極小値の間など、特徴の間のデータ数を計数することによって周期を求めることができる。測定ピッチは、0.02mmであったから、0.02mm×データ数で周期が求められる。また、周期の逆数を計算することにより、空間周波数が求められる。ここで、ウインドウ領域のサイズは、ACパッチ画像群の各パッチ画像に含まれる縞状の線の2〜3本分程度に設定すればよい。
【0165】
図31は、空間周波数処理部の第2の例においてテストパターン画像から得られたACパッチ画像のうちV1.1〜V1.8およびH1.1〜H1.8の各パッチ画像の周期および空間周波数の一例の説明図、図32は、同じく得られたコントラスト値の一例を示すグラフである。図31には、上述のようにして算出されたACパッチ画像群の各パッチ画像に含まれる縞状の線の周期を長さとデータ数で示すとともに、算出される空間周波数と、使用したウインドウ領域のサイズをデータ数で示している。また、各パッチ画像ごとに算出された空間周波数とコントラストの関係の一例を図32に示している。図32において、黒丸はH1.1〜H1.8の各パッチ画像における空間周波数とコントラストの関係を示し、白丸はV1.1〜V1.8の各パッチ画像における空間周波数とコントラストの関係を示している。
【0166】
図31、図32にはACパッチ画像群のうちV1.1〜V1.8およびH1.1〜H1.8の各パッチについて、周期、空間周波数、コントラスト等を示したが、ACパッチ画像群中の他の各パッチ画像についても同様にコントラストを算出する。
【0167】
空間周波数処理係数の決定工程160では、テストパターン画像データのACパッチ画像群の各パッチ画像のデータのコントラスト値と、それに対応するテストパターン画像のコントラスト値との関係から出力装置の空間周波数伝達特性を求め、それを補正するための空間周波数処理部12における処理係数を算出する。
【0168】
S161において、出力装置の入出力対応特性を算出する。上述のように、出力装置の空間周波数伝達特性を求めて補正処理系の目標空間周波数伝達特性を決定してもよいが、ここでは、出力装置の入出力コントラスト特性から補正処理系の目標空間周波数伝達特性を決定する例を示す。
【0169】
図33は、出力装置における入出力コントラストの関係の一例を示すグラフである。例えばDCおよび空間周波数を固定し、コントラストを示すAC成分について、その入出力コントラストの対応づけを考える。例えば、ACパッチ画像群中から、水平方向の縞を持ち、DC=128で濃淡の空間周波数=5lp/mmについて、ACパッチ画像H1.1(入力信号コントラスト値=±40.5)、H2.1(入力信号コントラスト値=±20.4)、H3.1(入力信号コントラスト値=±81.5)を用いて行なうと、例として図33に示す対応関係fout-in(X)が得られる。このような対応関係fout-in(X)を、各DC(=64,128,192)および各空間周波数(=5,2.5,1.25,0.625)の組み合わせごとに求める。
【0170】
次にS162において、各AC成分とDC成分の組合せ条件における、出力装置の空間周波数伝達特性を補正する目標空間周波数伝達特性を決定する。図33に示すようなDCおよび空間周波数を特定したときの入出力コントラストの対応関係fout-in(X)から、ACパッチ画像群中に含まれる9通りの各々のAC成分とDC成分の組合せ条件下での目標空間周波数伝達特性を算出する。
【0171】
図2に示したように、処理演算部1に入力された画像データは、空間周波数処理部12にて空間周波数伝達率F1の空間周波数処理を施された後に、出力部2に送られ、空間周波数伝達率F2である画像形成工程を経て、出力画像が作成される。したがって、入力された画像データの有する空間周波数成分をS1、出力画像の有する空間周波数成分をS2とすると、S2=S1×F1×F2となる。
【0172】
上述のごとく、出力装置によらず同一の鮮鋭度を得るためには、空間周波数処理部12における空間周波数伝達率F1は、画像形成工程の空間周波数伝達率F2を補正するものであればよい。すなわち、空間周波数処理部12における空間周波数伝達率F1=1/F2となるように、空間周波数処理部12に設定する処理係数を設計すればよい。
【0173】
入出力コントラストの対応関係fout-in(X)を用いると、例えば出力コントラスト±40.5を得るために必要な入力コントラスト値を求めることができる。ここで求まる入力コントラスト値を±D1 とする。ACパッチ画像H1.1はDC=128、信号コントラスト値=±40.5、空間周波数=5lp/mmのパッチ画像なので、ACパッチ画像を出力装置の特性の影響を受けずに出力するのには、AC成分をあらかじめD1 /40.5倍しておけばよい。この時のD1 /40.5がDC=128、入力コントラスト=±40.5、空間周波数=5lp/mmにおける補正系の目標空間周波数伝達特性である。同様にして、DC=128、空間周波数=2.5lp/mm、1.25lp/mm、0.625lp/mmについても、それぞれの対応関係fout-in(X)から信号コントラスト値が±40.5の時の入力信号コントラスト値D2 〜D4 を求める。
【0174】
図34は、基本ACパッチ画像群の各パッチ画像から求められた空間周波数伝達特性に基づいて設計された空間周波数処理部の第2の例における空間周波数伝達率の一例を示すグラフである。上述の手順に従って求めた、DC=128、入力コントラスト値=±40.5におけるDn /40.5の値を伝達率とし、空間周波数と対応づけてグラフ化すると、例えば図34の破線で示すようになる。これが垂直方向の目標周波数伝達特性である。このままでは高い空間周波数帯域においてノイズが極端に強調されてしまう。ノイズ成分の強調を抑えるため、解像度10dot/mmのカラープリンタでは、そのナイキスト周波数である5lp/mmにおいて伝達率が0になるように設定している。このようにして実際に設計した補正系の空間周波数伝達特性のグラフを図34において実線で示している。
【0175】
DC=128、入力コントラスト値=±40.5における垂直方向の目標空間周波数伝達特性の設計値の求め方について説明した。同様にして、入力コントラスト値=±20.4、±81.5の場合についても目標空間周波数伝達特性の設計値を算出する。また、同様に水平方向の目標空間周波数伝達特性の設計値を算出する。さらに、DC=64、192についても、各入力コントラスト値について図34に示すような補正系の空間周波数伝達特性を算出する。図35は、空間周波数処理部の第2の例において算出された垂直方向の目標空間周波数伝達特性の一例を示すグラフである。図中の各線は、特定のAC成分とDC成分の組合せ条件下での目標空間周波数伝達特性の設計値を表わしている。このような処理を、垂直方向および水平方向についてそれぞれ行なう。
【0176】
上述の例において、図33に示すようなfout-in(X)から求めた入力コントラスト値を用いるとき、DC成分の値が大きい場合や小さい場合に入力コントラスト値が大きいと、画像信号の最大値が非常に大きな値となったり、あるいはマイナスの値となる場合が発生する。一般に、出力部2で受け付ける入力信号の値は制限されている。例えば、8ビット入力のプリンタの場合には、入力信号値は0以上255以下の整数値に限られており、それ以外の入力信号値を出力部2に入力することはできない。入力信号がこのような範囲を越えたあるいは下回った値を含む場合、一般のプリンタなどでは入力する前に不適当な値を取り除く処理が行なわれている。広く利用されている処理の例として、例えば打ち切り処理がある。打ち切り処理を行なうと、入力信号の値が255を越える場合には255とされ、マイナスの場合には0とされる。
【0177】
図36は、入力信号値が制限範囲を越える場合の画像の出力特性の説明図、図37は、入力信号値が制限範囲を下回る場合の画像の出力特性の説明図である。ここでは、出力部2における入力信号値の制限範囲が0〜255であるものとして示している。例えば図36(A)に示すようにDC成分および入力コントラスト値が大きく、入力信号値の一部が制限範囲を越えている。制限範囲を越えた部分について、例えば打ち切り処理を行なうと図36(B)に示すようになり、このような入力信号値が出力部2に与えられることになる。出力部2は、図36(B)に示すような入力信号値に応じた画像を形成する。形成された画像の反射率は図36(C)に示すようになる。ここで、入力信号値が大きいと濃度が高くなるため反射率は低下する。この例では、入力信号値が255のとき反射率は0になっている。
【0178】
また、図37(A)に示す例では、DC成分が小さく、入力コントラスト値が大きいため、入力信号値の一部が制限範囲を下回り、マイナスとなっている。打ち切り処理を行なえば、入力信号値は、図37(B)に示すようにマイナスの部分が0に変換される。図37(B)に示すような入力信号値が出力部2に与えられ、画像が形成される。この時形成された画像の反射率は、図37(C)に示すようになる。
【0179】
図36(C)および図37(C)からわかるように、入力信号値が出力部2の制限範囲を越えあるいは下回る部分が存在する場合、実際に出力された画像においては、反射率の振幅が制限されて小さくなっており、所望のコントラストを実現できていないことがわかる。さらに、出力された画像の局所的な反射率の平均値も変化していることになる。これは、出力画像の色が入力信号から期待される色と異なることを意味し、このような入力信号は適切ではない。
【0180】
図38は、出力部において入力信号値が出力された画像の反射率に反映されない場合の説明図である。実際の画像出力装置では、高コントラスト、高周波数の入力信号に対して、入力信号の上限や下限近傍に対する応答が出力に反映されない現象が起こることがある。例えば図38(A)に示すように入力信号としては許可されている範囲内の入力信号が出力部2に与えられたとき、入力信号が小さく、淡い色の部分で、ある一定の反射率よりも明るい画像を出力できず、図38(B)に示すような反射率の画像が出力されてしまう場合がある。このような現象は、例えばCRTディスプレイ等で見られる。CRTディスプレイにおいては、特に高コントラストを再現する際に、図38(B)とは逆に暗部の輝度が上昇することが実験から確認されている。このような現象が発生する原因は、画像出力装置の応答が高コントラスト、高周波数の入力信号に追従できなくなることによる。このような現象は、図38に示すように、上述の図36、図37に示す現象と同様に、出力された画像の反射率の平均値を変化させてしまう。そのため、出力画像の色が期待される色と異なってしまうことがある。このような現象が発生する場合、入力信号が出力に反映される範囲が実際の制限範囲となる。
【0181】
このように、入力信号値が制限範囲を越えたり下回った場合には、出力画像における反射率の平均値が維持され、出力画像の色が期待される色と異ならないように、入力信号値を調整する必要がある。図39は、入力信号値の調整処理の概念図である。例えば図36(A)に示したように、入力信号値が制限範囲を越える場合には、図39(A)に示すように、入力信号値が制限範囲を越えず、平均値が変化しないように、振幅を変化させる。同様に図37(A)に示すように入力信号値が制限範囲を下回る場合には、図39(B)に示すように、入力信号値が制限範囲を下回らず、平均値が変化しないように、振幅を変化させればよい。図38(A)に示すように出力画像に反映できない入力信号値が存在する場合にも、実際の制限範囲を考慮して図39(A)または(B)に示すように調整処理を行なえばよい。この実施の形態では、出力部2としてカラープリンタを想定しているが、このような調整処理を行なうことによって、CRTディスプレイや液晶ディスプレイのような画像表示機器に関しても、画像の色の一致がとれ、鮮鋭度を保存することができる。
【0182】
図40は、入力信号値の制限範囲を考慮した入出力コントラストの関係の一例を示すグラフである。一例として図33に示した入力コントラストと出力コントラストとの関係を示すグラフfout-in(X)について、出力部2における実際の制限範囲も考慮に入れ、このグラフを修正する。図33はDC成分の値と空間周波数を一定(DC=128、空間周波数=5lp/mm)としている。DC成分の値を一定とした場合、振幅すなわちコントラスト値が小さい場合には入力信号値は制限範囲内に収まるので調整を施す必要はないが、コントラスト値がある閾値以上となると、一部が制限範囲を越えたりあるいは下回ったりすることになる。そのため、コントラスト値が閾値以上では、図39に示すように調整処理を行なってコントラスト値を一定値に制限する。すなわち調整処理は、閾値を境として出力コントラスト値を一定にすれば図39に示したような調整を行なうことができる。このような調整処理により、例えば図40に示すf’out-in(X)を得る。このf’in-out(X)を用いて出力コントラスト値から入力コントラスト値を求めると、求められた入力コントラスト値は0から閾値までの値に収まることになる。
【0183】
次にこの閾値を求める方法について一例を説明する。図41は、入力信号コントラストに対する出力画像の実際の平均反射率の一例を示すグラフである。図中、破線は目標とする平均反射率であり、ここでは一例としてS152において測定したDC=128のパッチ画像の平均反射率を表わしている。また一点鎖線は平均反射率から5%のズレを表わしている。S154において求めたDC=128、空間周波数=5lp/mmのACパッチ画像H1.1、H2.1、H3.1の測定データ画像に整形処理を施した画像の平均反射率をプロットすることによって図41に示すようなグラフが得られる。
【0184】
上述のように、入力コントラストを大きくしてゆくと、入力信号の一部が制限範囲を越え、あるいは下回り、平均反射率が変化する。図41に示した例では、入力コントラストが大きくなると平均反射率が低下し、平均的な色合いが変化することがわかる。入力コントラストが102の時に平均反射率から5%ずれる。これを越える場合、平均的な色合いをこれ以上変化させないようにするため、調整処理を行なうこととする。すなわち、この時の入力コントラスト値を閾値として用い、上述のfin-out(X)を修正すればよい。図40では、図41から求められた入力コントラスト値=102を閾値とし、図33に示すfin-out(X)を修正してf’in-out(X)を得ている。なお、上述の例では平均反射率が5%以上ずれないように調整処理を行なったが、このずれ量の設定は任意に設定可能である。
【0185】
このようにして図33に示すDC=128、空間周波数=5lp/mmの時の入力コントラストと出力コントラストとの対応関係fin-out(X)を、入力コントラストが閾値(=102)を越えないように修正した対応関係f’in-out(X)が得られた。同様にして、各DC(=64,128,192)および各空間周波数(=5,2.5,1.25,0.625)の組み合わせごとに修正した対応関係f’in-out(X)を求める。
【0186】
以下同様にして、S162において各AC成分とDC成分における目標空間周波数伝達特性を算出すればよい。例えば上述のようにDC=64、信号コントラスト値±40.5の場合の目標空間周波数伝達特性は、DC=64で空間周波数=5,2.5,1.25,0.625の時の4つの対応関係f’in-out(X)を用い、それぞれのグラフから出力コントラストが40.5の時の入力コントラスト値D1 〜D4 を求め、D1 /40.5,D2 /40.5,D3 /40.5,D4 /40.5を目標空間周波数伝達特性とすればよい。このようにして求められた各空間周波数ごとの目標空間周波数伝達特性をグラフ化すると、すべての空間周波数で制限範囲を越えない場合には図34に破線で示すグラフとなる。
【0187】
しかし、コントラスト値が大きい場合には、調整処理の影響を受ける。この例では各ACパッチの画素値は図26、図27に示すように0〜255に収まるように設計しているが、例えばDC=64で信号コントラスト値=±81.5の場合や、DC=192で信号コントラスト値=±81.5の場合などでは、出力部2の特性や仕様によっては制限範囲を越えあるいは下回る場合がある。このような入力信号値が制限範囲を越えあるいは下回るDC成分、信号コントラスト値、空間周波数の組み合わせの目標空間周波数伝達特性は、対応関係f’in-out(X)から求められる入力コントラスト値Dが、図41に示すようにして求められた閾値となるので、(閾値/信号コントラスト値)となる。図33に示す対応関係fin-out(X)と図40に示すf’in-out(X)とを比較してわかるように、調整処理を行なった方が出力コントラスト値から得られる入力コントラスト値Dは小さくなるので、目標空間周波数伝達特性の値も小さくなる。
【0188】
図42は、空間周波数処理部の第2の例における空間周波数伝達率の別の例を示すグラフである。図中、破線は調整処理を行なわない入力コントラスト値と出力コントラスト値との対応関係fin-out(X)を用いて求めた目標空間周波数伝達特性である。図42に示した例では、空間周波数が高くなるに従って入力信号値に対する応答が出力に反映されにくくなる場合を想定し、空間周波数が5mm/lpのときに対応関係f’in-out(X)のうち調整処理を行なった部分を使用した場合を示している。図42に示すように、調整処理を行なった対応関係f’in-out(X)を用いることによって、空間周波数特性は調整処理を施した部分で値が抑えられる。そのため、上述のように空間周波数が高い部分で発散することはなく、ある程度の値に落ちつくことになる。
【0189】
上述のように、図34に破線で示した目標空間周波数伝達特性では、高い空間周波数帯域においてノイズが極端に強調されてしまうため、図34に実線で示したような目標空間周波数伝達特性に修正する。調整処理を行なった対応関係f’in-out(X)を用いて得た、例えば図42に示すような目標空間周波数伝達特性についても、同様に修正を施せばよい。しかし図42に示すように、調整処理を行なった対応関係f’in-out(X)を用いた場合、高い空間周波数帯域における空間周波数伝達率が小さくなっているため、極端にノイズが強調されることはない。そのため、図42に示すような目標空間周波数伝達特性をそのまま用いるようにしてもよく、目標空間周波数伝達特性の修正処理を省略して高速化することが可能である。
【0190】
このような目標空間周波数伝達特性を、DC成分、AC成分の組み合わせごとに求め、さらに垂直方向および水平方向について求める。以下の説明では、一例として図34に実線で示したように目標空間周波数伝達特性に修正を加え、図35に示すようにそれぞれのDC成分、AC成分の組み合わせごとに求めたものとし、さらに垂直方向および水平方向について求めたものとして説明を続ける。
【0191】
このようにして設計された空間周波数処理部12の空間周波数伝達特性を実現するように、S163、S164、S165において、空間周波数処理の処理係数を算出する。空間周波数処理部12として例えば図22に示す構成を用いる場合、S163において基本補正部111のフィルタ係数を、S164において補助補正部112のフィルタ係数をそれぞれ決定する。また、S165において図23中の2次元ルックアップテーブル133の変換テーブルを決定する。
【0192】
S163において、まず、基本補正部111の空間周波数伝達特性を決める。基本補正部111の空間周波数伝達特性は、例えばS162において各ACパッチ画像から求めた、垂直方向と水平方向の目標空間周波数伝達特性の設計値の各々の平均特性をもとに、2次元面補間したものとする。次に基本補正部111の空間周波数伝達特性に逆フーリエ変換を施し、逆フーリエ変換をした結果を総和が1となるように規格化することで、目標とする空間周波数伝達特性のフィルタ係数を算出することができる。このようなフィルタ係数の算出方法は種々開発されており、適宜用いればよい。
【0193】
S164において、補助補正部112のフィルタ係数を決定する。まず、各AC成分とDC成分の組合せ条件下における空間周波数処理部12の空間周波数伝達特性の設計値から、S163において設定した基本補正部111の空間周波数伝達特性を引き、各AC成分とDC成分の組合せ条件下における差分特性を算出する。図43は、空間周波数処理部の第2の例における差分特性の一例を示すグラフである。例えば図35に示した垂直方向の目標空間周波数伝達特性の設計値をもとに、S163において設定した基本補正部111の空間周波数伝達特性を引き、差分特性を求めると、図43に示すようなものとなる。図中の黒丸は、AC成分とDC成分と空間周波数の特定の組合せを示しており、ACパッチ画像群中の各パッチ画像と対応している。
【0194】
この差分特性を代表する1つの空間周波数伝達特性を求め、それに基づき補助補正部112のフィルタ係数を決定する。図44は、水平方向および垂直方向の空間周波数を伝達率の関係の説明図である。各AC成分とDC成分の組合せ条件下における、水平方向の空間周波数が0.625、1.25、2.5、5lp/mmおよび垂直方向の空間周波数が0.625、1.25、2.5、5lp/mmの時の目標空間周波数伝達特性は、図44における垂直方向の空間周波数軸と水平方向の空間周波数軸上の曲線として現われる。これらの曲線上の値をそれぞれの次元として、図44に示すように8次元空間中の1点として表わすことができる。この例では、各AC成分とDC成分の組合せの条件について行なうと、8次元空間中の点が9点求まる。この際、空間周波数に応じて人間の視覚特性(VTF:Visual Transfer Function)を掛けて重み付けを行なってもよい。また、図44の対応関係を用いると、8次元空間中の1点から水平方向の空間周波数0.625、1.25、2.5、5lp/mmおよび垂直方向の空間周波数0.625、1.25、2.5、5lp/mmにおける空間周波数伝達特性に展開することも可能である。
【0195】
次に、各AC成分とDC成分の組合せ条件下で求めた8次元空間中の9点の最近傍を通り原点を通過する直線を算出する。ここで、8点の最近傍を通る直線とは、各点と直線の間の距離の自乗和が最も小さいものである。上述した問題は、方程式を解くことで求めることができる。また、例えば最急降下法を用いて反復計算を行ない、解を求めてもよい。求めた直線の、長さを1に規格化した方向ベクトルを8次元中の1点と見なし、図44に示した対応関係を用いて水平方向および垂直方向における空間周波数が0.625、1.25、2.5、5lp/mmの場合の空間周波数伝達特性に展開する。このようにして直線の方向ベクトルより求めた空間周波数伝達特性を2次元面補間し、逆フーリエ変換を施したものを補助補正部112のフィルタ係数とする。ただし、2次元面補間を行なう際に、水平方向および垂直方向の空間周波数=0の空間周波数伝達特性を0として面補間を行なう。
【0196】
S165において、各AC成分とDC成分の組合せ条件下における空間周波数処理部12の空間周波数伝達特性の設計値とS163において設定した基本補正部111の空間周波数伝達特性の差に、S164において算出した補助補正部112の空間周波数伝達特性を定数倍することによってさらに近づける。ここで最も近いとは両者の差の自乗の和を最小にすることである。各条件についてこの補助補正部112の空間周波数伝達特性の倍率を求め、さらに面補間を行なう。図45は、空間周波数処理部の第2の例における補助補正部の空間周波数伝達特性に対する各条件における倍率の一例を示すグラフである。上述のようにして補助補正部112の空間周波数伝達特性の倍率を求めて面補間し、AC成分とDC成分を軸にとった3次元グラフを作成すると、図45に示すようになる。この3次元グラフを2次元ルックアップテーブル133の変換テーブルとすればよい。
【0197】
以上により、基本補正部111および補助補正部112のフィルタ係数、2次元ルックアップテーブル133の変換テーブルが得られた。これらの係数をそれぞれ設定し空間周波数処理部12で空間周波数処理を行なう。空間周波数処理部12では、入力画像信号121に対してAC成分抽出器131でAC成分を求め、DC成分抽出器132でDC成分を求めて、求めたAC成分とDC成分から図45に示すグラフをテーブル化した2次元ルックアップテーブル133を引いて倍率すなわち補助補正量増幅率信号124を得る。これを補助補正部112によるフィルタ処理によって得られる補助補正基本信号123と掛け合わせることによって、補助補正信号125が得られる。この補助補正信号125は、入力画像信号121のAC成分、DC成分によって決定される例えば垂直方向のみを取れば図43に示すような差分特性に近い補助特性による補正量を表わしている。加算部115においてこの補正量を基本補正信号122に加え、補正後の出力画像信号126を得る。このようにして、出力部2に応じて設定された処理係数にしたがって空間周波数処理を行なうことにより、出力部2の特性によらない空間周波数特性を有する出力画像を得ることができる。
【0198】
図46は、空間周波数処理部の構成の第3の例を示すブロック図である。図中、図22および図23と同様の部分には同じ符号を付して説明を省略する。116は乗算部、127は基本補正量増幅率信号、136は2次元ルックアップテーブルである。この例では、基本補正信号122にも増幅率を掛け合わせる例を示している。
【0199】
2次元ルックアップテーブル136は、2次元ルックアップテーブル133と同様のテーブルであり、AC成分抽出器132から入力されるAC成分信号135と、DC成分抽出器131から入力されるDC成分信号134を受け取り、基本補正量増幅率信号127を生成して乗算部116へ出力する。乗算部116は、基本補正部11から出力される基本補正信号122に2次元ルックアップテーブル136から出力される基本補正量増幅率信号127で与えられる増幅率を掛け合わせて出力する。加算部115は、乗算部116から出力される増幅率が掛けられた基本補正信号122と乗算部114から出力される補助補正信号125とを加算して出力画像信号126を出力する。
【0200】
ここで新たに設定が必要となるのは、2次元ルックアップテーブル136である。上述の空間周波数処理部の第2の例において例えば図35に示すような目標空間周波数伝達特性の設計値から基本補正部111のフィルタ係数を求める際に、すべての条件の目標空間周波数伝達特性の設計値を最もよく表わす特性とその倍率を例えば最小2乗法等を用いて算出する。ここで得られた特性をもとに、上述のようにして基本補正部111のフィルタ係数を決定する。また、各条件について得られた倍率に適当な補間処理等を施し、2次元ルックアップテーブル136の内容とすればよい。
【0201】
補助補正部112のフィルタ係数を決定する際には、各AC成分とDC成分の組み合わせ条件における目標空間周波数伝達特性の設計値から、基本補正部111の空間周波数特性に上述のようにして2次元ルックアップテーブル136に設定した各条件ごとの倍率を掛け合わせたものを減算し、差分特性とする。得られた差分特性から補助補正部112のフィルタ係数および2次元ルックアップテーブル133の内容を決定する処理は、上述の空間周波数処理部の第2の例と同様である。
【0202】
このように、基本補正信号122にも増幅率を掛け合わせる構成とすることによって、さらに補正精度の向上が期待できる。
【0203】
図47は、空間周波数処理部の構成の第4の例を示すブロック図である。図中、図22、図23と同様の部分には同じ符号を付して説明を省略する。191はデジタルフィルタ、192は乗算部、193は2次元ルックアップテーブル、194は加算部である。この例では、目標空間周波数伝達特性の設計値を空間周波数帯域ごとに分割し、各空間周波数帯域ごとにデジタルフィルタおよび増幅率によって補正し、全体として目標空間周波数伝達特性の設計値を実現しようとするものである。
【0204】
デジタルフィルタ191は、各空間周波数帯域ごとに設けられる。これらのデジタルフィルタ191は、既存の帯域分離用のデジタルフィルタ群を用いればよい。2次元ルックアップテーブル193は、図23に示す2次元ルックアップテーブルと同様のテーブルであり、各空間周波数帯域ごとに設けられる。内容として、各AC成分およびDC成分の組み合わせごとに、対応する空間周波数帯域における増幅率を有している。乗算部192は、各空間周波数帯域ごとに設けられ、対応する空間周波数帯域のデジタルフィルタ191の出力と2次元ルックアップテーブル193の出力を掛け合わせる。加算部194は、各乗算部192の出力をすべて加算して、出力画像信号126として出力する。
【0205】
図48は、空間周波数処理部の構成の第5の例における空間周波数分割による目標空間周波数伝達特性の実現の説明図である。各デジタルフィルタ191の空間周波数特性は、図48(A)に示すようにそれぞれの特性を有している。2次元ルックアップテーブル193から得られる増幅率は、これらの特性を図中矢印の方向へそれぞれ変形させる。例えば、図34に示したような目標空間周波数伝達特性が設計された場合、図48(B)に示すように各空間周波数帯域における伝達率の和として、設計された目標空間周波数伝達特性を近似することができる。すなわち、所定の特性を有するデジタルフィルタ191の出力のそれぞれに対して、所定の増幅率を乗算し、すべてを加算することによって、図48(B)に示すように目標空間周波数伝達特性を得ることができる。このような手法は、例えばウェーブレット等によって実現されている。
【0206】
この例の場合の2次元ルックアップテーブル193の内容は、図34に示すような目標空間周波数伝達特性を各AC成分およびDC成分ごとに水平方向および垂直方向とも求め、各空間周波数領域におけるデジタルフィルタ191の特性に応じて倍率を算出し、テーブルに設定してゆけばよい。
【0207】
図49は、空間周波数処理部の構成の第6の例を示すブロック図である。図中、図22、図23と同様の部分には同じ符号を付して説明を省略する。201はデジタルフィルタ、202はパラメータデータベースである。この例では、図22における基本補正部111、補助補正部112、乗算部114、加算部115、増幅率決定部113中の図23に示す2次元ルックアップテーブル133による演算を、1つのデジタルフィルタ201によって行なうものである。上述のように空間周波数伝達特性は各AC成分およびDC成分によって異なるため、固定のフィルタ係数では対応できない。そのため、各AC成分およびDC成分の組み合わせに応じたフィルタ係数をパラメータデータベース202に蓄積しておく。蓄積しておくフィルタ係数は、各AC成分およびDC成分の組み合わせに対応する目標空間周波数伝達特性から設計すればよい。
【0208】
AC成分抽出器131で抽出されたAC成分、および、DC成分抽出器132で抽出されたDC成分によってパラメータデータベース202からフィルタ係数を取り出す。そして、取り出したフィルタ係数をデジタルフィルタ201にセットして、入力画像信号121に対して補正処理を行ない、出力画像信号126を生成して出力する。
【0209】
この第6の例によれば、目標空間周波数伝達特性を近似する処理は含まれていないので、精度よく補正を行なうことができる。
【0210】
上述の第1の例におけるルックアップテーブル23,24や、第2ないし第5の例における各2次元ルックアップテーブルは、例えばニューラルネットワークで置き換えることも可能である。その場合には、ルックアップテーブルの作成工程はニューラルネットワークの学習工程として実現すればよい。
【0211】
また、上述の各例では、図2に示すように、YMC空間において空間周波数処理を行なっているが、これに限らず、例えばL* * * 色空間など、他の色空間のカラー画像に対して空間周波数処理を行なってもよい。この場合、出力はフルカラーモードで行ない、測定値をL* * * 色空間に変換し、L* ,a* ,b* のそれぞれの伝達特性を算出すればよい。また、カラー画像に限らず、モノトーンの画像についても本発明を適用することができる。
【0212】
図50は、本発明を適用した画像編集・出力システムの一例を示す構成図である。図中、101はホストコンピュータ、102はカラープリンタ、103は画像データベース、104はフォトCDである。現在、デスクトップカラーパブリッシングの分野においては、例えば図50に示すように、ホストコンピュータ101、カラープリンタ102、画像データベース103、フォトCD104、などの装置による画像編集/出力システム10を用いて、画像の編集出力処理が行なわれている。このようなシステムにおいて、それぞれの装置は専用信号線もしくはネットワークを介して接続されている。ホストコンピュータ101では、画像データベース103もしくはフォトCD104、図示しないカラースキャナなどから入力された画像データや、ホストコンピュータ101上で作成されたコンピュータグラフィックス画像やテキスト情報を、画像編集ソフトウェアやレイアウトソフトウェアなどを用いて編集することによりディジタル画像データを作成し、作成したディジタル画像データをカラープリンタ102に転送し、カラープリンタ102により出力画像を得ている。
【0213】
このようなシステムにおいて、画像データベース103やフォトCD104等から得られたカラー画像データは、カラープリンタ12の特性によらずに再現したい。このような場合に、デジタル画像データをカラープリンタ102に転送する際に、カラープリンタ102に応じた出力処理を施す。この出力処理を行なう構成として、図2に示したような処理演算部1を適用することが可能である。
【0214】
例えば、図2に示すような処理演算部1をホストコンピュータ101内に設ける場合には、色空間変換部11におけるダイレクト・ルックアップ・テーブルの処理係数、本発明で求める空間周波数処理部12における処理係数、階調変換部13におけるルックアップ・テーブルの処理係数は、出力装置情報としてあらかじめホストコンピュータ101内の図示せぬ出力装置情報保持部に出力装置ごとに保持させておく。そしてデジタル画像データを出力するカラープリンタ102を決定すると、そのカラープリンタ102に対応した出力装置情報を取り出して色空間変換部11、空間周波数処理部12、階調変換部13に設定し、処理を行なうことにより、出力装置によらない空間周波数特性および色特性を有する出力画像を得ることが可能となっている。カラープリンタ102が1台だけ、ホストコンピュータ101に固定的に接続されている場合には、出力装置情報の選択的な使用は必要なく、各係数を最初から設定しておいて出力処理を行なえばよい。
【0215】
このシステムでは、画像データベース13やフォトCD14から供給されるカラー画像データは入出力装置に依存しない形式で表現された画像データであってよく、望ましくはシステム内で、あるいはシステム間で共通した形式で表現されるデータであるとよい。
【0216】
ホストコンピュータ101には、係数算出部4を設けておくことができ、測定部3に対応する測定器を接続して、上述のような処理により空間周波数処理のための処理係数を求めることができる。測定部3をも予め設けておいてもよい。
【0217】
あるいは、係数算出部4および測定部3はホストコンピュータ101とは別の構成としておき、係数算出部4の出力をホストコンピュータ101に入力するように構成してもよい。この場合、係数算出部4の出力である空間周波数処理のための処理係数を、直接、ホストコンピュータ101に入力する構成のほか、ファイルの形式でホストコンピュータ101内の記憶装置にコピーしたり、ネットワークを介して配信することもできる。
【0218】
処理演算部1は、ホストコンピュータ101に設ける構成のほか、カラープリンタ102側に設けることもできる。例えば、ネットワークなどに接続されたカラープリンタでは、複数台のホストコンピュータからの出力要求を受け付けて画像を出力する。また、出力要求を行なうホストコンピュータ101側もどのプリンタに出力するかを決定しないで出力要求を出す場合もある。このような場合、カラープリンタ102側で、そのカラープリンタ102で固有の出力処理を行なえばよい。この場合、係数算出部4、測定部3はカラープリンタ102とは別の構成とし、係数算出部4の出力である空間周波数処理に使用する処理係数をカラープリンタ102に予め組み込んでおくことができ、係数算出部4、測定部3をカラープリンタ102に組み込む場合に比べてカラープリンタ102のコストを下げることができる。
【0219】
【発明の効果】
以上の説明から明らかなように、本発明によれば、カンや経験によらずに空間周波数処理の処理係数を決定することが可能となり、決定した処理係数を用いて画像データに空間周波数を施すことにより、出力画像装置の空間周波数伝達特性の影響を受けることなく、出力装置の種類によらず、同一の鮮鋭度の出力画像を得ることができるという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施の一形態を示すブロック図である。
【図2】 処理演算部の構成の一例を示すブロック図である。
【図3】 デジタルフィルタ処理の一例の説明図である。
【図4】 種々の出力装置における空間周波数応答特性の一例の説明図である。
【図5】 空間周波数処理部の構成の第1の例を示すブロック図である。
【図6】 空間周波数処理部の第1の例において用いる処理係数を決定する処理の一例を示すフローチャートである。
【図7】 空間周波数処理部の第1の例において用いるテストパターン画像データのレイアウトの一例を示す説明図である。
【図8】 空間周波数処理部の第1の例において用いる基本ACパッチ画像群のパッチ画像の一例の説明図である。
【図9】 空間周波数処理部の第1の例において用いる基本ACパッチ画像群と補助ACパッチ画像群の各パッチ画像の特性値の一例の説明図である。
【図10】 反射率の測定の具体例の説明図である。
【図11】 DCパッチ画像群の各パッチ画像の平均反射率のデータとテストパターン画像データにおけるDCパッチ画像群の各パッチ画像のデータ値との対応関係の一例を示すグラフである。
【図12】 ACパッチ画像の測定値の規格化および成形処理による波形の変化の一例の説明図である。
【図13】 規格化データ列に対する成形処理の一例を示すフローチャートである。
【図14】 空間周波数処理部の第1の例における整形データ列に対する特性値の測定手法の一例の説明図である。
【図15】 空間周波数処理部の第1の例においてテストパターン画像から得られた基本ACパッチ画像群の各パッチ画像の周期および空間周波数の一例の説明図である。
【図16】 空間周波数処理部の第1の例においてテストパターン画像の基本ACパッチ画像群から得られたコントラスト値の一例を示すグラフである。
【図17】 基本ACパッチ画像群における算出された空間周波数伝達特性の一例を示すグラフである。
【図18】 基本ACパッチ画像群の各パッチ画像から求められた空間周波数伝達特性に基づいて設計された空間周波数処理部における空間周波数伝達率の一例を示すグラフである。
【図19】 補正量信号のコントラストと増幅率の関係を示すグラフである。
【図20】 DC成分信号値と増幅率の関係を示すグラフである。
【図21】 ACパッチ画像群のパッチ画像の別の例の説明図である。
【図22】 空間周波数処理部の構成の第2の例を示すブロック図である。
【図23】 増幅率決定部の構成の一例を示すブロック図である。
【図24】 空間周波数処理部の第2の例において用いる処理係数を決定する処理の一例を示すフローチャートである。
【図25】 空間周波数処理部の第2の例において用いるテストパターン画像データのレイアウトの一例を示す説明図である。
【図26】 空間周波数処理部の第2の例において用いるAC画像群の各パッチ画像の特性値の一例である。
【図27】 空間周波数処理部の第2の例において用いるAC画像群の各パッチ画像の特性値の一例(続き)である。
【図28】 反射率の測定の別の具体例の説明図である。
【図29】 空間周波数処理部の第2の例において測定された測定データ列の並び方向の説明図である。
【図30】 空間周波数処理部の第2の例における整形データ画像に対する特性値の算出手法の一例の説明図である。
【図31】 空間周波数処理部の第2の例においてテストパターン画像から得られたACパッチ画像のうちV1.1〜V1.8およびH1.1〜H1.8の各パッチ画像の周期および空間周波数の一例の説明図である。
【図32】 空間周波数処理部の第2の例においてテストパターン画像から得られたコントラスト値の一例を示すグラフである。
【図33】 出力装置における入出力コントラストの関係の一例を示すグラフである。
【図34】 基本ACパッチ画像群の各パッチ画像から求められた空間周波数伝達特性に基づいて設計された空間周波数処理部の第2の例における空間周波数伝達率の一例を示すグラフである。
【図35】 空間周波数処理部の第2の例において算出された垂直方向の目標空間周波数伝達特性の一例を示すグラフである。
【図36】 入力信号値が制限範囲を越える場合の画像の出力特性の説明図である。
【図37】 入力信号値が制限範囲を下回る場合の画像の出力特性の説明図である。
【図38】 出力部において入力信号値が出力された画像の反射率に反映されない場合の説明図である。
【図39】 入力信号値の調整処理の概念図である。
【図40】 入力信号値の制限範囲を考慮した入出力コントラストの関係の一例を示すグラフである。
【図41】 入力信号コントラストに対する出力画像の実際の平均反射率の一例を示すグラフである。
【図42】 空間周波数処理部の第2の例における空間周波数伝達率の別の例を示すグラフである。
【図43】 空間周波数処理部の第2の例における差分特性の一例を示すグラフである。
【図44】 水平方向および垂直方向の空間周波数を伝達率の関係の説明図である。
【図45】 空間周波数処理部の第2の例における補助補正部の空間周波数伝達特性に対する各条件における倍率の一例を示すグラフである。
【図46】 空間周波数処理部の構成の第3の例を示すブロック図である。
【図47】 空間周波数処理部の構成の第4の例を示すブロック図である。
【図48】 空間周波数処理部の構成の第5の例における空間周波数分割による目標空間周波数伝達特性の実現の説明図である。
【図49】 空間周波数処理部の構成の第6の例を示すブロック図である。
【図50】 本発明を適用した画像編集・出力システムの一例を示す構成図である。
【符号の説明】
1…処理演算部、2…出力部、3…測定部、4…係数算出部、5…テストパターン保持部、11…色空間変換部、12…空間周波数処理部、13…階調変換部、21…ハイパスフィルタ、22…ローパスフィルタ、23,24…ルックアップテーブル、25…乗算部、26…加算部、31…入力画像信号、32…補正量信号、33…AC成分ゲイン信号、34…調整補正量信号、35…DC成分信号、36…DC成分ゲイン信号、37…出力画像信号、111…基本補正部、112…補助補正部、113…増幅率決定部、114…乗算部、115…加算部、116…乗算部、121…121…入力画像信号、122…基本補正信号、123…補助補正基本信号、124…補助補正量増幅率信号、125…補助補正信号、126…出力画像信号、127…基本補正量増幅率信号、131…AC成分抽出器、132…DC成分抽出器、133…2次元ルックアップテーブル、134…AC成分信号、135…DC成分信号、136…2次元ルックアップテーブル、191…デジタルフィルタ、192…乗算部、193…2次元ルックアップテーブル、194…加算部、201…デジタルフィルタ、202…パラメータデータベース。

Claims (25)

  1. 注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号と空間周波数処理係数に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段と、特定の複数の空間周波数成分を有する領域を含むテストパターン画像データから求める前記出力手段における前記画像処理信号のDC成分ごとの画像再現特性に基づいて前記処理手段の前記空間周波数処理係数を決定する係数決定手段を備え、該係数決定手段は、前記テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定する測定手段と、該測定手段で測定された前記領域の空間周波数成分の測定結果と前記テストパターン画像データの空間周波数成分とを比較する比較手段と、前記比較手段の比較結果から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように前記処理手段の前記空間周波数処理係数を決定する空間周波数処理係数決定手段を有し、前記処理手段は、該空間周波数処理係数に基づいて前記画像処理信号のDC成分ごとに前記注目画素の値に加える変更の程度を変化させることを特徴とする画像処理装置。
  2. 前記画像処理信号のDC成分ごとに付与すべき前記所定の特性は、前記出力装置の持つ画像再現特性を前記画像処理信号のDC成分ごとに変化しないとする理想特性にするためのものであることを特徴とする請求項1に記載の画像処理装置。
  3. 注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号と空間周波数処理係数に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段と、特定の複数の空間周波数成分を有する領域を含むテストパターン画像データから求める前記出力手段の画像再現特性に基づいて前記処理手段の前記空間周波数処理係数を決定する係数決定手段を備え、前記空間周波数処理係数は、基本処理係数と補助処理係数を含み、前記係数決定手段は、前記テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定する測定手段と、該測定手段で測定された前記領域の空間周波数成分の測定結果と前記テストパターン画像データの空間周波数成分とを比較する比較手段と、前記比較手段の比較結果から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように前記処理手段の前記空間周波数処理係数を決定する空間周波数処理係数決定手段を有し、前記空間周波数処理係数決定手段は、前記出力装置に入力する前記画像処理信号の持つ空間周波数特性に所定の特性を付与するために前記基本処理係数を決定する基本処理係数決定手段と、該基本係数決定手段で決定される基本処理係数で変化する画像処理信号の持つ空間周波数特性にさらに加えるべき処理の特性を付与するための前記補助処理係数を決定する補助処理係数決定手段を有していることを特徴とする画像処理装置。
  4. 前記補助処理係数は、補助空間周波数処理係数と補助ゲイン係数を含み、前記処理係数決定手段は、前記画像処理信号の持つ空間周波数特性に所定の特性を付与するための前記補助空間周波数処理係数を決定する補助空間周波数処理係数決定手段と、該補助空間周波数処理係数決定手段で決定される補助空間周波数処理係数に基づき変更する画像処理信号に掛け合わせるべきゲインを得るための補助ゲイン係数を決定するゲイン係数決定手段を含むことを特徴とする請求項3に記載の画像処理装置。
  5. 前記基本処理係数は、基本空間周波数処理係数と基本ゲイン係数を含み、前記処理係数決定手段は、前記画像処理信号の持つ空間周波数特性に所定の特性を付与するための前記基本空間周波数処理係数を決定する基本空間周波数処理係数決定手段と、該基本空間周波数処理係数決定手段で決定される基本空間周波数処理係数に基づき変更する画像処理信号に掛け合わせるべきゲインを得るための基本ゲイン係数を決定するゲイン係数決定手段を含むことを特徴とする請求項3に記載の画像処理装置。
  6. 前記ゲイン係数決定手段は、前記画像処理信号の局所的なコントラストに対応する基本ゲイン係数または補助ゲイン係数を決定することを特徴とする請求項4または請求項5に記載の画像処理装置。
  7. 前記ゲイン係数決定手段は、前記画像処理信号の局所的な平均値に対応する基本ゲイン係数または補助ゲイン係数を決定することを特徴とする請求項4または請求項5に記載の画像処理装置。
  8. 注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的なコントラストを特徴として求める特徴量抽出手段と、前記入力手段に入力された画像処理信号と空間周波数処理係数と前記特徴量抽出手段で求めた特徴に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段を備えており、前記空間周波数処理係数は、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とする画像処理装置。
  9. 注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的な平均値を特徴として求める特徴量抽出手段と、前記入力手段に入力された画像処理信号と空間周波数処理係数と前記特徴量抽出手段で求めた特徴に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段を備えており、前記空間周波数処理係数は、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とする画像処理装置。
  10. 前記空間周波数処理係数は、基本処理係数と補助処理係数を含み、前記基本処理係数は、前記出力装置に入力する前記画像処理信号の持つ空間周波数特性に所定の特性を付与するためのものであり、前記補助処理係数は、前記基本処理係数で変化する画像処理信号の持つ空間周波数特性にさらに加えるべき処理の特性を付与するためのものであり、前記処理手段は、前記画像処理信号の前記注目画素の値を前記基本処理係数に基づき変更する基本処理手段と、前記注目画素の値を前記補助処理係数に基づき変更する補助処理手段を含み、それぞれの変更された注目画素の値に基づいて前記出力手段に与える画像処理信号を作成することを特徴とする請求項8または請求項9に記載の画像処理装置。
  11. 前記補助処理係数は、補助空間周波数処理係数と補助ゲイン係数を含み、前記補助処理手段は、前記補助空間周波数処理係数に基づき画像処理信号に変更を加え、さらに前記特徴量抽出手段により求めた特徴と前記補助ゲイン係数から得られるゲインに基づいた変更を加えることを特徴とする請求項10に記載の画像処理装置。
  12. 前記基本処理係数は、基本空間周波数処理係数と基本ゲイン係数を含み、前記基本処理手段は、前記基本空間周波数処理係数に基づき画像処理信号に変更を加え、さらに前記特徴量抽出手段により求めた特徴と前記基本ゲイン係数から得られるゲインに基づいた変更を加えることを特徴とする請求項10に記載の画像処理装置。
  13. 前記空間周波数処理係数は、前記テストパターン画像を実際に測定した空間周波数成分と前記テストパターン画像データの空間周波数成分との比較結果とともに前記出力手段が実効的に許容する入力値の範囲とから目標空間周波数伝達特性を決定し、該目標空間周波数伝達特性に基づいて算出されたものであることを特徴とする請求項9に記載の画像処理装置。
  14. 注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的なコントラストを特徴として求める特徴量抽出手段と、該特徴量抽出手段で求めた特徴に基づいて前記画像処理信号の空間周波数成分ごとのゲインを決定するゲイン決定手段と、前記入力手段に入力された画像処理信号の空間周波数成分ごとに前記ゲイン決定手段で決定されたそれぞれの前記ゲインに基づいて前記注目画素の値に変更を加え得られたそれぞれの値から変更された画像処理信号を得る処理手段と、該処理手段によって得られた前記変更された画像処理信号の画像を出力する出力手段を備えており、前記画像処理信号の空間周波数成分ごとの前記ゲインは、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とする画像処理装置。
  15. 注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、該入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的な平均値を特徴として求める特徴量抽出手段と、該特徴量抽出手段で求めた特徴に基づいて前記画像処理信号の空間周波数成分ごとのゲインを決定するゲイン決定手段と、前記入力手段に入力された画像処理信号の空間周波数成分ごとに前記ゲイン決定手段で決定されたそれぞれの前記ゲインに基づいて前記注目画素の値に変更を加え得られたそれぞれの値から変更された画像処理信号を得る処理手段と、該処理手段によって得られた前記変更された画像処理信号の画像を出力する出力手段を備えており、前記画像処理信号の空間周波数成分ごとの前記ゲインは、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とする画像処理装置。
  16. 注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、前記入力手段に入力された画像処理信号と空間周波数処理係数に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段と、前記入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的なコントラストを特徴として求める特徴量抽出手段と、該特徴量抽出手段で求めた特徴に基づいて前記処理手段の前記空間周波数処理係数を設定する処理係数決定手段を備えており、前記空間周波数処理係数は、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とする画像処理装置。
  17. 注目画素および該注目画素に対する周辺画素の画像信号の値を含む画像処理信号を入力する入力手段と、前記入力手段に入力された画像処理信号と空間周波数処理係数に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段と、前記入力手段に入力された前記画像処理信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的な平均値を特徴として求める特徴量抽出手段と、該特徴量抽出手段で求めた特徴に基づいて前記処理手段の前記空間周波数処理係数を設定する処理係数決定手段を備えており、前記空間周波数処理係数は、テストパターン画像データに基づいて前記出力手段で作成されたテストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像データの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とする画像処理装置。
  18. 均等色空間の色座標系で表現された値を含む画像処理信号を入力する第1の入力手段と、該第1の入力手段に入力された画像処理信号を出力手段の制御に適した前記色空間と異なる第2の色空間の色座標系に変換する色変換手段と、該色変換手段により色変換された注目画素および該注目画像に対する周辺画素の画像信号の値を含む画像処理信号を入力する第2の入力手段と、該第2の入力手段に入力された前記画像信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的なコントラストを特徴として求める特徴量抽出手段と、前記第2の入力手段に入力された画像処理信号と空間周波数処理係数と前記特徴量抽出手段で求めた特徴に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段を備えており、前記空間周波数処理係数は、テストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像のデータの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とする画像処理装置。
  19. 均等色空間の色座標系で表現された値を含む画像処理信号を入力する第1の入力手段と、該第1の入力手段に入力された画像処理信号を出力手段の制御に適した前記色空間と異なる第2の色空間の色座標系に変換する色変換手段と、該色変換手段により色変換された注目画素および該注目画像に対する周辺画素の画像信号の値を含む画像処理信号を入力する第2の入力手段と、該第2の入力手段に入力された前記画像信号の注目画素および周辺画素の画像信号の値から該画像処理信号の局所的な平均値を特徴として求める特徴量抽出手段と、前記第2の入力手段に入力された画像処理信号と空間周波数処理係数と前記特徴量抽出手段で求めた特徴に基づいて前記注目画素の値に変更を加える処理手段と、該処理手段によって値の変更を受けた画像処理信号の画像を出力する出力手段を備えており、前記空間周波数処理係数は、テストパターン画像の実際の空間周波数成分を測定し前記テストパターン画像のデータの空間周波数成分との比較によって前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように決定されたものであることを特徴とする画像処理装置。
  20. 前記空間周波数処理係数は、前記テストパターン画像を実際に測定した空間周波数成分と前記テストパターン画像データの空間周波数成分との比較結果とともに前記出力手段が実効的に許容する入力値の範囲とから目標空間周波数伝達特性を決定し、該目標空間周波数伝達特性に基づいて算出されたものであることを特徴とする請求項16ないし請求項19のいずれか1項に記載の画像処理装置。
  21. 特定の複数の空間周波数成分を有する領域を含むテストパターン画像データを出力手段により出力し出力画像を作成する工程と、前記出力画像の空間周波数特性を測定する工程と、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように空間周波数処理係数を決定する工程と、入力された注目画素および周辺画素の画像信号の値を含む画像処理信号の局所的なコントラストを特徴として求める工程と、前記画像処理信号と前記特徴と前記空間周波数処理係数に基づいて前記注目画素の値に変更を加える工程と、変更を加えた前記画像処理信号の画像を出力する工程を有することを特徴とする画像処理方法。
  22. 特定の複数の空間周波数成分を有する領域を含むテストパターン画像データを出力手段により出力し出力画像を作成する工程と、前記出力画像の空間周波数特性を測定する工程と、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように空間周波数処理係数を決定する工程と、入力された注目画素および周辺画素の画像信号の値を含む画像処理信号の局所的な平均値を特徴として求める工程と、前記画像処理信号と前記特徴と前記空間周波数処理係数に基づいて前記注目画素の値に変更を加える工程と、変更を加えた前記画像処理信号の画像を出力する工程を有することを特徴とする画像処理方法。
  23. 前記空間周波数処理係数を決定する工程は、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係とともに前記出力手段が実効的に許容する入力値の範囲とから目標空間周波数伝達特性を決定し、該目標空間周波数伝達特性に基づいて前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように前記空間周波数処理係数を算出することを特徴とする請求項21または請求項22に記載の画像処理方法。
  24. 特定の複数の空間周波数成分を有する領域を含むテストパターン画像データを出力手段に出力させ出力画像を作成する工程と、前記出力画像の空間周波数特性を測定する工程と、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように空間周波数処理係数を決定する工程と、入力された注目画素および周辺画素の画像信号の値を含む画像処理信号の局所的なコントラストを特徴として求める工程と、前記画像処理信号と前記特徴と前記空間周波数処理係数に基づいて前記注目画素の値に変更を加える工程と、変更を加えた前記画像処理信号の画像を出力する工程をコンピュータに実行させるプログラムを記憶した前記コンピュータが読み取り可能な記憶媒体。
  25. 特定の複数の空間周波数成分を有する領域を含むテストパターン画像データを出力手段に出力させ出力画像を作成する工程と、前記出力画像の空間周波数特性を測定する工程と、前記テストパターン画像データの空間周波数特性と前記出力画像の空間周波数特性の測定結果との対応関係から前記テストパターン画像の空間周波数特性に前記出力手段の空間周波数特性を近づけるように空間周波数処理係数を決定する工程と、入力された注目画素および周辺画素の画像信号の値を含む画像処理信号の局所的な平均値を特徴として求める工程と、前記画像処理信号と前記特徴と前記空間周波数処理係数に基づいて前記注目画素の値に変更を加える工程と、変更を加えた前記画像処理信号の画像を出力する工程をコンピュータに実行させるプログラムを記憶した前記コンピュータが読み取り可能な記憶媒体。
JP12248397A 1996-06-10 1997-05-13 画像処理装置、画像処理方法、および記憶媒体 Expired - Fee Related JP4035668B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12248397A JP4035668B2 (ja) 1996-06-10 1997-05-13 画像処理装置、画像処理方法、および記憶媒体
US08/871,757 US6035065A (en) 1996-06-10 1997-06-09 Image processing coefficient determination method, image processing coefficient calculation system, image processing system, image processing method, and storage medium

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP14755396 1996-06-10
JP8-147553 1996-11-26
JP8-315151 1996-11-26
JP31515196 1996-11-26
JP12248397A JP4035668B2 (ja) 1996-06-10 1997-05-13 画像処理装置、画像処理方法、および記憶媒体

Publications (2)

Publication Number Publication Date
JPH10214336A JPH10214336A (ja) 1998-08-11
JP4035668B2 true JP4035668B2 (ja) 2008-01-23

Family

ID=27314460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12248397A Expired - Fee Related JP4035668B2 (ja) 1996-06-10 1997-05-13 画像処理装置、画像処理方法、および記憶媒体

Country Status (2)

Country Link
US (1) US6035065A (ja)
JP (1) JP4035668B2 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341181B1 (en) * 1998-08-07 2002-01-22 Canadian Space Agency Mid-spatial frequency digital boost filter
US6262818B1 (en) * 1998-10-07 2001-07-17 Institute Of Applied Optics, Swiss Federal Institute Of Technology Method for simultaneous amplitude and quantitative phase contrast imaging by numerical reconstruction of digital holograms
US6690488B1 (en) * 1999-09-30 2004-02-10 Polaroid Corporation Method and apparatus for estimating the spatial frequency response of a digital image acquisition system from the images it produces
US6956966B2 (en) * 2001-04-03 2005-10-18 Electronics For Imaging, Inc. Method and apparatus for automated image correction for digital image acquisition
EP1402510A2 (en) * 2001-04-26 2004-03-31 Koninklijke Philips Electronics N.V. Display device
DE10328322A1 (de) * 2003-06-24 2005-01-27 Massen Machine Vision Systems Gmbh Überwachung des Farbeindrucks von mehrfarbig gemusterten Produkten
US20040264770A1 (en) * 2003-06-30 2004-12-30 Xerox Corporation Systems and methods for associating color profiles with a scanned input image using spatial attributes
US7474783B2 (en) * 2003-06-30 2009-01-06 Xerox Corporation Systems and methods for associating color profiles with a scanned input image using spatial attributes
US20040264768A1 (en) * 2003-06-30 2004-12-30 Xerox Corporation Systems and methods for associating color profiles with a scanned input image using spatial attributes
US20040264769A1 (en) * 2003-06-30 2004-12-30 Xerox Corporation Systems and methods for associating color profiles with a scanned input image using spatial attributes
US7453604B2 (en) * 2003-06-30 2008-11-18 Xerox Corporation Systems and methods for estimating an image marking process using scanned image attributes
US7616829B1 (en) * 2003-10-29 2009-11-10 Apple Inc. Reducing undesirable block based image processing artifacts by DC image filtering
US7336401B2 (en) * 2003-12-19 2008-02-26 Xerox Corporation Systems and methods for estimating an image marking process using event mapping of scanned image attributes
JP4501626B2 (ja) * 2004-10-07 2010-07-14 ブラザー工業株式会社 画像評価支援装置、画像評価支援プログラムおよび画像処理装置
JP2007068001A (ja) * 2005-09-01 2007-03-15 Ricoh Co Ltd 画像処理方法、プログラム、画像処理装置、画像形成システム
US8094344B2 (en) * 2006-02-28 2012-01-10 Konica Minolta Laboratory U.S.A., Inc. Optimum noise filter setting for a scanner in a closed loop system
US20070266287A1 (en) * 2006-05-11 2007-11-15 Uma Technology Inc. Spatial frequency response measurement method
DE102007014735A1 (de) * 2007-03-24 2008-09-25 Massen Machine Vision Systems Gmbh Überwachung des Farbeindrucks von mehrfarbig gemusterten Flächen
JP2011228807A (ja) * 2010-04-15 2011-11-10 Nikon Corp 画像処理プログラム、画像処理装置、および画像処理方法
JP2015052663A (ja) * 2013-09-06 2015-03-19 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置およびプログラム
US10186034B2 (en) 2015-01-20 2019-01-22 Ricoh Company, Ltd. Image processing apparatus, system, image processing method, calibration method, and computer-readable recording medium
CN111784617B (zh) * 2020-06-09 2023-08-15 国家卫星气象中心(国家空间天气监测预警中心) 一种图像处理方法及装置
CN112053416B (zh) * 2020-09-14 2023-10-24 网易(杭州)网络有限公司 图像处理方法、装置、存储介质及计算机设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941038A (en) * 1987-05-11 1990-07-10 The Mead Corporation Method for color image processing
US5271096A (en) * 1990-07-12 1993-12-14 Light Source Computer Images, Inc. Method and structure for calibrating a computer generated image
US5185673A (en) * 1991-06-12 1993-02-09 Hewlett-Packard Company Automated image calibration
US5774599A (en) * 1995-03-14 1998-06-30 Eastman Kodak Company Method for precompensation of digital images for enhanced presentation on digital displays with limited capabilities
US5696850A (en) * 1995-12-21 1997-12-09 Eastman Kodak Company Automatic image sharpening in an electronic imaging system
US5649073A (en) * 1995-12-28 1997-07-15 Xerox Corporation Automatic calibration of halftones

Also Published As

Publication number Publication date
US6035065A (en) 2000-03-07
JPH10214336A (ja) 1998-08-11

Similar Documents

Publication Publication Date Title
JP4035668B2 (ja) 画像処理装置、画像処理方法、および記憶媒体
JP4804660B2 (ja) デジタルイメージ処理のためのカラー情報を使用したノイズ低減方法
US6522425B2 (en) Method of predicting and processing image fine structures
EP0971314B1 (en) A method for preserving image detail when adjusting the contrast of a digital image
JP4959760B2 (ja) 画像におけるノイズ出現の評価方法
JPH03503712A (ja) 誤差拡散によるディジタル中間調調色
CN102037491A (zh) 提高图像锐度的图像处理
JP2002133409A (ja) ピクセルカラーに基づくデジタル画像強調方法
JPH11239275A (ja) 画像処理方法および装置
JP2003331276A (ja) 色変換定義修正装置および色変換定義修正プログラム
JPH0865517A (ja) 2値印刷装置において、画像データのプレ歪によりトーン補正を行うための改良方法、および装置
EP1024454B1 (en) A method for preserving spatial detail when applying a multidimensional tonal transform to a digital color image
US20100165409A1 (en) Image processing apparatus, image processing method, and program
JP5426953B2 (ja) 画像処理装置およびその方法
JP3696339B2 (ja) 画像処理方法および装置
JP4202395B2 (ja) 画像変換方法、変換画像生成方法、および画像補正装置
JP4929095B2 (ja) 画像データ生成方法、プログラム、記録媒体、及び画像データ生成装置
JP2020088449A (ja) 画像処理装置、画像処理方法、及びプログラム
JPH1056570A (ja) 画像処理装置
JPH10327319A (ja) 画像処理方法および装置
JPH09153132A (ja) 多重解像度変換方法および装置
JP2001036756A (ja) 画像処理方法及び装置
JPH10150572A (ja) 画像処理装置、画像処理方法、画像処理プログラムを記録した媒体
JPH09163227A (ja) 画像処理方法および装置
JP3904160B2 (ja) 像構造予測処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees