JP4034936B2 - Permanent magnet alloy with excellent heat resistance and manufacturing method thereof - Google Patents

Permanent magnet alloy with excellent heat resistance and manufacturing method thereof Download PDF

Info

Publication number
JP4034936B2
JP4034936B2 JP2000562572A JP2000562572A JP4034936B2 JP 4034936 B2 JP4034936 B2 JP 4034936B2 JP 2000562572 A JP2000562572 A JP 2000562572A JP 2000562572 A JP2000562572 A JP 2000562572A JP 4034936 B2 JP4034936 B2 JP 4034936B2
Authority
JP
Japan
Prior art keywords
heat resistance
alloy
magnet alloy
irreversible demagnetization
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000562572A
Other languages
Japanese (ja)
Inventor
雅美 鎌田
道夫 尾畠
祐一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Application granted granted Critical
Publication of JP4034936B2 publication Critical patent/JP4034936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Description

技術分野
本発明は,大気中200℃で使用されても磁力が殆んど劣化しないという極めて耐熱性に優れたR−B−C−Co−Fe系永久磁石合金(RはYまたは希土類元素)に関する。
背景技術
耐熱性に優れた希土類磁石としてSm−Co磁石が知られている。しかし,この磁石は高価である。ここで言う耐熱性とは特に磁力が熱によって劣化しないことを意味する。より安価で且つ耐熱性を改善した希土類磁石として,同一出願人に係る特開平4−116144号公報(特許第2740981号)に記載のR−B−C−Co−Fe系永久磁石合金がある。この磁石合金は,C(炭素)を必須の合金元素としたうえ,Rとして軽希土類と重希土類を組み合わせて使用したものである。該公報にはCを含有させると不可逆減磁率が顕著に向上する(マイナスの値が0%の側に近づく)ことが示されており,またRの一部に重希土類元素を用いると一層不可逆減磁率が向上することを教示している。
発明の目的
発熱源の近くに設置される機器類に永久磁石を取り付ける場合には,温度が上昇しても磁力が低下しないこと,すなわち残留磁束密度(Br)が劣化しないことが要求されるが,磁石の使用温度が200℃近辺となる場合には(例えば自動車用エンジン回りに設置される機器類では200℃近辺となるものがあり,電気自動車用モータも例にもれない),従来品のなかではSm−Co磁石しか適用できない。しかし,これは前述のように高価である。また通常のNd−Fe(Co)−B系希土類磁石ではこのような高温(例えば200℃)での使用は不可である。
前記の特開平4−116144号公報に記載されたようにC(炭素)を合金元素とするものでは,Cの含有により不可逆減磁率が向上し,またRの一部に重希土類元素を用いると一層不可逆減磁率が向上するが,該公報には200℃に昇温されても減磁しないようなものは示されていない。
したがって,本発明の課題は,200℃でも使用に耐えるような耐熱性に優れると共に安価な永久磁石合金を得ることである。
発明の開示
前記の諸課題を解決するため,特開平4−116144号公報に提案したようにCの含有が耐熱性を向上させるという基本的な考え方に立脚したうえ,重希土類元素の個々の耐熱性に及ぼす影響を調査研究したところ,NdやPr等の基本的希土類元素に加えて,適量のDyとTbを複合添加した場合には,特に,DyとTbを互いに関連する量で添加した場合には,顕著に耐熱性が向上することを新たに見い出した。
すなわち本発明は,原子百分率(at.%)で,
C:0.1〜15at.%,
B:0.5〜15at.%,
C+B:2〜30at.%,
Co:40at.%以下(0%を含まず),
Dy+Tb:0.5〜5at.%で,
好ましくはTb(at.%)/Dy(at.%):0.1〜0.8,
R:8〜20at.%,
ただし,RはNd,Pr,Ce,La,Y,Gd,Ho,ErおよびTmからなる群から選ばれた元素の少なくとも一種を表す,
残部:Feおよび不可避的不純物,
からなる耐熱性に優れた永久磁石合金を提供するものである。
この永久磁石合金の耐熱性は,下記の(1)式に従う不可逆減磁率(200℃)が0%〜−20%の範囲,さらに好ましくは0%〜−15%の範囲(但しiHc≧13KOe)を示す点において特徴づけられる。
不可逆減磁率(200℃)=100×(A200−A25)/A25・・(1)
ただし,
25 :パーミアンス係数(Pc)が1になるように形状を調整した試料を50KOeで着磁後,室温(25℃)で測定したフラックス値
200:A25を測定した試料を200℃に120分間保持したあと室温(25℃)まで冷却して測定したフラックス値。
とくに,不可逆減磁率が0〜−20%のものは,DyとTbの適正な組合せ,例えばDy+Tb:0.5〜5at.%で且つDyが0.3〜4.9at.%でTbが0.1〜4.7at.%の範囲の組合せ(図1の点A,B,CおよびDで囲われる範囲)で得ることができ,さらに不可逆減磁率が0〜−15%のものは,図1に示される点B,C,H,E,FおよびGで囲われる範囲のDy含有量とTb含有量によって得ることができる。
発明の好ましい形態
磁石の使用温度が場合によっては200℃になることもあると予定して機器類を設計する場合,その指針となるものは200℃における不可逆減磁率である。すなわち,前記(1)式の不可逆減磁率(200℃)の値(マイナス)が出来るだけ0%に近づくものであるのがよい。
Rが代表的にはNdまたはNd+PrであるR−B−Co−Fe系焼結磁石合金に適量のCを含有させると不可逆減磁率(160℃)の値(マイナス)が0に近づくようになる。この事実は,特開平4−116144号公報の実施例に示されている。しかし,この公報に示された不可逆減磁率(160℃)は,前記(1)式におけるA200をA160に置き換えたもので(A160は160℃に120分間保持したあと室温まで冷却して測定したフラックス値),しかもパーミアンス係数(Pc)が3での測定値である。すなわち,Pcが3になるように形状を調製した試料に対して50KOeで着磁後,A25とA160おフラックス値を測定して求めた不可逆減磁率(160℃)である。この公報に見られるようにC含有による耐熱性向上効果(更には耐酸化性効果)が知られているが,200℃での不可逆減磁率については不明であった。また,従来のあらゆるR−(Fe,Co)−B系焼結磁石合金(Cを合金元素としないもの)において不可逆減磁率(200℃)の値が0%〜−20%を示すものは知られていなかった。
本発明者らは,前記公報に提案して以来も,R−Fe−Co−C−B系の焼結磁石合金の耐熱性をさらに向上させるべく,その合金組成や製造法について種々の試験研究を続けてきたが,数ある希土類元素のうちでも,DyとTbを適量複合添加した場合には,著しく不可逆減磁率の低い磁石合金が得られることを知見した。DyとTbを単独添加してもそれほど効果は見られないが、両者を複合添加した場合に耐熱性が良好となるのである。
以下に本発明の磁石合金の各成分含有量の範囲を規制する理由の概略と本発明に従う合金磁石の製造法について説明する。
〔C:0.1〜15at.%〕
Cは,特開平4−116144号公報に記載のとおり,本磁石合金の磁気特性を良好に維持しながら希土類磁石の欠点である酸化し易い性質を改質し,耐酸化性を向上させる作用を供する。また不可逆減磁率の低下にも寄与する。Cの耐酸化性および耐熱性向上効果は0.1at.%未満では十分ではない。しかし15at.%を超えるとBrが低下するようになる。このため,0.1〜15at.%のC量を含有させるが,好ましいC量は1.0〜10at.%の範囲,さらに好ましいC量は2.5〜7at.%の範囲である。
〔B:0.5〜15at.%〕
Bは磁性相形成のために必要であり,このためには少なくとも0.5at.%を必要とする。しかし,過剰の添加はかえって磁気特性を劣化させる。このため,0.5〜15at.%のB量を含有させるが,好ましいB量は1.0〜10at.%の範囲,さらに好ましいB量は1.5〜7at.%の範囲である。
〔C+B:2〜30at.%〕
磁性相の形成と耐酸化性向上のためにC+Bは少なくとも2at.%を含有させる。しかし,30at.%を超えると磁気特性を劣化させるので,C+Bを2〜30at.%とする。
〔Co:40at.%以下〕
Coは磁気特性を維持しながらキューリ点を高める作用がある。このためCoの含有を必須とするが,40at.%を超えると保磁力の低下が顕著となるので40at.%以下の量で含有させる。
〔Dy+Tb:0.5〜5at.%〕
DyとTbは本発明磁石の特徴的元素であり,両元素を複合して添加することにより不可逆減磁率を顕著に低下させることができる。このため,Dy+Tbの合計量として0.5at.%以上を必要とするが,この合計量が5at.%を超えても耐熱性向上効果は飽和し,かえって磁気特性を劣化させることがあるので,この合計量を0.5〜5at.%とする。なお,Dy単独またはTb単独の添加では後記の比較例に示すように不可逆減磁率低下にそれほど寄与しない。このことから,両元素の相乗効果により不可逆減磁率が低下するものと考えられる。また,両元素の含有割合Tb(at.%)/Dy(at.%)は0.1〜0.8の範囲であるのがよく,後記の実施例に示すように,Dyが0.3〜4.9at.%でTbが0.1〜4.7at.%の範囲であれば,パーミアン係数=1のもとでの200℃での不可逆減磁率が0〜−20%,望ましくは0〜−15%を示す耐熱性に優れた磁石を得ることができる。
〔R:8〜20at.%〕
DyとTb以外の希土類元素として,Nd,Pr,Ce,La,Y,Gd,Ho,Er,Tmの一種または二種以上を8〜20at.%含有することにより,焼結磁石合金において磁性相と粒界相を形成し,高いiHcとBrを維持することができる。このR元素のうち,特に好ましい元素はNdとPrであり,Nd単独またはNdとPrの複合添加が特に望ましい。Rが8at.%未満では十分なBrが得られず,20at.%を超えても十分なBrが得られない。好ましいR元索の含有量は13〜18at.%である。
以上の成分組成からなる本発明の永久磁石合金は,前記の(1)式に従う不可逆減磁率(200)が0〜−20%,好ましくは0〜−15%という低い値,さらには0〜−5%の値を有することができ,希土類磁石としてはSm−Co磁石以外では始めて高温用途の永久磁石合金が提供される。これまでのB含有希土類磁石では,昇温されたときの減磁を予定して高い保磁力のものを使用するということで対処していたのであるが,本発明磁石では昇温しても減磁が殆んど起きないので,高い磁力のまま永久磁石として機能し続けることができる。特に本発明磁石はiHcが13KOe以上,好ましくは15KOe以上であれば昇温用途に使用しても磁気特性を維持することができる。従来の磁石では昇温用途で磁気特性を維持するためには,相当高いiHcを有するものを使用しなければならなかったのに比べると,有効な永久磁石合金であると言える。
本発明の永久磁石合金を製造するには,溶解,鋳造,粉砕,成形,焼結という一連の工程で焼結磁石とすることができる。溶解鋳造法としては,真空溶解・鋳造法,不活性ガス雰囲気溶解・鋳造法,急冷ロール法,アトマイズ法等が採用できる。磁気特性と耐熱性に優れた焼結磁石とするには,鋳造工程と粉砕工程の間に熱処理工程を挿入し,粉砕前のものを不活性ガス雰囲気中で600℃以上の温度で熱処理するのが好ましく,これにより一層不可逆減磁率を低下させることができる。また,焼結工程では不活性ガス中で1000〜1200℃の温度で焼結し,この焼結温度から600〜900℃まで徐冷し,次いでその温度から急冷するのが好ましい。この焼結後の急冷によっても不可逆減磁率を一層低下させることができる。
前記の熱処理と焼結後の急冷処理のほかは,特開平4−116144号公報に記載の焼結磁石と同様の方法に従って本発明の焼結磁石合金を製造することができる。その概要は次のとおりである。
まず,合金組成となるように秤量した各成分の原料を真空溶解炉で1600℃以上で溶解し,水冷鋳型に急冷鋳造する。得られた鋳塊を前記のように600℃以上でAr雰囲気中で熱処理したあと,ジョークラッシャーで粗粉砕する。得られた粗粉を振動ボールミルで微粉砕し,平均粒径2〜10μmの粉末にする。これらの粉砕工程もAr雰囲気中で行う。また後者の微粉砕の工程において,C原料の一部を添加することができる。すなわちC原料の一部は真空溶解炉に投入するが,残部はこの微粉砕工程で添加する。このC原料としてはカーボンブラックが適切であるが,脂肪族炭化水素,高級脂肪酸系アルコール,高級脂肪酸,脂肪酸アマイド,金属石けん,脂肪酸エステル等のCを含有する有機物質も使用可能である。
次いで該粉体を外部磁場中で圧粉成形する。成形圧としては1〜5t/cmの範囲,外部磁場としては15KOe以上が適切である。この成形工程も望ましくはAr雰囲気中で行う。この成形品をAr雰囲気中1000〜1200℃で約2時間の焼結を行う。そして,前記のように焼結温度から600〜900℃まで徐冷し,次いでその温度から急冷する。600〜900℃から急冷を開始させるには,その温度から低温の不活性ガスを吹付ける方法,水または油またはこれに類する液中に浸漬する方法で行うことができるが,この急冷開始温度600〜900℃から400℃まで,またはそれ以下まで−50℃/min以上,好ましくは−100℃/min以上の冷却速度で急冷するのがよい。
したがって,本発明によれば,合金成分の各原料を溶解鋳造し,得られた合金を粉砕し,その粉体を圧粉成形し,その成形品を不活性ガス中で1000〜1200℃の温度で焼結して,前記の成分組成の焼結磁石合金を製造するさいに,粉砕前の合金を600℃以上の温度で不活性ガス中で熱処理すること,および/または不活性ガス中で1000〜1200℃の温度で焼結したあと,その焼結温度から600〜900℃まで徐冷し,その後急冷することを特徴とする耐熱性に優れた永久磁石合金の製造法を提供する。そのさい,C原料の一部を溶解時に添加し,C原料の他部を合金の粉砕時に添加することができる。
以下に本発明磁石の代表的な実施例を挙げる。
実施例
〔実施例1〕
下記の成分組成を有する合金を以下に述べる方法で製造した。

Figure 0004034936
「製造法」
前記の合金組成となるように各成分原料を計量し,真空溶解炉で溶解した。そのさい,C原料の一部は該溶解炉には投入せず保存しておいた。得られた溶湯を銅水冷鋳型に1600℃から急冷鋳造して鋳塊合金を得た。この鋳塊合金を,表1に示す温度でAr雰囲気中で熱処理するか又はせずして,ジヨークラッシャーで粗粉砕し,この粗粉と保存しておいた前記のC原料を振動ボールミルに入れて粉砕し,平均粒径5μmの粉体を得た。
この粉体を圧力2t/cmで外部磁場15KOe中で磁場成形し,この成形体をAr雰囲気中で1100℃で2時間焼結したあと,この焼結温度から表1に示す急冷開始温度まで徐冷し,その急冷開始温度からArを吹付けて表示の冷却速度で急冷した。得られた焼結品の磁気特性,耐熱性および耐酸化性を評価し,その結果を表1に示した。耐熱性と耐酸化性評価は次のようにして行った。
「耐熱性評価」
(1)200℃での不可逆減磁率の測定
パーミアンス係数(Pc)が1になるように試料を形状調整する。具体的には2.5mm×2.5mm×1.05mmの試料を切り出す。
この試料を50KOeの外部磁場で着磁し,室温(25℃)でフラックスを測定する。このフラックスの測定は東洋磁気工業株式会社製のフラックスメーターに鉄心コイルを装着して行った。この時のフラックスの値をA25とする。
次に,この着磁した試料を200℃に120分保持した。この加熱保持はシリコンオイルを充填したオイルバス中で行った。オイルバスの温度は±0.1に精密制御した。オイルバスから取り出した試料は室温で十分に冷却したあと,前記のフラックスメーターで再びフラックスを測定する。この時のフラックスの値をA200とする。測定したA25とA200から次式で不可逆減磁率を算出する。
不可逆減磁率(200)(%)=100×(A200−A25)/A25
(2)160℃での不可逆減磁率の測定
特開平4−116144号公報の実施例のものと同様にパーミアンス係数(Pc)が3になるように試料を形状調整し,オイルバスでの加熱保持を160℃×120分とした以外は,前記の200℃での測定と同様にA25とA160を測定し,前式により不可逆減磁率を算出する。
(3)磁気特性および保磁力の温度係数
試料を50KOeの外部磁場で着磁したあと,振動型磁力測定器で室温(25℃)での磁気特性を測定する。保磁力の温度係数については,室温での保磁力をBとし,同じく振動型磁力測定器で160℃で測定した保磁力をBとして次式により算出する。
保磁力の温度係数(%/℃)
=100×(B−B)/B/(160−25)
(4)耐酸化性の測定
プレッシャークッカ試験(PCT)で錆の進行を測定する。具体的にはタバイエスペック社製の試験器で試料を120℃,2気圧,100%RH(飽和条件)で100時間保持したときの錆の発生を目視観察する。
Figure 0004034936
表1の結果に見られるように,不可逆減磁率(200℃)が−3%の永久磁石合金が得られた(例えば表1のa)。また不可逆減磁率(160℃)はa合金では−0.7%であり,殆んど0%に近い。したがって,高温用途でも高い磁力を維持できる。
製造条件について見ると.例えばaとbを比較すると明らかなように,鋳塊の熱処理を行うと不可逆減磁率が低くなる。また,aとcとdを比較すると明らかなように,焼結後に少なくとも700℃以上の温度から急冷すると保磁力が向上し且つ不可逆減磁率も低くなる。
〔実施例2〜16〕および〔比較例1〜6〕
合金の成分組成を表2に示すように変えた以外は,実施例1のaと同じ製造条件で焼結品を製造した。得られた焼結磁石の特性を実施例1と同様に測定し,その結果を表2に併記した。
Figure 0004034936
表3に見られるように,DyとTbの両者を添加した実施例2〜16のものはいずれも200℃での不可逆減磁率が低く,また160℃での不可逆減磁率も殆んど0%に近い。また,保磁力の温度係数も低く且つ耐酸化性にも優れている。
これに対し,DyとTbが無添加の比較例1,0.5at.%DyでTb無添加の比較例2,およびDy無添加で0.5at.%Tbの比較例4のものは,200℃での不可逆減磁率は−95%,−95%および−91%であり,200℃に昇温されると磁力をほぼ完全に無くしてしまう。すなわち,DyとTbの一方だけを添加しても200℃での不可逆減磁率に対しては効果を示さない。なお,比較例3のようにDy単独でもその含有量を高めれば不可逆減磁率はある程度低くなるが,それでも十分ではない。また,比較例5はC量が本発明で規定する範囲より低いので,耐酸化性に劣っている。比較例6はDy無添加でTbを3.0at.%添加したものであるが,比較例4よりは耐熱性が良好であるものの200℃での不可逆減磁率は−30%と低い。
図1は,横軸にDy含有量(at.%),縦軸にTb含有量(at.%)をとり,表2の磁石全て(但し点錆が発生した比較例5は除く)について,各々が含有するDyとTb量では,200℃での不可逆減磁率の値がどのようなレベルに分布されるか,を示したものである。図1にプロットした数値はその位置での200℃での不可逆減磁率の値を示している。
図1の結果からDy:2〜3at.%で,Tb:0.3〜1.5at.%の領域において,200℃の不可逆減磁率にピーク(不可逆減磁率が0%に近づく点)が存在することが伺い知ることができる。より具体的には,200℃での不可逆減磁率が0〜−20%を示す領域は,直線(1)(2)(3)(4)(5)(6)の交点のうち,点A,B,CおよびDで囲われる範囲であり,200℃での不可逆減磁率が0〜−15%を示す領域は,点B,C,H,E,FおよびGで囲われる範囲であることがわかる。
なお,直線(1)〜(6)は,次の式で表される。
直線(1):Dy=0.3
直線(2):Tb+Dy=0.5
直線(3):Tb=0.1
直線(4):Tb=0.1Dy
直線(5):Tb=0.8Dy
直線(6):Tb+Dy=5.0
また,点A〜Hの座標(Dyat.%,Tbat.%)は次のとおりである。
点A(0.3,4.7)
点B(0.3,0.2)
点C(0.4,0.1)
点D(4.9,0.1)
点E(4.5,0.5)
点F(2.8,2.2)
点G(0.3,0.24)
点H(1.0,0.1)
図2と図3は,特開平4−116144号公報に開示された実施例磁石のうち最も耐熱性がよいと見られる実施例24のものと,本発明に従う実施例2のものとを,パーミアンス係数(Pc)が3になるように形状を調整した試料を50KOeで着磁した場合(図2)と,Pcが1になるように形状を調製した試料を50KOeで着磁した場合(図3)について,各々測定温度を変えて不可逆減磁率を測定した結果を示したものである。特開平4−116144号公報の実施例24の磁石(公開磁石と呼ぶ)は,9Nd−9Dy−59Fe−15Co−1B−7Cの組成を有し,Pc=3における160℃での不可逆減磁率が−1.0%であると該公報に記載されている。
図2のように,Pc=3となるように形状を調整した試料では,160℃での不可逆減磁率が公開磁石のものは−1.0%,本発明実施例2のものでは−0.7%でありそれほど差は見られない。しかし,Pc=3で200℃での不可逆減磁率は公開磁石は−12.9%であるのに対し,本発明実施例2のものは−1.9%にまで向上している。このような傾向は,Pcが1になるように形状を調整した試料を用いた図3では一層明確に見られる。すなわち,Pc=1においては,160℃での不可逆減磁率が公開磁石では−9.4%であるのに対し,本発明実施例2では−1.7%に向上し,200℃の不可逆減磁率については公開磁石では−22.3%であるのに対し,本発明実施例2では−4%にまで向上している。
以上説明したように,本発明によれば,R−Fe(Co)−B系磁石の分野において,これまで達成されたことのない優れた耐熱性と耐酸化性を具備する永久磁石合金が得られる。したがって,昇温が予測される機器に装着される永久磁石として,安価で且つ磁気特性の優れた材料を提供できる。
【図面の簡単な説明】
図1は,表2の磁石の200℃での不可逆減磁率の値をDyとTbの含有量で整理して示した不可逆減磁率の分布図である。
図2は,特開平4−116144号公報の実施例24の磁石と,本発明に従う実施例2のものとを,パーミアンス係数(Pc)が3になるように形状を調整した試料を50KOeで着磁した場合について,測定温度を変えて不可逆減磁率を測定した結果を示した図である。
図3は,パーミアンス係数(Pc)が1となるように形状を調整した試料を用いた以外は,図2と同様の不可逆減磁率測定結果を示した図である。TECHNICAL FIELD The present invention relates to an R—B—C—Co—Fe based permanent magnet alloy (R is Y or a rare earth element) that is extremely excellent in heat resistance so that the magnetic force hardly deteriorates even when used at 200 ° C. in the atmosphere. About.
BACKGROUND ART Sm—Co magnets are known as rare earth magnets having excellent heat resistance. However, this magnet is expensive. The heat resistance mentioned here means that the magnetic force is not particularly deteriorated by heat. As a rare-earth magnet having lower heat resistance and improved heat resistance, there is an R—B—C—Co—Fe based permanent magnet alloy described in Japanese Patent Application Laid-Open No. 4-116144 (Patent No. 2740981) of the same applicant. In this magnet alloy, C (carbon) is an essential alloy element, and R is a combination of light rare earth and heavy rare earth. The gazette shows that the irreversible demagnetization rate is remarkably improved when C is contained (a negative value approaches 0%), and if a heavy rare earth element is used for a part of R, the irreversibility is further increased. It teaches that the demagnetization factor is improved.
When attaching a permanent magnet to equipment installed near a heat source, it is required that the magnetic force does not decrease even if the temperature rises, that is, the residual magnetic flux density (Br) does not deteriorate. , When the operating temperature of the magnet is around 200 ° C. (for example, some devices installed around an automobile engine have a temperature around 200 ° C., and an electric vehicle motor is not an example). Of these, only Sm-Co magnets can be applied. However, this is expensive as described above. Further, ordinary Nd—Fe (Co) —B rare earth magnets cannot be used at such a high temperature (for example, 200 ° C.).
In the case of using C (carbon) as an alloy element as described in the above-mentioned JP-A-4-116144, the irreversible demagnetization rate is improved by the inclusion of C, and if a heavy rare earth element is used as a part of R, Although the irreversible demagnetization rate is further improved, this publication does not show anything that does not demagnetize even when the temperature is raised to 200 ° C.
Accordingly, an object of the present invention is to obtain a permanent magnet alloy that is excellent in heat resistance that can withstand use even at 200 ° C. and that is inexpensive.
DISCLOSURE OF THE INVENTION In order to solve the above-mentioned problems, based on the basic idea that the inclusion of C improves the heat resistance as proposed in JP-A-4-116144, the individual heat resistance of heavy rare earth elements As a result of investigating and studying the effects on the properties, in addition to the basic rare earth elements such as Nd and Pr, when an appropriate amount of Dy and Tb is added in combination, especially when Dy and Tb are added in amounts related to each other. Newly found that the heat resistance is remarkably improved.
That is, the present invention is an atomic percentage (at.%),
C: 0.1 to 15 at. %,
B: 0.5-15 at. %,
C + B: 2 to 30 at. %,
Co: 40 at. % Or less (excluding 0%),
Dy + Tb: 0.5-5 at. %so,
Preferably, Tb (at.%) / Dy (at.%): 0.1 to 0.8,
R: 8-20 at. %,
Where R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm.
Balance: Fe and inevitable impurities,
The present invention provides a permanent magnet alloy having excellent heat resistance.
The heat resistance of this permanent magnet alloy is such that the irreversible demagnetization rate (200 ° C.) according to the following formula (1) is in the range of 0% to −20%, more preferably in the range of 0% to −15% (however, iHc ≧ 13 KOe) It is characterized in the point which shows.
Irreversible demagnetization factor (200 ° C.) = 100 × (A 200 −A 25 ) / A 25 (1)
However,
A 25: permeance coefficient (Pc) is after magnetization of the samples the shape was adjusted to 1 at 50 kOe, room temperature flux values were measured at (25 ℃) A 200: Samples were measured A 25 to 200 ° C. 120 Flux value measured by holding for a minute and then cooling to room temperature (25 ° C).
In particular, when the irreversible demagnetization factor is 0 to -20%, an appropriate combination of Dy and Tb, for example, Dy + Tb: 0.5 to 5 at. % And Dy is 0.3 to 4.9 at. %, And Tb is 0.1 to 4.7 at. % Range (range surrounded by points A, B, C and D in FIG. 1), and those having an irreversible demagnetization factor of 0 to −15% are shown in FIG. It can be obtained by the Dy content and Tb content in the range surrounded by C, H, E, F and G.
The preferred embodiment of the present invention When designing the equipment on the assumption that the operating temperature of the magnet may be 200 ° C. in some cases, the guideline is the irreversible demagnetization factor at 200 ° C. In other words, the value (minus) of the irreversible demagnetizing factor (200 ° C.) in the equation (1) should be as close to 0% as possible.
When an appropriate amount of C is contained in an R—B—Co—Fe sintered magnet alloy in which R is typically Nd or Nd + Pr, the value (minus) of the irreversible demagnetization rate (160 ° C.) approaches zero. . This fact is shown in the example of Japanese Patent Laid-Open No. 4-116144. However, the irreversible demagnetization factor (160 ° C.) shown in this publication is obtained by replacing A 200 in the above equation (1) with A 160 (A 160 is kept at 160 ° C. for 120 minutes and then cooled to room temperature. The measured flux value), and the permeance coefficient (Pc) is 3. That, Pc is after magnetization at 50KOe on a sample of the shape was adjusted to 3, A 25 and A 160 irreversible demagnetization was calculated by measuring the Contact flux values (160 ° C.). As seen in this publication, the effect of improving the heat resistance (and also the oxidation resistance effect) due to the C content is known, but the irreversible demagnetization rate at 200 ° C. was unknown. In addition, all conventional R- (Fe, Co) -B sintered magnet alloys (those that do not use C as an alloy element) have irreversible demagnetization values (200 ° C) of 0% to -20%. It was not done.
Since the present inventors have proposed in the above publication, in order to further improve the heat resistance of the R—Fe—Co—C—B based sintered magnet alloy, various test studies have been conducted on its alloy composition and manufacturing method. However, it has been found that a magnetic alloy having a remarkably low irreversible demagnetization rate can be obtained when a suitable amount of Dy and Tb is added in combination among rare earth elements. Even if Dy and Tb are added alone, the effect is not so much, but when both are added in combination, the heat resistance is improved.
Below, the outline of the reason for regulating the range of each component content of the magnet alloy of the present invention and the method for producing the alloy magnet according to the present invention will be described.
[C: 0.1 to 15 at. %]
C, as described in JP-A-4-116144, has the effect of improving the oxidation resistance by modifying the oxidizable property, which is a defect of the rare earth magnet, while maintaining the magnetic properties of the present magnet alloy well. Provide. It also contributes to a decrease in irreversible demagnetization rate. The effect of improving the oxidation resistance and heat resistance of C is 0.1 at. Less than% is not enough. However, 15 at. If it exceeds%, Br will fall. For this reason, 0.1-15 at. % C is contained, but the preferred C amount is 1.0 to 10 at. %, And more preferable C amount is 2.5 to 7 at. % Range.
[B: 0.5 to 15 at. %]
B is necessary for the formation of the magnetic phase, and for this purpose at least 0.5 at. % Required. However, excessive addition deteriorates the magnetic properties. For this reason, 0.5 to 15 at. % Of B is contained, but a preferable amount of B is 1.0 to 10 at. %, And more preferable B content is 1.5-7 at. % Range.
[C + B: 2 to 30 at. %]
In order to form a magnetic phase and improve oxidation resistance, C + B is at least 2 at. %. However, 30 at. %, The magnetic properties deteriorate, so C + B is set to 2 to 30 at. %.
[Co: 40 at. %Less than〕
Co has the effect of increasing the curie point while maintaining the magnetic characteristics. For this reason, it is essential to contain Co, but 40 at. %, The decrease in coercive force becomes noticeable, so 40 at. It is made to contain in the quantity below%.
[Dy + Tb: 0.5-5 at. %]
Dy and Tb are characteristic elements of the magnet of the present invention, and the irreversible demagnetization rate can be remarkably lowered by adding both elements in combination. Therefore, the total amount of Dy + Tb is 0.5 at. % Or more, but the total amount is 5 at. %, The heat resistance improvement effect is saturated and the magnetic properties may be deteriorated. Therefore, the total amount is 0.5 to 5 at. %. Note that the addition of Dy alone or Tb alone does not contribute much to the loss of irreversible demagnetization as shown in the comparative examples described later. From this, it is considered that the irreversible demagnetization rate decreases due to the synergistic effect of both elements. Further, the content ratio Tb (at.%) / Dy (at.%) Of both elements is preferably in the range of 0.1 to 0.8, and as shown in the examples described later, Dy is 0.3. -4.9 at. %, And Tb is 0.1 to 4.7 at. % In the range of 0% to -20%, preferably 0 to -15% of the irreversible demagnetization rate at 200 ° C. under the permeance coefficient = 1, and can be obtained. .
[R: 8-20 at. %]
As rare earth elements other than Dy and Tb, one or more of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm are used in an amount of 8 to 20 at. In the sintered magnet alloy, a magnetic phase and a grain boundary phase can be formed, and high iHc and Br can be maintained. Among these R elements, particularly preferable elements are Nd and Pr, and Nd alone or a combined addition of Nd and Pr is particularly desirable. R is 8 at. %, Sufficient Br cannot be obtained, and 20 at. Even if it exceeds%, sufficient Br cannot be obtained. The preferred R element cord content is 13 to 18 at. %.
The permanent magnet alloy of the present invention having the above component composition has an irreversible demagnetization factor (200) according to the above formula (1) of 0 to -20%, preferably a low value of 0 to -15%, and further 0 to- A permanent magnet alloy for high temperature applications is provided for the first time as a rare earth magnet other than an Sm-Co magnet. Previous B-containing rare earth magnets have been dealt with by using magnets with a high coercive force that are scheduled to be demagnetized when the temperature is raised. Since almost no magnetism occurs, it can continue to function as a permanent magnet with a high magnetic force. In particular, the magnet of the present invention can maintain the magnetic characteristics even when used for temperature rising purposes if iHc is 13 KOe or more, preferably 15 KOe or more. It can be said that the conventional magnet is an effective permanent magnet alloy as compared with the case where a magnet having a considerably high iHc had to be used in order to maintain the magnetic characteristics in the temperature rising application.
In order to produce the permanent magnet alloy of the present invention, a sintered magnet can be formed by a series of steps of melting, casting, crushing, molding and sintering. As a melting casting method, a vacuum melting / casting method, an inert gas atmosphere melting / casting method, a rapid cooling roll method, an atomizing method, or the like can be adopted. In order to make a sintered magnet with excellent magnetic properties and heat resistance, a heat treatment step is inserted between the casting step and the crushing step, and the pre-crushed one is heat treated at a temperature of 600 ° C. or higher in an inert gas atmosphere. Is preferable, and this can further reduce the irreversible demagnetization factor. In the sintering step, it is preferable to sinter at a temperature of 1000 to 1200 ° C. in an inert gas, gradually cool from the sintering temperature to 600 to 900 ° C., and then rapidly cool from the temperature. The irreversible demagnetization rate can be further reduced by this rapid cooling after sintering.
The sintered magnet alloy of the present invention can be produced according to the same method as the sintered magnet described in JP-A-4-116144, except for the heat treatment and the quenching treatment after sintering. The outline is as follows.
First, raw materials of each component weighed so as to have an alloy composition are melted at 1600 ° C. or higher in a vacuum melting furnace, and then rapidly cast into a water-cooled mold. The obtained ingot is heat-treated in an Ar atmosphere at 600 ° C. or higher as described above, and then coarsely pulverized with a jaw crusher. The obtained coarse powder is finely pulverized with a vibration ball mill to obtain a powder having an average particle diameter of 2 to 10 μm. These pulverization steps are also performed in an Ar atmosphere. In the latter pulverization step, a part of the C raw material can be added. That is, a part of the C raw material is put into a vacuum melting furnace, and the rest is added in this pulverization step. Carbon black is suitable as the C raw material, but organic substances containing C such as aliphatic hydrocarbons, higher fatty acid alcohols, higher fatty acids, fatty acid amides, metal soaps, fatty acid esters and the like can also be used.
The powder is then compacted in an external magnetic field. A molding pressure in the range of 1 to 5 t / cm 2 and an external magnetic field of 15 KOe or more are appropriate. This forming step is also preferably performed in an Ar atmosphere. The molded product is sintered in an Ar atmosphere at 1000 to 1200 ° C. for about 2 hours. Then, as described above, it is gradually cooled from the sintering temperature to 600 to 900 ° C., and then rapidly cooled from that temperature. In order to start the rapid cooling from 600 to 900 ° C., it is possible to carry out by a method of spraying a low-temperature inert gas from that temperature, a method of immersing in water or oil or a similar liquid. It is preferable to quench rapidly from ˜900 ° C. to 400 ° C. or lower at a cooling rate of −50 ° C./min or more, preferably −100 ° C./min or more.
Therefore, according to the present invention, each raw material of the alloy component is melt cast, the obtained alloy is pulverized, the powder is compacted, and the molded product is heated to 1000-1200 ° C. in an inert gas. In order to produce a sintered magnet alloy having the above-mentioned composition by sintering, the alloy before pulverization is heat-treated in an inert gas at a temperature of 600 ° C. or higher, and / or 1000 in an inert gas. Provided is a method for producing a permanent magnet alloy having excellent heat resistance, characterized in that sintering is performed at a temperature of ˜1200 ° C., followed by slow cooling from the sintering temperature to 600 ° C. to 900 ° C., followed by rapid cooling. At that time, a part of the C raw material can be added at the time of melting, and the other part of the C raw material can be added at the time of grinding the alloy.
The following are typical examples of the magnet of the present invention.
Example [Example 1]
An alloy having the following component composition was produced by the method described below.
Figure 0004034936
"Production Method"
Each component raw material was weighed so as to have the above-described alloy composition and melted in a vacuum melting furnace. At that time, a part of the C raw material was stored without being charged into the melting furnace. The obtained molten metal was quenched and cast from 1600 ° C. into a copper water-cooled mold to obtain an ingot alloy. The ingot alloy was heat-treated in an Ar atmosphere at the temperatures shown in Table 1 or not and coarsely pulverized with a diyoke lasher. The coarse powder and the stored C raw material were put into a vibrating ball mill. The mixture was pulverized to obtain a powder having an average particle size of 5 μm.
This powder was magnetically molded in an external magnetic field of 15 KOe at a pressure of 2 t / cm 2 , and this compact was sintered at 1100 ° C. for 2 hours in an Ar atmosphere, and from this sintering temperature to the rapid cooling start temperature shown in Table 1 Slow cooling was performed, and Ar was sprayed from the rapid cooling start temperature to quench at the indicated cooling rate. The obtained sintered product was evaluated for magnetic properties, heat resistance and oxidation resistance, and the results are shown in Table 1. The heat resistance and oxidation resistance were evaluated as follows.
"Heat resistance evaluation"
(1) Adjust the shape of the sample so that the measurement permeance coefficient (Pc) of the irreversible demagnetization factor at 200 ° C. becomes 1. Specifically, a 2.5 mm × 2.5 mm × 1.05 mm sample is cut out.
This sample is magnetized with an external magnetic field of 50 KOe, and the flux is measured at room temperature (25 ° C.). The flux was measured by attaching an iron core coil to a flux meter manufactured by Toyo Magnetic Industry Co., Ltd. The value of the flux at this time is A 25.
Next, this magnetized sample was held at 200 ° C. for 120 minutes. This heating and holding was performed in an oil bath filled with silicon oil. The temperature of the oil bath was precisely controlled to ± 0.1. The sample taken out from the oil bath is sufficiently cooled at room temperature, and the flux is measured again with the flux meter. The value of the flux at this time is A 200. An irreversible demagnetizing factor is calculated from the measured A 25 and A 200 by the following equation.
Irreversible demagnetization factor (200) (%) = 100 × (A 200 −A 25 ) / A 25
(2) Measurement of irreversible demagnetization factor at 160 ° C. The shape of the sample is adjusted so that the permeance coefficient (Pc) is 3 as in the example of Japanese Patent Laid-Open No. 4-116144, and the sample is heated and held in an oil bath. except that was 160 ° C. × 120 minutes, the measurements as well as a 25 and a 160 at 200 ° C. of the measures, calculates the irreversible demagnetization by the previous equation.
(3) Temperature coefficient of magnetic characteristics and coercive force After a sample is magnetized with an external magnetic field of 50 KOe, the magnetic characteristics at room temperature (25 ° C.) are measured with a vibration type magnetometer. The temperature coefficient of the coercive force is calculated by the following equation, where B 0 is the coercive force at room temperature and B 1 is the coercive force measured at 160 ° C. with a vibration type magnetometer.
Coercivity temperature coefficient (% / ℃)
= 100 × (B 1 -B 0 ) / B 0 / (160-25)
(4) Measurement of oxidation resistance The progress of rust is measured by a pressure cooker test (PCT). Specifically, the occurrence of rust is visually observed when the sample is held at 120 ° C., 2 atm, and 100% RH (saturated condition) for 100 hours using a tester manufactured by Tabai Espec.
Figure 0004034936
As can be seen from the results in Table 1, a permanent magnet alloy having an irreversible demagnetization rate (200 ° C.) of −3% was obtained (for example, a in Table 1). The irreversible demagnetization rate (160 ° C.) is −0.7% in the alloy a, and is almost 0%. Therefore, high magnetic force can be maintained even in high temperature applications.
Looking at the manufacturing conditions. For example, as is clear when a and b are compared, the irreversible demagnetization factor decreases when the ingot is heat-treated. Further, as is apparent from a comparison of a, c, and d, when the material is rapidly cooled from a temperature of at least 700 ° C. after sintering, the coercive force is improved and the irreversible demagnetization factor is also lowered.
[Examples 2 to 16] and [Comparative Examples 1 to 6]
A sintered product was produced under the same production conditions as in Example 1 except that the composition of the alloy was changed as shown in Table 2. The characteristics of the obtained sintered magnet were measured in the same manner as in Example 1, and the results are also shown in Table 2.
Figure 0004034936
As can be seen from Table 3, all of Examples 2 to 16 to which both Dy and Tb were added had a low irreversible demagnetization rate at 200 ° C, and the irreversible demagnetization rate at 160 ° C was almost 0%. Close to. In addition, it has a low temperature coefficient of coercive force and excellent oxidation resistance.
On the other hand, Comparative Example 1, 0.5 at. % Dy and Tb-free Comparative Example 2, and Dy-free 0.5 at. In the comparative example 4 of% Tb, the irreversible demagnetization rate at 200 ° C. is −95%, −95% and −91%, and when the temperature is raised to 200 ° C., the magnetic force is almost completely lost. That is, even if only one of Dy and Tb is added, there is no effect on the irreversible demagnetization rate at 200 ° C. Note that, even if Dy alone is increased as in Comparative Example 3, the irreversible demagnetization rate is lowered to some extent, but it is not sufficient. Moreover, since the amount of C is lower than the range prescribed | regulated by this invention in the comparative example 5, it is inferior to oxidation resistance. In Comparative Example 6, Dy was not added and Tb was 3.0 at. Although the heat resistance is better than Comparative Example 4, the irreversible demagnetization rate at 200 ° C. is as low as −30%.
FIG. 1 shows the Dy content (at.%) On the horizontal axis and the Tb content (at.%) On the vertical axis, for all the magnets in Table 2 (except for Comparative Example 5 where spot rust occurred). The amount of Dy and Tb contained in each indicates the level at which the irreversible demagnetization value at 200 ° C. is distributed. The numerical values plotted in FIG. 1 indicate the irreversible demagnetization value at 200 ° C. at that position.
From the results of FIG. 1, Dy: 2 to 3 at. %, Tb: 0.3 to 1.5 at. It can be seen that there is a peak in the irreversible demagnetization factor at 200 ° C. (the point where the irreversible demagnetization factor approaches 0%) in the% region. More specifically, the region where the irreversible demagnetization factor at 0 to −20% at 0 ° C. is the point A among the intersections of the straight lines (1) (2) (3) (4) (5) (6). , B, C, and D, and the region where the irreversible demagnetization factor at 0 ° C to 0 to -15% is a range surrounded by points B, C, H, E, F, and G I understand.
The straight lines (1) to (6) are expressed by the following equations.
Straight line (1): Dy = 0.3
Straight line (2): Tb + Dy = 0.5
Straight line (3): Tb = 0.1
Straight line (4): Tb = 0.1 Dy
Straight line (5): Tb = 0.8 Dy
Straight line (6): Tb + Dy = 5.0
The coordinates (Dyat.%, Tbat.%) Of the points A to H are as follows.
Point A (0.3, 4.7)
Point B (0.3, 0.2)
Point C (0.4, 0.1)
Point D (4.9, 0.1)
Point E (4.5, 0.5)
Point F (2.8, 2.2)
Point G (0.3, 0.24)
Point H (1.0, 0.1)
FIGS. 2 and 3 show the permeance of Example 24, which is considered to have the best heat resistance among the Example magnets disclosed in Japanese Patent Laid-Open No. 4-116144, and Example 2 according to the present invention. When a sample whose shape is adjusted so that the coefficient (Pc) is 3 is magnetized with 50 KOe (FIG. 2), and a sample whose shape is adjusted so that Pc is 1 is magnetized with 50 KOe (FIG. 3). ) Shows the results of measuring the irreversible demagnetization factor at different measurement temperatures. The magnet (referred to as a public magnet) in Example 24 of JP-A-4-116144 has a composition of 9Nd-9Dy-59Fe-15Co-1B-7C, and has an irreversible demagnetization rate at 160 ° C. at Pc = 3. It is described in the publication as being -1.0%.
As shown in FIG. 2, in the sample whose shape is adjusted so that Pc = 3, the irreversible demagnetization rate at 160 ° C. is −1.0% for the open magnet, and −0. It is 7% and there is not much difference. However, the irreversible demagnetization factor at 200 ° C. with Pc = 3 is −12.9% for the public magnet, whereas it is improved to −1.9% for Example 2 of the present invention. Such a tendency is more clearly seen in FIG. 3 using a sample whose shape is adjusted so that Pc becomes 1. That is, at Pc = 1, the irreversible demagnetization rate at 160 ° C. is −9.4% for the disclosed magnet, whereas it is improved to −1.7% in Example 2 of the present invention, and the irreversible decrease at 200 ° C. The magnetic susceptibility is −22.3% for the open magnet, whereas it is improved to −4% in Example 2 of the present invention.
As described above, according to the present invention, in the field of R-Fe (Co) -B magnets, permanent magnet alloys having excellent heat resistance and oxidation resistance that have not been achieved so far can be obtained. It is done. Therefore, an inexpensive and excellent magnetic property material can be provided as a permanent magnet to be mounted on a device whose temperature rise is expected.
[Brief description of the drawings]
FIG. 1 is a distribution diagram of the irreversible demagnetization factor in which the values of the irreversible demagnetization factor at 200 ° C. of the magnets in Table 2 are arranged by the contents of Dy and Tb.
FIG. 2 shows a sample obtained by adjusting the shape of the magnet of Example 24 of JP-A-4-116144 and that of Example 2 according to the present invention so that the permeance coefficient (Pc) is 3 at 50 KOe. It is the figure which showed the result of having measured the irreversible demagnetization factor by changing measurement temperature about the case where it magnetized.
FIG. 3 is a view showing the irreversible demagnetization factor measurement results similar to those of FIG. 2 except that a sample whose shape is adjusted so that the permeance coefficient (Pc) is 1 is used.

Claims (11)

原子百分率(at.%)で、
C:0.1〜15at.%、
B:0.5〜15at.%、
C+B:2〜30at.%、
Co:40at.%以下(0%を含まず)、
Dy+Tb:0.5〜5at.%、
R:8〜20at.%、
ただし、RはNd、Pr、Ce、La、Y、Gd、Ho、ErおよびTmからなる群から選ばれた少なくとも一種の元素を表す、
残部:Feおよび不可避的不純物、
からなり、Tb(at.%)/Dy(at.%):0 . 1〜0 . 8である耐熱性に優れた永久磁石合金。
Atomic percentage (at.%)
C: 0.1-15 at. %,
B: 0.5 to 15 at. %,
C + B: 2 to 30 at. %,
Co: 40 at. % Or less (excluding 0%),
Dy + Tb: 0.5-5 at. %,
R: 8-20 at. %,
Where R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm.
Balance: Fe and inevitable impurities,
Tona Ri, Tb (at%.) / Dy (at%.):.. 0 1~0 8 der Ru excellent heat resistance permanent magnet alloy.
C:1〜10at.%である請求の範囲1に記載の耐熱性に優れた永久磁石合金。C: 1 to 10 at. The permanent magnet alloy having excellent heat resistance according to claim 1 . RはNd単独またはNdとPrである請求の範囲1または2に記載の耐熱性に優れた永久磁石合金。The permanent magnet alloy excellent in heat resistance according to claim 1 or 2, wherein R is Nd alone or Nd and Pr. iHcが13KOe以上である請求の範囲1、2または3に記載の耐熱性に優れた永久磁石合金。4. The permanent magnet alloy having excellent heat resistance according to claim 1 , wherein iHc is 13 KOe or more. 原子百分率(at.%)で、
C:0.1〜15at.%、
B:0.5〜15at.%、
C+B:2〜30at.%、
Co:40at.%以下(0%を含まず)、
Dy+Tb:0.5〜5at.%、
R:8〜20at.%、
ただし、RはNd、Pr、Ce、La、Y、Gd、Ho、ErおよびTmからなる群から選ばれた少なくとも一種の元素を表す、
残部:Feおよび不可避的不純物、
からなり、下記の(1)式に従う不可逆減磁率(200℃)が0%〜−20%の範囲にある(但しiHc≧13KOeである)耐熱性に優れたR−B−C−Co−Fe系焼結磁石合金。
不可逆減磁率(200℃)=100×(A200−A25)/A25・・(1)
ただし、
25:パーミアンス係数(Pc)が1になるように形状を調整した試料を50KOeで着磁後、室温(25℃)で測定したフラックス値。
200:A25を測定した試料を200℃に120分間保持したあと室温(25℃)まで冷却して測定したフラックス値。
Atomic percentage (at.%)
C: 0.1-15 at. %,
B: 0.5 to 15 at. %,
C + B: 2 to 30 at. %,
Co: 40 at. % Or less (excluding 0%),
Dy + Tb: 0.5-5 at. %,
R: 8-20 at. %,
Where R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm.
Balance: Fe and inevitable impurities,
From it, the irreversible demagnetization according to the following equation (1) (200 ° C.) is in the range of 0% to -20% (although iHc ≧ 13 kOe is) excellent in heat resistance R-B-C-Co- Fe Sintered magnet alloy.
Irreversible demagnetization factor (200 ° C.) = 100 × (A 200 −A 25 ) / A 25 .. (1)
However,
A 25 : A flux value measured at room temperature (25 ° C.) after magnetizing a sample whose shape is adjusted so that the permeance coefficient (Pc) is 1 at 50 KOe.
A 200 : A flux value measured by holding the sample measured for A 25 at 200 ° C. for 120 minutes and then cooling to room temperature (25 ° C.).
Dy:0.3〜4.9at.%、Tb:0.1〜4.7at.%で200℃での不可逆減磁率が0〜−20%である請求の範囲5に記載の耐熱性に優れたR−B−C−Co−Fe系焼結磁石合金。Dy: 0.3-4.9 at. %, Tb: 0.1 to 4.7 at. The R—B—C—Co—Fe based sintered magnet alloy having excellent heat resistance according to claim 5 , wherein the irreversible demagnetization rate at 200 ° C. is 0 to −20%. DyとTbの含有量(at.%)が図1に示される点B、C、H、E、FおよびGで囲われる範囲にあり、200℃での不可逆減磁率が0〜−15%である請求の範囲5に記載の耐熱性に優れたR−B−C−Co−Fe系焼結磁石合金。The content of Dy and Tb (at.%) Is in the range surrounded by points B, C, H, E, F and G shown in FIG. 1, and the irreversible demagnetization factor at 200 ° C. is 0 to −15%. The R—B—C—Co—Fe based sintered magnet alloy having excellent heat resistance according to claim 5 . 不可逆減磁率(200℃)が0%〜−5%の範囲にある請求の範囲5に記載の耐熱性に優れたR−B−C−Co−Fe系焼結磁石合金。The R—B—C—Co—Fe based sintered magnet alloy having excellent heat resistance according to claim 5, wherein the irreversible demagnetization rate (200 ° C.) is in the range of 0% to −5%. 合金成分の各原料を溶解鋳造し、得られた合金を粉砕し、その粉体を圧粉成形し、その成形品を不活性ガス中で1000〜1200℃の温度で焼結して、下記の成分組成の焼結磁石合金を製造する方法において、前記粉砕前の合金を600℃以上の温度で不活性ガス中で熱処理することを特徴とする耐熱性に優れた永久磁石合金の製造法。
〔焼結磁石合金の成分組成〕
C:0.1〜15at.%、
B:0.5〜15at.%、
C+B:2〜30at.%、
Co:40at.%以下(0%を含まず)、
Dy+Tb:0.5〜5at.%、
R:8〜20at.%、
ただし、RはNd、Pr、Ce、La、Y、Gd、Ho、ErおよびTmからなる群から選ばれた少なくとも一種の元素を表す、
残部:Feおよび不可避的不純物。
Each raw material of the alloy component is melt cast, the obtained alloy is pulverized, the powder is compacted, and the molded product is sintered in an inert gas at a temperature of 1000 to 1200 ° C. A method for producing a sintered magnet alloy having a component composition, wherein the pre-ground alloy is heat-treated in an inert gas at a temperature of 600 ° C. or higher.
[Component composition of sintered magnet alloy]
C: 0.1-15 at. %,
B: 0.5 to 15 at. %,
C + B: 2 to 30 at. %,
Co: 40 at. % Or less (excluding 0%),
Dy + Tb: 0.5-5 at. %,
R: 8-20 at. %,
Where R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm.
The balance: Fe and inevitable impurities.
不活性ガス中で1000〜1200℃の温度で焼結したあと、その焼結温度から600〜900℃まで徐冷し、その後急冷する請求の範囲9に記載の永久磁石合金の製造法。The method for producing a permanent magnet alloy according to claim 9, wherein sintering is performed at a temperature of 1000 to 1200 ° C in an inert gas, and thereafter, it is gradually cooled from the sintering temperature to 600 to 900 ° C and then rapidly cooled. C原料の一部を溶解時に添加し、C原料の他部を合金の粉砕時に添加する請求の範囲9または10に記載の永久磁石合金の製造法。The method for producing a permanent magnet alloy according to claim 9 or 10, wherein a part of the C raw material is added at the time of melting and the other part of the C raw material is added at the time of pulverizing the alloy.
JP2000562572A 1998-07-29 1999-07-28 Permanent magnet alloy with excellent heat resistance and manufacturing method thereof Expired - Fee Related JP4034936B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22752298 1998-07-29
PCT/JP1999/004048 WO2000006792A1 (en) 1998-07-29 1999-07-28 Permanent magnetic alloy with excellent heat resistance and process for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007238759A Division JP4769240B2 (en) 1998-07-29 2007-09-14 Permanent magnet alloy with excellent heat resistance

Publications (1)

Publication Number Publication Date
JP4034936B2 true JP4034936B2 (en) 2008-01-16

Family

ID=16862232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000562572A Expired - Fee Related JP4034936B2 (en) 1998-07-29 1999-07-28 Permanent magnet alloy with excellent heat resistance and manufacturing method thereof

Country Status (6)

Country Link
EP (2) EP1607491B1 (en)
JP (1) JP4034936B2 (en)
CN (1) CN1098368C (en)
DE (2) DE69927931T2 (en)
HK (1) HK1032247A1 (en)
WO (1) WO2000006792A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866740B2 (en) * 2001-11-28 2005-03-15 Masonite Corporation Method of manufacturing contoured consolidated cellulosic panels with variable basis weight
JP4548127B2 (en) * 2005-01-26 2010-09-22 Tdk株式会社 R-T-B sintered magnet
EP2178096B1 (en) * 2007-07-27 2015-12-23 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET
RU2572243C1 (en) * 2014-08-14 2016-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханский государственный университет" Manganite with significant magnetostriction constant, stable in temperature range
RU2578211C1 (en) * 2014-10-29 2016-03-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Magnetic material for permanent magnets and item made from it
CN104923790B (en) * 2014-11-25 2018-08-17 安泰科技股份有限公司 A kind of gadolinium block materials and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935376B2 (en) * 1989-12-01 1999-08-16 住友特殊金属株式会社 permanent magnet
JP3009687B2 (en) * 1989-12-15 2000-02-14 住友特殊金属株式会社 Manufacturing method of high corrosion resistant sintered permanent magnet material
JP2740981B2 (en) * 1990-09-06 1998-04-15 同和鉱業株式会社 R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JPH06287720A (en) * 1993-03-31 1994-10-11 Daido Steel Co Ltd Permanent magnet alloy
JPH1097907A (en) * 1996-09-20 1998-04-14 Hitachi Metals Ltd Manufacture of r-tm-b based permanent magnet

Also Published As

Publication number Publication date
EP1026279A4 (en) 2003-04-09
EP1607491A1 (en) 2005-12-21
DE69927931T2 (en) 2006-07-20
EP1026279B1 (en) 2005-10-26
DE69938467D1 (en) 2008-05-15
CN1098368C (en) 2003-01-08
EP1026279A1 (en) 2000-08-09
HK1032247A1 (en) 2001-07-13
WO2000006792A1 (en) 2000-02-10
EP1607491B1 (en) 2008-04-02
CN1274394A (en) 2000-11-22
DE69927931D1 (en) 2005-12-01
DE69938467T2 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP6330813B2 (en) R-T-B system sintered magnet and motor
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP6848735B2 (en) RTB series rare earth permanent magnet
KR20160117364A (en) R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
WO2007010860A1 (en) Rare earth sintered magnet and method for production thereof
JP2007134417A (en) Manufacturing method of rare earth sintered magnet
JP2015057820A (en) R-t-b-based sintered magnet
JP4034936B2 (en) Permanent magnet alloy with excellent heat resistance and manufacturing method thereof
JPWO2019151245A1 (en) RTB series rare earth permanent magnet
EP0362805B1 (en) Permanent magnet and method for producing the same
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP3003979B2 (en) Permanent magnet and method for manufacturing the same
JP4769240B2 (en) Permanent magnet alloy with excellent heat resistance
WO2021205580A1 (en) Rare earth sintered magnet, method for producing rare earth sintered magnet, rotor, and rotary machine
US6319336B1 (en) Permanent magnet alloy having improved heat resistance and process for production thereof
JP4303937B2 (en) Permanent magnet alloy
JP2740901B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP7228097B2 (en) Method for producing RTB based sintered magnet
JP2794494B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2743114B2 (en) R-Fe-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP2740902B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPH05315119A (en) Rare earth permanent magnetic and its manufacture
JPH02119105A (en) Nd-fe-b system sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees