JP3009687B2 - Manufacturing method of high corrosion resistant sintered permanent magnet material - Google Patents

Manufacturing method of high corrosion resistant sintered permanent magnet material

Info

Publication number
JP3009687B2
JP3009687B2 JP1326479A JP32647989A JP3009687B2 JP 3009687 B2 JP3009687 B2 JP 3009687B2 JP 1326479 A JP1326479 A JP 1326479A JP 32647989 A JP32647989 A JP 32647989A JP 3009687 B2 JP3009687 B2 JP 3009687B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
powder
corrosion
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1326479A
Other languages
Japanese (ja)
Other versions
JPH03188241A (en
Inventor
哲 広沢
宏樹 徳原
顕 槇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP1326479A priority Critical patent/JP3009687B2/en
Publication of JPH03188241A publication Critical patent/JPH03188241A/en
Application granted granted Critical
Publication of JP3009687B2 publication Critical patent/JP3009687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 発明の属する技術分野 この発明は、高い磁石特性を有するFe−B−R系焼結
永久磁石材料の耐食性を向上させた組成からなる焼結永
久磁石材料の製造方法に係り、Cu、Al、ハロゲン元素を
必須元素として、ハロゲン元素をハロゲン化物としてジ
ェットミル微粉砕工程前後の合金粉末に添加して、組成
的に材料自体の耐食性を向上させ、材料表面に設けた耐
食性膜の耐剥離性を向上させ、特に、厚みの薄い磁石材
料の抗折力の低下を防止した高耐食性Fe−B−R系焼結
永久磁石材料の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a sintered permanent magnet material having a composition with improved corrosion resistance of an Fe—BR based sintered permanent magnet material having high magnet properties. On the other hand, Cu, Al, halogen elements are essential elements, and halogen elements are added as halides to the alloy powder before and after the jet mill pulverization process to improve the corrosion resistance of the material itself in composition, and the corrosion resistance provided on the material surface The present invention relates to a method for manufacturing a highly corrosion-resistant Fe-BR-based sintered permanent magnet material which has improved peeling resistance of a film, and in particular, has prevented reduction in bending strength of a thin magnet material.

従来の技術 永久磁石材料は一般家庭の各種電器製品から、自動車
や通信器部品、大型コンピューターの周辺端末機まで、
幅広い分野で使われる極めて重要な電気・電子材料の一
つである。
Conventional technology Permanent magnet materials are used in a variety of household electrical appliances, automobiles, communication devices, and peripherals for large computers.
It is one of the very important electric and electronic materials used in a wide range of fields.

近年の電気・電子機器の高性能化・小型化の要求に伴
い、永久磁石もまた高性能化が求められている。従来は
このような要求に応える永久磁石として希土類コバルト
磁石が知られていたが、希土類コバルト磁石は希土類と
して、希土類鉱石中にあまり含まれておらず、高価なSm
を多量に必要とし、またCoを50〜60wt%も必要としてい
た。
With the recent demand for higher performance and smaller size of electric and electronic devices, higher performance is also required for permanent magnets. Conventionally, rare-earth cobalt magnets have been known as permanent magnets that meet such demands.However, rare-earth cobalt magnets are rare earths, are rarely contained in rare-earth ores, and are expensive.
In large amounts, and 50 to 60 wt% of Co.

出願人は先に、資源的に稀少で高価なSmやCo必須とせ
ず、かつ希土類元素として、希土類鉱石中に含まれてい
るNdやPrのような軽希土類元素を中心元素とし、さらに
鉄とボロンを用いることにより、すぐれた磁気特性を有
する一軸性の磁気異方性を持った、鉄・ボロン・希土類
Rを必須元素とする三元化合物の存在を見出し、従来の
希土類コバルト磁石の有する最大エネルギー積を大きく
越える高い永久磁石特性の有するFe−B−R系磁気異方
性焼結磁石を提案した(特公昭61−34242号、特開昭59
−89401号、特開昭60−34005号)。
The applicant has previously decided that Sm and Co, which are rare and expensive as resources, are not essential, and that as a rare earth element, a light rare earth element such as Nd or Pr contained in a rare earth ore is used as a central element, and iron and By using boron, we found the existence of a ternary compound containing iron, boron, and rare-earth R as essential elements with uniaxial magnetic anisotropy having excellent magnetic properties. We have proposed Fe-BR-based magnetic anisotropic sintered magnets having high permanent magnet properties that greatly exceed the energy product (Japanese Patent Publication No. 61-34242, Japanese Patent Application Laid-Open No. 59-1984).
-89401, JP-A-60-34005).

Fe−B−R系磁石は、Sm−Co系磁石に比べて湿度の高
い環境では錆易い性質があり、電子機器用の一般的な用
途には耐食性改善のため各種の表面処理を施して使用す
る必要がある。
Fe-BR magnets are more likely to rust in humid environments than Sm-Co magnets, and are used after being subjected to various surface treatments to improve corrosion resistance in general applications for electronic equipment. There is a need to.

これまで表面処理としては、Niめっき(特開昭60−54
406号、特開昭63−254702号)、樹脂塗装(特開昭60−6
3901号)、イオンプレーティング(特開昭61−166116
号)、電着塗装(特開昭61−130453号、特開昭63−1509
05号、特開昭63−217601号)等、各種の方法が提案され
ている。
Until now, Ni plating (Japanese Patent Laid-Open No. 60-54)
No. 406, JP-A-63-254702), resin coating (JP-A-60-6
No. 3901), ion plating (JP-A-61-166116)
No.), electrodeposition coating (JP-A-61-130453, JP-A-63-1509)
No. 05, JP-A-63-217601) and various other methods have been proposed.

発明が解決しようとする課題 しかし、これらの方法も種々改善がなされてきたが、
なお耐食性が十分でなく苛酷な環境条件での長時間使用
ができない問題があった。
Problems to be Solved by the Invention However, these methods have also been variously improved,
In addition, there was a problem that the corrosion resistance was not sufficient and the device could not be used for a long time under severe environmental conditions.

これはどのような表面処理でも完全無欠ではなく、表
面被膜に微少な空孔やピンホールが存在し、そこから水
や水蒸気、酸素が磁石の表面まで侵入することにより、
希土類元素や鉄の錆が生成されることによる。
This is not indispensable in any surface treatment, and there are minute holes and pinholes in the surface coating, from which water, water vapor, and oxygen enter the surface of the magnet,
Due to the formation of rare earth elements and iron rust.

すなわち、錆が生成されるため、表面被膜が破れた
り、浮き上ることにより、表面被膜の剥離に到り、磁石
の特性が劣化したり、剥離した被膜や錆が電子機器の機
能を阻害する。
That is, since rust is generated, the surface coating is torn or floated, resulting in peeling of the surface coating, deteriorating the properties of the magnet, or the peeled coating or rust impairing the function of the electronic device.

また、高温多湿の環境下では水分子が被膜を透過する
ため磁石中のNdに富む粒界相が水酸化物に変じて結晶粒
が離脱し、水酸化に伴なう粒界相の体積膨張のため、ク
ラックが発生し、腐食が次々に内部に進行し、用途によ
って厚みが薄い磁石では抗折力が低下、また被膜の密着
力も低下する問題があった。
In a hot and humid environment, water molecules penetrate the coating, so that the Nd-rich grain boundary phase in the magnet turns into hydroxide and crystal grains are detached, and the volume expansion of the grain boundary phase accompanying hydroxylation occurs. For this reason, cracks are generated, corrosion proceeds one after another, and there is a problem that a thin magnet has a low bending strength and a low adhesion force of a coating film depending on the use.

Fe−B−R系系焼結磁石の耐食性を改善する方法とし
ては、表面処理によらず磁石素材そのものの耐食性を改
善することも提案されている。例えば、低B組成にする
ことや(日本金属学会秋季大会(1987年10月)No.60
4)、Co、Alを添加すること(特開昭63−38555号)等が
ある。
As a method of improving the corrosion resistance of the Fe-BR based sintered magnet, it has been proposed to improve the corrosion resistance of the magnet material itself without depending on the surface treatment. For example, the use of a low B composition (No. 60, Autumn Meeting of the Japan Institute of Metals (October 1987))
4) Addition of Co and Al (JP-A-63-38555).

しかしながら、組成変更前に比べて相対的に耐食性が
改善されることはあっても表面処理が不要となるような
根本的な改善には到っていない。また、組成の変更によ
りiHcが低下したり、良好な磁石特性の得られる熱処理
条件が厳しくなる等の問題があった。
However, although the corrosion resistance is relatively improved as compared to before the composition change, there is no fundamental improvement such that the surface treatment becomes unnecessary. In addition, there were problems such as a decrease in iHc due to a change in the composition, and severer heat treatment conditions for obtaining good magnet properties.

この発明は、かかる現状に鑑み、上記各問題点を解
消、すなわち、Fe−B−R系焼結磁石の組成的改良並び
に製造的改良により、磁石の特性を劣化させることなく
耐食性を向上させ、耐食性被膜の剥離や密着力の低下を
防止でき、特に、薄物磁石が高温多湿の環境に長時間晒
されても安定した耐食性並びに磁石特性を保持できるFe
−B−R系焼結永久磁石材料の製造方法の提供を目的と
している。
In view of the present situation, the present invention solves the above-mentioned problems, that is, by improving the composition and manufacturing of Fe-BR-based sintered magnets, improving the corrosion resistance without deteriorating the properties of the magnets, Fe that can prevent peeling of the corrosion-resistant coating and decrease in adhesion, and in particular, can maintain stable corrosion resistance and magnet properties even when a thin magnet is exposed to a high-temperature and high-humidity environment for a long time.
An object of the present invention is to provide a method for producing a sintered BR permanent magnet material.

課題を解決するための手段 発明者らは、Fe−B−R系永久磁石において、耐食性
の向上を図ることを目的に、組成的な検討を重ねた結
果、Cu及びAlとともに、ハロゲン元素を複合添加するこ
とにより、焼結体中の例えばNdに富む粒界析出相に含有
されて粒界優先腐食が防止され、これを含有しないもの
と比較して、材料自体の錆び発生は大きく減少しない
が、表面処理による耐食性被膜の密着力が向上して耐候
性が著しく向上し、特に、薄物磁石が高温多湿の環境に
長時間晒されても、抗折強度の低下がなく安定した耐食
性並びに磁石特性を保持できることを知見した。
Means for Solving the Problems The inventors of the present invention have repeatedly studied the composition of Fe-BR-based permanent magnets with the aim of improving the corrosion resistance. By adding, for example, contained in the Nd-rich grain boundary precipitation phase in the sintered body, grain boundary preferential corrosion is prevented, and rust generation of the material itself is not significantly reduced as compared with those not containing this. The surface treatment enhances the adhesion of the corrosion-resistant coating and significantly improves the weather resistance. Even if the thin magnet is exposed to a high-temperature and high-humidity environment for a long time, stable corrosion resistance and magnet properties are maintained without a decrease in bending strength. Was found to be able to be maintained.

さらに、発明者らは、Fe−B−R系永久磁石におい
て、耐食性の向上を図ることを目的に、製造的改良につ
いて検討を重ねた結果、上記の組成的改良を行った合金
粉末の微粉砕工程でジェットミルを使用すること、すな
わち、粗粉砕粉にハロゲン元素をハロゲン化物として添
加した後、ジェットミルで微粉砕するか、あるいはジェ
ットミルで微粉砕した後、微粉砕粉にハロゲン元素をハ
ロゲン化物として添加することにより、Cu及びAlととも
にハロゲン元素が焼結体中のRに富む粒界析出相に含有
されやすくなり、その結果、粒界優先腐食が防止される
ことを知見し、この発明を完成した。
Further, the present inventors have repeatedly studied manufacturing improvements for the purpose of improving the corrosion resistance of the Fe-BR based permanent magnet, and as a result, pulverized the alloy powder having the above-described compositional improvement. Use of a jet mill in the process, that is, after adding a halogen element as a halide to the coarsely pulverized powder, finely pulverize with a jet mill, or finely pulverize with a jet mill, and then add the halogen element to the finely pulverized powder. It has been found that by adding as a halide, the halogen element together with Cu and Al tends to be contained in the R-rich grain boundary precipitation phase in the sintered body, and as a result, preferential grain boundary corrosion is prevented. Was completed.

すなわち、この発明は、 希土類R 13at%〜16at%、 但し、RはPr、Ndの1種又は2種であるか、あるいは
前記元素に加えDy、Tbの1種又は2種および不可避的不
純物として含まれる他の希土類からなり、2種以上の場
合、 0.8≦(Pr+Nd+Dy+Tb)/R≦1.0を満足、 B 6at%〜9at%、 Cu 0.01at%〜0.5at%、Al 0.1at%〜2at%、 X 0.01at%〜1.0at%、 但し、Xはハロゲン元素F、Cl、Br、Iのうち少なく
とも1種、残部FeおよびCo 71.5at%〜81at%、 但し、0≦Co/(Fe+Co)≦0.4、 からなり、前記Cu及びAlとともにXが焼結体中のRに富
む粒界析出相に含有される焼結永久磁石材料の製造に際
し、 前記Xを除く元素からなる合金を粗粉砕する工程、 得られた粗粉砕粉末をジェットミルにより微粉砕する
工程、 さらに、得られた微粉砕粉末を磁界中で加圧成形、焼
結、熱処理する工程において、前記粗粉砕粉末又は微粉
砕粉末にXをハロゲン化物として添加する高耐食性焼結
永久磁石材料の製造方法である。
That is, the present invention provides a rare earth element R of 13 at% to 16 at%, wherein R is one or two kinds of Pr and Nd, or one or two kinds of Dy and Tb in addition to the above-mentioned elements and unavoidable impurities. It is composed of other rare earths contained, when two or more kinds, satisfy 0.8 ≦ (Pr + Nd + Dy + Tb) /R≦1.0, B 6at% -9at%, Cu 0.01at% -0.5at%, Al 0.1at% -2at%, X 0.01 at% to 1.0 at%, where X is at least one of halogen elements F, Cl, Br and I, balance Fe and Co 71.5 at% to 81 at%, provided that 0 ≦ Co / (Fe + Co) ≦ 0.4 In producing a sintered permanent magnet material in which X together with Cu and Al is contained in the R-rich grain boundary precipitate phase in the sintered body, a step of coarsely pulverizing an alloy made of elements other than X, A step of finely pulverizing the obtained coarsely pulverized powder with a jet mill, and further pressing the obtained finely pulverized powder in a magnetic field, sintering, and heat treating. In the step of a method for producing a highly corrosion resistant sintered permanent magnetic material of adding X to the coarsely pulverized powder or pulverized powder as a halide.

発明の実施の形態 成分組成の限定理由 この発明において、希土類Rは、通常はPr、Ndのいず
れか1種を用いれば足りるが、原料入手の都合等に応じ
てこれらの混合物(シジム等)を用いてもよく、また、
Pr、Ndの1種又は2種に加えてDy、Tdの1種又は2種お
よび不可避的不純物として含まれる他の希土類からなる
構成でも良く、2種以上の場合、 0.8≦(Pr+Nd+Dy+Tb)/R≦1.0を満足すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION Reasons for Limiting the Composition of Components In the present invention, it is usually sufficient to use any one of Pr and Nd as the rare earth R. May be used,
It may be composed of one or two of Dy and Td in addition to one or two of Pr and Nd, and another rare earth contained as an unavoidable impurity. In the case of two or more, 0.8 ≦ (Pr + Nd + Dy + Tb) / R It is only necessary to satisfy ≦ 1.0.

すなわち、この発明ではRとしてNd,Prの1種又は2
種だけで高保磁力を得るが、必要に応じて、実施例のNd
+DyまたはNd+Pr+Dyのごとく、前記Nd,Prを僅かなDy,
Tbで置換することにより、保磁力増加の効果が一層高め
られる。
That is, in the present invention, R represents one or two of Nd and Pr.
A high coercive force is obtained only by the species, but if necessary, the Nd
+ Dy or Nd + Pr + Dy as described above,
By substituting with Tb, the effect of increasing the coercive force is further enhanced.

Rは、13at%未満では、この発明の特徴である15kOe
以上の高い保磁力が得られず、また、16at%を超える
と、残留磁束密度(Br)が低下して(BH)max 20MGOe以
上が得られないため、13at%〜16at%の範囲とする。
When R is less than 13 at%, 15 kOe which is a feature of the present invention is used.
If the above high coercive force cannot be obtained, and if it exceeds 16 at%, the residual magnetic flux density (Br) decreases and (BH) max of 20 MGOe or more cannot be obtained, so the range is 13 at% to 16 at%.

Rが15at%〜16at%の範囲は、(BH)maxを低下させ
ることなく、18kOe以上の保磁力が得られ、特に好まし
い範囲である。
When R is in the range of 15 at% to 16 at%, a coercive force of 18 kOe or more can be obtained without lowering (BH) max, which is a particularly preferable range.

Bは、この発明において、20MGOe以上の最大エネルギ
ー積と15kOe以上の保磁力を得るためには、6at%以上の
添加が必要であるが、9at%を超えると残留磁束密度の
低下が見られるため、6at%〜9at%とする。
In the present invention, in order to obtain a maximum energy product of 20 MGOe or more and a coercive force of 15 kOe or more, B needs to be added in an amount of 6 at% or more. , 6 at% to 9 at%.

Cuは、保磁力の向上効果を有しかつ下記ハロゲン元素
とともに耐食性の向上効果を有し、かかる効果を得るの
に0.01at%以上の添加が必要であるが、0.5at%を越え
て添加すると、減磁曲線の角型性の低下をもたらすた
め、Cuは0.01at%〜0.5at%の範囲とする。特に、良好
な減磁曲線の角型性が得られるCuの添加範囲は0.02at%
〜0.09at%である。
Cu has an effect of improving coercive force and an effect of improving corrosion resistance together with the following halogen elements. To obtain such an effect, addition of 0.01 at% or more is necessary. In order to reduce the squareness of the demagnetization curve, Cu is set in the range of 0.01 at% to 0.5 at%. In particular, the addition range of Cu for obtaining good demagnetization curve squareness is 0.02at%.
~ 0.09at%.

Alは、保磁力の向上効果を有しかつ下記ハロゲン元素
ともに耐食性の向上効果を有し、かかる効果を得るのに
0.1at%以上の添加が必要であるが、2at%を越えて添加
すると、最大エネルギー積の低下をもたらすばかりでな
く、キュリー温度の大幅な低下により熱的安定性が著し
く劣化するため、Alは0.1at%〜2at%の範囲とする。
Al has an effect of improving coercive force and an effect of improving corrosion resistance together with the following halogen elements.
It is necessary to add 0.1 at% or more. However, if it exceeds 2 at%, not only does the maximum energy product decrease, but also the thermal stability significantly deteriorates due to a significant decrease in the Curie temperature. The range is from 0.1 at% to 2 at%.

この発明の特徴のひとつであるハロゲン元素Xの添加
により、前記Cu,Alとともに焼結体中のRに富む粒界析
出相に含有されて、粒界優先腐食が防止され、すなわ
ち、Cu,AlさらにはC,O2とハロゲン元素Xを共存するR
リッチ二次相がR2Fe14Bからなる主相の周囲に分散する
ことにより、Rリッチ相が優先的に腐食されることなく
R2Fe14Bも同時に腐食されるようになり、結晶粒が脱落
するような粒界腐食が起こらないため、表面処理による
耐食性被膜の密着力が向上して耐候性が著しく向上す
る。また、水酸化にともなう粒界析出相の膨張を抑制
し、クラック発生にともなう強度低下を防止する。
The addition of the halogen element X, which is one of the features of the present invention, is contained in the R-rich grain boundary precipitation phase in the sintered body together with the Cu and Al, thereby preventing preferential grain boundary corrosion, that is, Cu, Al Further, R which coexists C, O 2 and halogen element X
By dispersing the rich secondary phase around the main phase composed of R 2 Fe 14 B, the R-rich phase is not preferentially corroded.
R 2 Fe 14 B is also corroded at the same time, and intergranular corrosion such as dropping of crystal grains does not occur. Therefore, the adhesion of the corrosion-resistant coating by the surface treatment is improved, and the weather resistance is remarkably improved. Further, the expansion of the grain boundary precipitation phase due to the hydroxylation is suppressed, and the reduction in strength due to the occurrence of cracks is prevented.

また、前記粒界優先腐食の防止には、ハロゲン元素X
の80%以上が、焼結体中のRに富む粒界析出相に含有さ
れる必要がある。
In order to prevent the preferential corrosion of the grain boundary, a halogen element X
Must be contained in the R-rich grain boundary precipitation phase in the sintered body.

ハロゲン元素Xは、F、Cl、Br、Iのうち少なくとも
1種であり、上述の効果を得るには0.01at%以上の添加
が必要であるが、1.0at%を越えて添加すると、焼結性
が阻害されて磁石特性が劣化するため、0.01at%〜1.0a
t%の範囲とする。
The halogen element X is at least one of F, Cl, Br and I, and it is necessary to add 0.01 at% or more to obtain the above effect. 0.01at%-1.0a
t% range.

この発明の永久磁石において上記各元素の含有残余を
Feが占める。すなわち、71.5at%〜81at%の範囲であ
る。また、Feの一部をCoで置換でき、Coは、Fe−B−R
系永久磁石のキュリー温度を高め残留磁束密度の温度特
性を改善し、耐食性を向上させる効果を有するが、Coを
添加するとiHcが低下する難点があり、置換量は0≦Co/
(Fe+Co)≦0.4の範囲が好ましい。
In the permanent magnet of the present invention, the residual content of each of the above elements is
Fe occupies. That is, it is in the range of 71.5 at% to 81 at%. Also, part of Fe can be replaced by Co, and Co is Fe-BR
It has the effect of increasing the Curie temperature of the system-based permanent magnet, improving the temperature characteristics of the residual magnetic flux density, and improving the corrosion resistance.
(Fe + Co) ≦ 0.4 is preferable.

この発明の永久磁石を製造する場合は、その製造工程
によりO2やCが含有される場合がある。すなわち、原
料、溶解、粉砕、焼結、熱処理などの各工程から混入す
る場合があり、O2は、2000ppm以上の含有は前述の如く
粒界優先腐食の防止効果があり、8000ppmを超すと残留
磁束密度が低下したり、高い焼結密度が得られる焼結温
度も狭くなり、製造性が悪くなるため、2000〜8000ppm
の含有が好ましい。
When the permanent magnet of the present invention is manufactured, O 2 or C may be contained in the manufacturing process in some cases. That is, the raw material, dissolved, grinding, sintering, may be mixed from the process, such as heat treatment, O 2, the content of more than 2000ppm may have the effect of preventing grain boundary preferentially corroded as described above, the residual and more than 8000ppm Since the magnetic flux density decreases or the sintering temperature at which a high sintering density is obtained becomes narrower, and the productivity becomes worse, 2000 to 8000 ppm
Is preferred.

また、Cも原料中から混入したり、粉末の成形性を向
上させるためにバインダーや潤滑材として添加する場合
があるが、200ppm以上の含有は前述の如く粒界優先腐食
の防止効果があり、2000ppmを越えると高保磁力(iHc)
が得られないため、200〜2000ppmの含有が好ましい。
Also, C may be mixed from the raw material or added as a binder or a lubricant in order to improve the powder formability, but the content of 200 ppm or more has an effect of preventing grain boundary preferential corrosion as described above, High coercive force (iHc) above 2000ppm
Is not obtained, so the content is preferably 200 to 2000 ppm.

製造方法 この発明による上記組成からなる永久磁石は、後述す
る方法によって磁気異方性焼結磁石としてすぐれた耐食
性と磁石特性を発揮する。
Manufacturing Method The permanent magnet having the above composition according to the present invention exhibits excellent corrosion resistance and magnet properties as a magnetic anisotropic sintered magnet by the method described below.

まず、出発原料となるFe−B−R組成の合金粉末を得
る。
First, an alloy powder having a Fe-BR composition as a starting material is obtained.

通常の合金溶解後、例えば、鋳造等、アモルファス状
態とならない条件で冷却して得た合金鋳塊を粉砕して分
級、配合等により合金粉末化してもよく、あるいは希土
類酸化物から直接還元法(特開昭59−219404号)によっ
て得た合金粉末を用いることができる。
After the usual alloy melting, for example, an alloy ingot obtained by cooling under conditions that do not become amorphous, such as casting, may be pulverized and classified into an alloy powder by classification, blending, or the like, or may be directly reduced from a rare earth oxide by a direct reduction method ( An alloy powder obtained according to JP-A-59-219404) can be used.

後述の粗粉砕と微粉砕の工程を経た合金粉末の平均粒
度は、0.5〜10μmの範囲とする。すぐれた磁石特性を
得るためには、平均粒度1.0〜5μmが最も望ましい。
The average particle size of the alloy powder that has undergone the coarse pulverization and fine pulverization steps described below is in the range of 0.5 to 10 μm. In order to obtain excellent magnet properties, the average particle size is most preferably from 1.0 to 5 μm.

粗粉砕は、ジョークラッシャー、スタンプミル、ディ
スクミル等により粗粉砕する。微粉砕は、溶媒中で粉砕
する湿式粉砕でも、N2ガス等の雰囲気乾中で粉砕する乾
式粉砕のいずれでも可能であるが、この発明は、より高
い保磁力を得ることが可能な粉末粒度の揃った粉末が得
られるジエットミルによる粉砕を用いる。
The coarse pulverization is performed by a jaw crusher, a stamp mill, a disk mill or the like. Milling is also a wet grinding grinding in a solvent, but can be either dry pulverization trituration with atmosphere dry such as N 2 gas, the present invention is a powder particle size that can achieve a higher coercive force Pulverization by a jet mill that can obtain a uniform powder is used.

特に、この発明において、ジエットミル粉砕前の粗粉
砕合金粉末に、LiX等のハロゲン化物としてハロゲン元
素Xを添加するか、あるいはジエットミルで微粉砕され
た微粉砕合金粉末に、LiX等のハロゲン化物としての形
でハロゲン元素Xを添加混合することにより、焼結体中
のRに富む粒界析出相に含有されやすくなり、ハロゲン
元素Xの80%以上が、焼結体中のRに富む粒界析出相に
含有され、粒界優先腐食が防止される。
In particular, in the present invention, the halogen element X as a halide such as LiX is added to the coarsely pulverized alloy powder before the jet mill pulverization, or the finely pulverized alloy powder pulverized by the jet mill is used as a halide such as LiX. By adding and mixing the halogen element X in the form, it becomes easy to be contained in the R-rich grain boundary precipitation phase in the sintered body, and 80% or more of the halogen element X becomes the R-rich grain boundary precipitation in the sintered body. Contained in the phase to prevent grain boundary preferential corrosion.

また、ハロゲン元素Xの添加はLiXやLiF、AlF3等の弗
化物、AlX3、MAlX3(Mは金属元素K,Ca,Co,Cr等)、Li2
MF6等のハロゲン化物としての形で行うのがよく、吸湿
性のあるRCl2、RCl3、CaCl2等は、湿気の高い工場環境
では吸湿してかたまりとなり流動性が低下するので好ま
しくなく、特にLiXは吸湿性がなく、Liのみが製造工程
中に消失するため、工業生産上で好ましい。
The addition is LiX and LiF halogen element X, fluorides such as AlF 3, AlX 3, MAlX 3 (M is a metal element K, Ca, Co, Cr, etc.), Li 2
May be carried out in the form of a halide such as MF 6, RCl 2 with hygroscopic, RCl 3, CaCl 2, etc., it is not preferable because flowability becomes mass absorbs moisture lowers the humidity high plant environment, In particular, LiX has no hygroscopicity, and only Li disappears during the production process, so that it is preferable in industrial production.

一例を示すと、粉砕工程は、粗粉砕と微粉砕の工程よ
りなり、ジョークラッシャー、スタンプミル、ディスク
ミル等により−35mesh程度まで粗粉砕後、粗粉砕工程終
了後、微粉砕前に、ハロゲン元素XをLiF、AlF3、Al
X3、MAlX3、Li2MF6等を添加し、ジェットミルにより数
μmの微粉砕を行なう微粉砕工程においてこれらの添加
物が微細化されRリッチ相に均一に分散させることがで
きる。
As an example, the pulverizing step includes a coarse pulverizing step and a fine pulverizing step. X is LiF, AlF 3 , Al
X 3 , MAlX 3 , Li 2 MF 6 and the like are added, and in a pulverization step of pulverizing several μm by a jet mill, these additives are finely divided and can be uniformly dispersed in the R-rich phase.

また、上記の粗粉砕後、ジェットミルにより数μmの
微粉砕を行なった微粉砕粉に、ハロゲン元素XをLiX、A
lF3、AlX3、MAlX3、Li2MF6等の粉末と混合することによ
ってRリッチ相に均一に分散させることができる。
After the above coarse pulverization, the halogen element X was added to LiX, A
lF 3, AlX 3, MAlX 3 , by mixing a powder such as Li 2 MF 6 can be uniformly dispersed in the R-rich phase.

次に合金粉末を成形するが、成形方法は通常の粉末治
金法と同様に行なうことができ、加圧成形が好ましく、
異方性とするためには、例えば、合金粉末を5kOe以上の
磁界中で0.5〜3.0ton/cm2の圧力で加圧する。
Next, the alloy powder is molded, and the molding method can be performed in the same manner as a normal powder metallurgy method, and pressure molding is preferable.
In order to make the alloy anisotropic, for example, the alloy powder is pressed at a pressure of 0.5 to 3.0 ton / cm 2 in a magnetic field of 5 kOe or more.

成型体の焼結は、通常の還元性ないし非酸化性雰囲気
中で所定温度、900〜1200℃にて焼結するとよい。
The sintering of the molded body may be performed at a predetermined temperature of 900 to 1200 ° C. in a normal reducing or non-oxidizing atmosphere.

例えば、この成形体を10-2Torr以下の真空中ないし、
1〜76Torr、純度99%以上の不活性ガスないし還元性ガ
ス雰囲気中で900〜1200℃の温度範囲で0.5〜4時間焼結
する。
For example, this compact is not placed in a vacuum of 10 -2 Torr or less,
Sintering is carried out in an atmosphere of an inert gas or a reducing gas having a purity of 1 to 76 Torr and a purity of 99% or more at a temperature of 900 to 1200 ° C. for 0.5 to 4 hours.

なお、焼結は、所定の結晶粒径、焼結密度が得られる
よう温度、時間等の条件を調節して行なう。
The sintering is performed by adjusting conditions such as temperature and time so as to obtain a predetermined crystal grain size and sintering density.

焼結体の密度は理論密度(比)の95%以上が磁気特
性、耐食性及び抗折強度上好しく、例えば、焼結温度10
40〜1160℃で、密度7.2g/cm3以上が得られ、これは理論
密度の95%以上に相当する。さらに、1060〜1120℃の焼
結では、理論密度比99%以上にも達し、特に好ましい。
The density of the sintered body is preferably 95% or more of the theoretical density (ratio) in terms of magnetic properties, corrosion resistance and bending strength.
At 40-1160 ° C., a density of more than 7.2 g / cm 3 is obtained, which corresponds to more than 95% of the theoretical density. Furthermore, sintering at 1060 to 1120 ° C. reaches a theoretical density ratio of 99% or more, which is particularly preferable.

得られた焼結体は、430℃〜900℃、0.1時間〜10時間
の条件で熱処理する。かかる熱処理は、例えば真空ない
し不活性ガスないし還元性ガス雰囲気中で行う。また、
所定温度に一定に保持してもよく、またかかる温度範囲
内であれば、徐冷したり、あるいは、該温度範囲内で焼
結後一旦650〜900℃の温度に5分から10時間保持し、上
段よりも低い温度で熱処理を行なう2段以上の多段時効
処理も有効である。
The obtained sintered body is heat-treated at 430 ° C. to 900 ° C. for 0.1 hour to 10 hours. Such heat treatment is performed, for example, in a vacuum or in an atmosphere of an inert gas or a reducing gas. Also,
It may be kept at a predetermined temperature, and if it is within such a temperature range, it may be gradually cooled, or may be kept at a temperature of 650 to 900 ° C. once for 5 minutes to 10 hours after sintering within the temperature range, A multi-stage aging treatment of two or more stages in which heat treatment is performed at a lower temperature than the upper stage is also effective.

得られた磁石体表面に、耐食性を高めるため、無電解
めっき法あるいは電解めっき法により耐食性金属めっき
層を被覆したり、あるいは樹脂層等を被覆したり、さら
にはアルミクロメート処理するなど、耐食性被覆層処理
する。
The surface of the obtained magnet body is coated with a corrosion-resistant metal plating layer by an electroless plating method or an electrolytic plating method, or a resin layer or the like, and is further subjected to an aluminum chromate treatment to enhance the corrosion resistance. Layer treatment.

実 施 例 実施例1 純度97wt%のNd、Dy、電解鉄及びBとして、市販のフ
ェロボン(JIS G 2318 FBL1相当)、純Cu、純Alを用い
て、 Nd14.5Dy0.5FebalB7Cu0.03Al0.2 の合金を高周波溶解で溶製後、鋳型に鋳造しインゴット
を得た。
EXAMPLES Example 1 Nd 14.5 Dy 0.5 Fe bal B 7 Cu 0.03 was obtained by using commercially available ferrobon (equivalent to JIS G 2318 FBL1), pure Cu and pure Al as Nd, Dy, electrolytic iron and B having a purity of 97 wt%. An Al 0.2 alloy was melted by high frequency melting and then cast into a mold to obtain an ingot.

これらのインゴットをモーターグラインダで粗粉砕
し、ジェットミルでN2ガス中で微粉砕を行ない、平均粒
度が2.6〜3.3μmの微粉末を得た。
These ingots were coarsely pulverized with a motor grinder and finely pulverized in a N 2 gas with a jet mill to obtain fine powder having an average particle size of 2.6 to 3.3 μm.

この際、インゴットを粗粉砕後、(A)(本発明)に
はLiFを0.1wt%、(B)(比較例)には何も添加しない
でジェットミルで粉砕した。
At this time, after the ingot was coarsely pulverized, 0.1% by weight of LiF was added to (A) (the present invention) and nothing was added to (B) (comparative example) using a jet mill.

この原料粉末を10kOeの磁界中で1.5ton/cm2の圧力で
加圧成形し、得られた圧粉体を1080℃、3時間で焼結
し、さらに600℃で1時間の熱処理を施した。その後、
機械加工にて0.2mmの薄物磁石を作成した。
This raw material powder was pressed under a magnetic field of 10 kOe at a pressure of 1.5 ton / cm 2 , and the obtained green compact was sintered at 1080 ° C. for 3 hours and further subjected to a heat treatment at 600 ° C. for 1 hour. . afterwards,
A 0.2mm thin magnet was created by machining.

得られた薄物磁石にエポキシ樹脂を50μm厚みで被覆
した後、抗折力を測定し、また80℃、90%RHに1000時間
晒した後、抗折力を測定した。測定結果を第1表に示
す。抗折力試験は下記式による。
After the obtained thin magnet was coated with an epoxy resin to a thickness of 50 μm, the bending strength was measured, and after exposing to 80 ° C. and 90% RH for 1000 hours, the bending strength was measured. Table 1 shows the measurement results. The bending strength test is based on the following equation.

第1表に明らかな如く、Fを添加しないと抗折力が大
幅に低下したことが分かる。
As is clear from Table 1, it is understood that the transverse rupture strength was significantly reduced when F was not added.

S=3Pl/2bt2 S=抗折力(kg/mm2)、P=折れた時に加わった力(k
g)、 t=磁石厚み(mm)、b=磁石断面の幅(mm) l=磁石の支点間距離 実施例2 実施例1と同様方法で、磁石化した(A)(本発明)
と(B)(比較例)の磁石に、第2表に示す如く、種々
の表面処理を行い、80℃×90%RH、1000時間放置後、耐
食性膜の密着力を碁盤目試験(JIS K5400、ASTMD3359−
83)に基いて評価し、試験結果を第2表に示す。評価は
耐食性膜に僅かでも欠陥が生じた場合を×とした。試験
片は20mm×10mm×8mmであった。
S = 3Pl / 2bt 2 S = Bending force (kg / mm 2 ), P = Forced force (k
g), t = magnet thickness (mm), b = width of magnet cross section (mm) l = distance between fulcrum points of magnet Example 2 Magnetization (A) (the present invention) in the same manner as in Example 1
And (B) (Comparative Example) were subjected to various surface treatments as shown in Table 2 and left at 80 ° C. × 90% RH for 1000 hours. Then, the adhesion of the corrosion-resistant film was checked by a grid test (JIS K5400). , ASTM D3359-
83), and the test results are shown in Table 2. The evaluation was evaluated as x when a slight defect occurred in the corrosion resistant film. The test specimen was 20 mm × 10 mm × 8 mm.

実施例3 実施例1と同様方法で、 Nd10Pr4.5Dy0.5FebalB7Cu0.06Al0.05〜2.5
0〜1.3(Xが0.01未満の場合は0とする)の磁石を作
成した。なお、ハロゲンXはKAlX4の形で粗粉砕粉末に
添加した。No.は比較例である。
Example 3 In the same manner as in Example 1, Nd 10 Pr 4.5 Dy 0.5 Fe bal B 7 Cu 0.06 Al 0.05 to 2.5 X
Magnets of 0 to 1.3 (0 when X is less than 0.01) were prepared. Incidentally, the halogen X was added to the coarsely pulverized powder in the form of KAlX 4. No. * is a comparative example.

種々ハロゲンXを添加した磁石から0.2mm×19mm×10m
mの薄物磁石を作成し、表面に50μm厚みのエポキシ樹
脂を被覆したのち、80℃×90℃RHに1000時間暴露した後
の抗折強度を、実施例1と同様の方法で測定した。その
結果を第3表に示し、20kg/mm2以上を○、未満を×で示
す。
0.2mm × 19mm × 10m from various halogen-added magnets
After forming a thin magnet having a thickness of 50 m and coating the surface with an epoxy resin having a thickness of 50 μm, the bending strength after exposure to 80 ° C. × 90 ° C. for 1000 hours was measured in the same manner as in Example 1. The results are shown in Table 3, where 20 kg / mm 2 or more is indicated by ○, and less than 20 kg / mm 2 is indicated by ×.

また、20mm×10mm×8mm寸法の試験片に同様のコーテ
ィング後、磁石特性を測定し、PCT試験、60時間、また
は、80℃×90%RH、1000時間放置後、耐食性膜の密着力
を碁盤目試験(JIS K5400、ASTMD3359−83)に基いて評
価した。評価は耐食性膜に僅かでも欠陥が生じた場合を
×とした。その結果を第3表に示す。
After coating the same size on a 20mm x 10mm x 8mm test piece, measure the magnet properties, and after PCT test, 60 hours or 80 ℃ x 90% RH for 1000 hours, check the adhesion of the corrosion resistant film The evaluation was based on an eye test (JIS K5400, ASTM D3359-83). The evaluation was evaluated as x when a slight defect occurred in the corrosion resistant film. Table 3 shows the results.

第3表に示すごとく、ハロゲン元素Xを添加しない例
(No.6)及びAlの添加量の少ない例(No.1)では、耐皮
膜剥離性が所望の特性を満足しないことが分かる。
As shown in Table 3, in the example in which the halogen element X was not added (No. 6) and the example in which the addition amount of Al was small (No. 1), the film peeling resistance did not satisfy the desired characteristics.

また、ハロゲン元素Xの限定範囲を越えて添加した例
(No.9)及びAlの添加量の多すぎる例(No.5)では、磁
気特性が低下することが分かる。
In addition, in the example in which the halogen element X was added beyond the limited range (No. 9) and in the example in which the addition amount of Al was too large (No. 5), the magnetic properties were deteriorated.

さらに、例(No.11)及び例(No.14)のように、O
2量、C量が多ぎる場合は、目的とする耐皮膜剥離性は
得られるものの、磁気特性(特にiHc)の低下を招く。
従って、この発明の特徴であるCu及びAlとともに添加す
るハロゲン元素Xの添加効果を得るには、O2は2000〜80
00ppm、Cは200〜2000ppmの含有が好ましい。
Further, as in the example (No. 11) and the example (No. 14),
If the amount of C and C is too large, the desired film peeling resistance can be obtained, but the magnetic properties (particularly iHc) are lowered.
Therefore, in order to obtain the effect of adding the halogen element X to be added together with Cu and Al, which is a feature of the present invention, O 2 is 2,000 to 80.
Preferably, 200 ppm and 200 ppm of C are contained.

発明の効果 この発明により得られる焼結永久磁石は、粗粉砕粉に
ハロゲン元素をハロゲン化物として添加した後、ジェッ
トミルで微粉砕するか、あるいはジェットミルで微粉砕
した後、微粉砕粉にハロゲン元素をハロゲン化物として
添加することにより、Cu及びAlとともにハロゲン元素が
焼結体中のRに富む粒界析出相に含有されやすくなり、
その結果、粒界優先腐食が防止されることにより、 (1)厚み1mm以下の薄物磁石に加工して、公知の樹脂
コーティングや金属膜等で表面処理後、高温高湿の環境
下に暴露した時の抗折強度低下が改善される。
Effect of the Invention The sintered permanent magnet obtained by the present invention is obtained by adding a halogen element to a coarsely pulverized powder and then finely pulverizing with a jet mill, or finely pulverizing with a jet mill, and then adding a halogen to the finely pulverized powder. By adding the element as a halide, the halogen element is easily contained in the R-rich grain boundary precipitation phase in the sintered body together with Cu and Al,
As a result, grain boundary preferential corrosion is prevented. (1) The magnet was processed into a thin magnet having a thickness of 1 mm or less, exposed to a high-temperature, high-humidity environment after surface treatment with a known resin coating or metal film, etc. The reduction in bending strength at the time is improved.

(2)表面処理後、高温多湿の環境に暴露した後、樹
脂、金属膜等の耐食性膜の密着強度の低下が改善されす
ぐれた耐食性を発揮する。
(2) After surface treatment, after exposure to a high-temperature and high-humidity environment, a decrease in adhesion strength of a corrosion-resistant film such as a resin or a metal film is improved and excellent corrosion resistance is exhibited.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 槇田 顕 大阪府三島郡島本町江川2丁目15―17 住友特殊金属株式会社山崎製作所内 (56)参考文献 特開 昭63−128606(JP,A) 特開 昭62−188746(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Makita 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Pref. Yamazaki Works, Sumitomo Special Metals Co., Ltd. (56) References JP-A-62-188746 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類R 13at%〜16at%、 但し、RはPr、Ndの1種又は2種であるか、あるいは前
記元素に加えDy、Tbの1種又は2種および不可避的不純
物として含まれる他の希土類からなり、2種以上の場
合、 0.8≦(Pr+Nd+Dy+Tb)/R≦1.0を満足、 B 6at%〜9at%、 Cu 0.01at%〜0.5at%、Al 0.1at%〜2at%、 X 0.01at%〜1.0at%、 但し、Xはハロゲン元素F、Cl、Br、Iのうち少なくと
も1種、 残部FeおよびCo 71.5at%〜81at%、 但し、0≦Co/(Fe+Co)≦0.4、 からなり、前記Cu及びAlとともにXが焼結体中のRに富
む粒界析出相に含有される焼結永久磁石材料の製造に際
し、 前記Xを除く元素からなる合金を粗粉砕する工程、 得られた粗粉砕粉末をジェットミルにより微粉砕する工
程、 さらに、得られた微粉砕粉末を磁界中で加圧成形、焼
結、熱処理する工程において、前記粗粉砕粉末又は微粉
砕粉末にXをハロゲン化物として添加する高耐食性焼結
永久磁石材料の製造方法。
1. Rare earth R 13 at% to 16 at%, wherein R is one or two of Pr and Nd, or one or two of Dy and Tb in addition to the above elements and contained as unavoidable impurities 0.8 ≦ (Pr + Nd + Dy + Tb) /R≦1.0, B 6at% ~ 9at%, Cu 0.01at% ~ 0.5at%, Al 0.1at% ~ 2at%, X 0.01 at% to 1.0 at%, where X is at least one of halogen elements F, Cl, Br and I, balance Fe and Co 71.5 at% to 81 at%, provided that 0 ≦ Co / (Fe + Co) ≦ 0.4, A step of coarsely pulverizing an alloy consisting of elements other than X, in producing a sintered permanent magnet material containing X in the R-rich grain boundary precipitation phase in a sintered body together with Cu and Al, A step of finely pulverizing the obtained coarsely pulverized powder with a jet mill, and a step of subjecting the obtained finely pulverized powder to pressure molding, sintering and heat treatment in a magnetic field Oite method of the coarsely pulverized powder or highly corrosion resistant sintered permanent magnetic material to be added X to finely ground powder as halides.
JP1326479A 1989-12-15 1989-12-15 Manufacturing method of high corrosion resistant sintered permanent magnet material Expired - Lifetime JP3009687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326479A JP3009687B2 (en) 1989-12-15 1989-12-15 Manufacturing method of high corrosion resistant sintered permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326479A JP3009687B2 (en) 1989-12-15 1989-12-15 Manufacturing method of high corrosion resistant sintered permanent magnet material

Publications (2)

Publication Number Publication Date
JPH03188241A JPH03188241A (en) 1991-08-16
JP3009687B2 true JP3009687B2 (en) 2000-02-14

Family

ID=18188273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326479A Expired - Lifetime JP3009687B2 (en) 1989-12-15 1989-12-15 Manufacturing method of high corrosion resistant sintered permanent magnet material

Country Status (1)

Country Link
JP (1) JP3009687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123974A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. R-Fe-B-BASED RARE EARTH PERMANENT MAGNET MATERIAL

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480471A (en) * 1994-04-29 1996-01-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same
DE69927931T2 (en) * 1998-07-29 2006-07-20 Dowa Mining Co., Ltd. PERMANENT MAGNETIC ALLOY WITH OUTSTANDING HEAT-RESISTANT PROPERTIES AND METHOD FOR THE PRODUCTION THEREOF
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof
CN1898757B (en) 2004-10-19 2010-05-05 信越化学工业株式会社 Method for producing rare earth permanent magnet material
TWI417906B (en) * 2005-03-23 2013-12-01 Shinetsu Chemical Co Functionally graded rare earth permanent magnet
TWI413136B (en) * 2005-03-23 2013-10-21 Shinetsu Chemical Co Rare earth permanent magnet
TWI364765B (en) * 2005-03-23 2012-05-21 Shinetsu Chemical Co Rare earth permanent magnet
MY141999A (en) * 2005-03-23 2010-08-16 Shinetsu Chemical Co Functionally graded rare earth permanent magnet
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP4656323B2 (en) 2006-04-14 2011-03-23 信越化学工業株式会社 Method for producing rare earth permanent magnet material
JP4840606B2 (en) 2006-11-17 2011-12-21 信越化学工業株式会社 Rare earth permanent magnet manufacturing method
JP5868500B2 (en) 2012-05-30 2016-02-24 株式会社日立製作所 Sintered magnet and manufacturing method thereof
WO2013186864A1 (en) 2012-06-13 2013-12-19 株式会社 日立製作所 Sintered magnet and production process therefor
JP6645219B2 (en) * 2016-02-01 2020-02-14 Tdk株式会社 Alloy for RTB based sintered magnet, and RTB based sintered magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188746A (en) * 1986-02-13 1987-08-18 S C M:Kk Permanent magnet material made of alloy containing fluorine
JPS63128606A (en) * 1986-11-19 1988-06-01 Asahi Chem Ind Co Ltd Permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123974A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. R-Fe-B-BASED RARE EARTH PERMANENT MAGNET MATERIAL
JPWO2005123974A1 (en) * 2004-06-22 2008-04-10 信越化学工業株式会社 R-Fe-B rare earth permanent magnet material
US7485193B2 (en) 2004-06-22 2009-02-03 Shin-Etsu Chemical Co., Ltd R-FE-B based rare earth permanent magnet material
CN1934283B (en) * 2004-06-22 2011-07-27 信越化学工业株式会社 R-Fe-B-based rare earth permanent magnet material

Also Published As

Publication number Publication date
JPH03188241A (en) 1991-08-16

Similar Documents

Publication Publication Date Title
EP2650886B1 (en) Preparation method for high-corrosion resistant sintered ndfeb magnet
JP4470884B2 (en) R-T-B system sintered magnet and manufacturing method thereof
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JP3009687B2 (en) Manufacturing method of high corrosion resistant sintered permanent magnet material
WO2012002060A1 (en) R-t-b based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
US5200001A (en) Permanent magnet
JP7502494B2 (en) Rare earth permanent magnet material, its raw material composition, manufacturing method, and application
WO2010113371A1 (en) Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
US8182618B2 (en) Rare earth sintered magnet and method for producing same
CN104051101A (en) Rare-earth permanent magnet and preparation method thereof
JP2023509225A (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
JP2741508B2 (en) Magnetic anisotropic sintered magnet and method of manufacturing the same
WO2012029527A1 (en) Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
JP2787580B2 (en) Nd-Fe-B based sintered magnet with excellent heat treatment
JPWO2004003245A1 (en) Alloy for bond magnet, isotropic magnet powder, anisotropic magnet powder, production method thereof, and bond magnet
US5849109A (en) Methods of producing rare earth alloy magnet powder with superior magnetic anisotropy
JP2935376B2 (en) permanent magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
WO2016155674A1 (en) Ho and w-containing rare-earth magnet
JPH0467322B2 (en)
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JP3202830B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS6144155A (en) Permanent magnet alloy
JPS61139638A (en) Manufacture of sintered permanent magnet material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11