WO2000006792A1 - Permanent magnetic alloy with excellent heat resistance and process for producing the same - Google Patents

Permanent magnetic alloy with excellent heat resistance and process for producing the same Download PDF

Info

Publication number
WO2000006792A1
WO2000006792A1 PCT/JP1999/004048 JP9904048W WO0006792A1 WO 2000006792 A1 WO2000006792 A1 WO 2000006792A1 JP 9904048 W JP9904048 W JP 9904048W WO 0006792 A1 WO0006792 A1 WO 0006792A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
heat resistance
magnet alloy
temperature
permanent magnet
Prior art date
Application number
PCT/JP1999/004048
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Kamata
Michio Obata
Yuichi Sato
Original Assignee
Dowa Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co., Ltd. filed Critical Dowa Mining Co., Ltd.
Priority to DE69927931T priority Critical patent/DE69927931T2/en
Priority to EP99933132A priority patent/EP1026279B1/en
Priority to JP2000562572A priority patent/JP4034936B2/en
Publication of WO2000006792A1 publication Critical patent/WO2000006792A1/en
Priority to US09/531,115 priority patent/US6319336B1/en
Priority to HK01102163A priority patent/HK1032247A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to an R-B-C-Co-Fe-based permanent magnet alloy (R is Y) which has extremely excellent heat resistance such that the magnetic force hardly deteriorates even when used at 200 ° C in the atmosphere. Or rare earth elements).
  • Sm—Co magnets are known as rare earth magnets having excellent heat resistance. However, this magnet is expensive. The heat resistance here means that the magnetic force does not deteriorate by heat.
  • R-B described in Japanese Patent Application Laid-Open No. HEI 4-116164 (Patent No. 274,981) by the same applicant.
  • C— Co-Fe permanent magnet alloys are available. This magnet alloy uses C (carbon) as an essential alloying element and uses a combination of light rare earth and heavy rare earth as R.
  • the publication indicates that the inclusion of C significantly improves the irreversible demagnetization rate (negative values approach the 0% side), and that the use of heavy rare earth elements in part of R further irreversible. It teaches that the demagnetization rate is improved. Purpose of the invention
  • an object of the present invention is to obtain an inexpensive permanent magnet alloy that has excellent heat resistance enough to withstand use even at 200 ° C. Disclosure of the invention
  • the present invention provides an atomic percentage (at.
  • R is Nd, Pr, Ce, La, Y, Gd, Ho, Er and T m represents at least one element selected from the group consisting of m.
  • the heat resistance of this permanent magnet alloy is determined by the irreversible demagnetization rate (20
  • 0 ° C shows a range of 0% to 120%, more preferably a range of 0% to 115% (iHc ⁇ 13 KOe).
  • Irreversible demagnetization (2 0 0 ° C) 1 0 0 X (A 2 .. - A 25) / A 2 5 ⁇ ⁇ (1)
  • a 25: permeance coefficient (P c) is after magnetization of the specimen to the shape was adjusted to 1 with 5 0 K 0 e, at room temperature (2 5 ° C) measured flux value
  • the irreversible demagnetization rate is 0 to 120%
  • the proper combination of Dy and Tb for example, Dy + Tb: 0.5 to 5 at. It can be obtained in a combination of 3 to 4.9 at.% And Tb in the range of 0.1 to 4.7 at.% (The range surrounded by points A, B, C, and D in Fig. 1).
  • Those with a demagnetization ratio of 0 to 115% can be obtained by the Dy content and Tb content in the range surrounded by points B, C, H, E, F and G shown in Fig. 1.
  • Figure 1 is a distribution diagram of the irreversible demagnetization rate of the magnets in Table 2 at 200 ° C, organized by Dy and Tb contents.
  • FIG. 2 shows the shape of the magnet of Example 24 in Japanese Patent Application Laid-Open No. HEI 4-11616 and that of Example 2 according to the present invention so that the permeance coefficient (P c) becomes 3.
  • the figure shows the results of measuring the irreversible demagnetization rate at different measurement temperatures when the adjusted sample was magnetized at 50 KOe.
  • Figure 3 shows the shape adjusted so that the harmony coefficient (P c) is 1. This figure shows the same irreversible demagnetization rate measurement results as in Fig. 2, except that the used sample was used. Preferred mode of the invention
  • the guideline is the irreversible demagnetization rate at 200 ° C. That is, the value (minus) of the irreversible demagnetization rate (200 ° C) in the above equation (1) should be as close to 0% as possible.
  • R is typically Nd or Nd + Pr.
  • R—B Co—Fe
  • the irreversible demagnetization rate (160 ° C) shown in this publication is A 2 Q in the above equation (1).
  • A16 (A 16 is the flux value measured at 160 ° C for 120 minutes and then cooled to room temperature), and the value measured when the permeance coefficient (P c) is 3. . That is, after magnetization at 5 0 KO e on samples prepared shaped so that P c force 3, eight 25 and eight 16.
  • the ability to contain a C content of 0.1 to 15 at.! 3 ⁇ 4 is preferably in the range of 1.0 to 10 at.%, And more preferably 2.5 to 7 at.%. It is a range.
  • B is required for the formation of the magnetic phase, which requires at least 0.5 at.%. However, excessive addition actually degrades the magnetic properties. Therefore, the ability to contain 0.5 to 15 at.% Of B is preferable.
  • the preferred amount of B is in the range of 1.0 to 10 at.%, And the more preferable B is in the range of 1.5 to 7 at.%. It is an enclosure.
  • C + B contains at least 2 at. 3 ⁇ 4i to form a magnetic phase and improve oxidation resistance. However, if it exceeds 30 at.%, The magnetic properties deteriorate, so C + B is set to 2 to 30 at.%.
  • C 0 has the effect of increasing the Curie point while maintaining magnetic properties. For this reason, if the force required to contain C 0 exceeds 40 at. Because it becomes significant, it is contained in an amount of 40 at.% Or less.
  • Dy and Tb are characteristic elements of the magnet of the present invention, and the irreversible demagnetization rate can be significantly reduced by adding both elements in combination. For this reason, the total amount of Dy + Tb is 0.5 at. 3 ⁇ 4; the force that requires the above, even if the total weight exceeds 5 at. Since the characteristics may be degraded, the total amount is 0.5 to 5 at.
  • the addition of Dy alone or Tb alone does not contribute much to the reduction of the irreversible demagnetization as shown in the comparative examples below. This suggests that the irreversible demagnetization rate decreases due to the synergistic effect of both elements.
  • Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm are 8 to 20 at.%.
  • a magnetic phase and a grain boundary phase are formed in the sintered magnet alloy, and high iHc and Br can be maintained.
  • R elements particularly preferred elements are Nd and Pr, and it is particularly desirable to add Nd alone or a combination of Nd and Pr. If R is less than 8 at.%, Sufficient Br cannot be obtained, and if it exceeds 2 O at.%, Sufficient Br cannot be obtained.
  • the preferred content of the R element is 13 to 18 at.%.
  • the permanent magnet alloy of the present invention having the above composition has a low irreversible demagnetization rate (200) according to the above equation (1) of 0 to 120%, preferably 0 to 115%. Values, and even values from 0 to 15%, rare earth magnets
  • a low irreversible demagnetization rate (200) according to the above equation (1) of 0 to 120%, preferably 0 to 115%. Values, and even values from 0 to 15%, rare earth magnets
  • Sm-Co magnets For the first time other than Sm-Co magnets, permanent magnet alloys for high temperature applications are provided. In conventional B-containing rare earth magnets, this problem has been dealt with by using a magnet with a high coercive force in anticipation of demagnetization when the temperature is raised. Since demagnetization hardly occurs, it can continue to function as a permanent magnet with a high magnetic force.
  • the magnet of the present invention can maintain its magnetic properties even when used for temperature rise applications if iHc is 13 KOe or more, preferably 15 KOe or more. Compared to conventional magnets, which had to have considerably high iHc in order to maintain the magnetic properties for heating applications, they could be said to be effective permanent magnet alloys.
  • a sintered magnet can be obtained by a series of steps of melting, forging, pulverizing, forming, and sintering. Vacuum melting, sintering, inert gas atmosphere melting, sintering, quenching roll method, atomizing method, etc. can be adopted as the melting and forming method.
  • a heat treatment step between the manufacturing and pulverizing steps, and heat the pre-pulverized one in an inert gas atmosphere at a temperature of 600 ° C or more. It is preferable to perform the heat treatment at, so that the irreversible demagnetization rate can be further reduced.
  • sintering is performed at a temperature of 1000 to 1200 ° C in an inert gas, and the temperature is gradually cooled from this sintering temperature to 600 to 900 ° C. It is preferable to rapidly cool from that temperature.
  • the irreversible demagnetization rate can be further reduced by rapid cooling after the sintering.
  • the sintered magnet alloy of the present invention can be manufactured according to the same method as that for the sintered magnet described in Japanese Patent Application Laid-Open No. 4-116164. .
  • the outline is as follows.
  • the raw materials of each component weighed so as to have an alloy composition are melted in a vacuum melting furnace at 160 ° C or higher, and rapidly cooled in a water-cooled mold.
  • the obtained lump is heat-treated in an Ar atmosphere at 600 ° C or higher as described above, and then coarsely ground with a jaw crusher.
  • the obtained coarse powder is finely pulverized with a vibrating ball mill. Reduce the diameter to 2 to 1 2m powder.
  • These grinding processes are also performed in an Ar atmosphere.
  • part of the C raw material can be added. That is, a part of the raw material C is put into the vacuum melting furnace, and the rest is added in this fine pulverization process.
  • Carbon black is suitable as the C raw material, but organic substances containing C such as aliphatic hydrocarbons, higher fatty alcohols, higher fatty acids, fatty amides, metallic soaps, and fatty acid esters can also be used.
  • the powder is compacted in an external magnetic field. Range. 1 to 5 t Roh cm 2
  • the molding pressure it is appropriate or 1 5 KO e as the external magnetic field.
  • This molding step is also desirably performed in an Ar atmosphere.
  • This molded product is sintered in an Ar atmosphere at 100 to 1200 ° C. for about 2 hours.
  • the quenching can be started from 600 to 900 ° C by blowing a low-temperature inert gas from that temperature, or by immersion in water or oil or a similar liquid.
  • This quenching start temperature is from 600 to 900 ° C to 400 ° C or below — at 50 ° C Zmin or more, preferably at a cooling rate of-100 / min or more. Is good.
  • each raw material of the alloy component is melted and formed, the obtained alloy is pulverized, the powder is compacted, and the molded product is subjected to 100 Q to 100 Q in an inert gas.
  • the alloy before grinding is heat-treated in an inert gas at a temperature of 600 ° C or more.
  • / or sintering in an inert gas at a temperature of 1000 to 1200 ° C, then slowly cooling from the sintering temperature to 600 to 900 ° C.
  • a method for producing a permanent magnet alloy having excellent heat resistance characterized by rapid cooling. At that time, part of the C raw material can be added during melting, and the other part of the C raw material can be added during alloy grinding.
  • T b 0.5 at.
  • Each component raw material was weighed so as to have the above-mentioned alloy composition and melted in a vacuum melting furnace. At that time, a part of the C raw material was stored without being put into the melting furnace. The obtained molten metal was rapidly quenched in a copper water-cooled mold from 160 ° C. to obtain a lump alloy. This lump alloy is coarsely ground with a jaw crusher with or without heat treatment in an Ar atmosphere at the temperature shown in Table 1, and the coarse powder and the stored C raw material are vibrated ball mill. And pulverized to obtain a powder with an average particle size of 5 m.
  • This sample is magnetized with an external magnetic field of 50 KOe, and the flux is measured at room temperature (25 ° C).
  • the measurement of the flux was performed by mounting an iron core coil on a flux meter manufactured by Toyo Magnetic Industry Co., Ltd.
  • the value of the flux at this time is A 25.
  • the magnetized sample was kept at 200 ° C for 120 minutes.
  • the heating was performed in an oil bath filled with silicon oil.
  • the temperature of the oil bath was precisely controlled at 0.1.
  • the flux is measured again using the flux meter described above.
  • the flux value at this time is A 20 .
  • From A 25 and A 200 was measured to calculate the irreversible demagnetization by the following equation.
  • the shape of the sample was adjusted so that the admittance coefficient (P c) became 3 in the same manner as in the embodiment of Japanese Patent Application Laid-Open No. 4-116144, and the heating and holding in an oil bath were performed. ° except for using CX 1 2 0 minutes, and a 25 to measure the same way in the above 2 0 0 ° C a 16. Is measured, and the irreversible demagnetization rate is calculated using the above formula.
  • the temperature coefficient of the coercive force is calculated by the following equation, using the coercive force at room temperature as BQ and the coercive force measured at 160 ° C with a vibrating magnetometer.
  • the progress of ⁇ is measured by the pre-shock cooker test (PCT). Specifically, the occurrence of ⁇ when the sample is held at 120 ° C, 2 atm, and 100% RH (saturation condition) for 1 () 0 hours is visually observed using a tester manufactured by Tabai Espec.
  • PCT pre-shock cooker test
  • a sintered product was manufactured under the same manufacturing conditions as in Example 1, except that the composition of the alloy was changed as shown in Table 2.
  • the characteristics of the obtained sintered magnet were measured in the same manner as in Example 1, and the results are shown in Table 2.
  • Comparative Example 1 with no addition of Dy and Tb
  • Comparative Example 2 with no addition of Tb at 0.5 at.! Dy, and 0.5 at.
  • the irreversible demagnetization rates at 200 ° C were 195%, —95%, and —91%, and the magnetic force was almost completely reduced when the temperature was raised to 200 ° C. Lost.
  • adding only one of Dy and Tb has no effect on the irreversible demagnetization rate at 200.
  • Comparative Example 3 the irreversible demagnetization rate is reduced to some extent by increasing the content of Dy alone, but it is still insufficient.
  • Comparative Example 5 is inferior in oxidation resistance because the C content is lower than the range specified in the present invention.
  • Tb was added without addition of Dy. 3. O at. 3 ⁇ 4; Force that was added Although irreversible demagnetization at 200 ° C. was better than Comparative Example 4, although heat resistance was better. Low at 0%.
  • Figure 1 shows the Dy content (at.%) On the horizontal axis and the Tb content (at.! 0) on the vertical axis, and all magnets in Table 2 (except for Comparative Example 5 where point ⁇ occurred). ) Shows the distribution of the irreversible demagnetization value at 200 ° C for the amounts of Dy and Tb contained in each of them. The figure shows the value of the irreversible demagnetization factor at that position at 200 ° C. From the results in Fig. 1, Dy: 2 to 3 at.! 3 ⁇ 4 and Tb: 0.3 to 1 It can be seen that there is a peak (point where the irreversible demagnetization approaches 0%) in the irreversible demagnetization at 200 ° C in the .5 at.% Region.
  • FIGS. 2 and 3 show the magnets of Example 24, which are considered to have the highest heat resistance among the magnets disclosed in Japanese Patent Application Laid-Open No. HEI 4-116144, and those according to the present invention.
  • a sample whose shape was adjusted so that the permeance coefficient (P c) became 3 with the sample of Example 2 was magnetized at 50 KOe (Fig. 2), and?
  • the magnet of Example 24 (referred to as open magnet) of Japanese Patent Application Laid-Open No. HEI 4-1-164144 is 9 Nd—9 Dy—59 Fe—15 Co—IB—7 C
  • the irreversible demagnetization rate at 160 ° C is -9.4% for the open magnet, whereas it is improved to 11.7% in Example 2 of the present invention.
  • the irreversible demagnetization rate at 200 is 12.3% in the case of the open magnet, whereas it is increased to 14% in Example 2 of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

A permanent magnetic alloy having excellent heat resistance which comprises 0.1 to 15 at.% C, 0.5 to 15 at.% B (the sum of C and B is 2 to 30 at.%), 0 to 40 at.%, excluding 0 at.%, Co, 0.5 to 5 at.% Dy and Tb, 8 to 20 at.% R (provided that R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm), and Fe and unavoidable impurities as the remainder.

Description

明 細 書 耐熱性に優れた永久磁石合金およびその製造法 技術分野  Description Permanent magnet alloy with excellent heat resistance and manufacturing method
本発明は, 大気中 2 0 0 °Cで使用されても磁力が殆んど劣化しないと いう極めて耐熱性に優れた R - B - C - C o - F e系永久磁石合金 (R は Yまたは希土類元素) に関する。 背景技術  The present invention relates to an R-B-C-Co-Fe-based permanent magnet alloy (R is Y) which has extremely excellent heat resistance such that the magnetic force hardly deteriorates even when used at 200 ° C in the atmosphere. Or rare earth elements). Background art
耐熱性に優れた希土類磁石として S m— C o磁石が知られている。 し かし, この磁石は高価である。 ここで言う耐熱性とは特に磁力が熱によ つて劣化しないことを意味する。 より安価で且つ耐熱性を改善した希土 類磁石として, 同一出願人に係る特開平 4 - 1 1 6 1 4 4号公報 (特許 第 2 7 4 0 9 8 1号) に記載の R— B— C— C o - F e系永久磁石合金 がある。 この磁石合金は, C (炭素) を必須の合金元素としたうえ, R として軽希土類と重希土類を組み合わせて使用したものである。 該公報 には Cを含有させると不可逆減磁率が顕著に向上する (マイナスの値が 0 %の側に近づく) ことが示されており, また Rの一部に重希土類元素 を用いると一層不可逆減磁率が向上することを教示している。 発明の目的  Sm—Co magnets are known as rare earth magnets having excellent heat resistance. However, this magnet is expensive. The heat resistance here means that the magnetic force does not deteriorate by heat. As a rare earth magnet which is cheaper and has improved heat resistance, R-B described in Japanese Patent Application Laid-Open No. HEI 4-116164 (Patent No. 274,981) by the same applicant. — C— Co-Fe permanent magnet alloys are available. This magnet alloy uses C (carbon) as an essential alloying element and uses a combination of light rare earth and heavy rare earth as R. The publication indicates that the inclusion of C significantly improves the irreversible demagnetization rate (negative values approach the 0% side), and that the use of heavy rare earth elements in part of R further irreversible. It teaches that the demagnetization rate is improved. Purpose of the invention
発熱源の近くに設置される機器類に永久磁石を取り付ける場合には, 温度が上昇しても磁力が低下しないこと, すなわち残留磁束密度 (B r ) が劣化しないことが要求される力 磁石の使用温度が 2 0 0 °C近辺とな る場合には (例えば自動車用エンジン回りに設置される機器類では 2 0 0 °C近辺となるものがあり, 電気自動車用モータも例にもれない) , 従 来品のなかでは S m - C o磁石しか適用できない。 しかし, これは前述 のように高価である。 また通常の X d— F e (C o — B系希土類磁石 ではこのような高温 (例えば 2 0 0 CC ) での使用は不可である。 When a permanent magnet is attached to equipment installed near a heat source, it is required that the magnetic force does not decrease even when the temperature rises, that is, that the residual magnetic flux density (B r) does not deteriorate. If the operating temperature is around 200 ° C (for example, some devices installed around the engine for automobiles will be around 200 ° C, and motors for electric vehicles are unparalleled. ), Obedience Only Sm-Co magnets can be applied. However, this is expensive as mentioned above. The conventional X d- F e (C o - the B rare earth magnet used in such a high temperature (e.g., 2 0 0 C C) is impossible.
前記の特開平 4 1 1 6 1 4 4号公報に記載されたように C (炭素) を合金元素とするものでは, Cの含有により不可逆減磁率が向上し, ま た Rの一部に重希土類元素を用いると一層不可逆減磁率が向上するが, 該公報には 2 0 0 °Cに昇温されても減磁しないようなものは示されてい ない。  As described in the above-mentioned Japanese Patent Application Laid-Open No. H11-164144, in the case of using C (carbon) as an alloying element, the irreversible demagnetization rate is improved by the inclusion of C, and a part of R is superposed. The use of rare earth elements further improves the irreversible demagnetization rate, but the publication does not disclose anything that does not demagnetize even when the temperature is raised to 200 ° C.
したがって, 本発明の課題は, 2 0 0 °Cでも使用に耐えるような耐熱 性に優れると共に安価な永久磁石合金を得ることである。 発明の開示  Accordingly, an object of the present invention is to obtain an inexpensive permanent magnet alloy that has excellent heat resistance enough to withstand use even at 200 ° C. Disclosure of the invention
前記の諸課題を解決するため, 特開平 4 - 1 1 6 1 4 4号公報に提案し たように Cの含有が耐熱性を向上させるという基本的な考え方に立脚した うえ, 重希土類元素の個々の耐熱性に及ぼす影響を調査研究したところ, N dや P r等の基本的希土類元素に加えて, 適量の D yと T bを複合添加 した場合には, 特に, D yと T bを互いに関連する量で添加した場合には, 顕著に耐熱性が向上することを新たに見い出した。  In order to solve the above-mentioned problems, based on the basic idea that the content of C improves heat resistance as proposed in Japanese Patent Application Laid-Open No. 4-116164, the heavy rare earth element Investigations into the effects on individual heat resistance revealed that, in addition to basic rare earth elements such as Nd and Pr, when Dy and Tb were added in an appropriate amount in combination, Dy and Tb It was newly found that the heat resistance was remarkably improved when added in amounts related to each other.
すなわち本発明は, 原子百分率 (at.¾ で,  That is, the present invention provides an atomic percentage (at.
C : 0. 1 - 1 5 at. ¾,  C: 0.1-1 5 at.
B : 0. 5 - 1 5 at. %,  B: 0.5-15 at.%,
C + B : 2 - 3 0 at. %,  C + B: 2-30 at.%,
C o : 4 0 at. 以下 ( 0 %を含まず) ,  C o: 40 at. Or less (not including 0%),
D y + T b : 0. 5 ~ 5 at. %で,  D y + T b: 0.5 to 5 at.%,
好ましくは T b (at.¾) /D y (at. ¾) : 0. 1 - 0. 8 Preferably T b (at.¾) / D y (at.¾): 0.1-0.8
R : 8〜 2 0 at. %,  R: 8 to 20 at.%,
ただし, Rは N d , P r, C e , L a, Y, G d , H o, E rおよび T mからなる群から選ばれた元素の少なく とも一種を表す, 残部 : F eおよび不可避的不純物, Where R is Nd, Pr, Ce, La, Y, Gd, Ho, Er and T m represents at least one element selected from the group consisting of m. The balance: Fe and unavoidable impurities,
からなる耐熱性に優れた永久磁石合金を提供するものである。 And a permanent magnet alloy having excellent heat resistance.
この永久磁石合金の耐熱性は, 下記の(1) 式に従う不可逆減磁率 ( 2 0 The heat resistance of this permanent magnet alloy is determined by the irreversible demagnetization rate (20
0 °C が 0 %〜一 2 0 %の範囲, さらに好ましくは 0 %〜一 1 5 %の範囲 (但し iHc ≥ 1 3 KOe ) を示す点において特徴づけられる。 It is characterized in that 0 ° C shows a range of 0% to 120%, more preferably a range of 0% to 115% (iHc ≥ 13 KOe).
不可逆減磁率 ( 2 0 0 °C) = 1 0 0 X (A 2。。 — A25) /A25 · · (1) ただし, Irreversible demagnetization (2 0 0 ° C) = 1 0 0 X (A 2 .. - A 25) / A 2 5 · · (1) where
A25 : パーミアンス係数 (P c ) が 1 になるように形状を調整した試 料を 5 0 K 0 eで着磁後, 室温 ( 2 5 °C) で測定したフラックス値 A 25: permeance coefficient (P c) is after magnetization of the specimen to the shape was adjusted to 1 with 5 0 K 0 e, at room temperature (2 5 ° C) measured flux value
A 20。 : A 25を測定した試料を 2 0 0 °Cに 1 2 0分間保持したあと室温 ( 2 5 °C ) まで冷却して測定したフラッ クス値。 A 20 . : Samples were measured A 25 2 0 0 ° 1 2 0 minute hold was followed at room temperature (2 5 ° C) the flux values measured was cooled to C.
とくに, 不可逆減磁率が 0〜一 2 0 %のものは, D yと T bの適正な組 合せ, 例えば D y + T b : 0. 5〜 5 at. !¾で且つ D y力 0. 3〜 4. 9 at. % で T bが 0. 1〜 4. 7at.%の範囲の組合せ (図 1の点 A, B, Cおよび D で囲われる範囲) で得ることができ, さらに不可逆減磁率が 0〜一 1 5 % のものは, 図 1 に示される点 B, C, H, E, Fおよび Gで囲われる範囲 の D y含有量と T b含有量によって得ることができる。 図面の簡単な説明  In particular, when the irreversible demagnetization rate is 0 to 120%, the proper combination of Dy and Tb, for example, Dy + Tb: 0.5 to 5 at. It can be obtained in a combination of 3 to 4.9 at.% And Tb in the range of 0.1 to 4.7 at.% (The range surrounded by points A, B, C, and D in Fig. 1). Those with a demagnetization ratio of 0 to 115% can be obtained by the Dy content and Tb content in the range surrounded by points B, C, H, E, F and G shown in Fig. 1. BRIEF DESCRIPTION OF THE FIGURES
図 1 は, 表 2の磁石の 2 0 0 °Cでの不可逆減磁率の値を D yと T b の含有量で整理して示した不可逆減磁率の分布図である。  Figure 1 is a distribution diagram of the irreversible demagnetization rate of the magnets in Table 2 at 200 ° C, organized by Dy and Tb contents.
図 2は, 特開平 4 一 1 1 6 1 4 4号公報の実施例 2 4の磁石と, 本 発明に従う実施例 2のものとを, パーミアンス係数 (P c ) が 3になる ように形状を調整した試料を 5 0 KO eで着磁した場合について, 測定 温度を変えて不可逆減磁率を測定した結果を示した図である。  FIG. 2 shows the shape of the magnet of Example 24 in Japanese Patent Application Laid-Open No. HEI 4-11616 and that of Example 2 according to the present invention so that the permeance coefficient (P c) becomes 3. The figure shows the results of measuring the irreversible demagnetization rate at different measurement temperatures when the adjusted sample was magnetized at 50 KOe.
図 3は, パ一ミアンス係数 (P c ) が 1 となるように形状を調整し た試料を用いた以外は, 図 2 と同様の不可逆減磁率測定結果を示した図 てある。 発明の好ま しい形態 Figure 3 shows the shape adjusted so that the harmony coefficient (P c) is 1. This figure shows the same irreversible demagnetization rate measurement results as in Fig. 2, except that the used sample was used. Preferred mode of the invention
磁石の使用温度が場合によっては 2 0 0 °Cになることもあると予定し て機器類を設計する場合, その指針となるものは 2 0 0 °Cにおける不可 逆減磁率である。 すなわち, 前記(1) 式の不可逆減磁率 ( 2 0 0 °C) の 値 (マイナス) が出来るだけ 0 %に近づく ものであるのがよい。  When designing equipment based on the assumption that the operating temperature of the magnet may reach 200 ° C in some cases, the guideline is the irreversible demagnetization rate at 200 ° C. That is, the value (minus) of the irreversible demagnetization rate (200 ° C) in the above equation (1) should be as close to 0% as possible.
Rが代表的には N dまたは N d + P rである R— B— C o— F e系焼 結磁石合金に適量の Cを含有させると不可逆減磁率 ( 1 6 0 °C) の値 ( マイナス) が 0に近づくようになる。 この事実は, 特開平 4 - 1 1 6 1 4 4号公報の実施例に示されている。 しかし, この公報に示された不可 逆減磁率 ( 1 6 0 °C) は, 前記(1) 式における A 2Q。 を A 16。 に置き換 えたもので (A 16。 は 1 6 0 °Cに 1 2 0分間保持したあと室温まで冷却 して測定したフラックス値) , しかもパーミアンス係数 (P c ) が 3で の測定値である。 すなわち, P c力 3になるように形状を調製した試料 に対して 5 0 KO eで着磁後, 八25と八16。 おフラ ックス値を測定して 求めた不可逆減磁率 ( 1 6 0 °C) である。 この公報に見られるように C 含有による耐熱性向上効果 (更には耐酸化性効果) が知られているが, 2 0 0 °Cでの不可逆減磁率については不明であった。 また, 従来のあら ゆる R— (F e , C o) — B系焼結磁石合金 (Cを合金元素としないも の) において不可逆減磁率 ( 2 0 0 °C) の値が 0 %〜一 2 0 %を示すも のは知られていなかった。 R is typically Nd or Nd + Pr. R—B—Co—Fe The value of irreversible demagnetization (160 ° C) when an appropriate amount of C is added to the sintered magnet alloy. (Minus) approaches 0. This fact is shown in the example of Japanese Patent Application Laid-Open No. 4-116164. However, the irreversible demagnetization rate (160 ° C) shown in this publication is A 2 Q in the above equation (1). A16 . (A 16 is the flux value measured at 160 ° C for 120 minutes and then cooled to room temperature), and the value measured when the permeance coefficient (P c) is 3. . That is, after magnetization at 5 0 KO e on samples prepared shaped so that P c force 3, eight 25 and eight 16. This is the irreversible demagnetization rate (160 ° C) obtained by measuring the flux value. As shown in this publication, the effect of improving heat resistance (and the effect of oxidation resistance) by containing C is known, but the irreversible demagnetization rate at 200 ° C was unknown. In addition, the value of the irreversible demagnetization (200 ° C) of all conventional R- (F e, C o) -B sintered magnet alloys (without using C as alloying element) is 0% to 1%. No indication of 20% was known.
本発明者らは, 前記公報に提案して以来も, R— F e— C o— C一 B 系の焼結磁石合金の耐熱性をさらに向上させるベく, その合金組成や製 造法について種々の試験研究を続けてきたが, 数ある希土類元素のうち でも, D yと T bを適量複合添加した場合には, 著しく不可逆減磁率の 低い磁石合金が得られることを知見した。 D yと T bを単独添加しても それほど効果は見られないが, 両者を複合添加した場合に耐熱性が良好 となるのである。 Since the present inventors have proposed in the above-mentioned publications, we have further improved the heat resistance of sintered R-Fe-Co-C-B series magnet alloys, and have studied their alloy composition and manufacturing method. We have been conducting various tests and studies, but even among the rare earth elements, when Dy and Tb are added in an appropriate amount, the irreversible demagnetization rate becomes remarkably high. It has been found that a low magnet alloy can be obtained. Addition of Dy and Tb alone does not provide much effect, but when both are added in combination, the heat resistance improves.
以下に本発明の磁石合金の各成分含有量の範囲を規制する理由の概略 と本発明に従う合金磁石の製造法について説明する。  Hereinafter, the outline of the reason for restricting the range of the content of each component of the magnet alloy of the present invention and the method of manufacturing the alloy magnet according to the present invention will be described.
〔C : ϋ . 1 ~ 1 5 at. %〕  [C: ϋ. 1 to 15 at.%]
Cは, 特開平 4 一 1 1 6 1 4 4号公報に記載のとおり, 本磁石合金の 磁気特性を良好に維持しながら希土類磁石の欠点である酸化し易い性質 を改質し, 耐酸化性を向上させる作用を供する。 また不可逆減磁率の低 下にも寄与する。 Cの耐酸化性および耐熱性向上効果は 0 . l at. %未満 では十分ではない。 しかし 1 5 at. %を超えると B rが低下するようにな る。 このため, 0 . 1〜 1 5 at. !¾の C量を含有させる力 好ましい C量 は 1 . 0〜 1 0 at. %の範囲, さらに好ましい C量は 2 . 5 ~ 7 at. %の範 囲である。  C, as described in Japanese Patent Application Laid-Open No. HEI 4-11616, improves the easily oxidizable property of rare earth magnets while maintaining good magnetic properties of the magnet alloy, and improves the oxidation resistance. Provides an effect of improving It also contributes to lowering the irreversible demagnetization rate. If the effect of improving the oxidation resistance and heat resistance of C is less than 0.1 lat.%, It is not sufficient. However, when it exceeds 15 at.%, Br decreases. Therefore, the ability to contain a C content of 0.1 to 15 at.! ¾ is preferably in the range of 1.0 to 10 at.%, And more preferably 2.5 to 7 at.%. It is a range.
〔 B : 0 . 5〜 1 5 at. !¾〕  [B: 0.5 to 15 at.! ¾]
Bは磁性相形成のために必要であり, このためには少なく とも 0 . 5 at. %を必要とする。 しかし, 過剰の添加はかえつて磁気特性を劣化させ る。 このため, 0 . 5〜 1 5 at. %の B量を含有させる力 好ましい B量 は 1 . 0〜 1 0 at. %の範囲, さらに好ましい B量は 1 . 5〜 7 at. %の範 囲である。  B is required for the formation of the magnetic phase, which requires at least 0.5 at.%. However, excessive addition actually degrades the magnetic properties. Therefore, the ability to contain 0.5 to 15 at.% Of B is preferable. The preferred amount of B is in the range of 1.0 to 10 at.%, And the more preferable B is in the range of 1.5 to 7 at.%. It is an enclosure.
C C + B : 2〜 3 0 at. ¾  C C + B: 2 to 30 at.
磁性相の形成と耐酸化性向上のために C + Bは少なく とも 2 at. ¾iを含 有させる。 しかし, 3 0 at. %を超えると磁気特性を劣化させるので, C + Bを 2〜 3 0 at. %とする。  C + B contains at least 2 at. ¾i to form a magnetic phase and improve oxidation resistance. However, if it exceeds 30 at.%, The magnetic properties deteriorate, so C + B is set to 2 to 30 at.%.
C C 0 : 4 0 at. ¾以下〕  C C 0: 40 at. ¾ or less]
C 0は磁気特性を維持しながらキューリ点を高める作用がある。 この ため C 0の含有を必須とする力 4 0 at. ¾を超えると保磁力の低下が顕 著となるので 4 0 at. %以下の量で含有させる。 C 0 has the effect of increasing the Curie point while maintaining magnetic properties. For this reason, if the force required to contain C 0 exceeds 40 at. Because it becomes significant, it is contained in an amount of 40 at.% Or less.
〔D y十 T b : 0 . 5〜 5 at. ¾〕  [Dy ten Tb: 0.5 to 5 at. ¾]
D yと T bは本発明磁石の特徴的元素であり, 両元素を複合して添加 することにより不可逆減磁率を顕著に低下させることができる。 このた め, D y + T bの合計量として 0 . 5 at. ¾;以上を必要とする力, この合 計量が 5 at. %を超えても耐熱性向上効果は飽和し, かえつて磁気特性を 劣化させることがあるので, この合計量を 0 . 5〜 5 at. ¾;とする。 なお, D y単独または T b単独の添加では後記の比較例に示すように不可逆減 磁率低下にそれほど寄与しない。 このことから, 両元素の相乗効果によ り不可逆減磁率が低下するものと考えられる。 また, 両元素の含有割合 T b (at. ¾) Z D y (at. ¾) は 0 . 1〜 0 . 8の範囲であるのがよく, 後 記の実施例に示すように, D yが 0 . 3〜 4 . 9 at. ¾で T bが 0 . :!〜 4 . 7 at. %の範囲であれば, パーミァン係数 = 1のもとでの 2 0 0 °Cでの不可 逆減磁率が 0〜一 2 0 % , 望ましくは 0〜一 1 5 %を示す耐熱性に優れ た磁石を得ることができる。  Dy and Tb are characteristic elements of the magnet of the present invention, and the irreversible demagnetization rate can be significantly reduced by adding both elements in combination. For this reason, the total amount of Dy + Tb is 0.5 at. ¾; the force that requires the above, even if the total weight exceeds 5 at. Since the characteristics may be degraded, the total amount is 0.5 to 5 at. The addition of Dy alone or Tb alone does not contribute much to the reduction of the irreversible demagnetization as shown in the comparative examples below. This suggests that the irreversible demagnetization rate decreases due to the synergistic effect of both elements. Further, the content ratio Tb (at.¾) ZDy (at.¾) of both elements is preferably in the range of 0.1 to 0.8, and as shown in the examples described later, Dy is 0.3 to 4.9 at. T and Tb is 0.:! Within the range of ~ 4.7 at.%, The irreversible demagnetization rate at 200 ° C under the permean coefficient = 1 is 0 to 20%, preferably 0 to 15%. A magnet with excellent heat resistance as shown can be obtained.
〔R : 8〜 2 0 at. %〕  [R: 8 to 20 at.%]
D yと T b以外の希土類元素として, N d, P r , C e, L a , Y, G d , H o , E r , T mの一種または二種以上を 8〜 2 0 at. %含有する ことにより, 焼結磁石合金において磁性相と粒界相を形成し, 高い i H c と B rを維持することができる。 この R元素のうち, 特に好ましい元 素は N dと P rであり, N d単独または N dと P rの複合添加が特に望 ましい。 Rが 8 at. %未満では十分な B rが得られず, 2 O at. %を超えて も十分な B rが得られない。 好ましい R元素の含有量は 1 3〜 1 8 at. % である。  As a rare earth element other than Dy and Tb, one or more of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm are 8 to 20 at.%. By containing it, a magnetic phase and a grain boundary phase are formed in the sintered magnet alloy, and high iHc and Br can be maintained. Among these R elements, particularly preferred elements are Nd and Pr, and it is particularly desirable to add Nd alone or a combination of Nd and Pr. If R is less than 8 at.%, Sufficient Br cannot be obtained, and if it exceeds 2 O at.%, Sufficient Br cannot be obtained. The preferred content of the R element is 13 to 18 at.%.
以上の成分組成からなる本発明の永久磁石合金は, 前記の(1 ) 式に従 う不可逆減磁率 ( 2 0 0 ) が 0〜一 2 0 % , 好ましくは 0〜一 1 5 %と いう低い値, さらには 0 〜一 5 %の値を有することができ, 希土類磁石 としては S m - C o磁石以外では始めて高温用途の永久磁石合金が提供 される。 これまでの B含有希土類磁石では, 昇温されたときの減磁を予 定して高い保磁力のものを使用するということで対処していたのである が, 本発明磁石では昇温しても減磁が殆んど起きないので, 高い磁力の まま永久磁石として機能し続けることができる。 特に本発明磁石は i H c が 1 3 K O e 以上, 好ましくは 1 5 K O e 以上であれば昇温用途に使用 しても磁気特性を維持することができる。 従来の磁石では昇温用途で磁 気特性を維持するためには, 相当高い i H c を有するものを使用しなけ ればならなかったのに比べると, 有効な永久磁石合金であると言える。 本発明の永久磁石合金を製造するには, 溶解, 铸造, 粉砕, 成形, 焼 結という一連の工程で焼結磁石とすることができる。 溶解铸造法として は, 真空溶解, 铸造法, 不活性ガス雰囲気溶解 ·铸造法, 急冷ロール法, ァ トマイズ法等が採用できる。 磁気特性と耐熱性に優れた焼結磁石とす るには, 铸造工程と粉砕工程の間に熱処理工程を挿入し, 粉砕前のもの を不活性ガス雰囲気中で 6 0 0 °C以上の温度で熱処理するのが好ましく, これにより一層不可逆減磁率を低下させることができる。 また, 焼結ェ 程では不活性ガス中で 1 0 0 0〜 1 2 0 0 °Cの温度で焼結し, この焼結 温度から 6 0 0〜 9 0 0 °Cまで徐冷し, 次いでその温度から急冷するの が好ましい。 この焼結後の急冷によっても不可逆減磁率を一層低下させ ることができる。 The permanent magnet alloy of the present invention having the above composition has a low irreversible demagnetization rate (200) according to the above equation (1) of 0 to 120%, preferably 0 to 115%. Values, and even values from 0 to 15%, rare earth magnets For the first time other than Sm-Co magnets, permanent magnet alloys for high temperature applications are provided. In conventional B-containing rare earth magnets, this problem has been dealt with by using a magnet with a high coercive force in anticipation of demagnetization when the temperature is raised. Since demagnetization hardly occurs, it can continue to function as a permanent magnet with a high magnetic force. In particular, the magnet of the present invention can maintain its magnetic properties even when used for temperature rise applications if iHc is 13 KOe or more, preferably 15 KOe or more. Compared to conventional magnets, which had to have considerably high iHc in order to maintain the magnetic properties for heating applications, they could be said to be effective permanent magnet alloys. In order to produce the permanent magnet alloy of the present invention, a sintered magnet can be obtained by a series of steps of melting, forging, pulverizing, forming, and sintering. Vacuum melting, sintering, inert gas atmosphere melting, sintering, quenching roll method, atomizing method, etc. can be adopted as the melting and forming method. In order to obtain a sintered magnet with excellent magnetic properties and heat resistance, insert a heat treatment step between the manufacturing and pulverizing steps, and heat the pre-pulverized one in an inert gas atmosphere at a temperature of 600 ° C or more. It is preferable to perform the heat treatment at, so that the irreversible demagnetization rate can be further reduced. In the sintering process, sintering is performed at a temperature of 1000 to 1200 ° C in an inert gas, and the temperature is gradually cooled from this sintering temperature to 600 to 900 ° C. It is preferable to rapidly cool from that temperature. The irreversible demagnetization rate can be further reduced by rapid cooling after the sintering.
前記の熱処理と焼結後の急冷処理のほかは, 特開平 4 - 1 1 6 1 4 4 号公報に記載の焼結磁石と同様の方法に従って本発明の焼結磁石合金を 製造することができる。 その概要は次のとおりである。  Except for the above heat treatment and the quenching treatment after sintering, the sintered magnet alloy of the present invention can be manufactured according to the same method as that for the sintered magnet described in Japanese Patent Application Laid-Open No. 4-116164. . The outline is as follows.
まず, 合金組成となるように秤量した各成分の原料を真空溶解炉で 1 6 0 0 °C以上で溶解し, 水冷铸型に急冷铸造する。 得られた铸塊を前記 のように 6 0 0 °C以上で A r雰囲気中で熱処理したあと, ジョークラッ シャ一で粗粉砕する。 得られた粗粉を振動ボールミルで微粉砕し, 平均 拉径 2〜 1 ϋ mの粉末にする。 これらの粉砕工程も A r雰囲気中で行 う。 また後者の微粉砕の工程において, C原料の一部を添加することが できる。 すなわち C原料の一部は真空溶解炉に投入する力 残部はこの 微粉砕工程で添加する。 この C原料としてはカーボンブラックが適切で あるが, 脂肪族炭化水素, 高級脂肪酸系アルコール, 高級脂肪酸, 脂肪 酸アマイ ド, 金属石けん, 脂肪酸エステル等の Cを含有する有機物質も 使用可能である。 First, the raw materials of each component weighed so as to have an alloy composition are melted in a vacuum melting furnace at 160 ° C or higher, and rapidly cooled in a water-cooled mold. The obtained lump is heat-treated in an Ar atmosphere at 600 ° C or higher as described above, and then coarsely ground with a jaw crusher. The obtained coarse powder is finely pulverized with a vibrating ball mill. Reduce the diameter to 2 to 1 2m powder. These grinding processes are also performed in an Ar atmosphere. In the latter pulverization process, part of the C raw material can be added. That is, a part of the raw material C is put into the vacuum melting furnace, and the rest is added in this fine pulverization process. Carbon black is suitable as the C raw material, but organic substances containing C such as aliphatic hydrocarbons, higher fatty alcohols, higher fatty acids, fatty amides, metallic soaps, and fatty acid esters can also be used.
次いで該粉体を外部磁場中で圧粉成形する。 成形圧としては 1〜 5 t ノ c m 2 の範囲, 外部磁場としては 1 5 K O e 以上が適切である。 この 成形工程も望ましくは A r雰囲気中で行う。 この成形品を A r雰囲気中 1 0 0 0〜 1 2 0 0 °Cで約 2時間の焼結を行う。 そして, 前記のように 焼結温度から 6 0 0〜 9 0 0 °Cまで徐冷し, 次いでその温度から急冷す る。 6 0 0〜 9 0 0 °Cから急冷を開始させるには, その温度から低温の 不活性ガスを吹付ける方法, 水または油またはこれに類する液中に浸漬 する方法で行うことができるが, この急冷開始温度 6 0 0〜 9 0 0 °Cか ら 4 0 0 °Cまで, またはそれ以下まで— 5 0 °C Zmin 以上, 好ましくは - 1 0 0 /min 以上の冷却速度で急冷するのがよい。 Next, the powder is compacted in an external magnetic field. Range. 1 to 5 t Roh cm 2 The molding pressure, it is appropriate or 1 5 KO e as the external magnetic field. This molding step is also desirably performed in an Ar atmosphere. This molded product is sintered in an Ar atmosphere at 100 to 1200 ° C. for about 2 hours. Then, as described above, it is gradually cooled from the sintering temperature to 600 to 900 ° C, and then rapidly cooled from that temperature. The quenching can be started from 600 to 900 ° C by blowing a low-temperature inert gas from that temperature, or by immersion in water or oil or a similar liquid. This quenching start temperature is from 600 to 900 ° C to 400 ° C or below — at 50 ° C Zmin or more, preferably at a cooling rate of-100 / min or more. Is good.
したがって, 本発明によれば, 合金成分の各原料を溶解铸造し, 得ら れた合金を粉砕し, その粉体を圧粉成形し, その成形品を不活性ガス中 で 1 0 0 Q〜 1 2 0 0 °Cの温度で焼結して, 前記の成分組成の焼結磁石 合金を製造するさいに, 粉砕前の合金を 6 0 0 °C以上の温度で不活性ガ ス中で熱処理すること, および /または不活性ガス中で 1 0 0 0〜 1 2 0 0 °Cの温度で焼結したあと, その焼結温度から 6 0 0〜 9 0 0 °Cまで 徐冷し, その後急冷することを特徴とする耐熱性に優れた永久磁石合金 の製造法を提供する。 そのさい, C原料の一部を溶解時に添加し, C原 料の他部を合金の粉砕時に添加することができる。  Therefore, according to the present invention, each raw material of the alloy component is melted and formed, the obtained alloy is pulverized, the powder is compacted, and the molded product is subjected to 100 Q to 100 Q in an inert gas. When sintering at a temperature of 1200 ° C to produce a sintered magnet alloy with the above composition, the alloy before grinding is heat-treated in an inert gas at a temperature of 600 ° C or more. And / or sintering in an inert gas at a temperature of 1000 to 1200 ° C, then slowly cooling from the sintering temperature to 600 to 900 ° C, Provided is a method for producing a permanent magnet alloy having excellent heat resistance characterized by rapid cooling. At that time, part of the C raw material can be added during melting, and the other part of the C raw material can be added during alloy grinding.
以下に本発明磁石の代表的な実施例を挙げる。 実施例 Hereinafter, typical examples of the magnet of the present invention will be described. Example
〔実施例 1〕  (Example 1)
下記の成分組成を有する合金を以下に述べる方法で製造した。  An alloy having the following composition was produced by the method described below.
「合金の成分組成 (at. ¾ ) 」  "Ingredient composition of alloy (at.¾)"
C : 5 . 0 at. ¾, C: 5.0 at.
B : 1 . 8 at. %, B: 1.8 at.%,
C o : 1 2 . 0 at. ¾, C o: 12.0 at.
N d : 1 3 . 0 at. ¾, N d: 13.0 at.
D y : 2 . 5 at. ¾, D y: 2.5 at.
T b : 0 . 5 at. ¾, T b: 0.5 at.
F e : 6 5 . 2 at. ¾, F e: 6 5.2 at.
C + B = 6 . 8 at. %, C + B = 6.8 at.%,
D y + T b = 3 . 0 at. ¾, D y + T b = 3.0 at at ¾,
T b / D y = 0 . 2 T b / D y = 0. 2
「製造法」  `` Manufacturing method ''
前記の合金組成となるように各成分原料を計量し, 真空溶解炉で溶解 した。 そのさい, C原料の一部は該溶解炉には投入せず保存しておいた。 得られた溶湯を銅水冷铸型に 1 6 0 0 °Cから急冷铸造して铸塊合金を得 た。 この铸塊合金を, 表 1 に示す温度で A r雰囲気中で熱処理するか又 はせずして, ジョークラッシャーで粗粉砕し, この粗粉と保存しておい た前記の C原料を振動ボールミルに入れて粉砕し, 平均粒径 5 mの粉 体を得た。  Each component raw material was weighed so as to have the above-mentioned alloy composition and melted in a vacuum melting furnace. At that time, a part of the C raw material was stored without being put into the melting furnace. The obtained molten metal was rapidly quenched in a copper water-cooled mold from 160 ° C. to obtain a lump alloy. This lump alloy is coarsely ground with a jaw crusher with or without heat treatment in an Ar atmosphere at the temperature shown in Table 1, and the coarse powder and the stored C raw material are vibrated ball mill. And pulverized to obtain a powder with an average particle size of 5 m.
この粉体を圧力 2 t Z c m 2 で外部磁場 1 5 K O e 中で磁場成形し, この成形体を A r雰囲気中で 1 1 0 0 °Cで 2時間焼結したあと, この焼 結温度から表 1 に示す急冷開始温度まで徐冷し, その急冷開始温度から A rを吹付けて表示の冷却速度で急冷した。 得られた焼結品の磁気特性, 耐熱性および耐酸化性を評価し, その結果を表 1 に示した。 耐熱性と耐 酸化性評価は次のようにして行った。 After this powder was a magnetic field formed by an external magnetic field of 1 in 5 KO e at a pressure 2 t Z cm 2 and the molded body was sintered for 2 hours at 1 1 0 0 ° C in an A r atmosphere, the sintering temperature Then, it was gradually cooled to the quenching start temperature shown in Table 1, and Ar was sprayed from the quenching start temperature to quench at the indicated cooling rate. The magnetic properties, heat resistance and oxidation resistance of the obtained sintered product were evaluated, and the results are shown in Table 1. Heat resistance and resistance Oxidation evaluation was performed as follows.
「耐熱性評価」  "Heat resistance evaluation"
(1) 2 0 () °Cでの不可逆減磁率の測定  (1) Measurement of irreversible demagnetization rate at 20 () ° C
パーミアンス係数 ( P c ) が 1 になるように試料を形状調整する。 具 体的には 2. 5 mm x 2. 5 mm x l . 0 5 mmの試料を切り出す。  Adjust the shape of the sample so that the permeance coefficient (P c) becomes 1. Specifically, cut out a 2.5 mm x 2.5 mm x l.05 mm sample.
この試料を 5 0 KOe の外部磁場で着磁し, 室温 ( 2 5 °C) でフラッ クスを測定する。 このフラックスの測定は東洋磁気工業株式会社製のフ ラックスメ一夕一に鉄心コイルを装着して行った。 この時のフラックス の値を A 25とする。 This sample is magnetized with an external magnetic field of 50 KOe, and the flux is measured at room temperature (25 ° C). The measurement of the flux was performed by mounting an iron core coil on a flux meter manufactured by Toyo Magnetic Industry Co., Ltd. The value of the flux at this time is A 25.
次に, この着磁した試料を 2 0 0 °Cに 1 2 0分保持した。 この加熱保 持はシリ コンオイルを充填したオイルバス中で行った。 オイルバスの温 度は士 0. 1 に精密制御した。 オイルバスから取り出した試料は室温で 十分に冷却したあと, 前記のフラックスメ一ターで再びフラックスを測 定する。 この時のフラックスの値を A 20。 とする。 測定した A 25と A 200 から次式で不可逆減磁率を算出する。 Next, the magnetized sample was kept at 200 ° C for 120 minutes. The heating was performed in an oil bath filled with silicon oil. The temperature of the oil bath was precisely controlled at 0.1. After the sample taken out of the oil bath is sufficiently cooled at room temperature, the flux is measured again using the flux meter described above. The flux value at this time is A 20 . And From A 25 and A 200 was measured to calculate the irreversible demagnetization by the following equation.
不可逆減磁率 ( 2 0 0 ) (%) = 1 0 0 X (A2。。— A25) /A25 Irreversible demagnetization (2 0 0) (%) = 1 0 0 X (A 2 ..- A 25) / A 25
(2) 1 6 0 °Cでの不可逆減磁率の測定 (2) Measurement of irreversible demagnetization rate at 160 ° C
特開平 4 - 1 1 6 1 4 4号公報の実施例のものと同様にパ一ミアンス 係数 (P c ) が 3になるように試料を形状調整し, オイルバスでの加熱 保持を 1 6 0 °C X 1 2 0分とした以外は, 前記の 2 0 0 °Cでの測定と同 様に A25と A 16。 を測定し, 前式により不可逆減磁率を算出する。 The shape of the sample was adjusted so that the admittance coefficient (P c) became 3 in the same manner as in the embodiment of Japanese Patent Application Laid-Open No. 4-116144, and the heating and holding in an oil bath were performed. ° except for using CX 1 2 0 minutes, and a 25 to measure the same way in the above 2 0 0 ° C a 16. Is measured, and the irreversible demagnetization rate is calculated using the above formula.
(3) 磁気特性および保磁力の温度係数  (3) Temperature coefficient of magnetic properties and coercive force
試料を 5 0 KOe の外部磁場で着磁したあと, 振動型磁力測定器で室 温 ( 2 5 °C) での磁気特性を測定する。 保磁力の温度係数については, 室温での保磁力を B Q とし, 同じく振動型磁力測定器で 1 6 0 °Cで測定 した保磁力を として次式により算出する。 After magnetizing the sample with an external magnetic field of 50 KOe, measure the magnetic properties at room temperature (25 ° C) using a vibrating magnetometer. The temperature coefficient of the coercive force is calculated by the following equation, using the coercive force at room temperature as BQ and the coercive force measured at 160 ° C with a vibrating magnetometer.
保磁力の温度係数 (%Z°C) = 1 0 0 ( B , - B oJ / B o/ ( 1 6 0 - 2 5; Temperature coefficient of coercive force (% Z ° C) = 1 0 0 (B,-B oJ / B o / (1 60-25;
(4) 耐酸化性の測定 (4) Measurement of oxidation resistance
プレッ シャーク ッカ試験 ( P C T) で鍩の進行を測定する。 具体的に はタバイエスペック社製の試験器で試料を 1 2 0 °C, 2気圧, 1 0 0 % R H (飽和条件) で 1 () 0時間保持したときの錡の発生を目視観察する。 The progress of 鍩 is measured by the pre-shock cooker test (PCT). Specifically, the occurrence of 錡 when the sample is held at 120 ° C, 2 atm, and 100% RH (saturation condition) for 1 () 0 hours is visually observed using a tester manufactured by Tabai Espec.
表 1 table 1
Figure imgf000014_0001
Figure imgf000014_0001
表 1の結果に見られるように, 不可逆減磁率 ( 2 0 0で) がー 3 %の 永久磁石合金が得られた (例えば表 1 の a ) 。 また不可逆減磁率 ( 1 6 0 °C ; は a合金では一 () . 7 %であり, 殆んど 0 ?。に近い。 したがって, 高温用途でも高い磁力を維持できる。 As can be seen from the results in Table 1, a permanent magnet alloy with an irreversible demagnetization rate (at 200) of -3% was obtained (for example, a in Table 1). In addition, the irreversible demagnetization rate (160 ° C; is 1% for alloy a), which is almost 0. Therefore, high magnetic force can be maintained even in high-temperature applications.
製造条件について見ると, 例えば aと bを比較すると明らかなように, 铸塊の熱処理を行うと不可逆減磁率が低くなる。 また, aと cと dを比 較すると明らかなように, 焼結後に少なく とも 7 0 0 °C以上の温度から 急冷すると保磁力が向上し且つ不可逆減磁率も低くなる。  Looking at the manufacturing conditions, it is clear from comparison of a and b, for example, that the irreversible demagnetization rate decreases when a lump is heat-treated. As is clear from comparison of a, c, and d, rapid cooling from a temperature of at least 700 ° C after sintering improves the coercive force and lowers the irreversible demagnetization rate.
〔実施例 2〜 1 6〕 および 〔比較例 1〜 6〕 [Examples 2 to 16] and [Comparative Examples 1 to 6]
合金の成分組成を表 2に示すように変えた以外は, 実施例 1の aと同 じ製造条件で焼結品を製造した。 得られた焼結磁石の特性を実施例 1 と 同様に測定し, その結果を表 2に併記した。 A sintered product was manufactured under the same manufacturing conditions as in Example 1, except that the composition of the alloy was changed as shown in Table 2. The characteristics of the obtained sintered magnet were measured in the same manner as in Example 1, and the results are shown in Table 2.
表 2 Table 2
Figure imgf000016_0001
Figure imgf000016_0001
*) 保磁力の変動が著しく正確な測定が不能 *) Coercive force fluctuates significantly, making accurate measurement impossible
表 3に見られるように, D yと T bの両者を添加した実施例 2〜 1 6 のものはいずれも 2 0 0 °Cでの不可逆滅磁率が低く, また 1 6 0 °Cでの 不可逆減磁率も殆んど 0 %に近い。 また, 保磁力の温度係数も低く且つ 耐酸化性にも優れている。 As can be seen from Table 3, the irreversible magnetic susceptibility of each of Examples 2 to 16 to which both Dy and Tb were added was low at 200 ° C, The irreversible demagnetization rate is also almost 0%. It also has a low temperature coefficient of coercive force and excellent oxidation resistance.
これに対し, D yと T bが無添加の比較例 1 , 0. 5 at. !¾D yで T b 無添加の比較例 2 , および D y無添加で 0. 5 at. ¾ T bの比較例 4のも のは, 2 0 0 °Cでの不可逆減磁率は一 9 5 %, — 9 5 %および— 9 1 % であり, 2 0 0 Cに昇温されると磁力をほぼ完全に無く してしまう。 す なわち, D yと T bの一方だけを添加しても 2 0 0てでの不可逆減磁率 に対しては効果を示さない。 なお, 比較例 3のように D y単独でもその 含有量を高めれば不可逆減磁率はある程度低くなるが, それでも十分で はない。 また, 比較例 5は C量が本発明で規定する範囲より低いので, 耐酸化性に劣っている。 比較例 6は D y無添加で T bを 3. O at. ¾;添加 したものである力 比較例 4よりは耐熱性が良好であるものの 2 0 0 °C での不可逆減磁率は一 3 0 %と低い。  On the other hand, Comparative Example 1 with no addition of Dy and Tb, Comparative Example 2 with no addition of Tb at 0.5 at.! Dy, and 0.5 at. In the case of Comparative Example 4, the irreversible demagnetization rates at 200 ° C were 195%, —95%, and —91%, and the magnetic force was almost completely reduced when the temperature was raised to 200 ° C. Lost. In other words, adding only one of Dy and Tb has no effect on the irreversible demagnetization rate at 200. As in Comparative Example 3, the irreversible demagnetization rate is reduced to some extent by increasing the content of Dy alone, but it is still insufficient. Comparative Example 5 is inferior in oxidation resistance because the C content is lower than the range specified in the present invention. In Comparative Example 6, Tb was added without addition of Dy. 3. O at. ¾; Force that was added Although irreversible demagnetization at 200 ° C. was better than Comparative Example 4, although heat resistance was better. Low at 0%.
図 1は, 横軸に D y含有量 (at.%) , 縦軸に T b含有量 (at. !0 をと り, 表 2の磁石全て (但し点錡が発生した比較例 5は除く) について, 各々が含有する D yと T b量では, 2 0 0 °Cでの不可逆減磁率の値がど のようなレベルに分布されるか, を示したものである。 図 1にプロッ ト した数値はその位置での 2 0 0 °Cでの不可逆減磁率の値を示している。 図 1の結果から D y : 2〜 3 at. !¾で, T b : 0. 3〜 1. 5 at. %の領域 において, 2 0 0 °Cの不可逆減磁率にピーク (不可逆減磁率が 0 %に近 づく点) が存在することが伺い知ることができる。 より具体的には, 2 0 0 °Cでの不可逆減磁率が 0〜一 2 0 %を示す領域は, 直線(1) (2) (3) (4) (5) (6) の交点のうち, 点 A, B, Cおよび Dで囲われる範囲であ り, 2 0 0 °Cでの不可逆減磁率が 0〜一 1 5 %を示す領域は, 点 B, C, H, E . Fおよび Gで囲われる範囲であることがわかる。 なお, 直線 Π) 〜(6) は, 次の式で表される。 Figure 1 shows the Dy content (at.%) On the horizontal axis and the Tb content (at.! 0) on the vertical axis, and all magnets in Table 2 (except for Comparative Example 5 where point 錡 occurred). ) Shows the distribution of the irreversible demagnetization value at 200 ° C for the amounts of Dy and Tb contained in each of them. The figure shows the value of the irreversible demagnetization factor at that position at 200 ° C. From the results in Fig. 1, Dy: 2 to 3 at.! ¾ and Tb: 0.3 to 1 It can be seen that there is a peak (point where the irreversible demagnetization approaches 0%) in the irreversible demagnetization at 200 ° C in the .5 at.% Region. In the region where the irreversible demagnetization rate at 0 ° C is 0 to 120%, the points A, B, and 6 of the intersections of the straight lines (1) (2) (3) (4) (5) (6) The area surrounded by C and D, where the irreversible demagnetization rate at 200 ° C is 0 to 115%. , Point B, C, H, it can be seen that a range surrounded by E. F and G. The straight lines Π) to (6) are represented by the following equations.
直線(1) : D y = 0. 3  Line (1): D y = 0.3
直線(2) : T b + D y = 0. 5  Line (2): Tb + Dy = 0.5
直線(3) : T b = 0. 1  Straight line (3): T b = 0.1
直線(4) : T b = 0. 1 D y  Line (4): T b = 0.1 D y
直線(5) : T b = 0. 8 D y  Line (5): T b = 0.8 D y
直線(6) : T b + D y = 5. 0  Line (6): Tb + Dy = 5.0
また, 点 A~Hの座標 (D yat.¾i, T bat.%) は次のとおりである 点 A (0.3. 4.7)  The coordinates (D yat.¾i, T bat.%) Of points A to H are as follows: Point A (0.3. 4.7)
点 B (0.3, 0.2)  Point B (0.3, 0.2)
点、 C (0.4, 0.1)  Point, C (0.4, 0.1)
点 D (4.9, 0.1)  Point D (4.9, 0.1)
点 E (4.5, 0.5)  Point E (4.5, 0.5)
点 F (2.8, 2.2)  Point F (2.8, 2.2)
点 G (0.3, 0.24)  Point G (0.3, 0.24)
点 H (1.0, 0.1)  Point H (1.0, 0.1)
図 2 と図 3は, 特開平 4 一 1 1 6 1 4 4号公報に開示された実施例磁 石のうち最も耐熱性がよいと見られる実施例 2 4のものと, 本発明に従 う実施例 2のものとを, パーミァンス係数 (P c ) が 3になるように形 状を調整した試料を 5 0 KO eで着磁した場合 (図 2 ) と, ? (:カ 1に なるように形状を調製した試料を 5 0 KO eで着磁した場合 (図 3 ) に ついて, 各々測定温度を変えて不可逆減磁率を測定した結果を示したも のである。 特開平 4 - 1 1 6 1 4 4号公報の実施例 2 4の磁石 (公開磁 石と呼ぶ) は, 9 N d— 9 D y— 5 9 F e— 1 5 C o— I B— 7 Cの組 成を有し, P c = 3における 1 6 0 °Cでの不可逆減磁率が一 1. 0 %で あると該公報に記載されている。  FIGS. 2 and 3 show the magnets of Example 24, which are considered to have the highest heat resistance among the magnets disclosed in Japanese Patent Application Laid-Open No. HEI 4-116144, and those according to the present invention. When a sample whose shape was adjusted so that the permeance coefficient (P c) became 3 with the sample of Example 2 was magnetized at 50 KOe (Fig. 2), and? (The figure shows the results of measuring the irreversible demagnetization rate at different measurement temperatures for the case where the sample whose shape was adjusted to become 1 was magnetized at 50 KOe (Fig. 3). The magnet of Example 24 (referred to as open magnet) of Japanese Patent Application Laid-Open No. HEI 4-1-164144 is 9 Nd—9 Dy—59 Fe—15 Co—IB—7 C The publication describes that the irreversible demagnetization rate at 160 ° C. at P c = 3 is 11.0%.
図 2のように, P c = 3 となるように形状を調整した試料では, 1 6 () °Cでの不可逆減磁率が公開磁石のものは - 1. 0 %, 本発明実施例 2 のものでは— 0. 7 %でありそれほど差は見られない。 し力、し, P c = 3で 2 () () °Cでの不可逆減磁率は公開磁石は— 1 2. 9 %であるのに対 し, 本発明実施例 2のものは一 1. 9 %にまで向上している。 このよう な傾向は, P c力 1 になるように形状を調整した試料を用いた図 3では 一層明確に見られる。 すなわち, P c = lにおいては, 1 6 0 °Cでの不 可逆減磁率が公開磁石では - 9. 4 %であるのに対し, 本発明実施例 2 では一 1. 7 %に向上し, 2 0 0での不可逆減磁率については公開磁石 では一 2 2. 3 %であるのに対し, 本発明実施例 2では一 4 %にまで向 上している。 As shown in Fig. 2, in the sample whose shape was adjusted so that Pc = 3, 16 The irreversible demagnetization rate at () ° C. was −1.0% for the open magnet and −0.7% for the magnet of Example 2 of the present invention, and there was not much difference. When Pc = 3, the irreversible demagnetization rate at 2 () () ° C is -12.9% for the open magnet, whereas that of Example 2 of the present invention is 1. Up to 9%. This tendency can be seen more clearly in Fig. 3 using a sample whose shape has been adjusted to have a Pc force of 1. That is, at P c = l, the irreversible demagnetization rate at 160 ° C is -9.4% for the open magnet, whereas it is improved to 11.7% in Example 2 of the present invention. The irreversible demagnetization rate at 200 is 12.3% in the case of the open magnet, whereas it is increased to 14% in Example 2 of the present invention.
以上説明したように, 本発明によれば, R— F e (C o) 一 B系磁石 の分野において, これまで達成されたことのない優れた耐熱性と耐酸化 性を具備する永久磁石合金が得られる。 したがって, 昇温が予測される 機器に装着される永久磁石として, 安価で且つ磁気特性の優れた材料を 提供できる。  As described above, according to the present invention, in the field of R-Fe (Co) -B magnets, a permanent magnet alloy having excellent heat resistance and oxidation resistance that has never been achieved so far. Is obtained. Therefore, a low-cost material with excellent magnetic properties can be provided as a permanent magnet to be mounted on equipment that is expected to heat up.

Claims

請求の範囲 The scope of the claims
1 · 原子百分率 (atl) で,  1 · Atomic percentage (atl)
C : () . ト 1 5 at. ¾!,  C: (). G 1 5 at. ¾ !,
B : 0. 5〜 1 5 at.  B: 0.5 to 15 at.
C + B : 2〜 3 0 at. %,  C + B: 2 to 30 at.%,
C 0 : 4 Oat. %以下 ( 0 %を含まず) ,  C 0: 4 Oat.% Or less (excluding 0%),
D y +T b : 0. 5〜 5at.%  D y + T b: 0.5 to 5at.%
R : 8〜 2 0 at. !¾,  R: 8 to 20 at.! ¾,
ただし, Rは N d, P r , C e , L a, Y, G d , H o, E rおよび Tmからなる群から選ばれた少なくとも一種の元素を表す,  Where R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm.
残部: F eおよび不可避的不純物,  The balance: Fe and unavoidable impurities,
からなる耐熱性に優れた永久磁石合金。 Permanent magnet alloy with excellent heat resistance.
2. T b (at.¾) /D y (at. ¾) : 0. 1 - 0. 8である請求の範囲 1 に記載の耐熱性に優れた永久磁石合金。  2. The permanent magnet alloy excellent in heat resistance according to claim 1, wherein Tb (at.¾) / Dy (at.¾): 0.1 to 0.8.
3. C : 1〜 1 0 at. %である請求の範囲 1または 2に記載の耐熱性に優 れた永久磁石合金。  3. The permanent magnet alloy excellent in heat resistance according to claim 1 or 2, wherein C: 1 to 10 at.%.
4. Rは N d単独または N dと P rである請求の範囲 1 , 2または 3に 記載の耐熱性に優れた永久磁石合金。  4. The permanent magnet alloy having excellent heat resistance according to claim 1, 2 or 3, wherein R is Nd alone or Nd and Pr.
5. iHc が 1 3 KO e以上である請求の範囲 1, 2 , 3または 4に記 載の耐熱性に優れた永久磁石合金。  5. The permanent magnet alloy having excellent heat resistance described in claims 1, 2, 3, or 4, wherein iHc is 13 KOe or more.
6. 下記の(1) 式に従う不可逆減磁率 ( 2 0 0 °C) が 0 %〜一 2 0 %の 範囲にある (但し iHc ≥ 1 3 KOe である) 請求の範囲 1に記載の耐 熱性に優れた R— B— C— C o— F e系焼結磁石合金。  6. The heat resistance according to claim 1, wherein the irreversible demagnetization rate (200 ° C) according to the following equation (1) is in the range of 0% to 120% (however, iHc ≥ 13 KOe). Excellent R-B-C-Co-Fe-based sintered magnet alloy.
不可逆減磁率 ( 2 0 0 °C) = 1 0 0 X (A2oo - A25) /A25 · · (1) ただし, Irreversible demagnetization rate (200 ° C) = 100 X (A 2 oo-A 25 ) / A 25 (1)
A 25 : パーミアンス係数 (P c ) が 1になるように形状を調整した試 料を 5 0 K 0 eで着磁後, 室温 ( 2 5 °C ) で測定したフラックス値。 A zoo : A 25を測定した試料を 2 0 0 °Cに 1 2 0分間保持したあと室 温 ( 2 5 °C ) まで冷却して測定したフラックス値。 A 25: permeance coefficient after magnetization of the (P c) is adjusting the shape so that the 1 specimen at 5 0 K 0 e, flux value measured at room temperature (2 5 ° C). A zoo: Samples were measured A 25 2 0 0 ° 1 2 0 minute hold was followed chamber temperature (2 5 ° C) flux value measured was cooled to C.
7. D y : () . 3〜 /! . 9 at. T b : () . 1〜 4. 7 at. %で 2 ϋ () CCで の不可逆減磁率が()〜 - 2 0 %である請求の範囲 6に記載の耐熱性に優 れた R - B - C一 C o - F e系焼結磁石合金。 7. D y: (). 3 ~ /! 9 at. T b: (). The irreversible demagnetization rate at 2〜 () C C at 1 to 4.7 at.% Is () to −20%. Excellent R-B-C-Co-Fe sintered magnet alloy.
8. D yと T bの含有量 (at.¾;) が図 1に示される点 B, C, H, E, Fおよび Gで囲われる範囲にあり, 2 0 0 °Cでの不可逆減磁率が 0〜一 1 5 %である請求の範囲 6に記載の耐熱性に優れた R— B— C— C o— F e系焼結磁石合金。  8. The content of Dy and Tb (at.¾;) is in the range enclosed by points B, C, H, E, F and G shown in Fig. 1, and irreversible decrease at 200 ° C 7. The heat-resistant R—B—C—Co—Fe based sintered magnet alloy according to claim 6, having a magnetic susceptibility of 0 to 115%.
9. 不可逆減磁率 ( 2 0 0 °C) が 0 %〜一 5 %の範囲にある請求の範囲 2に記載の耐熱性に優れた R - B— C一 C o - F e系焼結磁石合金。 9. The heat-resistant R-B-C-Co-Fe sintered magnet according to claim 2, wherein the irreversible demagnetization rate (200 ° C) is in the range of 0% to 15%. alloy.
1 0. 合金成分の各原料を溶解铸造し, 得られた合金を粉砕し, その粉 体を圧粉成形し, その成形品を不活性ガス中で 1 0 0 0〜 1 2 0 0 °Cの 温度で焼結して, 下記の成分組成の焼結磁石合金を製造する方法におい て, 前記粉砕前の合金を 6 0 0 °C以上の温度で不活性ガス中で熱処理す ることを特徴とする耐熱性に優れた永久磁石合金の製造法。 100. Melt the raw materials of the alloy components, pulverize the obtained alloy, compact the powder, and mold the molded product in an inert gas at 100 ° C to 120 ° C. In the method of producing a sintered magnet alloy having the following composition by sintering at an ambient temperature of, the alloy before pulverization is heat-treated in an inert gas at a temperature of 600 ° C or more. Manufacturing method of permanent magnet alloy with excellent heat resistance.
〔焼結磁石合金の成分組成〕  [Component composition of sintered magnet alloy]
C : 0. 1〜 1 5 at. %, C: 0.1 to 15 at.%,
B : 0. 5〜 1 5 at. ¾;, B: 0.5 to 15 at.
C + B : 2〜 3 0 at. ¾, C + B: 2 to 30 at.
C 0 : 4 0 at.%以下 ( 0 %を含まず) , C 0: 40 at.% Or less (excluding 0%),
D y +T b : 0. 5〜 5at. % D y + T b: 0.5 to 5at.%
R : 8〜 2 0 at. !¾, R: 8 to 20 at.! ¾,
ただし, Rは N d, P r, C e, L a, Y, G d, H o, E rおよび Tmからなる群から選ばれた少なく とも一種の元素を表す,  Where R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm.
残部: F eおよび不可避的不純物。 The balance: Fe and unavoidable impurities.
1 1. 不活性ガス中で 1 0 0 0〜 1 2 0 0 °Cの温度で焼結したあと, そ の焼結温度から 6 0 0〜 9 0 0 °Cまで徐冷し. その後急冷する請求の範 囲 1 ()に記載の永久磁石合金の製造法。 1 1. After sintering at a temperature of 1000 to 1200 ° C in an inert gas, The method for producing a permanent magnet alloy according to claim 1, wherein the temperature is gradually cooled from the sintering temperature to 600 to 900 ° C.
1 2. C原料の一部を溶解時に添加し, C原料の他部を合金の粉砕時に 添加する請求の範囲 1 () または 1 1 に記載の永久磁石合金の製造法。  12. The method for producing a permanent magnet alloy according to claim 1, wherein a part of the C raw material is added during melting and the other part of the C raw material is added during pulverization of the alloy.
PCT/JP1999/004048 1998-07-29 1999-07-28 Permanent magnetic alloy with excellent heat resistance and process for producing the same WO2000006792A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69927931T DE69927931T2 (en) 1998-07-29 1999-07-28 PERMANENT MAGNETIC ALLOY WITH OUTSTANDING HEAT-RESISTANT PROPERTIES AND METHOD FOR THE PRODUCTION THEREOF
EP99933132A EP1026279B1 (en) 1998-07-29 1999-07-28 Permanent magnetic alloy with excellent heat resistance and process for producing the same
JP2000562572A JP4034936B2 (en) 1998-07-29 1999-07-28 Permanent magnet alloy with excellent heat resistance and manufacturing method thereof
US09/531,115 US6319336B1 (en) 1998-07-29 2000-03-20 Permanent magnet alloy having improved heat resistance and process for production thereof
HK01102163A HK1032247A1 (en) 1998-07-29 2001-03-26 Permanent magnetic alloy with excellent heat resistance and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22752298 1998-07-29
JP10/227522 1998-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US36313499A Continuation-In-Part 1998-07-29 1999-07-28

Publications (1)

Publication Number Publication Date
WO2000006792A1 true WO2000006792A1 (en) 2000-02-10

Family

ID=16862232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004048 WO2000006792A1 (en) 1998-07-29 1999-07-28 Permanent magnetic alloy with excellent heat resistance and process for producing the same

Country Status (6)

Country Link
EP (2) EP1026279B1 (en)
JP (1) JP4034936B2 (en)
CN (1) CN1098368C (en)
DE (2) DE69938467T2 (en)
HK (1) HK1032247A1 (en)
WO (1) WO2000006792A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210450A (en) * 2005-01-26 2006-08-10 Tdk Corp R-t-b series sintered magnet
US7314585B2 (en) * 2001-11-28 2008-01-01 Masonite Corporation Method of manufacturing contoured consolidated cellulosic panels with variable basis weight
WO2009016815A1 (en) * 2007-07-27 2009-02-05 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572243C1 (en) * 2014-08-14 2016-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханский государственный университет" Manganite with significant magnetostriction constant, stable in temperature range
RU2578211C1 (en) * 2014-10-29 2016-03-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Magnetic material for permanent magnets and item made from it
CN104923790B (en) * 2014-11-25 2018-08-17 安泰科技股份有限公司 A kind of gadolinium block materials and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188241A (en) * 1989-12-15 1991-08-16 Sumitomo Special Metals Co Ltd Sintered permanent magnet material and its manufacture
JPH03278405A (en) * 1989-12-01 1991-12-10 Sumitomo Special Metals Co Ltd Permanent magnet
JPH04116144A (en) * 1990-09-06 1992-04-16 Dowa Mining Co Ltd Permanent magnet alloy of r-fe-co-b-c system which is small in irreversible demagnetization and excellent in thermal stability
JPH06287720A (en) * 1993-03-31 1994-10-11 Daido Steel Co Ltd Permanent magnet alloy
JPH1097907A (en) * 1996-09-20 1998-04-14 Hitachi Metals Ltd Manufacture of r-tm-b based permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278405A (en) * 1989-12-01 1991-12-10 Sumitomo Special Metals Co Ltd Permanent magnet
JPH03188241A (en) * 1989-12-15 1991-08-16 Sumitomo Special Metals Co Ltd Sintered permanent magnet material and its manufacture
JPH04116144A (en) * 1990-09-06 1992-04-16 Dowa Mining Co Ltd Permanent magnet alloy of r-fe-co-b-c system which is small in irreversible demagnetization and excellent in thermal stability
JPH06287720A (en) * 1993-03-31 1994-10-11 Daido Steel Co Ltd Permanent magnet alloy
JPH1097907A (en) * 1996-09-20 1998-04-14 Hitachi Metals Ltd Manufacture of r-tm-b based permanent magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1026279A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314585B2 (en) * 2001-11-28 2008-01-01 Masonite Corporation Method of manufacturing contoured consolidated cellulosic panels with variable basis weight
JP2006210450A (en) * 2005-01-26 2006-08-10 Tdk Corp R-t-b series sintered magnet
JP4548127B2 (en) * 2005-01-26 2010-09-22 Tdk株式会社 R-T-B sintered magnet
WO2009016815A1 (en) * 2007-07-27 2009-02-05 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET
JP5532922B2 (en) * 2007-07-27 2014-06-25 日立金属株式会社 R-Fe-B rare earth sintered magnet
KR101474946B1 (en) * 2007-07-27 2014-12-19 히다찌긴조꾸가부시끼가이사 R-Fe-B RARE EARTH SINTERED MAGNET

Also Published As

Publication number Publication date
EP1607491A1 (en) 2005-12-21
EP1026279A1 (en) 2000-08-09
DE69927931T2 (en) 2006-07-20
HK1032247A1 (en) 2001-07-13
JP4034936B2 (en) 2008-01-16
DE69938467D1 (en) 2008-05-15
CN1098368C (en) 2003-01-08
DE69938467T2 (en) 2009-04-09
DE69927931D1 (en) 2005-12-01
EP1026279A4 (en) 2003-04-09
EP1607491B1 (en) 2008-04-02
CN1274394A (en) 2000-11-22
EP1026279B1 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US8361242B2 (en) Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
KR101287719B1 (en) R-t-b-c type rare earth sintered magnet and making method
WO2013008756A1 (en) Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor
US20060222848A1 (en) Fluoride coating compositions, methods for forming fluoride coatings, and magnets
JPWO2005123974A1 (en) R-Fe-B rare earth permanent magnet material
JPH03227502A (en) Heat-resisting bond magnet and its manufacture and pm motor
EP0680054B1 (en) RE-Fe-B magnets and manufacturing method for the same
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
WO2000006792A1 (en) Permanent magnetic alloy with excellent heat resistance and process for producing the same
JPH02101146A (en) Nd-fe-b-type sintered magnet excellent in heat treatment characteristic
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
US6319336B1 (en) Permanent magnet alloy having improved heat resistance and process for production thereof
EP0517355A1 (en) Corrosion resistant permanent magnet alloy and method for producing a permanent magnet therefrom
JP4769240B2 (en) Permanent magnet alloy with excellent heat resistance
JP4303937B2 (en) Permanent magnet alloy
JP2740901B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2005294557A (en) Method of manufacturing rare-earth sintered magnet
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP2794494B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2740902B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2794497B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP2743114B2 (en) R-Fe-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP2794495B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP4585691B2 (en) Fe-BR type permanent magnet material containing Ce and Nd and / or Pr and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801229.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999933132

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999933132

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999933132

Country of ref document: EP