JPH06287720A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPH06287720A
JPH06287720A JP7474193A JP7474193A JPH06287720A JP H06287720 A JPH06287720 A JP H06287720A JP 7474193 A JP7474193 A JP 7474193A JP 7474193 A JP7474193 A JP 7474193A JP H06287720 A JPH06287720 A JP H06287720A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
rare earth
magnetic properties
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7474193A
Other languages
Japanese (ja)
Inventor
Takayuki Nishio
孝幸 西尾
Takashi Furuya
嵩司 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP7474193A priority Critical patent/JPH06287720A/en
Publication of JPH06287720A publication Critical patent/JPH06287720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To use a powder of the resulting alloy for a bond magnet and to improve magnetic properties, especially Br and iHC, by incorporating rare earth elements, Fe, B, and C in the percentages represented by formula. CONSTITUTION:This permanent magnet alloy has a composition represented by formula RxFe100-x-y-zByCz (where R means rare earth elements including Y, x=1 to 10, y>0, z>0, and y+z=10 to 30) or RxFe(100-x-y-z) CouByCz (where u=0 to 50) A molten metal of this alloy is formed into ribbon state by means of rapid cooling method, etc., and crushed. Then, the resulting powder is mixed with epoxy resin, etc., and formed into a bond magnet. By this method, the inexpensive magnet excellent in magnetic properties can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、永久磁石合金に関す
るものである。さらに詳しくは、この発明は、従来にな
い高い磁気特性を有する希土類−鉄系永久磁石、特にボ
ンド磁石として有用なNd−Fe−B系永久磁石合金に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet alloy. More specifically, the present invention relates to a rare earth-iron-based permanent magnet having unprecedentedly high magnetic properties, and particularly to an Nd-Fe-B-based permanent magnet alloy useful as a bonded magnet.

【0002】[0002]

【従来の技術とその課題】Nd−Fe−B系永久磁石合
金は、その優れた磁気特性によって注目され、産業各分
野への応用が拡大している。なかでも、このNd−Fe
−B系永久磁石のボンド磁石としての利用は、各種形
状、構造への成形性に優れ、しかも磁気特性も高いこと
が知られている。
2. Description of the Related Art Nd-Fe-B system permanent magnet alloys are attracting attention due to their excellent magnetic properties, and their application to various industrial fields is expanding. Above all, this Nd-Fe
It is known that the use of a -B permanent magnet as a bonded magnet is excellent in formability into various shapes and structures and has high magnetic properties.

【0003】そして、このNd−Fe−B系をはじめと
する希土類・鉄永久磁石合金については、その磁気特性
と合金特性、および合金の結晶組織との関係についての
検討が進められ、合金の結晶粒の微細化が磁気特性の向
上に寄与することや、希土類元素の添加量を低減して、
より耐食性に優れた高い磁気特性の永久磁石合金を実現
すること等が提案されている。
With respect to the rare earth / iron permanent magnet alloys such as the Nd-Fe-B system, investigations have been made on the relationship between the magnetic properties and the alloy properties and the crystal structure of the alloys, and the alloy crystals. The refinement of grains contributes to the improvement of magnetic characteristics, and the amount of rare earth elements added is reduced,
It has been proposed to realize a permanent magnet alloy having higher corrosion resistance and higher magnetic properties.

【0004】しかしながら、これまでの検討において
は、Brと iHcとをともに向上させることは難しく、
ほぼ不可能であると考えられており、永久磁石合金とし
ての磁気特性の向上には限界があるのではないかと考え
られていた。このような状況においてこの発明はなされ
たものであって、従来技術の限界を克服し、Brと i
c特性とをともに向上させることができ、特にボンド磁
石として有用な、新しい希土類・鉄・ボロン系の永久磁
石合金を提供することを目的としている。
However, in the above studies, it is difficult to improve both Br and i Hc.
It was considered to be almost impossible, and it was thought that there would be a limit to improving the magnetic properties of the permanent magnet alloy. In this situation, the present invention has been made, overcomes the limitations of the prior art, and brings Br and i H
It is an object of the present invention to provide a new rare earth-iron-boron-based permanent magnet alloy that can improve both c-characteristics and is particularly useful as a bonded magnet.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、原子比組成が、次式 Rx Fe(100-x-y-z) y z (Rは、Yを含む1種または2種以上の希土類元素を示
し、1≦x≦10,0<y,0<zで、10≦y+z≦
30である)で表わされることを特徴とする永久磁石合
金を提供する。
SUMMARY OF THE INVENTION The present invention, as to solve the above problems, an atomic ratio is, the following formula R x Fe (100-xyz) B y C z (R, 1 kind including Y Or 2 or more kinds of rare earth elements, 1 ≦ x ≦ 10, 0 <y, 0 <z, and 10 ≦ y + z ≦
30) is provided.

【0006】また、この発明は、上記合金組成におい
て、Fe(鉄)の一部をCo(コバルト)で置換した、
原子比組成が次式 Rx Fe(100-x-y-z-u) Cou y z (Rは、Yを含む1種または2種以上の希土類元素を示
し、1≦x≦10.0<y,0<zで、10≦y+z≦
30,0≦u≦50である)で表わされる永久磁石合金
をも提供する。
Further, according to the present invention, in the above alloy composition, a part of Fe (iron) is replaced with Co (cobalt),
Atomic ratio following formula R x Fe (100-xyzu) Co u B y C z (R represents one or more rare earth elements including Y, 1 ≦ x ≦ 10.0 < y, 0 <Z, 10 ≦ y + z ≦
A permanent magnet alloy represented by the formula (3,0 ≦ u ≦ 50).

【0007】[0007]

【作用】すなわち、この発明は、耐食性等に優れている
ことが知られている低希土類添加量の永久磁石合金の特
徴を生かしつつ、しかも発明者らが、結晶粒の微細化に
よる磁気特性向上に寄与するものとして注目してきたC
(炭素)の添加によって、Br、および iHc特性をと
もに従来以上に向上することのできる合金を提供するも
のである。
That is, the present invention makes use of the characteristics of a permanent magnet alloy with a low rare earth content, which is known to have excellent corrosion resistance, etc. Has been attracting attention as a contribution to
It is intended to provide an alloy capable of improving both Br and i Hc characteristics by adding (carbon) more than ever before.

【0008】この合金は、その組成において、前記の式
に表わされている通り、原子比が1〜10の低添加量希
土類元素であって、しかも、B(ホウ素)とC(炭素)
とを必ず併用添加することを必須としている。この両者
の原子比は、その合計において10〜30である。Bお
よびCの添加は、合金組成の結晶細粒化を促し、磁気特
性を向上させるものであって、原子比が10未満および
30を超える場合にはその特性向上は望めない。極めて
限定された要件となっている。
[0008] This alloy, in its composition, is a low-added rare earth element having an atomic ratio of 1 to 10 as expressed by the above formula, and further, B (boron) and C (carbon).
It is mandatory to add and together. The total atomic ratio of the two is 10 to 30. Addition of B and C promotes grain refinement of the alloy composition and improves magnetic properties, and when the atomic ratio is less than 10 and exceeds 30, the improvement of properties cannot be expected. It has very limited requirements.

【0009】また、Nd等の希土類添加量を低レベルと
することは、結晶相を2相混合とすることが知られてお
り、これによって、耐食性および磁気特性の向上を図る
ものである。また、Coの添加も磁気特性向上のための
ものである。この場合には、原子比で50以下とするこ
とが必要である。
Further, it has been known that a low-level addition amount of a rare earth element such as Nd causes a two-phase crystal phase to be mixed, whereby the corrosion resistance and the magnetic characteristics are improved. Further, the addition of Co is also for improving the magnetic characteristics. In this case, the atomic ratio needs to be 50 or less.

【0010】このような特徴を有するこの発明の合金
は、従来公知の方法等によって所要の組成の元素を溶解
し、超急冷法によってリボン状成形体等を得て、その後
これを粉砕すること等により、ボンド磁石用等の磁石と
することができる。以下、実施例を示し、さらに詳しく
この発明の永久磁石合金について説明する。
The alloy of the present invention having the above-mentioned characteristics is obtained by dissolving elements having a required composition by a conventionally known method or the like, obtaining a ribbon-shaped molded body or the like by a super-quenching method, and then crushing this. Thus, a magnet for a bonded magnet or the like can be obtained. Examples will be shown below to describe the permanent magnet alloy of the present invention in more detail.

【0011】[0011]

【実施例】実施例1〜10 組成がNd4.5 Fe77.5(18-α) Cα(0<α<1
8)で表わされる合金を高周波溶解で作成し、超急冷法
によりリボン状に成形した。ロール周速度は10〜40
m/sの範囲とした。
EXAMPLES Examples 1 to 10 have compositions of Nd 4.5 Fe 77.5 B (18- α ) C α (0 <α <1
The alloy represented by 8) was prepared by high-frequency melting and formed into a ribbon by the ultra-quenching method. Roll peripheral speed is 10-40
The range was m / s.

【0012】得られたリボンを粒径300μm以下に粉
砕し、その後、エポキシ樹脂と混合してボンド磁石を作
成した。得られたボンド磁石の磁気特性は次の表1の通
りであった。B(ホウ素)の一部をC(炭素)によって
置換することにより、従来の合金よりも優れた磁気特性
が得られること、特にBrと iHcがともに向上するこ
とが確認された。
The obtained ribbon was crushed to a particle size of 300 μm or less, and then mixed with an epoxy resin to prepare a bonded magnet. The magnetic properties of the obtained bonded magnet are shown in Table 1 below. It was confirmed that by substituting a part of B (boron) with C (carbon), magnetic properties superior to those of conventional alloys can be obtained, and in particular, both Br and i Hc are improved.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例11〜17 組成がNd(4.5- β) RβFe77.5108 (1≦β<
4.5)(ただし、Rは希土類元素)で表わされる合金
を高周波溶解で作成し、超急冷法によりリボン状に成形
した。ロール周速度は10〜40m/sの範囲とした。
周速度が大きくなると、結晶質から非晶質への変化し
た。
Examples 11 to 17 have a composition of Nd (4.5- β ) RβFe 77.5 B 10 C 8 (1 ≦ β <
4.5) (where R is a rare earth element) was prepared by high-frequency melting and formed into a ribbon shape by the ultraquenching method. The roll peripheral speed was in the range of 10 to 40 m / s.
As the peripheral velocity increased, it changed from crystalline to amorphous.

【0015】得られたリボンを粉砕して粒径300μm
以下とし、エポキシ樹脂と混合し、ボンド磁石とした。
この磁石について磁気特性を測定し、次の表2の結果を
得た。Ndの一部を他の希土類元素で置換することによ
り、種々の特性の磁石が得られることがわかる。たとえ
ばDyを添加した場合には、 iHcと(BH)max が大
きくなり、また、CeとCの同時添加により、特性を低
下させることなく、安価な磁石が得られることが確認さ
れた。
The obtained ribbon is crushed to have a particle size of 300 μm.
The following was mixed with an epoxy resin to obtain a bonded magnet.
The magnetic properties of this magnet were measured, and the results shown in Table 2 below were obtained. It is understood that by replacing a part of Nd with another rare earth element, magnets with various characteristics can be obtained. For example, it was confirmed that the addition of Dy increases i Hc and (BH) max , and that the simultaneous addition of Ce and C makes it possible to obtain an inexpensive magnet without deteriorating the characteristics.

【0016】[0016]

【表2】 [Table 2]

【0017】実施例18〜20 組成がNd4.5 Fe(77.5-γ) CoγB108 (1<γ
<13)で表わされる合金を高周波溶解で作成し、超急
冷法によりリボン成形した。ロール周速度は10〜40
m/sの範囲とした。得られたリボンを粒径300μm
以下に粉砕し、エポキシ樹脂と混合してボンド磁石とし
た。その磁気特性を測定し、表3の結果を得た。
Examples 18 to 20 have compositions of Nd 4.5 Fe (77.5- γ ) CoγB 10 C 8 (1 <γ
The alloy represented by <13) was prepared by high-frequency melting and ribbon-formed by the ultra-quenching method. Roll peripheral speed is 10-40
The range was m / s. Particle size of the obtained ribbon is 300 μm
It was ground into the following and mixed with an epoxy resin to obtain a bonded magnet. The magnetic properties were measured and the results shown in Table 3 were obtained.

【0018】Coを少量添加することにより、無添加の
場合に比べて特性が向上することが確認された。
It has been confirmed that the addition of a small amount of Co improves the characteristics as compared with the case where no Co is added.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】以上詳しく説明した通り、この発明によ
り、低希土類添加であって、かつ、磁気特性に優れたボ
ンド磁石に有用な永久磁石合金が提供される。
As described in detail above, the present invention provides a permanent magnet alloy useful for a bonded magnet, which has a low rare earth content and is excellent in magnetic properties.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子比組成が、次式 Rx Fe(100-x-y-z) y z (Rは、Yを含む1種または2種以上の希土類元素を示
し、1≦x≦10,0<y,0<zで、10≦y+z≦
30である)で表わされることを特徴とする永久磁石合
金。
1. A atomic ratio composition, the formula R x Fe (100-xyz) B y C z (R represents one or more rare earth elements including Y, 1 ≦ x ≦ 10, 0 <Y, 0 <z, 10 ≦ y + z ≦
30) is a permanent magnet alloy.
【請求項2】 原子比組成が、次式 Rx Fe(100-x-y-z-u) Cou y z (Rは、Yを含む1種または2種以上の希土類元素を示
し、1≦x≦10,0<y,0<zで、10≦y+z≦
30、0≦u≦50である)で表わされることを特徴と
する永久磁石合金。
Wherein the atomic ratio composition, the formula R x Fe (100-xyzu) Co u B y C z (R represents one or more rare earth elements including Y, 1 ≦ x ≦ 10 , 0 <y, 0 <z, and 10 ≦ y + z ≦
30 and 0 ≦ u ≦ 50).
JP7474193A 1993-03-31 1993-03-31 Permanent magnet alloy Pending JPH06287720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7474193A JPH06287720A (en) 1993-03-31 1993-03-31 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7474193A JPH06287720A (en) 1993-03-31 1993-03-31 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPH06287720A true JPH06287720A (en) 1994-10-11

Family

ID=13555977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7474193A Pending JPH06287720A (en) 1993-03-31 1993-03-31 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH06287720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006792A1 (en) * 1998-07-29 2000-02-10 Dowa Mining Co., Ltd. Permanent magnetic alloy with excellent heat resistance and process for producing the same
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006792A1 (en) * 1998-07-29 2000-02-10 Dowa Mining Co., Ltd. Permanent magnetic alloy with excellent heat resistance and process for producing the same
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof
EP1607491A1 (en) * 1998-07-29 2005-12-21 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JPH01103805A (en) Permanent magnet
JPH0319296B2 (en)
JP2970809B2 (en) Rare earth permanent magnet
CN1100228A (en) Magnetically anisotropic spherical powder
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
CN105336488A (en) Preparation method of material for improving intrinsic coercive force of Fe3B/Nd2Fe14B magnetic alloy
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH04129203A (en) Permanent magnet powder
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JPH02266503A (en) Manufacture of rare earth permanent magnet
JPH0474426B2 (en)
JPH06287720A (en) Permanent magnet alloy
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JPH0146575B2 (en)
JPH06346200A (en) Permanent magnet alloy
JPH0325922B2 (en)
JPH0474425B2 (en)
JPH0467324B2 (en)
JPH052735B2 (en)
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPH116038A (en) Rare earth permanent magnet material
JPH0513207A (en) Manufacture of r-t-b-based permanent magnet
JP3380575B2 (en) RB-Fe cast magnet