JPH02119105A - Nd-fe-b system sintered magnet - Google Patents

Nd-fe-b system sintered magnet

Info

Publication number
JPH02119105A
JPH02119105A JP63250850A JP25085088A JPH02119105A JP H02119105 A JPH02119105 A JP H02119105A JP 63250850 A JP63250850 A JP 63250850A JP 25085088 A JP25085088 A JP 25085088A JP H02119105 A JPH02119105 A JP H02119105A
Authority
JP
Japan
Prior art keywords
coercive force
ihc
intrinsic coercive
sintered magnet
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63250850A
Other languages
Japanese (ja)
Inventor
Masato Sagawa
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63250850A priority Critical patent/JPH02119105A/en
Priority to US07/321,183 priority patent/US5000800A/en
Priority to GB8905754A priority patent/GB2219309B/en
Priority to IT8919862A priority patent/IT1230181B/en
Priority to IE891582A priority patent/IE891582L/en
Priority to ES89109037T priority patent/ES2057018T3/en
Priority to DE68917213T priority patent/DE68917213T2/en
Priority to AT89109037T priority patent/ATE109588T1/en
Priority to EP89109037A priority patent/EP0344542B1/en
Priority to FR8906710A priority patent/FR2632766B1/en
Priority to FI892716A priority patent/FI102988B1/en
Publication of JPH02119105A publication Critical patent/JPH02119105A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To improve intrinsic coercive force at a room temperature by using elements wherein Dy is excluded and supply amount is large by dispersing V-T-B compound secondary phase. CONSTITUTION:In an Nd-Fe-B system sintered magnet, the temperature coefficient of intrinsic coercive force (iHc) is 0.5%/ deg.C or more. The composition is as follows; R=11-18at% (where R is a rare earth elements except Dy, and 80at% <=(Nd+Pr)/R <=100at%), B=6-12at%, V=2-6at%, residual part Fe, Co (Co is equal to or less than 25at% of the sum of Fe and Co (0% is contained)) and impurity. This V-T-B compound secondary phase (when Fe or Co is contained, T is Fe and Co) is dispersed, and has the maximum energy product larger than or equal to 20 MGOe and the intrinsic coercive force (iHc) larger than or equal to 15 kOe.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、永久磁石に関するものであり、更に詳しく述
べるならばNd  Fe  B系焼結磁石に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a permanent magnet, and more specifically, to a NdFeB-based sintered magnet.

Nd−Fe−B系磁石には超急冷磁石と焼結磁石がある
。超急冷磁石は本質的に磁気的に等方性である。その異
方性化の方法として超急冷で得られな薄帯を破砕して粉
末を作り、これをホットプレスし、その後ダイアプセッ
トする方法が提案されているが、製造工程が煩雑になる
ので工業的には未だ行なわれていない。
Nd-Fe-B magnets include ultra-quenched magnets and sintered magnets. Ultra-quenched magnets are inherently magnetically isotropic. As a method of making the anisotropy, it has been proposed to create a powder by crushing the thin ribbon obtained by ultra-quenching, hot-pressing this, and then die-setting, but the manufacturing process is complicated and it is not suitable for industrial use. Actually, it has not been done yet.

Nd−Fe−B系焼結磁石は本発明者等により開発され
たものであって、最大エネルギ積(BH)、、、が実験
室規模では50 MGOe、量産規模でも40 M G
 Q 6に達する優れた磁気特性を発揮し、また主成分
がFe、Bなどの安価な元素でありまた希土類元素とし
ては産出量が多いNd(ネオジウム)およびPr(プラ
セオジウム)を使用するため原料コストが希土類コバル
ト磁石より格段に安いなどの優れた特徴を有する。この
Nd  Fe  B系焼結磁石の代表的特許には、特開
昭59−89401号、59−46008号、59−2
17003号、米国特許第4597938号および欧州
特許第EP−人−0101552、EP−^−0106
948号あり、学術文献にはM、 Sagawa et
 al’NewMaterial  for  per
manent  magnets  on  a  b
ase  ofNd  and  Fe(iIlvit
ed)、’J、  人ppl、 Phys、、  55
.  N。
The Nd-Fe-B sintered magnet was developed by the present inventors and has a maximum energy product (BH) of 50 MGOe on a laboratory scale and 40 MGOe on a mass production scale.
It exhibits excellent magnetic properties reaching Q 6, and the raw material cost is low because the main components are inexpensive elements such as Fe and B, and the rare earth elements are Nd (neodymium) and Pr (praseodymium), which are produced in large quantities. It has excellent features such as being much cheaper than rare earth cobalt magnets. Representative patents for this NdFeB-based sintered magnet include JP-A-59-89401, 59-46008, and 59-2.
No. 17003, US Pat. No. 4,597,938 and European Patent No. EP-Person-0101552, EP-^-0106
There is No. 948, and academic literature includes M, Sagawa et.
al'NewMaterial for per
manent magnets on a b
ase ofNd and Fe(iIlvit
ed), 'J, ppl, Phys,, 55
.. N.

6、 Part If、 p2083/2087(Ma
rch、 1984)があり、また−船釣な前景技術か
らNd−Fe−B系焼結磁石の開発経緯および社会的評
価を説明した書範としては「磁石材料の新展開」−ノ濡
昇、日口章編著、工業調査会、昭和63年3月1o日発
行(特に第121〜140頁、第230〜239頁参照
)がある。
6, Part If, p2083/2087 (Ma
Rch, 1984), and a textbook that explains the development history and social evaluation of Nd-Fe-B sintered magnets from the foreground technology of boat fishing is ``New Developments in Magnet Materials'' - Nouresho; Edited by Akira Higuchi, Kogyo Kenkyukai, published March 1, 1988 (see especially pages 121-140 and 230-239).

永久磁石は着磁後様々な原因による逆磁界に晒される0
強い逆磁界に晒されても不可逆な減磁が起こらないため
には永久磁石は大きな保磁力をもたなければならない。
After magnetization, permanent magnets are exposed to reverse magnetic fields caused by various causes.
A permanent magnet must have a large coercive force so that irreversible demagnetization does not occur even when exposed to a strong reverse magnetic field.

最近、機器の小型化と高効率化に伴い、永久磁石にかか
る逆磁界はますます大きくなっている。例えばモーター
では永久磁石を着磁後ヨークを取り付けるまでに強い自
己減磁界に晒され、組立て後の動作状態では磁気回路の
パーミアンスに対応した減磁界とコイルからの逆磁界に
晒される。コイルからの逆磁界はスタート時に最大とな
る。過大な負荷がかかってモーターが停止した後すぐに
スイッチが投入されモーターが再スタートするとき永久
磁石には!!tも厳しい負担がかかる。これに耐え、不
可逆減磁界を最小限に抑制するために永久磁石はできる
だけ大きい保磁力をもっていなければならない。
Recently, as devices have become smaller and more efficient, the reverse magnetic field applied to permanent magnets has become increasingly large. For example, a motor is exposed to a strong self-demagnetizing field after magnetizing the permanent magnet and before attaching the yoke, and in the operating state after assembly, it is exposed to a demagnetizing field corresponding to the permeance of the magnetic circuit and a reverse magnetic field from the coil. The reverse magnetic field from the coil is at its maximum at the start. When the switch is turned on immediately after the motor stops due to an excessive load and the motor restarts, the permanent magnet is! ! t also places a severe burden on it. In order to withstand this and to minimize irreversible demagnetizing fields, permanent magnets must have as large a coercive force as possible.

最近の機器の進歩は永久磁石に過去には思いもよらなか
った過酷な負担を要求する。アンジュレータ−と呼ばれ
る、加速器に取り付け、強い放射光を取り出す装置では
、強力な磁界を得るために完全に着磁した永久磁石の板
で交互にN極どうし、S極どうしが向かい合うように接
着される構造も提案されている。このような用途には、
大きい保磁力をもつ永久磁石が必要なことは勿論である
。今後ますますこの種の永久磁石の使い方は増える傾向
にある。
Recent advances in equipment require permanent magnets to bear harsher loads that were unimaginable in the past. In a device called an undulator, which is attached to an accelerator and extracts strong synchrotron radiation, fully magnetized permanent magnet plates are glued together so that the N poles face each other and the S poles face each other in order to obtain a strong magnetic field. A structure has also been proposed. For such uses,
Of course, a permanent magnet with a large coercive force is required. This type of permanent magnet is likely to be used more and more in the future.

保磁力はまた永久磁石の安定性とも関連している。永久
磁石を着磁後放置しておくと、少しづつ不可逆な減磁が
起こる9これは経年変化と呼ばれる。経年変化を少なく
するためには、保磁力は使用状態の逆磁界よりできる限
り大きい方がよい。
Coercive force is also related to the stability of a permanent magnet. If a permanent magnet is left unattended after being magnetized, it gradually undergoes irreversible demagnetization.9 This is called aging. In order to reduce aging, the coercive force should be as large as possible than the reverse magnetic field in use.

このように永久磁石の保磁力はますます大きいものが求
められるようになった。
In this way, permanent magnets are required to have an increasingly large coercive force.

加えて、永久磁石が高温に晒される場合は、保磁力が高
温で低下するため、その温度特性が重要になる。
In addition, when a permanent magnet is exposed to high temperatures, its temperature characteristics become important because the coercive force decreases at high temperatures.

保磁力の温度特性に影響する保磁力の温度係数は超急冷
薄帯磁石では0゜3〜0.4%/℃であり、異方性化し
た超急冷磁石ではこれより若干高く、焼結磁石では0.
5%/℃以上である。
The temperature coefficient of coercive force, which affects the temperature characteristics of coercive force, is 0°3 to 0.4%/℃ for ultra-quenched ribbon magnets, slightly higher than this for anisotropic ultra-quenched magnets, and is slightly higher than this for ultra-quenched anisotropic magnets. Then 0.
It is 5%/°C or more.

焼結磁石の保磁力の温度係数は、測定温度範囲によって
変化し、低温はど大になる。本願説明における保磁力の
温度係数(β)は下記式により定められるものである。
The temperature coefficient of the coercive force of a sintered magnet changes depending on the measurement temperature range, and becomes larger at low temperatures. The temperature coefficient (β) of coercive force in the description of this application is determined by the following formula.

△iHc:20℃から120℃の温度変化における固有
保磁力(i Hc )の差 (KOe) iHc  :20℃における固有保磁力(KOe) ΔT  :温度差(100℃) 20から120℃を固有保磁力(iHc)の温度係数の
測定区間としたのは、100℃の温度区間とするためで
ある。
△iHc: Difference in intrinsic coercive force (i Hc) at temperature change from 20°C to 120°C (KOe) iHc: Intrinsic coercive force at 20°C (KOe) ΔT: Temperature difference (100°C) Intrinsic coercive force from 20 to 120°C The temperature coefficient of magnetic force (iHc) was measured in the temperature range of 100°C.

Nd−Fe−B系焼結磁石の固有保磁力(iHc)の温
度係数は0.5%/℃以上と非常に高いため、高温では
固有保磁力(iHc)が低くなり使用できなくなる。具
体的には、パーミアンス係数=1の場合Nd−Fe−B
系焼結磁石の使用限界は約80℃である。このため使用
温度が120〜130℃に上昇する自動車部品用、モー
ター用などにNd−Fe−B系焼結磁石の保磁力(iH
c)の温度係数は組成によらず、0.51%/℃以上と
非常に大きいため高温では使用することはできなかった
Since the temperature coefficient of the intrinsic coercive force (iHc) of the Nd-Fe-B sintered magnet is extremely high at 0.5%/° C. or more, the intrinsic coercive force (iHc) becomes low at high temperatures, making it unusable. Specifically, when permeance coefficient = 1, Nd-Fe-B
The usage limit of the system sintered magnet is about 80°C. For this reason, the coercive force (iH
The temperature coefficient of c) was extremely large, at 0.51%/°C or more, regardless of the composition, so it could not be used at high temperatures.

(発明が解決しようとする課題) Nd−Fe−B系焼結磁石では、高保磁力化のために様
々な工夫がなされてきた。標準的組成のNd+qFet
tBllでは焼結磁石の固有保磁力(iHc)は約6k
Oeとなる。この磁石の残留磁化Brが12kGを越え
ることを考慮すると、固有保磁力(iHc)=6kOe
は低すぎて用途がごく狭い範囲に限られてしまう。高保
磁力化に最も成功した方法の一つは、Nd+sFetd
3g焼結磁石を焼結後に600℃にて熱処理する方法で
あり、固有保磁力(iHc)は12kOeに増大した(
M、Sagawa ct at、 J、^pp1. P
h7s、vol、 55゜No、 6.15. Mar
ch 1984)、これは大きな成果であったが、実用
的にはより大きい保磁力が必要である。
(Problems to be Solved by the Invention) Various efforts have been made to increase the coercive force of Nd-Fe-B sintered magnets. Standard composition Nd+qFet
At tBll, the intrinsic coercive force (iHc) of the sintered magnet is approximately 6k.
It becomes Oe. Considering that the residual magnetization Br of this magnet exceeds 12 kG, the intrinsic coercive force (iHc) = 6 kOe
is too low and its application is limited to a very narrow range. One of the most successful methods for increasing coercive force is Nd+sFetd
This is a method in which a 3g sintered magnet is heat treated at 600℃ after sintering, and the intrinsic coercive force (iHc) has increased to 12kOe (
M, Sagawa ct at, J, ^pp1. P
h7s, vol, 55°No, 6.15. Mar
ch 1984), this was a great achievement, but in practice a larger coercive force is required.

一方、添加元素を使用する高保磁力化の方法も探索され
、周期表のほとんどの元素がテストされた。その中で最
も成功したのがDyなどの重希土類元素の添加であった
0例えば、 N d +sF e ?7B sのNdの10%を[)
yで置換したN d 13. %D 3’ s、 sF
 、77Bsでは固有保磁力(iHc)≧1’7kOe
に達する。Dyの添加による高保磁力化の効果の発見に
よりNd−Fe−B系焼結磁石は現在広範囲の用途に使
用されつつある。
Meanwhile, methods of increasing coercive force using additive elements were also explored, and most elements from the periodic table were tested. The most successful of these was the addition of heavy rare earth elements such as Dy.For example, N d +sF e ? 7Bs 10% of Nd [)
N d substituted with y 13. %D3's, sF
, for 77Bs, intrinsic coercive force (iHc) ≧1'7kOe
reach. Due to the discovery of the effect of increasing coercive force by adding Dy, Nd-Fe-B sintered magnets are now being used in a wide range of applications.

重希土類以外の添加元素も種々試みられた。Various additive elements other than heavy rare earths have also been tried.

例えば、特開昭59−218704および特開昭59−
217305では、V、Nb、Ta、Mo。
For example, JP-A-59-218704 and JP-A-59-
217305, V, Nb, Ta, Mo.

W、Cr、Coが添加され、熱処理が種々工夫されたが
、得られた固有保磁力(iHc)は低くDyの効果には
はるかに及ばなかった。AQはDy、Prはど順著では
ないが保磁力を向上する効果があるが、キュリー温度が
急激に低下する欠点がある。Dyは優れた保磁力特性を
与えるものの、Dyの鉱石中の存在量はSmの1/20
程度であって、甚だ少ない。そのため、Dy添加NdF
e−B系焼結磁石を大量に生産すると、希土類資源中で
のバランスしている各成分以上にDyを使用することに
なり、希土類資源のバランスがくずれ、Dyの供給量は
たちまち逼迫する危険がある。
Although W, Cr, and Co were added and various heat treatments were devised, the obtained intrinsic coercive force (iHc) was low and far inferior to the effect of Dy. AQ has the effect of improving the coercive force, although it is not in the same order as Dy and Pr, but it has the disadvantage that the Curie temperature drops rapidly. Although Dy provides excellent coercive force characteristics, the amount of Dy present in the ore is 1/20 that of Sm.
It's only a matter of time, but it's extremely small. Therefore, Dy-doped NdF
If e-B sintered magnets are produced in large quantities, Dy will be used in excess of the balance of each component in the rare earth resources, which will upset the balance of rare earth resources and there is a risk that the supply of Dy will quickly become tight. There is.

Dyと同じ重希土類の一種であるTbとHOはDyと同
じ効果を示すがTbはlayよりはるかに希少であり、
他に光磁気記録材料などの用途も多い。HOはlayよ
り固有保磁力(iHc)増大の効果は遥かに小さくまた
Dyより資源的に乏しい、そのためTb、Hoともに実
用性に欠ける。
Tb and HO, which are heavy rare earths like Dy, have the same effect as Dy, but Tb is much rarer than lay.
It also has many other uses, such as magneto-optical recording materials. HO has a much smaller effect of increasing the intrinsic coercive force (iHc) than ray, and is also scarcer in terms of resources than Dy, so both Tb and Ho lack practicality.

[)yを1.5%程度添加した材料の室温での固有保磁
力(iHc)は17kOe以上、120〜140℃での
固有保磁力(iHc)は約5kOeとなる。Dy添加に
より固有保磁力(iHc)の温度係数は改善されないが
、逆磁界に打ち勝つだけの固有保磁力(iHc)が高温
でも得られることで充分である。多くの希土類磁石の残
留磁化Brは10kG程度である。そこでパーミアンス
係数B/H≧1での磁石使用条件においてi Hc≧5
kOeを目標として磁気回路を設計する。
The material to which about 1.5% of [)y is added has an intrinsic coercive force (iHc) of 17 kOe or more at room temperature, and an intrinsic coercive force (iHc) of about 5 kOe at 120 to 140°C. Although the temperature coefficient of the intrinsic coercive force (iHc) is not improved by the addition of Dy, it is sufficient that the intrinsic coercive force (iHc) sufficient to overcome the reverse magnetic field can be obtained even at high temperatures. The residual magnetization Br of many rare earth magnets is about 10 kG. Therefore, under the magnet usage conditions with permeance coefficient B/H≧1, i Hc≧5
Design a magnetic circuit with the goal of kOe.

このDy添加法をACモーター用Nd−FeB系焼結磁
石について採用することが検討されている(R,E、T
ompkios and T、W、 Neuma■。
The adoption of this Dy addition method for Nd-FeB sintered magnets for AC motors is being considered (R, E, T
ompkios and T, W, Neuma ■.

General Electric Technica
l InformationSeries、 C1as
s I Report No、 84crd312゜N
ovember 1984)。Nd−Fe−B系焼結磁
石を自動車用スターターモーターや発電機、また−最の
高出力モーターに使用する場合は、180〜200℃と
いう極めて過酷な環境での磁気特性の安定性が必要とな
る。この場合のDyの添加量は4at%以上と多量にな
るためDy資源の供給の面からNd−Fe−B系焼結磁
石を高出力モーターや自動車用等の高温用途に使用する
ことはできなかっな。
General Electric Technica
l Information Series, C1as
s I Report No, 84crd312°N
1984). When Nd-Fe-B sintered magnets are used in automotive starter motors, generators, and even the highest output motors, their magnetic properties must be stable in extremely harsh environments of 180 to 200°C. Become. In this case, the amount of Dy added is as large as 4 at% or more, so Nd-Fe-B sintered magnets cannot be used for high-temperature applications such as high-output motors and automobiles due to the supply of Dy resources. Na.

したがって、本発明はDy以外の元素で供給量が多い元
素を使用して、室温での固有保磁力(iHc)を高めた
Nd−Fe−B系焼結磁石を提供することを一つの目的
とする。
Therefore, one object of the present invention is to provide a Nd-Fe-B based sintered magnet that uses an element other than Dy that is supplied in large quantities to increase the intrinsic coercive force (iHc) at room temperature. do.

自動車用スターターモーターや発電機、また−mの高出
力モーターに1吏用する場合は、180〜200℃とい
う極めて過酷な環境での磁気特性の安定性が必要となる
。この場合のDyの添加量は4at%以上と多量になる
ためDy資源の供給の面からNd−Fe−B系焼結磁石
を工業的に使用することはできなかった。すなわち、固
有保磁力(iHc)の温度係数が0.5%/℃以上のN
d−Fe−B系焼結磁石は高温で固有保磁力(iHc)
が著しく低下するので、本発明はその絶対値を高めるこ
とを意図するものである。
When used in automobile starter motors, generators, and -m high-output motors, the magnetic properties must be stable in extremely harsh environments of 180 to 200°C. In this case, the amount of Dy added is as large as 4 at % or more, so the Nd-Fe-B sintered magnet could not be used industrially from the viewpoint of supplying Dy resources. In other words, N with a temperature coefficient of intrinsic coercive force (iHc) of 0.5%/°C or more
The d-Fe-B sintered magnet has a high intrinsic coercive force (iHc) at high temperatures.
is significantly reduced, and the present invention is intended to increase its absolute value.

さらに、本発明はDyの使用量を少なくしても固有保磁
力(iHc)を高めることができるNd−Fe−B系焼
結磁石を提供することを第二の目的とする。
Furthermore, a second object of the present invention is to provide a Nd-Fe-B based sintered magnet that can increase the intrinsic coercive force (iHc) even if the amount of Dy used is reduced.

(課題を解決するための手段) 本発明者は上記課題を解決するための研究の過程でNd
−Fe−B系焼結磁石の構成NWAおよび固有保磁力(
iHc)発生原因に関する従来の研究を調べた。Nd−
Fe−B系焼結磁石にあってはR2Fet、tB化合物
相(但し、RはNdなとの希土類元素である)がマトリ
ックス相(主相)であり、この相が強い磁気異方性を有
するために優れた磁気特性が得られることが確実になっ
ている。また標準組成のNd−Fe−B系焼結磁石では
、上記マトリックス相以外に第2相として、R−85〜
97at%、残部Fe(但し、焼結体中にNd以外の希
土類も含まれている場合はそれらも含む)の組成を有す
るNdリッチ相と称される相も存在し、焼結性向上と保
磁力増大に重要な役割を果たしていることも確実になっ
ている。
(Means for Solving the Problems) In the course of research to solve the above problems, the inventors discovered that Nd
-Constitution NWA and intrinsic coercive force of Fe-B sintered magnet (
We examined previous research on the causes of iHc). Nd-
In Fe-B based sintered magnets, the R2Fet, tB compound phase (however, R is a rare earth element such as Nd) is the matrix phase (main phase), and this phase has strong magnetic anisotropy. Therefore, it is certain that excellent magnetic properties can be obtained. In addition, in the Nd-Fe-B sintered magnet with the standard composition, in addition to the above matrix phase, a second phase of R-85 to
There is also a phase called the Nd-rich phase, which has a composition of 97 at% and the balance is Fe (however, if the sintered body contains rare earths other than Nd, they are also included). It is also certain that it plays an important role in increasing magnetic force.

標準的なNd  Fe  B系磁石、例えばNd、%F
e77Bsではこれら2相に加えてBリッチ相と呼ばれ
るNd+Fe4B4化合物相が生成されることが知られ
ている。この相は保磁力の向上に余り役立っていない。
Standard Nd Fe B magnets, e.g. Nd, %F
It is known that in e77Bs, in addition to these two phases, an Nd+Fe4B4 compound phase called a B-rich phase is generated. This phase does not contribute much to improving coercive force.

上記したDy(Tb、Hoも同様)は R2Fe+aB化合物相の磁気異方性を高め、これによ
り固有保磁力(i I−1c )を、Dyを含まない場
合より高め、高温での安定性を向上させている0本発明
者は、上記した従来の知見を検討し、R2F e 14
B化合物相の異方性を強化する方法によっては、Dyを
資源のバランスを越えて多量に使用する以外にN d 
−F e −B系焼結磁石の固有保磁力(iHc)を高
める方法はなく、また高温安定性を増すことはできない
ので、根本的解決策ではないと考えた。
The above-mentioned Dy (Tb, Ho as well) increases the magnetic anisotropy of the R2Fe+aB compound phase, thereby increasing the intrinsic coercive force (i I-1c ) compared to the case without Dy, improving stability at high temperatures. The inventor studied the above-mentioned conventional knowledge and determined that R2F e 14
Depending on the method of strengthening the anisotropy of the B compound phase, in addition to using a large amount of Dy that exceeds the resource balance, N d
Since there is no way to increase the intrinsic coercive force (iHc) of a -F e -B based sintered magnet and it is not possible to increase the high temperature stability, we believe that this is not a fundamental solution.

本発明者は更に検討を進めた結果、特定組成の■添加N
d−Fe−B系焼結磁石では、あまり重要な働きをして
いないN d s F e 4B a相などのNdリッ
チ相が最小量に抑制され、Ndリッチ相の他に従来存在
が知られていないV−Fe−B化合物相が生成されこの
相の働きと特定組成の両者の作用により、固有保磁力(
iHc)の絶対値が高められ、またその高温安定性が改
善させることを見出し、本発明を完成した。
As a result of further investigation, the present inventor found that a specific composition of
In d-Fe-B sintered magnets, Nd-rich phases such as the NdsFe4Ba phase, which do not play a very important role, are suppressed to a minimum amount, and the presence of Nd-rich phases, which have not been known to exist in addition to Nd-rich phases, is suppressed to the minimum amount. A V-Fe-B compound phase is formed, which is not
The present invention was completed based on the discovery that the absolute value of iHc) was increased and the high temperature stability was improved.

即ち、本発明の第一の目的を達成するNdFe−B系焼
結磁石は、R=11〜18at%(但し、R11Dyを
除く希土類元素、80at%≦(Nd+Pr)/R≦1
00at%である)、B=6〜12a七%、V=2〜6
at%、T!1部Fe、Co(但しCoはFeとCoの
合計の25at%以下(0%を含む))および不純物か
らなる組成を有し、V−T−B化合物二次相(但し、T
はFe、あるいはCoが含有される場合はFeとcoで
ある。)が分散しており、20MGOe以上の最大エネ
ルギ積と15kOe以上の固有保磁力(iHC)を有す
ることを1寺徴とする。
That is, the NdFe-B sintered magnet that achieves the first object of the present invention has R=11 to 18 at% (however, rare earth elements excluding R11Dy, 80 at%≦(Nd+Pr)/R≦1
00at%), B=6-12a7%, V=2-6
at%, T! It has a composition consisting of 1 part Fe, Co (however, Co is 25 at% or less (including 0%) of the total of Fe and Co) and impurities, and has a V-T-B compound secondary phase (however, T
is Fe, or if Co is contained, Fe and co. ) are dispersed and have a maximum energy product of 20 MGOe or more and an intrinsic coercive force (iHC) of 15 kOe or more.

本発明の第二の目的を達成するN d −F eB系焼
結磁石は、R=11〜18at%(但し、Rは希土類元
素、R+=Nd+Pr、R2=D3/、80at%≦(
R,+R2)/R≦100at%)、0くR254%、
B=6〜12at%、V=2〜6at%、残部Fe、C
o (但しCoはFeとCoの合計の25at%以下(
0%を含む))および不純物からなる組成を有し、V−
T−B化合物二次相が分散しており、20 M G O
e以上の最大エネルギ積と15+3x、(但し,xはD
y含有量(at%)、15+3xが21kOe以上とな
るときは21 kOe )以上の固有保磁力(iHc)
を有することを特徴とする。
The N d -FeB-based sintered magnet that achieves the second objective of the present invention has R=11 to 18 at% (where R is a rare earth element, R+=Nd+Pr, R2=D3/, 80 at%≦(
R, +R2)/R≦100at%), 0×R254%,
B = 6 to 12 at%, V = 2 to 6 at%, balance Fe, C
o (However, Co is less than 25 at% of the total of Fe and Co (
0%)) and impurities, and V-
The T-B compound secondary phase is dispersed, and 20 M G O
Maximum energy product greater than e and 15+3x, (where x is D
Intrinsic coercive force (iHc) of 21 kOe or more when y content (at%), 15+3x is 21 kOe or more
It is characterized by having the following.

以下、本発明の構成を詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

上記したNd、Pr、(Dy)、B、Feおよび■の含
有量の範囲内において焼結体を構成する組織中にV−F
e−B化合物相が生成する。−方、これらの含有量の範
囲外では従来の磁石のようにR2Fe14B化合物相、
Ndリッチ相およびBリッチ相が構成相となり、V−T
−B化合物相が生成されなかったり、生成されても量が
非常に少なかったり、また磁石の性質を損なうN d 
2F e 17相が生成される。
V-F in the structure constituting the sintered body within the above-mentioned content ranges of Nd, Pr, (Dy), B, Fe, and ■.
An e-B compound phase is formed. - On the other hand, outside these content ranges, R2Fe14B compound phase,
The Nd-rich phase and the B-rich phase are the constituent phases, and the V-T
-B compound phase is not produced, or even if it is produced, the amount is very small, or N d impairs the properties of the magnet.
2F e 17 phases are generated.

後述の表2のN011の使用試料のV−Fe−B化合物
相は、EPMA″r測定したところV29.5at%、
Fe24.5at%、B46at%、NdR量の組成を
有していた。またVFe−B化合物相は、電子線回折で
測定したところ、格子定数a=5.6人、c=3.1人
の正方構造をユニットセルとしていることが分かった。
The V-Fe-B compound phase of the used sample of N011 in Table 2 below was measured by EPMA″r and found to be V29.5 at%,
It had a composition of 24.5 at% Fe, 46 at% B, and an amount of NdR. Further, when the VFe-B compound phase was measured by electron beam diffraction, it was found that the unit cell was a square structure with lattice constants a=5.6 and c=3.1.

第2図に結晶構造の解析に使用した電子線回折写真を示
す。この結晶の構造は、同定すべく既知の化合物の構造
と対比を行なったが現在のところは、正方晶V3B2が
最も確からしく、この相のVの一部がFeで置換されて
いるものと推定される。この相の中には上記元素以外も
固溶可能であり、焼結体の組成、添加元素および不純物
によって、■と性質が類似している種々の元素がVを置
換したり、Bと性質が類似しているCなどがBを1mす
ることができる。そのような場合でもVB二元化合物の
■の一部をFe″′C−置換した化合物(但し、Feは
Coおよび/または下記M元素で置換されることもある
)の相(おそらく、(V、−。
Figure 2 shows an electron diffraction photograph used to analyze the crystal structure. The structure of this crystal was compared with the structures of known compounds in order to identify it, but at present it is most likely to be tetragonal V3B2, and it is estimated that some of the V in this phase is replaced with Fe. be done. Elements other than those listed above can be dissolved in solid solution in this phase, and depending on the composition of the sintered body, added elements, and impurities, various elements with similar properties to ① may replace V, or elements with properties similar to B may be substituted for V. Similar C etc. can make B 1m. Even in such a case, a phase (probably, (V ,-.

Fe1l13B2相)が焼結体中に生成されている限り
良好な固有保磁力(iHc)が得られる。固有保磁力(
iHc)が特に良好なNd−Fe−B系焼結磁石では、
第1図のEPMA像に示すように■−F e−B化合物
相がR2F c 、4B化合物主相結晶粒の粒界や粒界
三重点などに分散しており、さらに高分解能の電子テ徽
鏡で観察すると、第3図に示すようにもつと微細なV−
Fe−B化合物相が主として粒界にまた一部は粒内にも
分散していることが分かった。Nd  Fe  B系焼
結磁石の特性は、V−Fe−B化合物相が主として粒界
に分散している場合が、主として粒内に分散している場
合よりも、良好である。R2F e t4B結晶粒のほ
とんど全部がその粒界に数個以上のV−FeB化合物相
の粒子と接している状態が望ましい。
As long as Fe1113B2 phase) is generated in the sintered body, a good intrinsic coercive force (iHc) can be obtained. Intrinsic coercive force (
In Nd-Fe-B sintered magnets with particularly good iHc),
As shown in the EPMA image in Figure 1, the ■-F e-B compound phase is dispersed at the grain boundaries and triple junctions of the R2F c and 4B compound main phase crystal grains, and the high-resolution electronic image shows that When observed with a mirror, as shown in Figure 3, a very fine V-
It was found that the Fe-B compound phase was mainly dispersed at the grain boundaries and also partially within the grains. The characteristics of the NdFeB-based sintered magnet are better when the V-Fe-B compound phase is mainly dispersed at the grain boundaries than when it is mainly dispersed within the grains. It is desirable that almost all of the R2F e t4B crystal grains be in contact with several or more V-FeB compound phase particles at their grain boundaries.

上記したようなV−T−B化合物相による固有保磁力(
iHc)向上効果を達成するには、二種以上の微粉末を
混合する従来の焼結磁石製造工程において原料粉末の混
合を特に注意して均一混合を行なう必要がある。一種類
のインテ・ントの粉砕により、所定の組成をもつ粉末を
得て製法においても、ジェットミルなとの粉砕後、分離
した各相の粉末を十分均一に分散させるために、均一化
混合の工程が必要とされる。均一混合の目標はロッキン
グミキサーで30分以上である。
Intrinsic coercive force (
In order to achieve the iHc) improvement effect, it is necessary to mix the raw material powders with special care to achieve uniform mixing in the conventional sintered magnet manufacturing process in which two or more types of fine powders are mixed. Even in the manufacturing method where a powder with a predetermined composition is obtained by grinding one type of intent, homogenization mixing is required to sufficiently uniformly disperse the separated powders of each phase after grinding with a jet mill. process is required. The goal for uniform mixing is 30 minutes or more with a rocking mixer.

なお、焼結後に600〜800°Cで熱処理を行なうと
結晶粒界の構造に変化が認められ、固有保磁力(iHc
)が室温で7〜11kOe、140℃で2〜5kOe高
められる。
Furthermore, when heat treatment is performed at 600 to 800°C after sintering, changes are observed in the structure of grain boundaries, and the intrinsic coercive force (iHc
) is increased by 7 to 11 kOe at room temperature and 2 to 5 kOe at 140°C.

本発明は固有保磁力(iHc)の温度係数が0.5%/
℃以上であるNd−Fe−B系焼結磁石において、著し
い保磁力低下にもかかわらず高温で各種機器への使用に
対して十分な固有保磁力(i Hc )を得ることがで
きる。
The present invention has a temperature coefficient of intrinsic coercive force (iHc) of 0.5%/
In a Nd-Fe-B based sintered magnet having a temperature of .degree. C. or higher, it is possible to obtain a sufficient intrinsic coercive force (i Hc ) for use in various devices at high temperatures despite a significant decrease in coercive force.

固有保磁力(iHc)は請求項1の永久磁石では15k
Oe以上となる。固有保磁力(iHc)は請求項2の永
久磁石(Dy添加)では、Dyがlat%含有されると
、固有保磁力は3kOe高められるので、固有保磁力(
iHc)≧15+3x(但し,xはDy含有量(at%
))となる。
The intrinsic coercive force (iHc) is 15k in the permanent magnet of claim 1.
It becomes Oe or more. In the permanent magnet (Dy added) according to claim 2, the intrinsic coercive force (iHc) is increased by 3 kOe when Dy is contained in lat%, so the intrinsic coercive force (iHc) is
iHc)≧15+3x (where x is Dy content (at%
)) becomes.

但し、本発明完成に至る実験で減磁曲線の測定に使用し
た電磁石の最大印加磁場が21kOeに相当するもので
あったので、固有保磁力が21kOeを越えた場合は実
際の値は測定不可能であった。よって、固有保磁力(i
Hc)が上記式による計算で21kOe以上となるとき
は、本発明の永久磁石の固有保磁力(iHc>は21k
Oe以上とする。
However, the maximum applied magnetic field of the electromagnet used to measure the demagnetization curve in the experiments leading to the completion of the present invention was equivalent to 21 kOe, so if the intrinsic coercive force exceeds 21 kOe, the actual value cannot be measured. Met. Therefore, the intrinsic coercive force (i
Hc) is 21kOe or more as calculated by the above formula, the intrinsic coercive force (iHc> of the permanent magnet of the present invention is 21kOe or more).
Must be Oe or higher.

本願発明の組成であるNd、Pr、(Dy)Feおよび
B系のNd−Fe−B系焼結磁石にAI2をさらに添加
すると固有保磁力(iHc)が高められる。これは微量
のAρがV−T−B化合物相の微細分散を促進するため
であると推定される。
When AI2 is further added to the Nd-Fe-B based sintered magnet of Nd, Pr, (Dy)Fe and B based composition of the present invention, the intrinsic coercive force (iHc) is increased. This is presumed to be because a trace amount of Aρ promotes fine dispersion of the V-T-B compound phase.

高温用途にNd−Fe−B系焼結磁石を使用するために
は1つのめやすとして固有保磁力(iHc)≧5kOe
が必要となる。ここで140°Cまで磁石の温度係数が
上昇することを考えてみる。モーターなどの用途では、
しばしばこの程度の温度に上昇することがある0例えば
固有保磁力(iHc)の温度係数が0.5%/℃の場合
には室温での固有保磁力(iHc)が12.5kOe以
上である必要がある。この固有保磁力(iHc)の値は
本発明の請求項1の組成範囲において満たされる。例え
ば固有保磁力(iHc)の温度係数が0.6%/℃の場
合には室温での固有保磁力(iHc)が17.8kOe
以上である必要がある。この固有保磁力(iHc)の値
は本発明の請求項1の組成範囲内において上限および下
限に近いところを除外した範囲でかつアルミニウムを添
加した組成で満たされる。固有保磁力(iHc)の温度
係数が0.7%/℃以上の場合は、Dyを添加した組成
により140℃で5kOe以上の固有保磁力(iHc)
を得ることができる。各元素の組成限定理由は上述の所
に加えて、下限未満であると固有保磁力(iHc)が低
くなり、一方上限を超えると残留磁化が低下するからで
ある。Aρについては、さらに3at%を超えるとキュ
リー温度は300℃以下となり、また残留磁化の温度変
化が増大するなどの悪影響が著しくなる。■添加による
固有保磁力(iHc)の上昇はキュリー温度をわずかし
か低下させない。さらにV量については、多過ぎると残
留磁化だけでなく固有保磁力(iHc)も低下し、高温
での安定性り低下する。これはV量が多すぎると、有官
なNd2Fer7相が生成してしまうからである。本願
において希土類元素(R)として主としてNdおよびP
rが用いられるのは、Nd2Fe+aBら P r 2
F 614Bら他の粘土FJ[によるR2Fe+4Bよ
りも大きい飽和磁化、大きい一軸性結晶磁気異方性を合
わせ持つからである。
One rule of thumb for using Nd-Fe-B sintered magnets in high-temperature applications is that the intrinsic coercive force (iHc) ≥ 5 kOe.
Is required. Now consider that the temperature coefficient of the magnet increases up to 140°C. For applications such as motors,
For example, if the temperature coefficient of the intrinsic coercive force (iHc) is 0.5%/°C, the intrinsic coercive force (iHc) at room temperature must be 12.5 kOe or higher. There is. This value of intrinsic coercive force (iHc) is satisfied within the composition range of claim 1 of the present invention. For example, if the temperature coefficient of the intrinsic coercive force (iHc) is 0.6%/°C, the intrinsic coercive force (iHc) at room temperature is 17.8 kOe.
It needs to be more than that. The value of this intrinsic coercive force (iHc) is within the composition range of claim 1 of the present invention, excluding the upper and lower limits, and is satisfied by a composition in which aluminum is added. If the temperature coefficient of the intrinsic coercive force (iHc) is 0.7%/℃ or higher, the composition with Dy added will increase the intrinsic coercive force (iHc) to 5 kOe or higher at 140℃.
can be obtained. The reason for limiting the composition of each element is, in addition to the above-mentioned reasons, that if it is less than the lower limit, the intrinsic coercive force (iHc) will be low, while if it exceeds the upper limit, the residual magnetization will be reduced. Regarding Aρ, if it exceeds 3 at %, the Curie temperature becomes 300° C. or less, and adverse effects such as an increase in temperature change in residual magnetization become significant. (2) The increase in intrinsic coercive force (iHc) caused by addition only slightly lowers the Curie temperature. Furthermore, if the amount of V is too large, not only the residual magnetization but also the intrinsic coercive force (iHc) will decrease, leading to a decrease in stability at high temperatures. This is because if the amount of V is too large, an organic Nd2Fer7 phase will be generated. In this application, the rare earth elements (R) are mainly Nd and P.
r is used in Nd2Fe+aB et al. P r 2
This is because it has both a larger saturation magnetization and a larger uniaxial magnetocrystalline anisotropy than R2Fe+4B made by other clays such as F614B.

(Nd+Pr)/R≧80at%としたのは、Nd、P
r (Dy以外)を高含有量にすることにより高い飽和
磁化と高い保磁力を得るためである。また、D3’(1
40℃での1llcを2kOe/%高める)の含有量が
4at%以下であるのは、R2= D yが希少資源で
あるからであり、また4at%を超えると残留磁化の低
下が著しいからである。
(Nd+Pr)/R≧80at% was set for Nd, P
This is to obtain high saturation magnetization and high coercive force by increasing the content of r (other than Dy). Also, D3'(1
The reason why the content of (2 kOe/% increase in 1llc at 40°C) is 4 at% or less is because R2 = D y is a rare resource, and because if it exceeds 4 at%, the residual magnetization decreases significantly. be.

なお、希土類の原料としては高純度に精製された原料だ
けではなく、NdとPrが未分層のジジムやさらにCe
が未分層のまま残留しているCcジジムなどの混合原料
を使用することができる。
In addition, rare earth raw materials include not only highly purified raw materials, but also didymium with unseparated layers of Nd and Pr, and even Ce.
It is possible to use a mixed raw material such as Cc didymium, which remains in an unseparated layer.

Feの一部をCoで置き換えると、キュリー温度が上昇
し、残留磁化Brの温度係数が改善される。一方、Co
の量がFeとCoの全体の25at%を超えると、後述
の二次相の出現によって固有保磁力(iHc)が低下す
るので置換量の上限を25at%とする。Coを含有す
る本発明の永久磁石では、N d 2F e +tB化
合物がNdz(FeCo)+4B化合物に、またV−F
e−B化合物がV−(FeCo)−B化合物に変化し、
また二次相として2あらたに(Co−Fe)−Nd相が
出現する。(Co・Fe)−Nd相は固有保磁力(iH
c)を低下させる。
When part of Fe is replaced with Co, the Curie temperature increases and the temperature coefficient of residual magnetization Br is improved. On the other hand, Co
If the amount exceeds 25 at% of the total amount of Fe and Co, the intrinsic coercive force (iHc) decreases due to the appearance of a secondary phase, which will be described later. Therefore, the upper limit of the substitution amount is set to 25 at%. In the permanent magnet of the present invention containing Co, the N d 2F e +tB compound is converted into the Ndz(FeCo) + 4B compound, and the V-F
e-B compound changes to V-(FeCo)-B compound,
In addition, two new (Co--Fe)--Nd phases appear as secondary phases. The (Co/Fe)-Nd phase has an intrinsic coercive force (iH
c) decrease.

本発明者は、上記したNd−Fe−B系焼結磁石に種々
の元素を添加して、これによる固有保磁力(iHc)の
影響を調査しな。この結果、下記元素の添加により固有
保磁力(iHc)は代かに改良されるかあるいは殆ど改
良されないが、低下することはないことが分かった。
The present inventor added various elements to the above-mentioned Nd-Fe-B based sintered magnet and investigated the effect of this on the intrinsic coercive force (iHc). As a result, it was found that by adding the following elements, the intrinsic coercive force (iHc) was improved or not improved at all, but did not decrease.

MlはVと同様に固有保磁力(iHc)を増大させる。Like V, Ml increases the intrinsic coercive force (iHc).

M2.Mlは磁気特性を向上させる効果は小さい、しか
し、希土類元素、Feなとの精錬過程やFe−Bの製造
工程てこれらの元素が混入する場合もあるから、原料コ
ストの点でM2.Mlの添加が許容できることは有利で
ある。
M2. Ml has a small effect on improving magnetic properties, but these elements may be mixed in during the refining process with rare earth elements and Fe, or during the manufacturing process of Fe-B, so M2. It is advantageous that the addition of Ml is tolerable.

M1=0〜4at%(但し、M、はCr、M。M1=0 to 4 at% (However, M is Cr, M.

Wの1種以上)、M2=0〜3at%(但し、M2はN
b、Ta、Niの1種以上)、M3=0〜2at%(f
旦し、M、はTi、Zr、Hf、Si。
(one or more types of W), M2 = 0 to 3 at% (however, M2 is N
b, Ta, Ni or more), M3=0 to 2 at% (f
In this case, M is Ti, Zr, Hf, and Si.

Mnの1種以上) これらの元素の内遷移元素はV−T−B化合物相のTの
一部を置換する。
One or more types of Mn) Among these elements, the transition element replaces a part of T in the V-T-B compound phase.

Ml、M2.M、は添加量が上限を超えると、キュリー
温度が低下しまた残留磁化Brも低下する。
Ml, M2. When the amount of M added exceeds the upper limit, the Curie temperature decreases and the residual magnetization Br also decreases.

上記した成分以外は不純物である。特にほう素原料とし
てしばしば使用されるフェロボロンに不可避的に不純物
としてアルミニウムを含む、アルミニウムはるつぼから
も溶出する。そのため合金成分として添加しない場合で
も、アルミニウムは鼓大0.4重量%(0,8at%)
、NdFe−B系焼結磁石に含まれる。
Components other than those mentioned above are impurities. In particular, ferroboron, which is often used as a boron raw material, inevitably contains aluminum as an impurity, and aluminum is also leached from the crucible. Therefore, even when not added as an alloy component, aluminum is 0.4% by weight (0.8 at%).
, included in NdFe-B based sintered magnets.

その他の元素もNd−Fe−B系永久磁石に添加するこ
とが発表されている。例えば、GaはCoと同時に添加
すると固有保磁力(iHc)を高めると言われている。
It has been announced that other elements may also be added to Nd-Fe-B permanent magnets. For example, it is said that when Ga is added at the same time as Co, the intrinsic coercive force (iHc) is increased.

しかし、Gaは本発明の永久磁石では特に固有保磁力(
iHc)を高めないので不純物である。
However, in the permanent magnet of the present invention, Ga has an inherent coercive force (
It is an impurity because it does not increase iHc).

また、本願と同日付出願でCuの添加を提案したがその
添加量が0.01%未満であると、特にその効果がなく
、Cuは不純物である。
Further, although the addition of Cu was proposed in an application filed on the same date as the present application, if the amount added is less than 0.01%, there is no particular effect, and Cu is an impurity.

また、合金の粉砕工程、粉砕後のプレス工程、焼結工程
で酸素がNd−Fe−B系焼結磁石中に不純物として混
入する。またNd−Fe−B合金粉末を直接Ca、Mg
又はNa還元によって得る共還元法では、リーチング中
(CaOM g O、N a20分離洗浄工程)に酸素
がNd−Fe−B系焼結磁石中に多量に混入する。酸素
は最大110000pp (重量比)Nd  Fe  
B系焼結磁石に混入する。かかる酸素は磁気特性も、そ
の他の特性も向上しない。
Furthermore, oxygen is mixed into the Nd-Fe-B sintered magnet as an impurity during the alloy pulverization process, the post-pulverization pressing process, and the sintering process. In addition, Nd-Fe-B alloy powder can be directly applied to Ca, Mg
Alternatively, in the co-reduction method obtained by Na reduction, a large amount of oxygen is mixed into the Nd-Fe-B based sintered magnet during leaching (CaOM g O, Na20 separation and cleaning step). Maximum oxygen content is 110,000 pp (weight ratio) Nd Fe
Contaminated with B-based sintered magnets. Such oxygen does not improve magnetic or other properties.

さらに、希土類原料やFe−Bの原料、また工程中に使
用される潤滑剤などからの炭素および鉄中に含まれる炭
素、リン、硫黄がNd−FeB系焼結磁石中に混入する
。現在の技術では最大5000pf)m (重量比)の
炭素がNd−FeB系焼結磁石に混入する。この炭素も
磁気特性も他の特性も向上させない。
Furthermore, carbon from rare earth raw materials, Fe-B raw materials, lubricants used during the process, and carbon, phosphorus, and sulfur contained in iron are mixed into the Nd-FeB sintered magnet. With current technology, a maximum of 5000 pf)m (weight ratio) of carbon is mixed into the Nd-FeB sintered magnet. This carbon also does not improve magnetic or other properties.

上記した本発明のNd−Fe−B系焼結磁石については
500〜1000°Cの熱処理温度範囲内において下記
のような温度範囲で熱処理を行なうことにより高い固有
保磁力(i)Ic)を得ることができる。
For the Nd-Fe-B based sintered magnet of the present invention described above, high intrinsic coercive force (i) Ic) can be obtained by performing heat treatment in the following temperature range within the heat treatment temperature range of 500 to 1000 ° C. be able to.

(以下、余白) 求めた。(Hereafter, margin) I asked for it.

表1 上記において、熱処理温度範囲は最大固有保磁力(i 
Hc ) maxから、これより1kOe低い値までの
固有保磁力(i Hc )に対応する温度範囲で示す。
Table 1 In the above, the heat treatment temperature range is the maximum specific coercive force (i
It is shown in the temperature range corresponding to the intrinsic coercive force (i Hc ) from Hc ) max to a value 1 kOe lower than this.

AQの値が記入されていない場合はAQは不純物として
含有されている。
If the value of AQ is not entered, AQ is contained as an impurity.

く作用) 上記したように組成が限定されたN d−F eBB系
焼結磁石はV−T−B化合物二次相の分散によって、固
有保磁力(iHc)の絶対値を高めることができる。こ
の作用の一つの理由は■T−B化合物が焼結中の結晶粒
成長を抑制する作用を有しているため、R2Fe+aB
化合物主相の粒径が、V−T−B化合物を存在させない
場合に比べ、焼結体全体中で小さくなり、その結果固有
保磁力(iHc)の絶対値が高くなることによると考え
られる。もう一つの理由は、N−d 2F e 1aB
相の結晶粒界がV添加によって改質され、磁化反転の核
が発生しにくくなったことによると推定される。
As described above, the Nd-F eBB-based sintered magnet with a limited composition can increase the absolute value of the intrinsic coercive force (iHc) by dispersing the V-T-B compound secondary phase. One of the reasons for this effect is: ■ Since the T-B compound has the effect of suppressing grain growth during sintering, R2Fe+aB
This is thought to be due to the fact that the particle size of the compound main phase becomes smaller in the entire sintered body than in the case where the V-T-B compound is not present, and as a result, the absolute value of the intrinsic coercive force (iHc) becomes higher. Another reason is that N-d 2F e 1aB
This is presumed to be because the crystal grain boundaries of the phase were modified by the addition of V, making it difficult for magnetization reversal nuclei to occur.

標準的組成であるN d 19F e 77B [1に
ついて、3.5at%のVで置換した場合の固有保磁力
(iHc)は15kOe以上になる。この値は上記標準
組成の固有保磁力(iHc)=約6kOe (熱処理な
しの場合)〜約12kOe(熱処理ありの場合〉と比較
して著しく高い。さらに、上記標準組成のFeをlat
%および5at%のVで置換したNd−Fe−B焼結磁
石の固有保磁力(iHc)の値として8.1〜8.3k
Oeの値が発表されているが(特開昭59=89401
号)本発明の焼結磁石の固有保磁力(iHc)は従来の
Nd−Fe−V−B系磁石のものよりも著しく高い。
For the standard composition of N d 19F e 77B [1], the intrinsic coercive force (iHc) when replaced with 3.5 at % of V becomes 15 kOe or more. This value is significantly higher than the intrinsic coercive force (iHc) of the above standard composition, which is about 6 kOe (without heat treatment) to about 12 kOe (with heat treatment).
% and 5 at% of V as the value of the intrinsic coercive force (iHc) of the Nd-Fe-B sintered magnet, which is 8.1 to 8.3 k.
Although the value of Oe has been announced (Japanese Patent Application Laid-Open No. 1987 = 89401
No.) The intrinsic coercive force (iHc) of the sintered magnet of the present invention is significantly higher than that of the conventional Nd-Fe-V-B magnet.

なお、標準組成以外のNd−Fe−B磁石についても上
記と同様の固有保磁力増大がある。
Note that Nd-Fe-B magnets having a composition other than the standard composition also have an increase in the intrinsic coercive force similar to that described above.

また、本発明に係るN d −F e −B系焼結磁石
の最大エネルギ積は20MGOe以上である。
Further, the maximum energy product of the N d -F e -B based sintered magnet according to the present invention is 20 MGOe or more.

この値は高性能希土類磁石に要求される最低の磁石特性
であり、この値を下回ると希土類磁石は他の磁石と競合
できなくなる。
This value is the minimum magnetic property required for a high-performance rare earth magnet, and below this value, the rare earth magnet cannot compete with other magnets.

■添加によるV−T−B化合物二次相は、固有保磁力(
iHc)の増大のみならず酎食性も改良する。この説明
の前に、Nd−Fe−B系焼結磁石の腐食の背景を説明
する。
■The secondary phase of the V-T-B compound due to the addition has an inherent coercive force (
It not only increases iHc) but also improves edibility. Before this explanation, the background of corrosion of Nd-Fe-B based sintered magnets will be explained.

Nd−Fe−B磁石は音響機器やOA −FA機器の部
品として、モーター、アクチュエータースピーカーに、
またMHIの磁気回路に既に多量に使用されている。こ
れらは比較的ゆるやかな環境(低温、低湿)で使用され
る機器である。
Nd-Fe-B magnets are used as parts of audio equipment and OA-FA equipment, such as motors, actuator speakers,
It is also already used in large quantities in MHI magnetic circuits. These are devices used in relatively mild environments (low temperature, low humidity).

Nd−Fe−B磁石は乾燥した空気中では、SmCo磁
石よりもさびにくいことが知られている(R,Blaa
k aad E、 Adler: The effec
t ofsurface oxidatioOoa t
he dcmagnetixatioacurve o
f 5iotcrcd Nd−Fe−B perman
eot magnets。
It is known that Nd-Fe-B magnets are less prone to rust than SmCo magnets in dry air (R, Blaa
k aad E, Adler: The effect
t of surface oxidatioOoa t
he dcmagnetixatioacurve o
f5iotcrcd Nd-Fe-B perman
eot magnets.

9th Inter(lational Worksh
op on Rare EarthMageets a
nd Their Applications、 Ba
d 5odcIl。
9th Inter(rational work)
op on Rare EarthMageets a
nd Their Applications, Ba
d5odcIl.

FRG、 1987)。FRG, 1987).

よって、乾燥空気中での酸化に対してはNdFe−B磁
石は優れた酎食性をもっていると言える。
Therefore, it can be said that NdFe-B magnets have excellent erodibility against oxidation in dry air.

しかし、Nd−Fe−B磁石は水中や湿度が高い環境で
は、さび易い性質をもつ。Nd−Fe−B磁石がさびや
すいことの対策として、めっき、樹脂コーティングなど
の各種の表面処理の方法が採用されている。しかしどの
ような表面処理もピンホール、ワレ目などの欠陥がある
ので、表面被膜の欠陥から水がN d −F e −B
磁石の表面にまで侵入すれば、磁石を激しく酸化してし
まう。酸化が起こると、磁石の特性は急激に劣化しまた
錆びが磁石の表面に浮き出て機器の機能が阻害されてし
まう。すなわち、従来のNd−Fe−B磁石は水に対す
る抵抗力が極端に低いので、表面処理により酎食性不良
の対策がなされている。しかしながら、この対策は完全
ではなく、従来の電子機器用に使用された場合にさび等
の問題がしばしば発生した。
However, Nd-Fe-B magnets tend to rust in water or in high humidity environments. As a countermeasure against the tendency of Nd-Fe-B magnets to rust, various surface treatment methods such as plating and resin coating have been adopted. However, any surface treatment has defects such as pinholes and cracks, so water leaks from defects in the surface coating.
If it penetrates the surface of the magnet, it will severely oxidize the magnet. When oxidation occurs, the properties of the magnet rapidly deteriorate, and rust appears on the surface of the magnet, impeding the functionality of the device. That is, since conventional Nd-Fe-B magnets have extremely low resistance to water, countermeasures against poor corrosion resistance have been taken by surface treatment. However, this measure is not perfect, and problems such as rust often occur when used in conventional electronic equipment.

上記のような背景の下で、Nd−Fe−B磁石の酎食性
、具体的には対水酎食性不良の問題を表面処理によらな
いで、磁石組成により改良することも試みられている。
Under the above-mentioned background, attempts have been made to improve the erodibility of Nd-Fe-B magnets, specifically the problem of poor erodibility to water, by changing the composition of the magnet, rather than by surface treatment.

この一つによれば、NdFe−BにAQやCoを添加す
ることが提案された。しかしながら.Alによる酎食性
向上効果は僅かで、またAIはキュリー温度を低下させ
る欠点を持つ。またCoの添加はiHcの低下を伴う。
According to one of these, it was proposed to add AQ or Co to NdFe-B. however. The effect of Al on improving the edibility of the tea is slight, and AI also has the disadvantage of lowering the Curie temperature. Further, the addition of Co is accompanied by a decrease in iHc.

Nd−Fe−B系焼結磁石の腐食の金属組織の面からの
研究もなされている。
Research has also been conducted on corrosion of Nd-Fe-B based sintered magnets from the perspective of metallographic structure.

N d−F e −B磁石の水腐食の機構については材
木らの研究がある(材木ら、rNd−FeB磁石合金の
腐食機構」日本金属学会秋季大会No、604 (19
87年10月))。それによると標準的組成の33.3
wt%Nd−65,0wt%Fe−1,4wt%B−0
,3%ARで次の3相:■N d 2F e +aB 
:■Nd−リッチ合金(例えばNd−10wt%Fe)
;■Bリッチ化合物相と言われるN d F e 4B
 mからなる焼結合金では、水中の腐食速度は■〉■〉
■〉の順であることが分かった。
Regarding the mechanism of water corrosion of Nd-Fe-B magnets, there is a study by Zaimoku et al.
(October 1987)). According to it, the standard composition is 33.3
wt%Nd-65,0wt%Fe-1,4wt%B-0
, the following three phases at 3% AR: ■N d 2F e +aB
:■Nd-rich alloy (e.g. Nd-10wt%Fe)
;■ N d Fe 4B, which is said to be a B-rich compound phase
For a sintered alloy consisting of m, the corrosion rate in water is ■〉■〉
■〉It was found that the order was as follows.

本発明によれば、最も酎食性が低い(DBリッチ化合物
相の大部分あるいは全部をV−T−B化合物物に変換す
ることにより、酎食性を高める。
According to the present invention, the edible property is improved by converting most or all of the DB-rich compound phase into V-T-B compounds.

VはBと大変安定な化合物を生成しそしてN d aF
e、Bの生成を妨げる。T−B化合物の対水酎食性は■
Bリッチ化合物相よりもまた■および■の両相よりも高
い。これらの作用によりNd−Fe−B磁石の■Bリッ
チ化合物相を少なくするかあるいはなくすることができ
、対水酎食性不良の原因を取除くことができる。このよ
うな組織を有するNd−Fe−B系焼結磁石の酎食性は
、80℃、90%RHの高温多湿条件での酸化増量(1
20時間試験)で表わして、従来のものより酎食性が2
倍以上優れている(酸化増量が1/2以下である)、こ
のように酎食性が改善されると、従来と同様の機器に使
用する場合に起こるさびの問題は極めて少なくなると考
えられる。
V forms a very stable compound with B and N daF
Prevents the generation of e and B. The phagocytosis of T-B compound is ■
It is higher than the B-rich compound phase and higher than both the ■ and ■ phases. By these actions, the B-rich compound phase of the Nd-Fe-B magnet can be reduced or eliminated, and the cause of poor water-chocotability can be eliminated. The corrosion resistance of Nd-Fe-B sintered magnets having such a structure is determined by the oxidation weight gain (1
20 hour test), the edibility is 2.
If the oxidation property is improved by more than twice as much (oxidation weight gain is 1/2 or less), it is thought that the problem of rust that occurs when used in conventional equipment will be extremely reduced.

(実施例) 以下、実験例によりさらに詳しく本発明を説明する。(Example) Hereinafter, the present invention will be explained in more detail using experimental examples.

実施例1 合金を高周波溶解し、鉄鍋型にIA造した。出発原料と
しては、Feとしては純度が99.9wt%の電解鉄、
Bはフェロボロン合金および純度が99wt%のボロン
、Ndは99wt%、Prは99wt%、Dyは99 
w t%のものを使用し、■は50wt%のVを含むフ
ェロバナジウムを使用し、Affとしては99.9wt
%純度のものを使用した。溶解鋳造の際にはV量が合金
中で均一になるように溶湯の充分な撹拌を行ない、また
インゴットの厚さを10mm以下に薄くすることにより
冷却もすばやく行ない、V−Fe−B化合物相がインゴ
ット中に微細に分散がされるようにした。得られたイン
ゴットをスタンプミルにより35メツシユに粉砕し1次
いでジェットミルにより窒素ガスを用いて微粉砕して粒
径が2.5〜3.5μmの粉末を得た。この粉末を10
kOeの磁界中で1 、5 L/cm2の圧力で成形し
た。
Example 1 An alloy was high-frequency melted and IA-molded into an iron pot shape. As starting materials, electrolytic iron with a purity of 99.9 wt% as Fe,
B is a ferroboron alloy and boron with a purity of 99 wt%, Nd is 99 wt%, Pr is 99 wt%, and Dy is 99 wt%.
wt% is used, ■ is ferrovanadium containing 50wt% of V, and Aff is 99.9wt.
% purity was used. During melt casting, the molten metal is sufficiently stirred so that the amount of V is uniform in the alloy, and the ingot is quickly cooled by reducing the thickness to 10 mm or less, so that the V-Fe-B compound phase is finely dispersed in the ingot. The obtained ingot was ground into 35 meshes using a stamp mill, and then finely ground using a jet mill using nitrogen gas to obtain a powder having a particle size of 2.5 to 3.5 μm. 10 pieces of this powder
Molding was carried out at a pressure of 1.5 L/cm2 in a magnetic field of kOe.

なお、粉末処理の際にはジェットミル後粉末の撹拌を充
分性なって、V−Fe−B化合物相が焼結体中に微細分
散されるようにした。得られた圧検体を1050〜11
20℃でアルゴン雰囲気中で1〜5時間焼結した。焼結
体を800℃で1時間熱処理後アルゴンガスを吹き付け
て急冷し、その後600〜700℃にて1時間熱処理し
Arを吹き付けて急冷した。
In addition, during the powder treatment, the powder was sufficiently stirred after jet milling so that the V-Fe-B compound phase was finely dispersed in the sintered body. The obtained pressure specimen was 1050-11
Sintering was performed at 20° C. in an argon atmosphere for 1 to 5 hours. The sintered body was heat-treated at 800° C. for 1 hour, then quenched by blowing argon gas, then heat-treated at 600 to 700° C. for 1 hour, and quenched by blowing Ar.

試料の組成および磁気特性を表2に示す。The composition and magnetic properties of the sample are shown in Table 2.

(以下余白) 表2 2(続 き) 実施例2 実施例1と同様の方法でNd14Fe工tBa■8をl
OxlOx1mmの板に調製した。この板を80℃、9
0%RHの空気中で120時間まで加熱し、酸化増量を
測定した。結果を第4図に示す。この図より■の添加に
より酎食性が著しく改良されることが分かる。
(Left below) Table 2 2 (Continued) Example 2 Nd14Fe tBa■8 was prepared using the same method as in Example 1.
A plate of OxlOx 1 mm was prepared. This board was heated to 80℃, 9
It was heated in air at 0% RH for up to 120 hours and the oxidation weight gain was measured. The results are shown in Figure 4. From this figure, it can be seen that the addition of ■ greatly improves the edibility of the drink.

実施例3 表3に示す組成につき実施例2と同様の方法で酸化増量
を測定した結果を表3に示す。
Example 3 Table 3 shows the results of measuring oxidation weight gain using the same method as in Example 2 for the compositions shown in Table 3.

(以下余白) 表 (m l) 表3(w2) (発明の効果) 以上説明したように本願請求項1に記載の発明によると
、Dyを全く含有しないNd−FeB系焼結磁石であっ
て、従来同一組成系のNdFe−B系焼結磁石では達成
されていた特性を遥かに上回る固有保磁力(iHc)が
得られる。このため本発明の焼結磁石は、高性能磁石と
して、従来磁石では使用できなかった用途に使用可能と
なり、従来磁石と同等用途に使用した場合でも経年変化
が少なく安定した磁石特性が得られる。従来、本願のよ
うに高い固有保磁力(iHc)を得るためには希土類資
源のバランスを大きく越えて多量の])yを添加するこ
とが必要であったが、本発明は希土類資源のバランスを
崩さないで上記磁気特性を達成することができる。
(Margin below) Table (ml) Table 3 (w2) (Effects of the invention) As explained above, according to the invention set forth in claim 1 of the present application, the Nd-FeB sintered magnet does not contain Dy at all. , it is possible to obtain an intrinsic coercive force (iHc) that far exceeds the characteristics achieved with conventional NdFe-B based sintered magnets of the same composition. Therefore, the sintered magnet of the present invention can be used as a high-performance magnet in applications where conventional magnets could not be used, and even when used in the same applications as conventional magnets, stable magnetic characteristics with little aging can be obtained. Conventionally, in order to obtain a high intrinsic coercive force (iHc) as in the present application, it was necessary to add a large amount of ])y far exceeding the balance of rare earth resources, but the present invention improves the balance of rare earth resources. The above magnetic properties can be achieved without deteriorating the magnetic properties.

請求項2記載の発明によると、Dyを少量含有するNd
−Fe−B系焼結磁石であって、従来のNd−Fe−B
系焼結磁石であって同−Dy量のものより遥かに優れた
特性が得られる。このため本発明の焼結磁石は、高性能
磁石として、従来磁石では使用できなかった用途に使用
可能となり、従来磁石と同等用途に使用した場合でも経
年変化が少なく安定した磁石特性が得られる。
According to the invention described in claim 2, Nd containing a small amount of Dy
- Fe-B based sintered magnet, which is a conventional Nd-Fe-B
This type of sintered magnet has far superior properties than those with the same amount of -Dy. Therefore, the sintered magnet of the present invention can be used as a high-performance magnet in applications where conventional magnets could not be used, and even when used in the same applications as conventional magnets, stable magnetic characteristics with little aging can be obtained.

請求項3記載の発明では、上記効果に加えて、さらに固
有保磁力(iHc)を高めることができる。
According to the third aspect of the invention, in addition to the above effects, the intrinsic coercive force (iHc) can be further increased.

請求項4記載の発明では、上記効果に加えて、さらに若
干固有保磁力(iHc)を高めることができる(添加元
素がM8の場合)。また、原料不純物の制約が少なくな
る(添加元素がM2、M3の場合)。
In addition to the above-mentioned effects, the invention described in claim 4 can further increase the intrinsic coercive force (iHc) a little (when the additive element is M8). Further, restrictions on raw material impurities are reduced (when the additive elements are M2 and M3).

請求項5記載の発明では、請求項4の上記効果に加えて
、140℃程度まで使用時の温度が上昇する機器にもN
d−Fe−B系焼結磁石を使用することができるように
なる。
In addition to the above-mentioned effects of claim 4, the invention as claimed in claim 5 provides N
It becomes possible to use d-Fe-B based sintered magnets.

請求項6記載の発明では、請求項5の上記効果に加えて
、さらに固有保磁力(iHc)を高めることができる。
In the invention set forth in claim 6, in addition to the above effects of claim 5, the intrinsic coercive force (iHc) can be further increased.

請求項7記載の発明では、添加元素がM、の場合は若干
固有保磁力(iHc)が高められる。
In the seventh aspect of the invention, when the additive element is M, the intrinsic coercive force (iHc) is slightly increased.

また、添加元素がM2、M3の場合原料不純物の制約が
少なくなる。
Furthermore, when the additive elements are M2 and M3, restrictions on raw material impurities are reduced.

請求項8.9記載の発明では、請求項2の上記効果に加
えて、それぞれ140℃、200’C程度まで使用時の
温度が上昇するbIi器にもNd−Fe−B系焼結磁石
を使用することができるようになる。
In the invention described in claim 8.9, in addition to the above-mentioned effects of claim 2, the Nd-Fe-B based sintered magnet is also used in the bIi device whose temperature during use increases to about 140°C and 200'C, respectively. be able to use it.

請求項10記載の発明では、請求項8の上記効果に加え
て、さらに固有保磁力(iHc)を高めることができる
According to the tenth aspect of the invention, in addition to the above effects of the eighth aspect, the intrinsic coercive force (iHc) can be further increased.

請求項11記載の発明では、添加元素がM。In the invention according to claim 11, the additional element is M.

の場合は若干固有保磁力(iHc)が高められる。また
、添加元素がM2、M3の場合原料不純物の制約が少な
くなる。
In this case, the intrinsic coercive force (iHc) is slightly increased. Furthermore, when the additive elements are M2 and M3, restrictions on raw material impurities are reduced.

請求項12記載の発明では、上記効果に加えて、さび等
の酎食性不良に起因するトラブルを少なくすることがで
きる。
In addition to the above-mentioned effects, the invention according to claim 12 can reduce troubles caused by poor edibility such as rust.

本発明により、その最初の発明の当初から指摘されてい
たNd−Fe−B磁石の重大な課題が解決された。本発
明により、Nd−Fe−B磁石に当初期待されたが実現
できなかった高性能磁石を提供することができるように
なったため、本発明の工業的価値は非常に大きい。
The present invention has solved the serious problems of Nd-Fe-B magnets that have been pointed out from the beginning of the first invention. The present invention has made it possible to provide a high-performance magnet, which was originally expected for Nd-Fe-B magnets but could not be realized, so the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のNd−Fe−B系焼結磁石のEPMA
像を示す金属組織写真、 第2図(A)、(B)は電子線回折によるVFe−B化
合物の結晶構造を示す写真 第3図は透過型電子盟微鏡による同様の金属組織写真、 第4図は酸化増量を示すグラフである。
Figure 1 shows the EPMA of the Nd-Fe-B sintered magnet of the present invention.
Figures 2 (A) and (B) are photographs showing the crystal structure of the VFe-B compound obtained by electron beam diffraction. Figure 3 is a similar metal structure photograph taken using a transmission electron microscope. Figure 4 is a graph showing oxidation weight gain.

Claims (12)

【特許請求の範囲】[Claims] 1.固有保磁力(iHc)の温度係数が0.5%/℃以
上のNd−Fe−B系焼結磁石において、R=11〜1
8at%(但し、RはDyを除く希土類元素、80at
%≦(Nd+Pr)/R≦100at%である),B=
6〜12at%,V=2〜6at%,残部Fe、Co(
但しCoはFeとCoの合計の25at%以下(0%を
含む))および不純物からなる組成を有し、V−T−B
化合物二次相(但し、TはFe、あるいは、Coが含有
される場合はFeとCoである。)が分散しており、2
0MGOe以上の最大エネルギ積と15kOe以上の固
有保磁力(iHc)を有することを特徴とするNd−F
e−B系焼結磁石。
1. In a Nd-Fe-B sintered magnet with a temperature coefficient of intrinsic coercive force (iHc) of 0.5%/°C or more, R = 11 to 1.
8at% (However, R is a rare earth element excluding Dy, 80at%
%≦(Nd+Pr)/R≦100at%), B=
6 to 12 at%, V = 2 to 6 at%, balance Fe, Co (
However, Co has a composition consisting of 25 at% or less (including 0%) of the total of Fe and Co and impurities, and V-T-B
A compound secondary phase (where T is Fe, or if Co is contained, Fe and Co) is dispersed, and 2
Nd-F characterized by having a maximum energy product of 0 MGOe or more and an intrinsic coercive force (iHc) of 15 kOe or more
e-B series sintered magnet.
2.固有保磁力(iHc)の温度係数が0.5%/℃以
上のNd−Fe−B系焼結磁石において、R=11%〜
18at%(但しRは希土類元素、R_1=Nd+Pr
、R_2=Dy、80at%≦(R_1+R_2)/R
≦100at%)、0<R_2≦4at%、B=6〜1
2at%,V=2〜6at%、残部Fe、Co(但しC
oはFeとCoの合計の25at%以下(0%を含む)
)および不純物からなる組成を有し、V−T−B化合物
二次相が分散しており、20MGOe以上の最大エネル
ギ積と、固有保磁力(iHc)y≧15+3x(但し,
xはDy含有量(at%)であり、yが21kOe以上
のときはy=21kOeである)を有することを特徴と
するNd−Fe−B系焼結磁石。
2. In Nd-Fe-B sintered magnets with a temperature coefficient of intrinsic coercive force (iHc) of 0.5%/℃ or more, R = 11% ~
18at% (R is a rare earth element, R_1=Nd+Pr
, R_2=Dy, 80at%≦(R_1+R_2)/R
≦100at%), 0<R_2≦4at%, B=6-1
2 at%, V = 2 to 6 at%, balance Fe, Co (however, C
o is 25 at% or less (including 0%) of the total of Fe and Co
) and impurities, a V-T-B compound secondary phase is dispersed, a maximum energy product of 20 MGOe or more, and an intrinsic coercive force (iHc) y≧15+3x (however,
x is Dy content (at%), and when y is 21 kOe or more, y=21 kOe).
3.Al≦3at%をさらに含有することを特徴とする
請求項1または2項記載のNd−Fe−B系焼結磁石。
3. The Nd-Fe-B based sintered magnet according to claim 1 or 2, further comprising Al≦3 at%.
4.M_1=0〜4at%(但し、M_1はCr,Mo
,Wの1種以上)、M_2=0〜3at%(但し、M_
2はNb,Ta,Niの1種以上)およびM_3=0〜
2at%以上(但し、M_3はTi,Zr,Hf,Si
,Mnの1種以上)をさらに含有し、V−T−B化合物
二次相のTが Fe、あるいは、Coが含有される場合はFeとCoを
主とする遷移元素であることを特徴とする請求項1から
3までの何れか1項記載のNd−Fe−B系焼結磁石。
4. M_1=0 to 4at% (However, M_1 is Cr, Mo
, W), M_2=0 to 3 at% (however, M_
2 is one or more of Nb, Ta, Ni) and M_3=0~
2at% or more (However, M_3 is Ti, Zr, Hf, Si
, Mn), and T in the secondary phase of the V-T-B compound is Fe, or if Co is contained, a transition element mainly consisting of Fe and Co. The Nd-Fe-B based sintered magnet according to any one of claims 1 to 3.
5.140℃での固有保磁力(iHc)が5kOe以上
であることを特徴とする請求項1または4記載のNd−
Fe−B系焼結磁石。
5. The Nd- according to claim 1 or 4, which has an intrinsic coercive force (iHc) at 140°C of 5 kOe or more.
Fe-B based sintered magnet.
6.Al≦3at%をさらに含有することを特徴とする
請求項5記載のNd−Fe−B系焼結磁石。
6. The Nd-Fe-B based sintered magnet according to claim 5, further containing Al≦3 at%.
7.M_1=0〜4at%(但し、M_1はCr,Mo
,Wの1種以上)、M_2=0〜3at%(但し、M_
2はNb,Ta,Niの1種以上)およびM_3=0〜
2at%以上(但し、M_3はTi,Zr,Hf,Si
,Mnの1種以上)をさらに含有し、V−T−B化合物
二次相のTがFe、あるいは、Coが含有される場合は
FeとCoを主とする遷移元素であることを特徴とする
請求項5または6記載のNd−Fe−B系焼結磁石。
7. M_1=0 to 4at% (However, M_1 is Cr, Mo
, W), M_2=0 to 3 at% (however, M_
2 is one or more of Nb, Ta, Ni) and M_3=0~
2at% or more (However, M_3 is Ti, Zr, Hf, Si
, Mn), and T in the secondary phase of the V-T-B compound is Fe, or if Co is contained, a transition element mainly consisting of Fe and Co. The Nd-Fe-B based sintered magnet according to claim 5 or 6.
8.140℃での固有保磁力(iHc)が5+2x(K
Oe)以上(但し、xはDy含有量(at%))である
ことを特徴とする請求項2に記載のNd−Fe−B系焼
結磁石。
8. The intrinsic coercive force (iHc) at 140℃ is 5+2x(K
3. The Nd-Fe-B based sintered magnet according to claim 2, wherein the Nd-Fe-B based sintered magnet is equal to or higher than Oe) (where x is Dy content (at%)).
9.200℃での固有保磁力(iHc)が5kOe以上
であることを特徴とする請求項8記載のNd−Fe−B
系焼結磁石。
9. The Nd-Fe-B according to claim 8, which has an intrinsic coercive force (iHc) at 200°C of 5 kOe or more.
system sintered magnet.
10.Al≦3at%をさらに含有することを特徴とす
る請求項8または9記載のNd−Fe−B系焼結磁石。
10. The Nd-Fe-B based sintered magnet according to claim 8 or 9, further comprising Al≦3 at%.
11.M_1=0〜4at%(但し、M_1はCr,M
o,Wの1種以上)、M_2=0〜3at%(但し、M
_2はNb,Ta,Niの1種以上)およびM_3=0
〜2at%以上(但し、M_3はTi,Zr,Hf,S
i,Mnの1種以上)をさらに含有し、V−T−B化合
物二次相のTがFe、あるいは、Coが含有される場合
はFeとCoを主とする遷移元素であることを特徴とす
る請求項8から10までの何れか1項記載のNd−Fe
−−B系焼結磁石。
11. M_1=0 to 4 at% (However, M_1 is Cr, M
o, W), M_2=0 to 3 at% (however, M
_2 is one or more of Nb, Ta, Ni) and M_3=0
~2 at% or more (however, M_3 is Ti, Zr, Hf, S
i, Mn), and T in the secondary phase of the V-T-B compound is Fe, or if Co is contained, a transition element mainly consisting of Fe and Co. Nd-Fe according to any one of claims 8 to 10,
--B-based sintered magnet.
12.Bリッチ相の大部分または全部が前記V−T−B
化合物二次相に置換されており、酎食性がすぐれている
ことを特徴とする請求項1から11までの何れか1項記
載のNd−Fe−B系焼結磁石。
12. Most or all of the B-rich phase is the V-T-B
The Nd-Fe-B based sintered magnet according to any one of claims 1 to 11, characterized in that it is substituted with a secondary compound phase and has excellent edibility.
JP63250850A 1988-06-03 1988-10-06 Nd-fe-b system sintered magnet Pending JPH02119105A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP63250850A JPH02119105A (en) 1988-06-03 1988-10-06 Nd-fe-b system sintered magnet
US07/321,183 US5000800A (en) 1988-06-03 1989-03-09 Permanent magnet and method for producing the same
GB8905754A GB2219309B (en) 1988-06-03 1989-03-13 Permanent magnet and method for producing the same
IT8919862A IT1230181B (en) 1988-06-03 1989-03-22 Neodymium-iron-boron sintered magnet
IE891582A IE891582L (en) 1988-06-03 1989-05-16 Permanent Magnet and Method for Producing the Same
ES89109037T ES2057018T3 (en) 1988-06-03 1989-05-19 SINTERED ND-FE-B MAGNET AND METHOD FOR ITS MANUFACTURE.
DE68917213T DE68917213T2 (en) 1988-06-03 1989-05-19 Sintered Nd-Fe-B magnet and its manufacturing process.
AT89109037T ATE109588T1 (en) 1988-06-03 1989-05-19 SINTERED ND-FE-B MAGNET AND ITS MANUFACTURING PROCESS.
EP89109037A EP0344542B1 (en) 1988-06-03 1989-05-19 An Nd-Fe-B sintered magnet and method for producing the same
FR8906710A FR2632766B1 (en) 1988-06-03 1989-05-23 PERMANENT MAGNET AND MANUFACTURING METHOD THEREOF
FI892716A FI102988B1 (en) 1988-06-03 1989-06-02 Permanent magnet and process for its preparation

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP63-135419 1988-06-03
JP13541988 1988-06-03
JP63-148045 1988-06-17
JP63-171806 1988-07-12
JP63250850A JPH02119105A (en) 1988-06-03 1988-10-06 Nd-fe-b system sintered magnet

Publications (1)

Publication Number Publication Date
JPH02119105A true JPH02119105A (en) 1990-05-07

Family

ID=26469275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250850A Pending JPH02119105A (en) 1988-06-03 1988-10-06 Nd-fe-b system sintered magnet

Country Status (1)

Country Link
JP (1) JPH02119105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129768A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Rare earth magnet and method of manufacturing the same
KR20120021939A (en) * 2010-08-23 2012-03-09 한양대학교 산학협력단 R-Fe-B SINTERED MAGNET HAVING &eta;-PHASE AND FABRICATION METHOD THEREOF
CN104979062A (en) * 2014-04-14 2015-10-14 北京中科三环高技术股份有限公司 Sintered protactinium iron boron permanent magnet material and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116756A (en) * 1985-11-15 1987-05-28 Hitachi Metals Ltd Permanent magnet alloy
JPS62165305A (en) * 1986-01-16 1987-07-21 Hitachi Metals Ltd Permanent magnet of good thermal stability and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116756A (en) * 1985-11-15 1987-05-28 Hitachi Metals Ltd Permanent magnet alloy
JPS62165305A (en) * 1986-01-16 1987-07-21 Hitachi Metals Ltd Permanent magnet of good thermal stability and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129768A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Rare earth magnet and method of manufacturing the same
KR20120021939A (en) * 2010-08-23 2012-03-09 한양대학교 산학협력단 R-Fe-B SINTERED MAGNET HAVING &eta;-PHASE AND FABRICATION METHOD THEREOF
CN104979062A (en) * 2014-04-14 2015-10-14 北京中科三环高技术股份有限公司 Sintered protactinium iron boron permanent magnet material and production method therefor
CN104979062B (en) * 2014-04-14 2018-09-11 北京中科三环高技术股份有限公司 It is sintered praseodymium iron boron permanent magnet material and its production method

Similar Documents

Publication Publication Date Title
EP0134305B1 (en) Permanent magnet
CA1315571C (en) Magnetic materials and permanent magnets
EP0197712B1 (en) Rare earth-iron-boron-based permanent magnet
EP0134304B2 (en) Permanent magnets
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
EP0125347B1 (en) Isotropic magnets and process for producing same
KR101287719B1 (en) R-t-b-c type rare earth sintered magnet and making method
EP0344542B1 (en) An Nd-Fe-B sintered magnet and method for producing the same
US7255751B2 (en) Method for manufacturing R-T-B system rare earth permanent magnet
JPH0531807B2 (en)
JP2002064010A (en) High-resistivity rare earth magnet and its manufacturing method
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JP2787580B2 (en) Nd-Fe-B based sintered magnet with excellent heat treatment
JPH07122413A (en) Rare earth permanent magnet and manufacture thereof
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
US5230749A (en) Permanent magnets
EP1072043A1 (en) Permanent magnetic materials of the r-fe-b type and process of manufacture
JPH02119105A (en) Nd-fe-b system sintered magnet
JPH0851007A (en) Permanent magnet and production thereof
JP2003217918A (en) Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
JP3199506B2 (en) Rare earth permanent magnet
JPH0536494B2 (en)
JP3623583B2 (en) Anisotropic bonded magnet
JP3703903B2 (en) Anisotropic bonded magnet